

RED RIVER FLOODWAY LONG-TERM MONITORING PROGRAM 2017 PROGRAM A – ANNUAL REPORT DELIVERABLE D4

FINAL - REV 0

KGS Group 16-0300-002 March 2018

PREPARED BY:

Mari Aredman

Marci Friedman Hamm, P.Geo. Senior Hydrogeologist

APPROVED BY:

Bert Smith, P.Eng., FEC

J. Bert-Smith, P.Eng., FE Principal

3rd Floor 865 Waverley Street Winnipeg, Manitoba R3T 5P4 204.896.1209 fax: 204.896.0754 www.kgsgroup.com Kontzamanis Graumann Smith MacMillan Inc.

March 1, 2018

File No: 16-0300-002

Manitoba Infrastructure 2nd Floor - 280 Broadway Winnipeg, Manitoba R3C 0R8

ATTENTION: Mr. Paul Graveline Project Manager

RE: Red River Floodway Long-Term Monitoring Program 2017 Program A – Annual Report, Final Rev 0

Dear Mr. Graveline:

KGS Group is pleased to provide two (2) paper copies and electronic copies on DVD of the 2017 Program A – Annual Report, which is part of the Red River Floodway Long-Term Monitoring Program. This report summarizes activities for 2017.

We appreciate the opportunity to provide on-going services to Manitoba Infrastructure.

Sincerely,

J. Bert Smith, P.Eng. Principal

MFH/ama Enclosure

TABLE OF CONTENTS

1.0	INTRODUCTION.11.1ENVIRONMENT ACT LICENCE REQUIREMENTS.11.2SCOPE OF WORK.11.3AQUIFER CHARACTERIZATION.3		
2.0	METHODOLOGY62.1SURFACE WATER62.2WELL PUMPING METHOD MODIFICATIONS62.3GROUNDWATER62.4TRANSDUCER GROUNDWATER LEVEL AND QUALITY PROGRAM72.5WELL DISINFECTION PROGRAM72.6QUALITY ASSURANCE / QUALITY CONTROL (QA/QC)8		
3.0	SURFACE WATER RESULTS AND ASSESSMENT.93.12017 SPRING OPERATION93.22017 MONITORING LOCATIONS AND DATA93.32017 CHANNEL WATER ELEVATION93.42017 TEMPERATURE103.52017 BACTERIOLOGICAL QUALITY113.62017 NITRATE PLUS NITRITE (AS NITROGEN) AND OTHER NUTRIENTS113.72017 CONDUCTIVITY AND MAJOR IONS133.82017 DISSOLVED OXYGEN133.9RELATIONSHIP AMONG PARAMETERS13		
4.0	GROUNDWATER RESULTS144.1FLOODWAY OUTLET AND PTH 44144.2HAY ROAD TO DUNNING ROAD154.3PTH 59N BRIDGE AREA164.4KEEWATIN BRIDGE AND AREA TO THE SOUTH17		
5.0	GROUNDWATER RESULTS AND ASSESSMENT185.1CONDUCTIVITY CHANGES185.2BACTERIA195.3NITRATE PLUS NITRITE AS (NITROGEN)205.4RELATIONSHIP BETWEEN PARAMETERS215.5SUMMARY ASSESSMENT OF CHANGES22		
6.0	SPRING TREATMENT AREAS24		
7.0	WELL DISINFECTION		
8.0	LONG-TERM MONITORING		

Manitoba Infrastructure	
Red River Floodway Long-Term Monitoring Program	March 2018
2017 Program A – Annual Report Deliverable D4, Final – Rev 0	KGS 16-0300-002

9.0	STAT	EMENT OF LIMITATIONS AND CONDITIONS	30
	9.1	THIRD PARTY USE OF REPORT	30
	9.2	GEO-ENVIRONMENTAL STATEMENT OF LIMITATIONS	30

TABLES FIGURES APPENDICES

LIST OF TABLES

- D4-1 2016 and 2017 Monitoring Well and Surface Water Field Parameters
- D4-2 2016 and 2017 General Groundwater Quality Data
- D4-3 2016 and 2017 General Surface Water Quality Data Floodway Channel
- D4-4 2017 Water Quality Assessment Instrumented Wells
- D4-5 2017 Water Quality Assessment Non-Instrumented Wells

LIST OF FIGURES

D4-1 Program A Monitoring Well Locations

LIST OF APPENDICES

APPENDIX D4-A FLOODWAY OPERATION AND RED RIVER WATER QUALITY (GRAND FORKS)

- D4-A-1 Table D4-A-1 Summary of Observed Flow in the Floodway during Spring and Summer Operation
- D4-A-2 Red River at TransCanada Highway Real-time Data Environment Canada
- D4-A-3 Red River at Grand Forks, Real-Time Water Quality Data-USGS

APPENDIX D4-B 2016 to 2018 TRANSDUCER PROGRAM

D4-B-1 – Rev. A	Water Elevation and Temperature Readings at K09-12316 (Floodway Outlet)
D4-B-2 – Rev. A	Water Elevation and Temperature Readings at K09-12012 (Church Road)
D4-B-3 – Rev. A	Water Elevation and Temperature Readings at K11-12014 (PTH 59N Bridge West Side)
D4-B-4 – Rev. A	Water Elevation and Temperature Readings at K11-12015 (PTH 59N Bridge West Side)
D4-B-5 – Rev. A	Water Elevation and Temperature Readings at K13-12321 (Rockhaven Road)
D4-B-6 – Rev. A	Rev. A Water Elevation, Conductivity and Temperature Readings at Spring 7A1 (Kildare)

APPENDIX D4-C HISTORICAL TRANSDUCER PROGRAM

HM66-3 - Rev. 5	Water Elevation and Temperature Readings at K09-12316
	(Floodway Outlet)
HM66-13 - Rev. 5	Rev. A Water Elevation, Conductivity and Temperature Readings
	at K09-12012 (Church Road)
HM66-37 - Rev. 6	Rev. A Water Elevation, Conductivity and Temperature Readings
	at K11-12014 (PTH 59N Bridge West Side)
HM66-38 - Rev. 6	Rev. A Water Elevation, Conductivity and Temperature Readings
	at K11-12015 (PTH 59N Bridge West Side)

HM66-43 - Rev. 5 HM66-45 - Rev. 2	Rev. A Water Elevation, Conductivity and Temperature Readings at Spring 7A1 (Kildare) Rev. A Water Elevation and Temperature Readings at K13-12321 (Rockhaven Road)				
APPENDIX D4-D 2017 INSPECTION OF SPRING TREATMENT AREAS					
Appendix D4-D-1	Summary 2017 Inspection of Spring Treatment Areas				
Table D4-D-1	2017 Inspection of Spring Treatment Areas				
Appendix D4-D-2	Field Documentation				

Additional Photographs and Video (included on DVD)

APPENDIX D4-E LABORATORY REPORTS

Appendix D4-D-3

1.0 INTRODUCTION

1.1 ENVIRONMENT ACT LICENCE REQUIREMENTS

This 2017 Program A Annual Report is submitted in response to the requirements for annual monitoring in accordance with Clause 27 and Clause 30 of Environmental Licence No. 2691 dated July 8, 2005 and described in the Manitoba Floodway Authority memorandum HM72 Rev 1 Post-construction and Long-term Monitoring Program, issued April 2013. Revisions to the Long-term Monitoring Program were given in HM99, the 2013 to 2014 Post-construction Monitoring Program Comprehensive Annual Report February 2015. Background information and historic data that are not included in this report can be found in the annual groundwater Monitoring Data Analysis Reports 2005 through 2016. There was no monitoring program in 2012.

1.2 SCOPE OF WORK

The objectives of the project are to carry out long-term monitoring, testing and reporting on groundwater conditions within and adjacent to the Red River Floodway (Floodway) in accordance with the Provincial commitment to flood protection and as required under the Red River Floodway's Operating License (Environment Act License No. 2691). The current work program, overseen through Manitoba Infrastructure (MI) includes a monitoring period from spring 2016 through fall 2018, outlined in KGS Group proposal 15-000-1555. The Three Year Project Scope of Work includes the following annual activities:

- Spring and Summer Flood Monitoring Program A (or B if required);
- Inspection of Treated Groundwater Springs;
- Annual Well Disinfection, Inspection/Maintenance/Repair Programs and Channel Inspections;
- Reporting.

Previous deliverables for the current MI work program included:

• Deliverable D1 Red River Floodway Long-Term Monitoring Program 2017 Program A-Annual Report Deliverable D1.

- Deliverable D2 Red River Floodway Long-Term Monitoring Program 2016 Annual Inspection and Maintenance Report- Deliverable D2.
- Deliverable D3 Red River Floodway Long-Term Monitoring Program Deliverable D3-2017 Program A-Task 14 Notification Report 01.

This report (Deliverable D4) contains reporting for Program A Annual Report (Task 1) which also includes the inspection of treated groundwater springs and the annual well disinfection. In 2017 MI approved a scope change for the spring inspections and channel bottom survey to be conducted by boat in the Low Flow Channel at the same time. The 2017 Annual Inspection and Maintenance Report (Task 2) was submitted as Deliverable D5. Tables and Figures are labelled using the deliverable numbers to create unique products. For example, Appendix D4-A indicates Appendix A of the Deliverable D4 report.

In 2017, the Red River Floodway was operated from March 31, 2017 to April 21, 2017. Based on projected and then actual flows the requirements for Long-term Monitoring Program A (Task 1) (as outlined in proposal 15-000-1555) were initiated in Spring 2017. This included sampling of 5 instrumented monitoring wells for inorganic parameters and bacteria three times: pre-melt, at the peak flow of the Red River Floodway; and post-flood (several weeks after peak flow in the Red River Floodway) along with sampling of 7 additional core monitoring wells, once during the peak flow of the Red River Floodway. Sampling of surface water was conducted weekly during Floodway operation at two locations (PTH 59N Bridge and PTH 44 Bridge) during the peak flow in the Red River and an additional sample was taken after the Floodway operation to help interpret the post-melt groundwater data.

In addition to the Spring Flood Monitoring Program A (Task 1) in 2017, KGS Group conducted an inspection of treated groundwater springs and an annual well disinfection program as described in this report. The 2017 Annual Inspection and Maintenance Report (Deliverable D5) has been submitted separately and also includes a discussion of the channel bottom inspection, which was conducted at the same time as the springs inspection.

