Abstract

Bedrock mapping at 1:20 000 scale in the
2019 summer was focused on the Gemmell
Lake area in southern supracrustal belt of the
Paleoproterozoic Lynn Lake greenstone belt.
This aims to resolve the key questions about
the relationship of Au mineralization to
structures, hostrocks, granitoid intrusions and
tectonic evolution, and to support ongoing
exploration activity. The results indicate that
the area is underlain by the Wasekwan group
supracrustal rocks, comprising massive to
pillowed basalt, basaltic andesite, dacite to
rhyolite and related volcaniclastic rocks, and
subordinate sedimentary rocks. The volcanic
seqguence Is associated with reworked
volcaniclastic and epiclastic rocks, suggestive
of deposition in a setting comparable to
volcanic arcs or back-arc basins.
Unconformably overlying the Wasekwan
group are the Sickle group sandstone and
polymictic conglomerate, which are interpreted
to have formed in localized synorogenic
basin(s). A set of intrusions divided into pre-
Sickle, post-Sickle and late intrusive suites
cuts the supracrustal rocks, which were
subjected to multiple phases (D, to D,) of
deformation and metamorphism.

Two styles of Au mineralization are evident in
the Gemmell Lake area: 1) Au-bearing
mylonite and silicified-sericitized
(xdisseminated arsenopyrite, pyrite) felsic
volcanic to volcaniclastic rocks controlled by
the Johnson shear zone, which is related to D,
deformation and intersected by D, faults and
associated structures; and 2) intrusion-hosted
Au-bearing quartz (xcarbonate, sulphide) vein
systems controlled by intersections of D, faults
and the D, Johnson shear zone. The field
relationships suggest that timing of the Au
mineralization was syn- to post-D,
deformation. The D, event postdated the pre-
Sickle intrusions, postdated or was
contemporaneous with the post-Sickle
Intrusive suites, and predated the late intrusive
suite. The post-Sickle adakite-like quartz
diorite intrusions (subunit 7a) were likely
emplaced in a post-subduction extensional
setting resulting from the upwelling of
asthenosphere mantle due to the rollback of
the subducting slab. This was accompanied
by anomalous heating that may have triggered
the upward migration of auriferous fluids from
the lower crust or upper lithosphere mantle
along deep fault(s) connecting to the Johnson
shear zone and associated structures in the
middle to upper crust, consequently
concentrating Au mineralization in favourable
sites (e.g., chemical-structural traps).

Results of bedrock mapping in the Gemmell Lake area, Lynn Lake greenstone belt,
northwestern Manitoba (Parts of NTS 64C11, 14): Implications for Au exploration
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Fig. 1 Tectonic elements of the Trans-Hudson orogen in Manitoba and northeastern

Saskatchewan, showing the major lithotectonic domains of the internal (Reindeer) zone of the

Trans-Hudson orogen, Archean cratons and their Paleoproterozoic cover (external zones;
after Zwanzig and Balles, 2010).
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Fig. 2 Regional geology map of the Lynn Lake greenstone belt, showing detailed mapping
9a and references therein).

areas in 2019 as well as in the past few field seasons (Yang, 201
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Fig. 3 Simplified geology of the Gemmell Lake area, Lynn Lake greenstone belt
(simplified from PMAP 2019-2; Yang, 2019b). Triangles: location of Au occurrences.
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(presented at Central Canada Mineral Exploration Convention, November 18-19, 2019, Winnipeg)
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» Geochemical characteristics of adakite-like quartz diorites
»~ of unit 7 in post-Sickle intrusive suite

Figs. 11 to 14 indicate that the following key points for unit 7 quartz diorites in the post-
Sickle intrusive suite.

1) They are dominanly calc-alkaline, and spread a range of lithological types (Figs. 11a,
12a), but have a restricted HFSE ratios falling into the field of quartz diorite (Fig. 11b).

2) They are mainly magnesian, and metaluminous and evolve to moderately

<1 Sickle group S ) _ = ) o _
Hughs Lake 2 peraluminous variety, consisting with |-type granitoids (Fig. 12b, c).
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Fig. 4 Stratigraphic column of the Lynn Lake greenstone

belt (modified from Lawley et al., 2019).
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