

R7W

R 8 W

Uncoloured legend blocks indicate units that do not appear on this map. To aid the reader a shadow effect has been added to exaggerate the topographic relief. Published by: Manitoba Industry, Economic Development and Mines Manitoba Geological Survey, 2004

Pre-cambrian crystalline rock

Tm

Pre-Quaternary

Modified from: Nielsen, E. Matile, G.L.D. 1985. Quaternary geology of the Gypsumville area; Manitoba Energy and Mines; Mineral Resources Division, Aggregate Report 84-3, 1 map. Scale 1:100 000.

Compiled by: G.L.D. Matile and G.R. Keller

SURFICIAL GEOLOGY COMPILATION MAP SERIES

LEGEND

ORGANIC DEPOSITS: peat, muck; <1–5 m thick; very low

SHORELINE SEDIMENTS: sand and gravel; 1–2 m thick; beaches; formed by waves at the margins of modern lakes

COLLUVIUM: landslide debris, eroded slopes, sheet flood

EOLIAN: sand and minor silt; dunes, blowouts and undulating plains; generally overlies deltaic sediments, coarse lacustrine

ALLUVIAL SEDIMENTS: sand and gravel, sand, silt, clay, organic detritus; 1–20 m thick; channel and overbank

sediments; reworked by existing rivers and deposited primarily

MARGINAL GLACIOLACUSTRINE SEDIMENTS: sand and gravel; 1–20 m thick; beach ridges, spits, bars, littoral sand and gravel; formed by waves at the margin of glacial Lake Agassiz

Agassiz; commonly scoured and homogenized by icebergs

OFFSHORE GLACIOLACUSTRINE SEDIMENTS: clay, silt, minor sand; 1–20 m thick; very low relief massive and laminated deposits; deposited from suspension in offshore, deep water of glacial Lake

DISTAL GLACIOFLUVIAL SEDIMENTS: fine sand, minor gravel, thin silt and clay interbeds; 1-75 m thick; subaqueous outwash fans; deposited in glacial Lake Agassiz by meltwater turbidity currents; commonly reshaped by wave erosion and reworked by wind

PROXIMAL GLACIOFLUVIAL SEDIMENTS: sand and gravel; 1–20 m thick; complex deposits, belts with single or multiple esker ridges and kames, as well as thin, low-relief deposits; deposited in

Calcareous clay diamicton, predominantly derived from Mesozoic

Calcareous silt diamicton, predominantly derived from Paleozoic

Non-calcareous sand diamicton, predominantly derived from

ROCK: > 75% bedrock outcrop; Cretaceous shales above the

Manitoba Escarpment, Paleozoic carbonate-dominated rocks in areas west and south of Lake Winnipeg, exposed typically as

glacially striated, low-relief surfaces; in Precambrian terrane, generally unweathered intrusive, metasedimentary, and metavolcanic rocks having a glacially scoured irregular surface with high local relief

deposits associated with steep slopes

sediments, or glaciofluvial deposits

contact with glacial ice by meltwater

relief wetland deposits; accumulated in fen, bog, swamp, and

RMSID vers. 2.0. 2002. Rural Municipality Soil Information Database for Manitoba version 2.0. Standardized GIS maps and databases of soil information for 117 municipalities in Manitoba and the area of the City of Winnipeg, Land Resource Group - Manitoba; Research Branch, Agriculture and Agri-Food Canada. Publication CD ROM.

A brief description of the Quaternary landscape of southern Manitoba

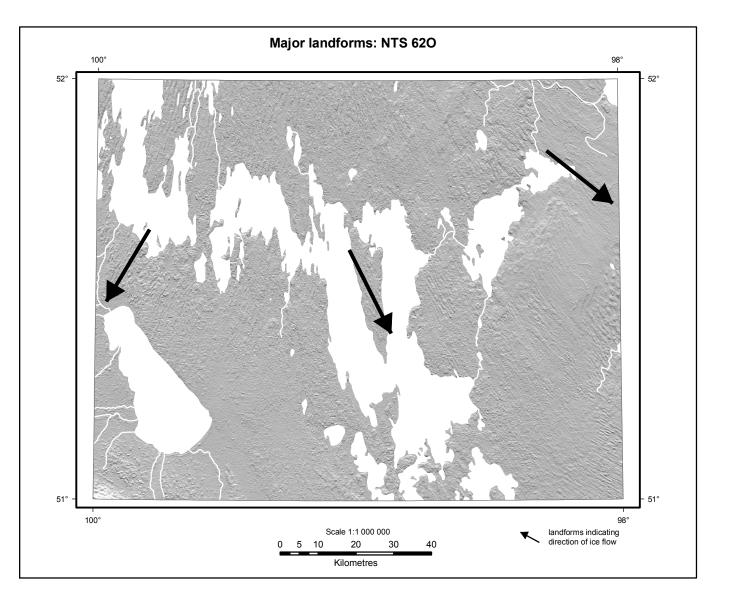
R 16 W

R 15 W

Eastward-facing bedrock escarpments culminating in cuestas which form the Manitoba Escarpment provide a foundation for the present-day landscape of southern Manitoba. To the east, the landscape is dominated by Precambrian rocks and bedrock structure, such as faulting, is commonly visible.