The Red River flow began entering the Floodway channel naturally, prior to control structure operation on March 30, 2017. The Floodway control structure was operated from March 31, 2017 to April 21, 2017, with the peak flow occurring on April 6, 2017 as discussed in Section 3.0.

The detailed 2017 program was as follows:

- Pre-melt monitoring was conducted on March 2 to 3, 2017 before the rise in the Red River.
- Spring Floodway operation peak flow monitoring was conducted on April 5 to 7, 2017.
- Weekly surface water monitoring at locations near the PTH 44 Bridge and PTH 59N Bridge was conducted from April 5 to April 26 and Post-flood surface water monitoring was conducted on May 11, 2017.
- Resampling of bacteria was conducted in the 5 instrumented monitoring wells on April 20, 2017.
- Post- Flood Groundwater Monitoring was conducted on May 11, 2017.
- Annual Groundwater Springs Inspection and Channel Bottom inspection was conducted on September 5 to 6, 2017.
- Annual Well Disinfection Program was conducted on November 29 to 30, 2017.

The 2017 program represents the third year of the Long-term Monitoring Program, and the second year falling under Manitoba Infrastructure direction. The 2017 Long-term monitoring program used monitoring wells designated in the monitoring program for Program A Task 1 as shown on Figure D4-1.

1.3 AQUIFER CHARACTERIZATION

The carbonate aquifer found along the Floodway Channel is part of a regional groundwater flow system from eastern Manitoba. The confined carbonate bedrock aquifer has natural variations in water quality, with the conductivity ranging from moderate to high (1,000 to 2,000 μ S/cm). Conductivity is a measure of dissolved solids, such as calcium, magnesium, chloride, sodium and sulphate. Near the Floodway Inlet, local mixing with saline groundwater found west of the Red River, results in higher conductivity groundwater (greater than 3,000 μ S/cm) with increased chloride and sodium.

Lower conductivity values are found in the bedrock aquifer where it is influenced by the Birds Hill surficial granular aquifer, from CPR Keewatin Bridge to Church Road. The Birds Hill sand and gravel surficial aquifer is a local unconfined aquifer near PTH 59N Bridge. The bedrock

aquifer beneath and surrounding the Birds Hill deposit has lower groundwater conductivity due to the freshwater recharge through the sand and gravel.

Natural variations in groundwater quality by location and with the seasons must be considered when the baseline and ongoing water quality results are evaluated during construction activities and Floodway operation events. One way to detect whether there is surface water intrusion into the groundwater aquifer is to monitor an indicator parameter such as conductivity which, along with other major ions, can be used to evaluate this contrast. In the vicinity of the Bird's Hill sand and gravel surficial aquifer, recharge from precipitation results in groundwater with lower conductivity (500 μ S/cm to 1,000 μ S/cm) than is found in other areas of the carbonate aquifer.

The intrusion of surface water into the groundwater is most readily detected when there is a contrast between the chemistry of the samples. Most groundwater conductivity values were found to be greater than surface water conductivity values measured during annual spring Floodway operation. Red River conductivity values are historically lowest during spring Floodway operation events, such as in the spring of 2005, 2006, 2007, 2009, 2010, 2011, 2013 and 2014. In this situation, groundwater conductivity would be expected to decrease, if surface water intruded.

During summer Floodway operation in 2005, summer Floodway use in 2007, and summer Floodway operation in 2010 and 2011, conductivity values of surface water from the Red River diverted in the Floodway were slightly higher than in the spring, and higher than the natural groundwater conductivity levels in some areas near the CPR Keewatin Bridge, PTH 59N Bridge and Church Road. These areas have naturally low groundwater conductivity in the bedrock aquifer. Floodway Channel surface water conductivity was also higher during the summer precipitation events in June 2008, than during the spring melt, with no Floodway operation in April 2008. An increase in groundwater conductivity might occur in summer, if surface water intrudes into the groundwater at this time.

In the spring 2015 flood, one time sampling in the Floodway Channel during the spring melt on April 6, 2015 (no Floodway flow or Floodway operation) showed that the conductivity of the local surface water in the Floodway Channel was low in April, and increased in May as the surface

water input decreased and the groundwater base flow became a greater percentage of the flow system.

In the spring of 2016, the conductivity during the spring melt on March 28 to 30, 2016 (no Floodway flow or Floodway operation) showed a low conductivity for the local surface water in the Floodway channel. An increase was seen in June 2016 as the percentage of groundwater base flow increased.

2.0 METHODOLOGY

2.1 SURFACE WATER

Surface water samples in 2017 were taken in the Floodway Channel at the PTH 44 and PTH 59 Bridges. Grab samples were collected from the channel. Samples were taken directly into sample bottles attached to an extension pole. KGS Group recorded field parameters (dissolved oxygen, specific conductivity, temperature and pH) using the YSI Pro meter. Results for the field parameters are shown in Table D4-1. Laboratory analysis data are shown in Table D4-2 and Table D4-3. Original laboratory reports are given in Appendix E. Laboratory results are given in mg/L unless indicated otherwise.

2.2 WELL PUMPING METHOD MODIFICATIONS

In 2017, monitoring wells were purged using a combination of small diameter submersible pumps (either dedicated to the well or portable) and dedicated inertial pumps (Waterra tubing with foot valves). Three of the monitoring wells (K13-12321, K09-12316 and K09-12012) now contain dedicated submersible pumps, while monitoring wells K11-12014 and K11-12015 now contain dedicated Waterra tubing.

After the well disinfection program in November 2017, as approved by MI, all dedicated well pumps were removed for inside storage at KGS Group over the winter, to protect against long-term precipitation of carbonate groundwater within the pump during submergence over the winter months, prior to the next spring pre-melt event.

2.3 **GROUNDWATER**

Monitoring well groundwater samples were taken from 5 of 12 monitoring wells on March 2 to 3, 2017. Subsequently all 12 monitoring wells were sampled on April 4 to 7, 2017 and these 5 of 12 monitoring wells were sampled again on May 11, 2017. All monitoring wells were located within the Floodway Right-of-Way. One of the monitoring wells sampled is a water supply well for Inlet Control Structure (G05OC006). Water samples are taken from an inside tap, however the water is not used for drinking. Well locations are shown on Figure D4-1. Monitoring wells are

not used for drinking water supply. Supplementary groundwater sampling event was also conducted at 5 of the 12 monitoring wells on April 20 for bacteria, as follow up to the prior March and April 2017 sampling events.

In order to ensure groundwater samples were representative of the natural formation water, the monitoring wells were purged a minimum of three (3) well volumes, or until groundwater parameters (conductivity and temperature) stabilized. Field measurements were taken at the start of purging and at set intervals of 5 to 10 minutes. Stable groundwater parameters were achieved at all sample locations within 20 minutes.

Field measurements for pH, conductivity and dissolved oxygen were taken during each sampling period. Groundwater samples were stored in a cooler chest at 4°C for transport to the laboratory. The samples were analyzed at ALS Laboratory in Winnipeg, Manitoba. Metal samples were filtered and acidified in the laboratory, since iron and manganese were not analyzed.

Results for the field parameters are shown in Table D4-1. Laboratory analysis data are shown in Table D4-2 and Table D4-3. Original laboratory reports are given in Appendix D4-E. Laboratory results are given in mg/L, unless otherwise noted.

2.4 TRANSDUCER GROUNDWATER LEVEL AND QUALITY PROGRAM

Continuous measurements of groundwater elevation and temperature were collected from the previous October 2016 download, to November 2017 in the 5 instrumented monitoring wells. Transducers were installed at depth so that the tips were in the open bedrock or screened zone. Transducers and pumps installed in these monitoring wells are owned by MI. Transducer results are shown in Appendix D4-B. Historical transducer data, reported in the most recent previous Red River Floodway 2015 Long-term Monitoring Program Report (HM101) is compiled in Appendix D4-C. Transducer monitoring in spring 7A1 (Kildare) is discussed in Section 6.0.

2.5 WELL DISINFECTION PROGRAM

The methodology employed for the well disinfection program included the following for each location:

- Recorded water level measurement from the top of the PVC well casing;
- Temporarily removed the dedicated transducer;
- For monitoring wells with dedicated submersible pumps, the pumps were removed, labelled and placed in a dedicated bags for winter storage at KGS Group;
- Added a calculated amount of household bleach to the well to raise the chlorine level in the well water to 200 ppm;
- Operated a temporary submersible well and pumped the well until discharge water had a chlorine odour (approximately 10 minutes);
- Removed the temporary inertial pump from the well;
- Closed and locked each well.

2.6 QUALITY ASSURANCE / QUALITY CONTROL (QA/QC)

Standardized sampling procedures and protocols were used during the sampling event to ensure representative samples were collected in a controlled manner so that scientifically defendable comparisons can be made.

Chain of Custody – KGS Group ensured all Chain-of-Custody procedures were properly undertaken and holding times were not exceeded.

Sample Collection – Samples were collected directly from the dedicated pump outlet, which is sealed in the well. Disposable latex gloves were worn when handling each piece of equipment and groundwater sample, using a new pair for each sample collection. Samples were collected in clean containers (supplied by the lab) and stored at the appropriate temperature using the proper preservatives. Any equipment replacement in the five instrumented monitoring wells was disinfected prior to installation.

Laboratory Qualification – ALS Environmental of Winnipeg, Manitoba, is a Canadian Association for Laboratory Accreditation Inc. (CALA) accredited analytical testing laboratory. Criteria and guidelines used for assessment of analytical data were clearly established with the laboratory to ensure the appropriate detection limits were used.

Duplicate Samples – Duplicate groundwater samples were submitted at a frequency of 10% for the total samples submitted to assess the quality of the laboratory analysis. The field duplicates were labelled such that the laboratory did not know the samples were duplicates. Laboratory standards and duplicates are run regularly by ALS and are on file.

Field Equipment – Field equipment such as field chemistry meters and transducers (if they include conductivity) are calibrated prior to use or installation.

3.0 SURFACE WATER RESULTS AND ASSESSMENT

3.1 2017 SPRING OPERATION

The 2017 and previous Floodway operation flows are summarized in Appendix Table D4-A-1. During the 2017 spring flood event, the Red River water began to flow naturally into the Floodway Channel on March 30, 2017 with a flow of 63 cms (2,225 cfs). The Floodway gates were in operation for 22 days from March 31, 2017 to April 21, 2017. The Red River crested on April 6, 2017 at the Floodway Inlet with a flow of 635 cms (22,421 cfs) diverted into the Floodway Channel.

3.2 2017 MONITORING LOCATIONS AND DATA

Surface water monitoring locations in 2017 were as follows:

- Floodway Channel at PTH 59N Bridge.
- Floodway Channel at PTH 44 Bridge.

Surface water quality data is shown in Table D4-1 for field data and Table D4-2 for laboratory data.

3.3 2017 CHANNEL WATER ELEVATION

Records for the Water Survey of Canada gauge in the channel near the Floodway Inlet (St. Norbert 05OC017) are given in Appendix D4-A-2, showing the 2017 peak of the spring Floodway operation elevation and the discharge. A comparison of peak flows and durations for flood events is presented in Appendix Table D4-A-1. The 2017 spring Floodway operation was similar to the 2005 summer flood discharge (635 cms vs. 657 cms), but had a shorter 22 day duration, compared with the 46 day duration in 2005. Peak flows and elevations vary along the channel and are also measured at the TransCanada Highway. Since many of the monitoring wells were not constructed in 2005, water quality comparisons are given in relation to the next largest Floodway operations - the 2013 spring and 2014 summer events.

Real time data for elevation, temperature and water quality available on-line from the USGS (United States Geological Survey) for the Red River at Grand Forks is presented in Appendix D4-A-3 This data is used as a general comparison since the Floodway Long-term monitoring program does not conduct monitoring in the Red River. The profile shows the spring peak, which resulted in Floodway operation, in Manitoba.

3.4 2017 TEMPERATURE

Based on historical data collected, the cold temperature of the Red River at the beginning of the spring melt is generally useful as an indicator of surface water infiltration when the river or overland surface water runoff temperature is a few degrees above freezing and the groundwater temperature is higher. As the spring melt advances over time, water from the spring melt starts to warm, increasing in temperature as the peak passes. Historically, a decrease in temperature has been observed in groundwater with the initial onset of spring melt.

Temperatures were first measured at approximately 5.1°C and 6.2°C in the Floodway Channel on April 5, 2017; five days after Floodway operation started as shown on Table D4-1. Temperatures from grab samples increased to 7.3 and 7.7°C on April 19 and decreased with colder weather to 3.6 to 3.8°C on April 26, 2017. The May 11, 2017 samples had temperatures of 12.7 and 14.8 °C and were taken after Floodway operation, representing groundwater baseflow combined with surface flow from local sources.

The continuous data from the Red River at Grand Forks (Appendix D4-A-3, page 3 of 10) also shows rising temperatures from 0°C to approximately 6°C from March 30 to April 3 as the flood peaked. The flood stage elevation peaked in Grand Forks on March 30, 2017. In the Floodway, surface water temperatures were slightly below, or similar to measured groundwater temperatures during the earliest sampling on April 5, 2017. Temperature shifts in groundwater during Floodway operation have been seen only in a few areas, all where downward gradients between the surface water and the groundwater would be present with even low flows in the Floodway. Temperature becomes a useful tracer again in the later part of the flood as surface water values become significantly higher than the groundwater.

3.5 2017 BACTERIOLOGICAL QUALITY

Bacteria results in the Floodway Channel surface water during the spring 2017 flood are shown in Table D4-2. Total coliform at PTH 59N Bridge ranged from 2430 MPN / 100 mL at the start of the Floodway operation and dropped to 34 MPN / 100 mL at the end, with a higher value of 308 MPN / 100 mL on April 26, 2017 after Floodway operation ended increasing to 1050 on May 11, 2017. The *E. coli* at PTH 59N Bridge ranged from <1 to 9 MPN / 100 mL during the spring Floodway operation, which was notably less than in 2016 (630 to 1440 MPN / 100 mL) when there was no Floodway operation. *E. coli* increased to 6 MPN/100 mL on April 26, 2018 and further increased to 78 MPN/100 mL on May 11, 2018.

Total coliform at PTH 44 Bridge were similar to the PTH 59N Bridge ranging from 2090 MPN / 100 mL at the start of the Floodway operation and dropping to 236 MPN / 100 mL at the end, with a higher value of 548 MPN / 100 mL on April 26, 2017 after Floodway operation ended, decreasing to 411 MPN/100 mL on May 11, 2017. The *E. coli* at the PTH 44 Bridge ranged from 4 to 8 MPN / 100 mL during the spring Floodway operation, increasing to 30 MPN/100 ML post flood, which was notably less than in 2016 (139 to 1210 MPN / 100 mL) when there was no Floodway operation. *E. coli* decreased to 6 MPN/100 mL on May 11, 2017. This is consistent with observations that the spring Floodway operation event tends to dilute bacteria concentrations in the channel due to the large volume of fresh snowmelt.

3.6 2017 NITRATE PLUS NITRITE (AS NITROGEN) AND OTHER NUTRIENTS

Nitrate plus nitrite (as N) concentration at the PTH 59N Bridge was at a maximum of 0.95 mg/l at the peak of the Floodway operation with decreased concentrations during each successive week of the flood, until April 19, 2017 where the value was 0.522 mg/L (Table D4-2). The CCME criteria for nitrate plus nitrite (as N) in drinking water is 10 mg/L; however, background groundwater concentrations are generally below 0.1 mg/L in many areas of the Floodway. Post flood sampling on April 26, 2017 showed nitrate plus nitrite (as N) at 0.02 mg/L, and May 11, 2017 sampling showed nitrate plus nitrite (as N) at <0.0051 mg/L.

Nitrate plus nitrite (as N) concentrations at the PTH 44 Bridge were at a maximum of 0.94 mg/l at the peak of the flood and decreased during each successive week of the flood, until April 19,

2017 where the value was 0.597 mg/L. Post flood sampling at PTH 44 on April 26, 2017 and May 11, 2017 showed nitrate plus nitrite (as N) at 0.06 mg/L and 0.01 mg/L respectively.

At the PTH 59N Bridge total ammonia, values were highest near the peak of the Floodway operation at 0.134 mg/L on April 5, 2017 (Table D4-2). At PTH 44 Bridge ammonia values were highest near the beginning of sampling at 0.137 mg/L on April 5, 2017. At PTH59N and PTH44 bridges values decreased to 0.048 mg/L on April 12, and were <0.01 mg/L in post melt sampling.

None of the unionized ammonia concentrations calculated exceeded the CCME FWAL guideline of 0.019 mg/L.

Total Kjeldhal Nitrogen (TKN) decreased from 1.19 mg/L to 0.66 mg/L through the Floodway operation at the PTH 59N Bridge and decreased from 1.19 to 0.85 mg/L through the flood at PTH 44 Bridge (Table D4-2). There are no CCME guidelines for TKN.

Total phosphorous values at the PTH 59N Bridge were highest on April 5, 2017 at the beginning of the Floodway operation, at values of approximately 0.51 mg/L (Table D4-2). Lower values of 0.34 to 0.18 mg/L were found during the later sampling. At PTH 44, total phosphorus values were also highest on April 5, 2017 at the beginning of the flood, at values of approximately 0.52 mg/L. Lower values of 0.33 to 0.22 mg/L were found during the later sampling. Post flood sampling at the PTH59 and PTH 44 Bridges had lower total phosphorous values of 0.077 to 0.065 mg/L. There are no CCME guidelines for total phosphorous.

Total suspended solids (TSS) were higher towards the beginning of sampling, with values of 172 to 173 mg/L on April 5, 2017; 62 to 124 on April 12, 2017 and <20 to 52 mg/L on April 19, 2017 and 18 to 26 mg/L on April 26, 2017 at PTH 59N Bridge and PTH 44 Bridge respectively (Table D4-2). Post flood sampling at PTH 59N and PTH 44 bridges showed a low TSS of 9 mg/L typical of the groundwater input to the channel. CCME guidelines for TSS relate to exposure events not baseflow, and so are not applicable.

3.7 2017 CONDUCTIVITY AND MAJOR IONS

Conductivity increased throughout the sampling from a low of 403 to 394 μ S/cm on April 5, 2017 to 696 and 694 μ S/cm on April 19, 2017 at PTH 59N and PTH 44 Bridge respectively. This increase reflects the increase in total dissolved solids, hardness (as CaCO₃), alkalinity, sodium, chloride and sulphate.

3.8 2017 DISSOLVED OXYGEN

Changes in dissolved oxygen during the flood were not pronounced in the surface water due to the short duration of the Floodway operation and the colder water temperature coincident with the early peak. Dissolved oxygen ranged from 9 to 15 mg/L in the surface water sampled. The dissolved oxygen in the groundwater was compared to the surface water to try to detect any areas of surface water infiltration (Table D4-1). However, a correlation between higher dissolved oxygen readings and changes in groundwater water quality was not established. However, a correlation between higher dissolved oxygen readings and changes in groundwater water quality was not established.

3.9 RELATIONSHIP AMONG PARAMETERS

Conductivity and major ions increased as the nitrate plus nitrite (as N) and the bacteria decreased during the 2017 Floodway operation period as in previous years. Overall, the surface water quality parameter results highlighted above reflect the influence of the spring Floodway operation in early April and the return to post–flood conditions characterized by an increased contribution of groundwater baseflow.

4.0 **GROUNDWATER RESULTS**

Groundwater quality results from monitoring wells measured in 2017 are discussed below. Results for samples collected during the peak of the floodway operation are compared to samples collected post-flood. In general, lower concentrations of parameters observed during the spring Floodway operation period versus the post-flood period would reflect possible surface water influence on groundwater within the monitoring wells sampled. As flow in the Floodway decreases and ends parameter concentrations in the Floodway tend to increase, reflecting a return to greater groundwater baseflow at these locations from the surrounding aquifer.

4.1 FLOODWAY OUTLET AND PTH 44

At the Floodway Outlet, monitoring wells located 65 m (K09-12316), and 350 m (K13-12321) north of the expanded channel within the Right-of-Way, showed some evidence of surface water intrusion from the Floodway in 2017 at various levels. Hydrographs showed a rise in groundwater elevation during the spring. At well K09-12316 the increase was comparable to the 2013 spring Floodway operation and 2014 summer flood, with little change in temperature (Appendix D4-B-1 and D4-C -Figure HM66-3), while at K13-12321 the increase was approximately 0.5 m higher than the summer 2014 flood (Appendix D4-B-5 and D4-C -Figure HM66-45).