Above the Manitoba Escarpment, the landscape is dominated by hummocky moraine or dead-ice topography, streamlined topography and glacial spillways. Many areas are covered by thick sequences of glacial till representing numerous glacial episodes dating back more than 100,000 years. The most recent glacial advances were from the northwest. Glacial till tends to be clay rich. The Interlake is dominated by streamlined landforms and in lower areas, glaciolacustrine depositional basins. Quaternary sediments tend to be relatively thin and the preservation of older sediments is uncommon, limited to bedrock protected areas such as escarpments. Bedrock outcrops are common. Glacial advance was generally from the northwest, parallel to the streamlined landforms. Glacial till is typically silt rich. Glacial retreat occurred in a series of steps marked by moraines: the Darlingford Moraine (~11,000 years old); the Sandilands Moraine, which represents the interlobate position of the Rainy lobe from the northeast and the Red River lobe from the northwest; the Birds Hill-Belair Moraine; the Teulon Moraine; and The Pas Moraine (~9000 years old). George Island Moraine, contemporaneous with and to the east of The Pas Moraine, is another ice margin of the retreating Rainy

In the Precambrian shield, rock outcrops dominate the landscape. Quaternary sediments are commonly thick, but discontinuous, rarely completely infilling the bedrock lows. Older sediments, including saprolites, are often preserved in the bedrock lows where they are protected from glacial erosion. Glacial advance was generally from the northeast. Glacial till is typically sand rich. As the glaciers retreated, glacial lakes Souris and Hind formed and drained, and glacial Lake Agassiz expanded northward,

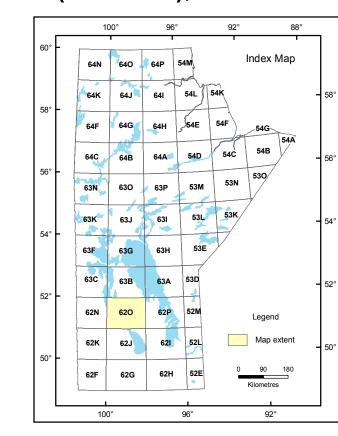

progressively covering the entire area below the Manitoba Escarpment. Major Lake Agassiz landforms include the Assiniboine Delta, which formed as glacial meltwater flowed from the Assiniboine spillway, and clay plains composed of tens of metres of clay and silt. The Herman beaches indicate the highest level attained by Lake Agassiz in southern Manitoba. The Upper Campbell beach is the best developed of the Lake Agassiz beaches and is evident along the base of the Manitoba Escarpment.

Holocene modifications to the landscape include eolian activity (sand dunes) primarily in the Assiniboine Delta and the Sandilands Moraine; the Portage la Prairie alluvial fan, from which fluctuating Assiniboine River flow directions over the last 7000 years have been documented; smaller alluvial fans that have developed along the Manitoba Escarpment; large landslide areas (colluvium) that are active along the northern part of the Manitoba Escarpment; and organic accumulations (bogs and fens) with basal radiocarbon dates of approximately 6000 years, that occur in the northeast and extend westward into the northern and eastern Interlake and southward into southeastern Manitoba.

Scale 1:4 000 000 direction of ice flow

Major landforms: southern Manitoba

MANITOBA


R6W

Suggested reference: Matile, G.L.D. and Keller, G.R. 2004: Surficial geology of the Dauphin Lake map sheet (NTS 62O), Manitoba; Manitoba Industry, Economic Development and Mines, Manitoba Geological Survey, Surficial Geology Compilation Map Series, SG-62O, scale 1:250 000.

SURFICIAL GEOLOGY COMPILATION MAP SERIES

SG-620

Surficial geology of the Dauphin Lake map sheet (NTS 62O), Manitoba

Manitoba 🥍 Building for the Future

North American Datum 1983 Universal Transverse Mercator Projection, Zone 14 Shuttle Radar Topography Mission elevation data provided by NASA (2003) 100X Vertical Exaggeration

Approximate mean declination (2004) for centre of map is 6°22' E, decreasing 7.1' annually.

Tp 25

Tp 24

Copies of this map can be obtained from: Manitoba Industry, Economic Development and Mines Toll free: 1-800-223-5215 Manitoba Geological Survey, Publication Sales 360-1395 Ellice Ave Winnipeg, MB, R3G 3P2

Phone: (204) 945-4154 E-mail: minesinfo@gov.mb.ca This map is available to download free of charge at www.gov.mb.ca/itm/mrd

R 14 W