Well K09-12316, closest to the channel, showed a decrease in conductivity from 893 μ S/cm in March pre-melt sampling to 804 mg/L at the peak of the Floodway flow in the channel as shown on Table D4-3. The well close to Rockhaven Road (K13-12321) also showed a decrease in conductivity from 1780 μ S/cm in March pre-melt sampling to 1030 mg/L at the peak of the Floodway flow in the channel. The decrease in conductivity reflects the decrease in alkalinity, hardness, chloride, and potassium in both monitoring wells and the decrease in sulphate and sodium in the Rockhaven Road well. Sulphate and sodium increase slightly in K09-12316 at the Floodway Outlet. A decrease in nitrate plus nitrite (as nitrogen) is also seen in this period, as background baseline groundwater has elevated nitrate plus nitrite (as nitrogen) in the pre-melt period. The greater water quality changes in the Rockhaven Road well, which is further from the Floodway, point to local recharge north of the Floodway, or influence of the Red River as an additional source of the water quality change seen in this well.

Total coliform were not detected at Rockhaven Road (K13-12321), or the Floodway outlet (K09-12316), during the March pre-melt sampling, but were detected at both locations at 2 MPN/100 mL during the spring Floodway operation, with no detection after the flood. The fact that the total coliform increased during the flood, with a decrease after, is indicative of surface water intrusion during the flood to both monitoring wells. *E. coli* bacteria was not detected during the March spring melt period, but it was detected at K09-12316 during the flood; however, *E. coli* was not detected in the duplicate sample, so the analysis cannot be relied on. *E. coli* was not detected in the May post-melt event. Dissolved oxygen concentrations did not correlate with water quality changes.

4.2 HAY ROAD TO DUNNING ROAD

At the bedrock well within the Right-of-Way at Church Road (K09-12012) the change in conductivity was comparable to the 2013 spring Floodway operation and 2014 summer flood, with little change in temperature (Appendix D4-B-2 and D4-C - Figure HM66-13). Parameter concentrations decreased during the spring Floodway operation indicating potential surface water intrusion. Nitrate plus nitrite (as N) remained below detection. Total coliform were found at 1 MPN/100 ML during the flood but were not detected in post flood sampling. *E. coli* bacteria were below detection (<1 MPN/100 mL) at this location on all dates sampled. Dissolved oxygen values were low (at or below 1 mg/L) on all dates (Table D4-1).

At the PTH 44 Bridge (U09-13571), parameter concentrations decreased during the spring Floodway operation compared with historic pre-melt measurements indicating potential surface water intrusion. Nitrate plus nitrite (as N) was elevated in the pre-melt sample and decreased during the spring Floodway operation. The dissolved oxygen value was low (below 1 mg/L).

At Hay Road (K11-12018) and Ludwick Road (K09-12011) there were no noticeable changes in parameter concentrations during the spring Floodway operation compared with the historic spring melt.

At Dunning Road (K11-12017), parameter concentrations decreased during the spring Floodway operation compared with historic pre-melt measurements indicating potential surface

water intrusion. No change was seen in nitrate plus nitrite (as N) values. The dissolved oxygen value was low (at or below 0.5 mg/L).

4.3 PTH 59N BRIDGE AREA

Near Bray Road, north of the PTH 59N Bridge, well K11-12016 did not show a change in water quality parameters between the historic pre-melt concentrations and the spring Floodway operation.

At the bedrock well located upstream of the PTH 59N bridge, and 250 m west of the expanded channel at the west Right-of-Way boundary (K11-12014) the increase in groundwater elevation was comparable to the 2013 spring Floodway operation and 2014 summer flood, with a decrease in temperature of less than 1° C (Appendix D4-B-3 and D4-C - Figure HM66-37). Parameter concentrations decreased during the spring Floodway operation from pre-melt concentrations. Nitrate plus nitrite as nitrogen increased during the flood, indicating potential surface water intrusion. Dissolved oxygen was above 2 mg/L in pre-melt and flood monitoring, likely due to the use of the Waterra tubing.

At the bedrock well located upstream of the PTH 59N bridge and 60 m west of the west channel slope within the Right-of-Way (K11-12015) the increase in groundwater elevation was comparable to the 2013 spring Floodway operation, with little decrease in temperature (Appendix D4-B-4 and D4-C - Figure HM66-38). Parameter concentrations decreased during the spring Floodway operation from pre-melt concentrations. Nitrate plus nitrite as nitrogen increased during the flood, indicating potential surface water intrusion. Dissolved oxygen was above 2 mg/L in pre-melt and flood monitoring, likely due to the use of the Waterra tubing.

Total coliform bacteria were not detected at either K11-12014 or K11-12015 during the March pre-melt, but were present in both monitoring wells during the spring Floodway operation (17 MPN and 12 MPN respectively) decreasing to 3 MPN during the latter part of the flood (April 20, 2017) and returning to below detection after the flood in May. *E. coli* bacteria was not detected in pre-melt monitoring in either well, but was detected at 1 MPN and 2 MPN respectively during the flood, with counts below detection in May 2017.

Near McGregor Farm Road at K13-12322 parameter concentrations decreased during the spring Floodway operation from pre-melt concentrations indicating potential surface water intrusion. Nitrate plus nitrite as nitrogen did not show a change. Dissolved oxygen was low, below 0.5 mg/L.

4.4 KEEWATIN BRIDGE AND AREA TO THE SOUTH

There is no monitoring from the Keewatin Bridge south to the inlet structure for Program A. These wells are monitored only in Program B.

At the inlet control structure (GO50C006) parameter concentrations decreased during the spring Floodway operation from pre-melt concentrations indicating potential surface water intrusion. Nitrate plus nitrite as nitrogen did not show a change. Dissolved oxygen was low at 0.5 mg/L.

5.0 GROUNDWATER RESULTS AND ASSESSMENT

5.1 CONDUCTIVITY CHANGES

Conductivity changes are being used as an indicator of surface water influence on groundwater quality, as conductivity is a parameter that is readily measured. Conductivity changes reflect the changes in major ions contributing to the dissolved solids.

If surface water intrudes into the aquifer, the mixing would result in changes observed in groundwater conductivity. Groundwater conductivity decreases with the addition of surface waters in most areas. Changes are most readily observed in areas where groundwater is more mineralized and thus has higher conductivity than surface water, which is typically the case during the spring. Conversely, increases in groundwater conductivity would be seen in areas where baseline groundwater conductivity is less than that of surface waters.

In addition to the Floodway, potential surface water infiltration sources in the area include ponds and open sand and gravel quarries, creeks, and the Red River (primarily near the Floodway Outlet).

The magnitude of the water quality change is described by a range in the percentage change in conductivity as follows: Type A (>50% change); Type B (25 to 50% change); Type C (10 to 25% change); Type D (5 to 10% change). Tables D4-4 and D4-5 show the 2017 water quality assessment based on changes in conductivity. For instrumented wells (Table D4-4), pre-melt samples (March) were compared with samples taken at the peak of the Floodway operation (April 5 to 6, 2017). For the remaining 7 non-instrumented monitoring wells (Table D4-5), spring Floodway operation samples were compared with recent historical pre-melt samples. The monitoring wells selected for sampling for the Long-Term monitoring program were in areas with higher potential for surface water intrusion due to hydrogeologic conditions, or locations near other surface water sources (such as the Floodway Outlet).

In 2017, 5 monitoring wells (with installed transducers) were sampled in three events for water chemistry and bacteria (pre-melt, peak of Floodway operation, post melt). From the pre-melt period to the Floodway operation and post-melt period in 2017, a change in groundwater quality

was seen in 5 of the 5 monitoring wells (100%) sampled. All of these monitoring wells are within the Floodway Right-of-Way.

Changes found from the pre-melt to the Floodway operation period were classified as follows:

- Type A (>50% change) for 1 well (20% of the total) located inside of the Right-of-Way at the Outlet at Rockhaven Road (K09-12321).
- Type B (25 to 50% change) for 2 monitoring wells (40% of the total) located inside of the Right-of-Way at the PTH 59N Bridge west side (K11-12015) and at the PTH 59N Bridge west side at west Right-of-Way (K11-12014).
- Type C (10 to 25% change) for 2 monitoring wells (40% of the total) located inside of the Right-of-Way at the Outlet (K09-12316) and Church Road (K09-12012).

For the remaining 7 core monitoring wells, which only required measurement during the spring Floodway operation period, 4 of the 7 monitoring wells (57%) showed an observable change as follows:

- Type B (25 to 50% change) for 1 well (14%) located inside of the Right-of-Way at the Floodway Inlet (G050C006).
- Type C (10 to 25% change) for 3 monitoring wells (43% of the total) located inside of the Right-of-Way at the Outlet the PTH44 bridge (U09-13571), Dunning Road (K11-12017), and just south of the PTH59N Bridge at McGregor Farm Road (K13-12322).

5.2 BACTERIA

In 2017, total coliform bacteria were identified at all five of the monitoring well locations tested (K13-12321, K09-12316, K09-12012, K11-12014 and K11-12015), with levels decreasing toward the end of the Floodway operation period and in the post-flood monitoring, suggesting influence of surface water intrusion followed by an increase in groundwater baseflow in the post-flood sampling. *E. coli* were detected at three locations (K11-12014, K11-12015 and K09-12316) during the spring Floodway operation on April 6, 2017. Total coliform bacteria and *E. coli* were not detected at the Floodway Inlet Control Structure domestic well (washrooms) which is not used for potable water.

Notification to Manitoba Infrastructure

As required by the Long-Term monitoring program (HM72) and the terms of reference for the 2016 to 2018 monitoring program, Manitoba Infrastructure was notified within 24 hours of receipt of positive bacteria results (April 14 for results received on April 13, and April 18 for results received on April 17, 2017). A notification report (Deliverable D3-01) was sent on April 20, 2017 recommending follow up bacteria sampling, which was approved by MI.

Follow-up bacteria sampling was conducted on April 20, 2017 and showed that *E. coli* were below detection in all monitoring wells and that total coliform had decreased, but was present in three monitoring wells K11-12014, K11-12015 and K09-12316. A follow-up notification report (Deliverable D3-02) was issued on July 13, 2017 with the April 20, 2017 data. The report indicated that all monitoring wells had shown previous concentrations of either *E. coli* or total coliform in the past at comparable or higher levels, therefore the response to the 2017 flood event did not indicate a deviation from water quality norms, and no further follow-up up action was required.

A "change in conditions" which would require reporting to Manitoba Sustainable Development Water Stewardship Division was not found based on the following:

- *E. coli* had been detected previously at monitoring wells K11-12014, K11-12015 and K09-12316.
- Based on a review of the other water quality parameters tested, changes in conditions in the monitoring wells were within the range of changes found in floods of similar magnitude and duration (spring 2013 and summer 2014 flood).

5.3 NITRATE PLUS NITRITE AS (NITROGEN)

Nitrate plus nitrite (as N) concentrations were below the Canadian Drinking Water Quality Guidelines (CDWQG) of 10 mg/L at all monitoring wells tested. Seven (7) of the 12 sample locations had concentrations below detection (<0.0051 to <0.051 mg/L) in 2017, either for spring Floodway operation sampling only, or spring Floodway operation, pre-melt and post-flood events.

Higher concentrations of nitrate plus nitrite (as N) were observed during the spring Floodway operation than the pre-melt or post-flood (May) for K11-12014 and K11-12015, suggesting influence from surface water intrusion, as background nitrate/nitrite concentrations in groundwater in this area are generally low.

In contrast, one sample within the Right-of-Way at Rockhaven Road (K13-12321) and one sample at the Floodway outlet (K09-12316) showed decreases in nitrate plus nitrite (as N) during the spring Floodway operation compared with both pre-melt and post-flood values, which have higher background values. The reduction in observed values demonstrates the potential influence of surface water with lower nitrate plus nitrite (as N) values relative to background.

5.4 RELATIONSHIP BETWEEN PARAMETERS

Lower conductivity values observed during the April 2017 spring Floodway operation generally correlated with the highest total coliform counts observed. Total coliform counts decreased in the later part of the Floodway operation and post-flood (May 2017). The three monitoring wells with *E. coli* bacteria also had higher levels of total coliform bacteria and had inorganic parameter changes indicative of surface water intrusion. Bacteria were sampled in areas where water quality changes were expected; therefore the locations do not represent a random sample.

Changes in nitrate plus nitrite (as N) correlated with changes in Floodway water quality at 80% (4) of 5 core monitoring wells with dedicated transducers sampled within the Right-of-Way (K13-12321 at Rockhaven Road, K09-12316 at the Floodway Outlet, and K11-12014 / K11-12015 at the PTH59N Bridge), and 14% (1) of 7 remaining core monitoring wells (U09-13571). Overall, higher nitrate plus nitrite (as N) concentrations were observed during the spring Floodway operation compared with pre-melt and post flood samples for the area near the PTH 59N Bridge. Where groundwater is locally affected by elevated nitrate plus nitrite (as N) near Rockhaven Road, the Floodway outlet and PTH44 Bridge (U09-13571), a decrease in concentrations with the spring Floodway operation was observed, as expected. Nitrate plus nitrite (as N) concentrations in all monitoring wells tested were well below the Canadian Drinking Water Quality Guideline of 10 mg/L nitrate plus nitrite (as N).

Many of the monitoring wells are located on the shoulder of the Floodway Channel, or in the spoil pile, and would be expected to experience any water quality changes more quickly than domestic wells located further away, beyond the Floodway Right-of Way. Domestic wells (with the exception of the Floodway Inlet well) are not monitored in the Long-term monitoring program. Travel times from the Floodway surface water to the monitoring wells vary, depending on Floodway Channel water elevations, piezometric water elevations, the surface water/groundwater interconnection pathway which depends on clay and till thickness, and the hydraulic conductivity of the bedrock, which ranges from highly fractured to massive.

In general, groundwater gradients will be greater and travel rates will be faster closer to the Floodway. Gradients will decrease and travel times will lengthen further from the Floodway, or in years where there is no Floodway operation, drier conditions, or limited channel flow.

5.5 SUMMARY ASSESSMENT OF CHANGES

The 2017 monitoring event flood represented a year with a moderate Floodway operation. Of the years 2005 to 2017 when Floodway Monitoring has taken place, the 2017 Floodway operation was the 4th largest spring Floodway operation of 9 years of spring Floodway operation (Table D4-A-1). Groundwater quality changes observed from monitoring wells located within the Floodway Right-of-Way in 2017 were similar to years of similar flow (2013 spring, 2005 spring, 2010 spring and 2005 summer) with the same or greater duration of Floodway operation.

The detection of bacteria and magnitude of bacteria counts were comparable to historic values and correlated with changes in inorganic water quality parameters in the monitoring wells, indicative of surface water intrusion.

The 2017 bacteria results indicate that bacteria is detected in some monitoring wells in sensitive areas during spring Floodway operation. Detection of *E. coli* continues to be infrequent, not sustained, and at levels at, or just above the detection limit when found.

All monitoring wells which showed groundwater quality changes in 2017 also showed changes in previous floods. Inorganic groundwater quality parameters seen in monitoring wells in 2017 did not exceed the Canadian Water Quality Guidelines for Drinking Water.

Manitoba Infrastructure Red River Floodway Long-Term Monitoring Program 2017 Program A – Annual Report Deliverable D4, Final – Rev 0

In 2017, total coliform bacteria were identified at five of the six sample locations tested, with levels decreasing toward the end of the Floodway operation period and in the post-flood monitoring, suggesting influence of surface water intrusion and return to an increased contribution of groundwater discharge in the channel after Floodway operation ends (post-flood). *E. coli* was detected at three locations during the peak of the spring Floodway operation, but was not present in resampling toward the end of Floodway operation or after operation (post-flood), consistent with previous years.

As required in the monitoring plan, procedures were implemented to notify Manitoba Infrastructure (e-mail and notification reports) when bacteria were detected in monitoring wells. Notification to Manitoba Water Stewardship Water Quality was not required as water quality changes within the monitoring wells were within those observed historically for floods of similar duration and magnitude.

6.0 SPRING TREATMENT AREAS

The Spring Treatment Program mitigates surface water infiltration in the bedrock aquifer. This is accomplished by providing sand filtration of any migrating fines, by decreasing the amount of flow into the springs at the filter locations for a given flood, by reducing the potential for expansion of spring areas through piping, and by improving the bacterial quality of any infiltrating water. The constructed fine sand filters have a much lower hydraulic conductivity than an open bedrock fracture; therefore, the initial flow rate from the surface water into the aquifer is decreased. As the low permeability silt fraction builds up above the sand filter layer during surface water discharge into the aquifer, the infiltration rate is reduced further. The fine sand also meets criteria for slow sand filters designed to reduce bacteria passage through the filter. After the Floodway operation, when the flow direction reverses to groundwater discharge, the sand filter protects against upward piping of the foundation material (silt, sand) which otherwise could have increased the size of a fracture/hole. In addition, during the upward flow process, silt fraction buildup and bacteria will be flushed out of the sand filter.

Sealing the groundwater discharge areas completely is not desirable, as a pressure build-up and uncontrolled discharge in another area would likely develop. The treatments provide pressure relief, but in a controlled fashion, and with a flow rate lower than was present before treatment.

Previous sampling in 2009 through 2011 (HM99, 2013 to 2014 Post Construction Monitoring Report) showed that total coliform and *E. coli* bacteria are generally present and at higher levels above the filter. The filter has been effectively reducing total coliform concentrations. *E. coli* has not been detected beneath the filter. Soon after the Floodway drains, surface water infiltration is flushed out quickly from the system as shown by a return to groundwater quality and an absence of bacteria. A return to groundwater quality (as shown by conductivity) was seen towards the end of the Floodway operation period as shown by the transducer data in 2009, 2011 and 2013, with more limited change seen in 2014 Appendix D4-B-6.

In 2016, monitoring of spring locations with a transducer was not included in the program. In 2015 one spring discharge location was monitored with a transducer during the spring melt when there was no Floodway operation. The results from 2015 (Appendix D4-C Figure HM66-

43) showed no infiltration and no drop in conductivity or temperature during the spring melt. The water level during the spring melt monitoring in 2015 was at the top of the Low Flow Channel. Monitoring in prior years showed that higher channel flows typical of Floodway operation will temporarily reverse the discharge groundwater gradient allowing surface water to recharge with a flow direction from the channel to the bedrock beneath the spring. There is a return to groundwater quality beneath the spring as the Floodway begins to drain and groundwater is again discharged into the channel. Since there was no Red River flow into the channel in 2015, these conditions did not occur and would not have occurred in 2016, which was also a year with no Floodway operation. The total flow and water depth in the channel was insufficient to reverse the gradient during the spring melt in 2015 and would have been similar in 2016.

The transducer was installed in 2017 to monitoring the 2017 spring Floodway operation. The plot of the transducer data is included in Appendix D4-B on Figure D4-B-6 spring 7A1 (Kildare). The plot shows a steep rise in groundwater elevation coincident with Floodway operation with a steep drop in groundwater temperature to nearly 1° C in the initial days of the operation as surface water intruded beneath the spring filter. The transducer installed in 2017 was not equipped to measure conductivity.

A summer inspection of 23 spring locations was conducted in August 2017 as summarized in Appendix D4-D including description (Appendix D4-D-1, Table D4-D-1) and field documentation sketches and photos (Appendix D4-D-2). A plan view of these locations is included in Deliverable D5 Long-Term Monitoring Program 2017 Annual Inspection and Maintenance Report Additional photos and video (Appendix D4-D-3) are provided on a separate DVD included with this report. This work documents conditions in the Long-term monitoring period and can be compared with surveys completed in 2013 through 2015 (HM99 2013 to 2014 Post Construction Monitoring Report) and 2016 (Deliverable D1).

The constructed filters were found to be in good condition and were working as designed. Flow appeared to be coming up through the filter and discharging through the granular layer overlying the sand filter bed. No settlement or heaving of the filters was observed. No required repairs were identified.

Manitoba Infrastructure Red River Floodway Long-Term Monitoring Program 2017 Program A – Annual Report Deliverable D4, Final – Rev 0

The discharge trenches were constructed as shallow excavated trenches that were filled with riprap to grade or slightly above grade. As in previous years, it was observed that at 11 of the treated spring sites, the rip rap within the discharge trenches was infilling with sediment and spring discharge was finding alternate flow paths to the Low Flow Channel (Appendix D4-D-1, Table D4-D-1). This resulted in overland flow toward the Low Flow Channel or flow into low areas near the filter, creating wet and soft areas. No significant erosion channels were observed at any of these locations. The discharge trenches were constructed as ditches in a few locations (5A1 and 7A1). This method appeared to be more effective in directing discharge flows along the design discharge flow path, versus other trenches. Modifying the 11 identified discharge trenches to create more pronounced ditches would improve control of flow towards the Low Flow Channel.

Both high level and low level sampling pipes were found to be in good condition, with no damage observed, with the exception of the low level pipe at 5A1, in which the steel cover was missing.

In 2016 and 2017, additional eroded discharge areas were observed in a small area along the discharge trench at 9B2. Construction of a graded sand filter would minimize potential for direct groundwater and surface water flow interconnections to develop at this location.

Five discharge locations were identified between Hay Road and the CEMR Bridge. One location had been observed previously in 2016. Two of the locations are near a Beaver Dam in the Low Flow Channel and may represent surface water. Source areas were found at two of the 5 locations. Flow rates were low and in most cases diffuse as they entered the Low Flow Channel.

Additional discharge areas AD17-1 through AD17-5 should be re-inspected in 2018 including field conductivity and temperature and source identification. Additional discharge locations AD17-1, AD17-2 and AD17-5 are adjacent to the channel; therefore, remediation may not be practical. Discharge areas AD17-3 and AD 17-4 should be assessed for potential remediation.

Remediation Items

• Modifying the 11 identified discharge trenches to create more pronounced ditches should be considered to improve control of flow towards the low flow channel.

- The cover for the low level pipe at 5A1 should be replaced in 2018.
- Construction of a graded sand filter at additional discharge areas at 9B2 should be considered.
- Additional discharge areas AD17-1 through AD17-5 should be re-inspected in 2018 including field conductivity and temperature and source identification.
- Discharge areas AD17-3 and AD 17-4 should be assessed for potential remediation.

7.0 WELL DISINFECTION

The purpose of the well disinfection program is to prepare instrumented monitoring wells that are used for bacteria analysis for the pre-melt (typically March) and flood (typically March/April) monitoring programs. The program in 2017 was conducted in the Fall, as several months are required between disinfection and sampling. Disinfection was completed at the five core monitoring wells with dedicated transducers, which are used for bacteria analysis.

On November 29 and 30, 2017 and KGS Group personnel disinfected 5 monitoring wells (K11-12316, K09-12012, K13-12321, K11-12014 and K11-12015) along the Red River Floodway at PTH 59N Bridge, Church Road, Rockhaven Road and at the Floodway Outlet following the procedure outlined in Section 2.5.

Any dedicated submersible pumps were removed from the monitoring wells at the time of disinfection for winter storage at KGS Group.

8.0 LONG-TERM MONITORING

The current work program, overseen by Manitoba Infrastructure includes a monitoring period from Spring 2016 through Fall 2018. The Three Year Project Scope of Work should be continued for 2018, to include the following annual activities:

- Spring and Summer Flood Monitoring Program A (or B if required);
- Inspection of Treated Groundwater Springs and Channel Inspections by boat;
- Annual Well Disinfection, Inspection/Maintenance/Repair Programs
- Reporting.

9.0 STATEMENT OF LIMITATIONS AND CONDITIONS

9.1 THIRD PARTY USE OF REPORT

This report has been prepared for Manitoba Infrastructure to whom this report has been addressed and any use a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. KGS Group accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions undertaken based on this report.

9.2 GEO-ENVIRONMENTAL STATEMENT OF LIMITATIONS

KGS Group prepared the geo-environmental conclusions and recommendations for this report in a professional manner using the degree of skill and care exercised for similar projects under similar conditions by reputable and competent environmental consultants. The information contained in this report is based on the information that was made available to KGS Group during the investigation and upon the services described, which were performed within the time and budgetary requirements of the Manitoba Infrastructure. As the report is based on the available information, some of its conclusions could be different if the information upon which it is based is determined to be false, inaccurate or contradicted by additional information. KGS Group makes no representation concerning the legal significance of its findings or the value of the property investigated.

TABLES

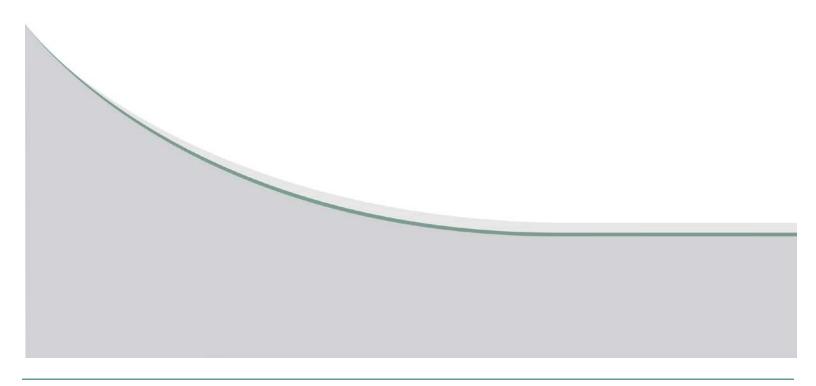


 TABLE D4-1

 2016 & 2017 MONITORING WELL AND SURFACE WATER FIELD PARAMETERS

Location	Well No.	Date	E.C. (µS/cm)	Temp. (°C)	pH (Units)	DO (mg/L)	Comments
Ground Water Samples							
		28-Mar-16	950	6.70	7.07	4.37	(1), (2), (3)
		21-Apr-16	1,100	6.80	7.25	3.13	-
Rockhaven Rd.	K13-12321	2-Jun-16	1,741	7.50	7.02	5.04	-
		2-Mar-17 20-Apr-17	- 1032	6.8 7	6.97 6.99	4.77 6.02	
		11-May-17	1508	6.9	7.04	6.02	(8)
		28-Mar-16	752	7.00	7.21	3.68	(1), (2), (3)
		21-Apr-16	823	6.90	7.43	1.96	-
		2-Jun-16	851	7.00	7.15	2.50	
Outlet Structure	K09-12316	3-Mar-17	-	6.9	7.1	2.76	
		5-Apr-17	600.4	7	7.16	1.75	(1)
		20-Apr-17	688.4	7	7.31	3.84	
		11-May-17	881	6.9	7.2	2.99	
		28-Mar-16	909	7.70	7.18	1.04	(5)
PTH 44 Bridge	U09-13571	5-Apr-17	705.7	7.8	7.11	0.92	(6)
		28-Mar-16	1,103	6.10	7.36	0.99	(5)
Hay Rd.	K11-12018	28-Mar-16 5-Apr-17	866	6.3	6.88	0.99	(6)
		· ·	000	0.5	0.00	0.49	
		29-Mar-16	1,036	6.20	7.39	0.18	(1), (2), (3)
		21-Apr-16	1,249	6.20	7.35	0.02	-
		2-Jun-16	1,005	6.40	7.23	0.15	-
Church Rd.	K09-12012	2-Mar-17	-	6.2	7.17	0.43	
		5-Apr-17 7-Apr-17	769.4 704.1	6.5	7.15	0.49	(1)
		20-Apr-17	947	6.3 6.2	7.15 7.26	0.72	
		11-May-17	1128	6.2	7.23	0.95	
Ludwick Rd.		29-Mar-16	441	6.80	7.41	1.52	(5)
Eudwick Rd.	K09-12011	6-Apr-17	349.6	6.9	7.29	0.52	(6)
		- ·			1	r	(5)
Dunning Rd.	K11-12017	29-Mar-16	1,037	6.10	7.25	0.19	(6)
		6-Apr-17	737.6	6.3	7.22	0.51	(-)
Bray Rd.	K11-12016	29-Mar-16	952	6.30	6.70	0.17	(5)
		6-Apr-17	766.9	6.3	7.19	0.4	(6)
		30-Mar-16	557	7.30	7.51	0.90	(1), (2), (5)
		21-Apr-16	606	7.40	7.51	1.14	(4)
	K11-12014	2-Jun-16	688	7.90	7.32	4.71	-
		3-Mar-17	-	6.4	7.2	3.72	(0)
		6-Apr-17	397.2	7.6	7.47	2.61	(8)
PTH59N Bridge		20-Apr-17 11-May-17	595.7 681.1	7.5 7.8	7.3 7.24	1.49 0.78	
				l.	1		
		30-Mar-16	521	7.20	7.70	1.12	(1), (2), (5) (3)
		21-Apr-16	565	7.20	7.76	0.99	-
	K11-12015	2-Jun-16 2-Mar-17	583	7.40 7.2	7.44 7.39	1.49 0.45	
	111 12010	6-Apr-17	370.1	7.3	7.39	3.84	145
		20-Apr-17	580.6	7.3	7.44	1.43	(1)
		11-May-17	659.5	7.3	7.39	0.89	
MaCrosser From D.d.		· ·	1	r T	1		(5)
McGregor Farm Rd.	K13-12322	30-Mar-16 6-Apr-17	737 605.4	6.20 6.6	7.56 7.3	0.09 0.57	(6)
Inlat Control Structure	00500000	30-Mar-16	2,340	9.90	8.02	1.07	-
Inlet Control Structure	G050C006	7-Apr-17	1709	14.1	7.72	0.53	(7)

TABLE D4-1 2016 & 2017 MONITORING WELL AND SURFACE WATER FIELD PARAMETERS

Location	Well No.	Date	E.C. (µS/cm)	Temp. (°C)	pH (Units)	DO (mg/L)	Comments
Surface Water Samples							
		28-Mar-16	415	9.30	7.77	13.80	-
		2-Jun-16	553	14.40	7.61	8.37	-
		5-Apr-17	305.1	5.1	7.95	11.57	-
PTH 44 Bridge	PTH 44	12-Apr-17	591	7.5	6.64	10.25	-
		19-Apr-17	709	7.7	7.09	10.03	-
		26-Apr-17	919	3.6	6.82	14.82	-
		11-May-17	743	12.7	6.94	10.08	-
							-
		30-Mar-16	608	6.30	7.36	8.11	
		2-Jun-16	767	17.60	7.81	9.38	-
		5-Apr-17	312.8	6.2	7.8	9.32	-
PTH59N Bridge	PTH 59N	12-Apr-17	607.1	7.7	6.66	9.42	-
		19-Apr-17	800	7.3	6.64	9.06	-
		26-Apr-17	737.5	3.8	7.61	15.21	-
		11-May-17	657	14.8	7.93	9.29	-

Notes:

"-" = No Data

E.C. = Electrical Conductivity

D.O. = Dissolved Oxygen

1. Well contains dedicated transducers.

2. Original Dedicated Well Pump Failed

3. New Dedicated Well Pump Installed

New Dedicated Waterra Tubing and Foot Valve
 Sampled with Portable Pump.

6. Purged and sampled with tornado pump.

7. Washroom tap, not used for drinking.

8. Purged and sampled with Waterra pump.

9. Conductivity results for March 3, 2017 anomalous due to meter/calibration. See laboratory conductivity results Tables D-4-2 and D-4-3.

TABLE D4-2 2016 & 2017 GENERAL SURFACE WATER QUALITY DATA FLOODWAY CHANNEL

																I	Parameter	(2)													
Sample Location ⁽¹⁾	Location	Duplicate	Date	Turbidity (NTU)	pH (units)		Alkalinity as CaCO ₃		Carbonate as CO ₃	Hydroxide as OH	Hardness as CaCO ₃	Chloride - Soluble	Sulphate - Soluble	Ammonia (NH ₃) (3)	Un-ionized Ammonia (Calculated by KGS Group) ^(3a)	Nitrate+ Nitrite-N	Nitrate-N	Nitrite-N	Calcium	Magnesium	Potassium	Sodium	Total Phosphorus	T.D.S. (Calc.)	5.S. T.K.	N. Anion Sum	n Cation Sum	Cation - Anion Balance	lon Balance (%)	Total Coliform MPN/100mL	E.coli MPN/100mL
CCME ⁽⁴⁾											T	-	1	1	ı.		(7.)									-			1 1		
Freshwater Aquation	Life			(5)	6.5-9.0	-	-	-	-	-	-	120 ^(6a) /640 ^(6b)	-	-	0.019	-	3 ^(7a) / 124 ^(7b)	0.06	-	-	-	-	(8)	- (9) _	-	-	-	-	-	-
RRF at PTH 59 N																															
Event - Spring Flo	od Monitoring																														
			30-Mar-16	21	8.13	549	193	236	<0.60	< 0.34	231	45.6	39.1	0.072	0.000227	0.414	0.405	0.0093	50.2	25.7	6.63	28.7	0.196	314	9 0.7	56	6.04	0.4	101	2790	630
			2-Jun-16	17	8.24	718	210	256	<0.60	<0.34	352	46.2	93.2	0.014	0.000293	4.68	4.620	0.0606	64.4	46.4	6.53	30.4	0.285	-	5 1.8			4.6	110	26100	1440
PTH 59	RRF at PTH 59 N Spring Hill Ski		5-Apr-17	163	7.86	403	135	165	<0.60	<0.34	195	12.8	55.9	0.134	0.001150	0.945	0.896	0.0490	44.0	20.6	9.19	15.5	0.505		72 1.1	0 110	4.81	5.6	112	2430	3
			12-Apr-17 19-Apr-17	112 26	7.96 8.03	534 696	163 198	199 241	<0.60 <0.60	<0.34 <0.34	239 298	19.3 45.3	99 123	0.048	0.000034	0.885		0.022	54.7 63.6	24.9 33.7	8.26 7.26	22.6 43.4	0.336	327 6 437 <	52 1.1 20 0.6	9 5.9 6 7.8		0.4	101 102	1550 34	9 <1
Event - Post Floor	1 Monitoring		00 4 17	00.0	0.00	0.40	005	000	<u>^</u>			21.0		1		0.0000	0.0004	0.0011	74.5	44.7	4.45	00.7	0.000					10		000	
PTH 59	RRF at PTH 59 N Spring Hill Ski		26-Apr-17 11-May-17	22.3 12	8.38 8.45	649 634	285 283	336 328	6 8.4	<0.34 <0.34	350 340	24.3 21.7	63 51.9	- <0.010	-	0.0233		0.0011 <0.0010	71.5 74	41.7 37.8	4.15 3.65	20.7 20.7	0.092		8 <0.2			1.9	104 104	308 1050	6 78
		SW100	11-May-17	11.6	8.45	632	283	328	8.52	<0.34	345	21.7	59.2	<0.010	-	< 0.0051		<0.0010	75.2	38.1	3.77	21	0.077		0 0.7			2.6	105	1200	73
RRF at PTH 44																															
Event - Spring Flo	od Monitoring																														
			28-Mar-16	42.5	7.96	407	175	213	<0.60	<0.34	198	13.5	26.2	0.054	0.000553	1.28		0.0263	45.3	20.7	7.82	9.41	0.356	233 24				0.8	102	980 ⁽¹⁰⁾	139 ⁽¹⁰⁾
			2-Jun-16	10.0	8.03	665	227	277	<0.60	<0.34	329	38.4	81.0	<0.010	-	0.727		0.0234	62.8	41.7	4.84	27.8	0.108	396 13		2 7.36	_	3.5	107	41100	1210
PTH 44	NW side of PTH 44 bridge		5-Apr-17	171	7.84	394	134	164	<0.60	<0.34	195	12.5	54.0	0.137	0.001516	0.943		0.0521	44.3	20.4	9.13	15.1	0.520		-	9 4.23		6.2	113	2090	8
		SW100	5-Apr-17	172	7.83	398	135	164	<0.60	<0.34	194	12.4	54.1	0.145	0.001604	0.943	0.892	0.0513	43.8	20.6	9.51	15.1	0.519		76 1.2			6.2	113	1450	4
			12-Apr-17 19-Apr-17	107	7.97 8.53	524 644	160	195 230	<0.60 9.96	<0.34 <0.34	228 309	18.6 27.4	95.8	0.048	0.000032	0.893	0.87 0.586	0.0226	53.6 69.3	22.8 33	7.85 7.61	21.3 36.4	0.329		24 1. ⁻ 52 0.8	0.10		-0.8 2.9	98.3	1300 236	6
			19-Apr-17	54	8.53	644	205	230	9.96	<0.34	309	27.4	124	-	-	0.597	0.586	0.0109	69.3	33	7.61	36.4	0.219	423 5	52 0.8	5 7.5	7.95	2.9	106	236	4
Event - Post Floor	1 Monitoring																								_						
PTH 44	NW side of PTH 44 bridge		26-Apr-17	24	8.33	704	283	337	3.96	< 0.34	362	38.1	71.9	-	-	0.0552			73.2	43.6	4.69	29.3	0.1	431 2		6 8.23		2.4	105	548	30
			11-May-17	9.3	8.34	679	293	349	4.44	<0.34	357	23.5	65.9	<0.010	-	0.0116	0.0116	<0.0010	76.3	40.3	3.95	22.1	0.065	408	9 0.6	5 7.9	8.19	1.8	104	411	12

Notes:

"-" = No Data

E.C. = Electrical Conductivity T.D.S. = Total Dissolved Solids "*" = Detection Limit Adjusted For Sample Matrix Effects T.K.N. = Total Kjeldahl Nitrogen T.S.S. = Total Suspended Solids

1. See Figure D4-1 for sample locations.

2. All values are expressed in milligrams per litre (mg/L) unless indicated otherwise.

3. Guideline for un-ionized ammonia is 0.019 mg/L, which is equivalent to 16 µg ammonia-N /L (=19*14.0067 / 17.35052, rounded to two significant figures).

Guideline for total ammonia is temperature and pH dependent; See below table.

			рн					
Temp (°C)	6	6.5	7	7.5	8	8.5	9	10
0	231	73	23.1	7.32	2.33	0.749	0.25	0.042
5	153	48.3	15.3	4.84	1.54	0.502	0.172	0.034
10	102	32.4	10.3	3.26	1.04	0.343	0.121	0.029
15	69.7	22	6.98	2.22	0.715	0.239	0.089	0.026
20	48	15.2	4.82	1.54	0.499	0.171	0.067	0.024
25	33.5	10.6	3.37	1.08	0.354	0.125	0.053	0.022
30	23.7	7.5	2.39	0.767	0.256	0.094	0.043	0.021

3a) Un-ionized ammonia calculation uses pH and temperature values from field data, as well as the following equations: pKa = 0.09018+2729.92/T where T = Temperature in degree Kelvins

 $f = 1/(10^{(pKa - pH)} + 1)$

Un-ionized Ammonia = f x (Ammonia)

4. CCME - Canadian Council of Ministers of the Environment. Canadian Environmental Quality Guidelines, 1999. Updated February 6, 2014. Chapter 4 - Canadian Water Quality Guidelines for the Protection of Aquatic Life

5. Turbidity Guidelines Narrative (see fact sheet for complete details):

Clear Flow:

Maximum increase of 8 NTUs from background levels for a short-term exposure (e.g. 24 hr period).

Maximum average increase of 2 NTUs from background levels for a longer exposure (e.g. 30 d period).

High Flow or Turbid Waters:

Maximum increase of 8 NTUs from background levels at any one time when background levels are between 8 and 80 NTUs. Should not increase more than 10% of background levels when background is >80 NTUs.

6. Chloride toxicity to freshwater organisms was evaluated using tests with both $CaCI_2$ and NaCI salts.

a. Long-term exposure - May not be protective of certain species of endangered and special concern freshwater mussels. Refer to fact sheet for more explanation

b. Short-term exposure - derived with severe-effect data (such as lethality) and are not intended to protect all components of aquatic ecosystem structure and function but rather to protect most species against lethality during severe but transient events. Refer to fact sheet for more information.

BOLD - Exceedance of CCME Criteria

7. All nitrate concentrations presented here will be for the ion only (i.e. as mg NO₃-/L). Conversion factors for some of the commonly reported units in the literature are provided in the Factsheet. For protection from direct toxic effects: the guidelines do not consider indirect effects due to eutrophication. For freshwater - Derived from toxicity tests utilizing NaNO₃.

For marine - Derived from toxicity tests utilizing NaNO3 and KNO3.

a. Long term concentration - Derived with mostly no- and some low-effect data and are intended to protect against negative effects to aquatic ecosystem structure and function during indefinite exposures (e.g. abide by the guiding principle as per CCME 2007).

b. Short term concentration - Derived with severe-effects data (such as lethality) and are not intended to protect all components of aquatic ecosystem structure and function but rather to protect most species against lethality during severe but transient events (e.g. inappropriate application or disposal of the substance of concern).

8. If trigger ranges for total phosphorous are exceeded, the potential exists for an environmental impact. If trigger range is not exceeded, b

but TP is more than 50°	% above baseline values, th	ne potential exists	for an environmental impact.						
Trigger ranges (µg/L):	ultra-oligotrophic	<4	meso-eutrophic	20-35					
	oligotrophic	4-10	eutrophic	35-100					
	mesotrophic	10-20	hyper-eutrophic	>100					
9. Suspended Sediments Guidelines (see fact sheet for complete details):									

Clear Flow:

Maximum increase of 25 mg/L from background levels for any short-term exposure (e.g.. 24 hr period).

Maximum average increase of 5 mg/L from background levels for longer term exposures (e.g.. Inputs lasting between 24 hrs and 30 days). High Flow:

Maximum increase of 25 mg/L from background levels at any time when background levels are between 25 and 250 mg/L.

Should not increase more than 10% of background levels when background is >250 mg/L.

10. Bacteria sample taken on March 29, 2016

			Floodway Operation Summary		
Year	Status	Peak flow in Red River	Start of floodway operation	Peak flow in floodway	End flow in floo
2016	No floodway operation	March 18, 2016	-	-	-
2017	Floodway operation	-	March 31, 2017	April 16, 2017	April 21, 20

TABLE D4-3 2016 & 2017 GENERAL GROUNDWATER QUALITY DATA

<table-container></table-container>																		Parameter	r ⁽¹⁾											
····································	5	٩	ate	H	Date									Chloride	Sulphate	& Nitrite	Nitrate as N		Calcium	Magnesium	Potassium	Sodium		Cation	Total Anion		Ion Balance			Comments
····································	ocati	Vell	oildr	Ever	EQL	0.05	0.01	0.4	1	2	0.6	0.4	0.07	9	9	0.005-0.01			0.05	0.01	0.05	0.02	5	-	-	-	-	0	0	
	Ľ	>	ā						-	_						1							- 1					-	-	
Here Image								-	-	-	-	-				-	10 ⁽⁹⁾	1 ⁽⁹⁾	-	-	-			-	-	-	-			-
						3.11	7.39	974	408	498	<0.60	<0.34	497	44.6	79.2	2.33	2.33	<0.0010	74.2	75.9	4.88	27.3	561 1	1.3	11.2	0.1	100			-
Barbar Image: Ima						0.41	-	- 1710	- 506	- 617	- <0.60	< 0.34	- 882	- 243	93.7	- 3.25	- 3.25	-	- 113	- 146	6.55	- 69.8	990 2	-).9	- 19.1	- 4.3	- 109			
····································	Rockhaven Rd.	K13-12321	-																											-
			-			0.33	7.57	1030	445	542	<0.60	<0.34	552	40.4	75.6	2.89	2.89	<0.0020	78.2	86.6	4.89	27.6	580 1	2.4	11.8	2.3	105	2	<1	-
<tt></tt>				-			-	-	-	-	-						-	-	-	-	-	- 42.0								-
Phase Phase Phase			-		,																									
						0.27	7.51	775	312	381	<0.60	<0.34	372		75.6		1.56	<0.0010	62.8	52.3	4.33	24.5	444 8	.61	8.79		98			-
Desc Metric Metri Metri Metri						0.17	7.63	853	359	438	<0.60	< 0.34	482		64.1		1.57	< 0.0010	74.8	71.7	4.47	21.6	490 1	- 0.7	9.49		113			-
Image: state					3-Mar-2017	<0.10	7.32	893	432	527	<0.60	<0.34	523	29.5	59.0	1.8	1.80	<0.0010	77.8	79.8	4.60	21.3	539 1	1.5	10.8	3	106	<1	<1	-
Image Image <th< td=""><td>Outlet Structure</td><td>K09-12316</td><td></td><td>Flood Book</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td></th<>	Outlet Structure	K09-12316		Flood Book		-															-					-				-
····································				FIUUU Peak																	_				-					-
Phr d fight Bur Mi Star Mi				-	20-Apr-2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		<1	-
Phi conditionalPhi conditiona			-	Post Flood	11-May-2017	0.25	7.5	844	381	465	<0.60	<0.34	452	28.5	63.4	1.49	1.48	0.008	74.2	64.8	4.46	21.7	486 1	0.1	9.85	1.2	102	<1	<1	•
Dip	PTH 44 Bridge	U09-13571																		-					-			-	-	-
····································	- Hoy Pd	K11 10018	-	River Peak	28-Mar-2016	8.20	7.23	1130	593	723	<0.60	<0.34	636	2.29	102	<0.0051	< 0.0050	<0.0010	92.4	98.5	5.19	27.8	683 1	4.1	14	0.1	100	-	•	- 1
Here 1 <th1< th=""> 1 1 1</th1<>	нау ки.	K11-12018	-	Flood Peak	5-Apr-2017	2.88	7.19	1180	608	741	<0.60	<0.34	657	1.8	107	<0.010	<0.010	<0.0020	87.7	106	5.31	31.0	704 1	4.6	14.4	0.6	101	•		
Dep + 1 Pere + 2.000 1.00 1.00 1.00			-	River Peak	29-Mar-2016	73.3	7.44	1060	350	427	<0.60	<0.34	531	23.0	237	<0.0051	< 0.0050	<0.0010	94.9	71.3	4.50	45.2	686 1	2.7	12.6	0.4	101	<1	<1	- 1
Church Number Number Number Number <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td>			-	-			-	-	-	-	-				-	-	-	-	-	-	-	-			-					-
Image: Image: Image: Image: <td>Church Rd</td> <td>K09-12012</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	Church Rd	K09-12012																			_									-
Here Here <t< td=""><td>ondicit itu.</td><td>103-12012</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>	ondicit itu.	103-12012								-											-									-
Label Al Part of the part			-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-			-
Undiv With Minice With Minice <th< td=""><td>-</td><td></td><td>-</td><td>Post Flood</td><td>11-May-2017</td><td>0.5</td><td>7.47</td><td>1090</td><td>387</td><td>473</td><td><0.60</td><td><0.34</td><td>589</td><td>19.2</td><td>242</td><td><0.010</td><td><0.010</td><td><0.0020</td><td>97.9</td><td>83.7</td><td>4.85</td><td>47.9</td><td>728</td><td>4</td><td>13.3</td><td>2.4</td><td>105</td><td><1</td><td><1</td><td>-</td></th<>	-		-	Post Flood	11-May-2017	0.5	7.47	1090	387	473	<0.60	<0.34	589	19.2	242	<0.010	<0.010	<0.0020	97.9	83.7	4.85	47.9	728	4	13.3	2.4	105	<1	<1	-
Image: Properties with a series of the series of	Ludvish Dd	1/00.10011		River Peak																							-			-
Durning Rd. Kit1-2017 Rive Peak. 2.949a-2017 2.82 7.85 9.00 4.00 4.00 4.000<	LUOWICK RO.	K09-12011	MVV100	Flood Peak																										-
Dubing Nat N11000	-																													1
Brig Rd. Internet State Outpote State Outpote State	Dunning Rd.	K11-12017																												-
BBY M2 I Proof Peek People Peek People Peek People Pee	-		1 T																-											I.
Physical Numerbase Solution Constraint Constraint </td <td>Bray Rd.</td> <td>K11-12016</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td>	Bray Rd.	K11-12016	-																									-		
NH1 N	-		· .	River Peak					247		<0.60					0.252	0.252											9	د1	
PH12014 I Permet 2-Junctif 0.4 7.6 6.5 7.6 7.7 <tbr> <tbr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td></tbr<></tbr>																												-		-
K112014 I Premel 3-Marcorf 0.7 7.3 8.7 3.0 9.01 9.03 9.01 0.01 0.01 0.01 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td>						-	-	-	-	-	-	-					-	-	-	-	-	-			-	-	-			-
PH59N Bridge - Flood Peak 6-Ap-2017 2.35 7.73 5.31 2.08 2.64 0.03 2.69 1.71 6.47 0.322 0.301 5.27 3.34 4.35 9.19 3.11 5.87 0.2 1.00 1.71 1 <		K11-12014																												
PH59N Bridge ····································																														-
PH59N Bridge K111-00 K111-00 1.10 May-2017 1.60 7.48 6.78 0.20 0.301 0.301 0.301 0.301 0.30 0.41 <			-					-	-	-	-		-		-		-	-	-	-	-	-						0		-
Hubble billing - Number billing			- K11-100	Post Flood							1																			-
Image: branch in the sample in the	P I HOAIN RLIQGE																													
MW-100 V 21-Apr-2016 V V <			-					- 532			1								- 54.2									-		
K11-12015 - Pre-melt 2-Mar-2017 0.22 7.64 614 2.67 326 <0.80 <0.34 349 14.6 58.3 0.0486 0.0486 0.010 64.8 355 7.36 6.97 2.7 106 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 </td <td></td> <td></td> <td></td> <td>rte sumple</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>				rte sumple				-		-	-						-		-	-	-									-
- Flood Peak 6-Apr-2017 1.44 7.79 489 191 233 <0.60 <0.34 249 12.6 55.4 0.474 0.010 49.3 30.5 3.96 9.14 276 5.36 1 102 12 2 - - Re-sample 20-Apr-2017 -		K11-12015																												
Image: Normal biase Image: Normal biase<																					_									
McGregor Farm Rd. - River Peak 30-Mar-2016 0.84 7.60 741 247 302 <0.60 <0.34 356 16.1 148 <0.0051 <0.000 61.9 48.8 3.36 23.3 450 8.2 8.48 -1.7 96.7 -			-								1							-				-								
McGregor Farm Rd. K13-12322 - Flood Peak 6-Apr-2017 0.75 7.62 7.96 2.64 3.22 <0.60 <0.34 400 16.1 162 <0.005 <0.001 68.5 55.7 3.79 27.8 492 9.31 9.1 1.1 102 - - Inlet Control Structure G050_C006 - River Peak 30-Mar-2016 38.4 7.84 230 202 <0.60 <0.34 477 539 295 <0.051 <0.010 95.5 57.9 12.8 325 1450 29.4 9.1 1.1 102 - - -			-	Post Flood	11-May-2017	0.21	7.68	615	248	302	<0.60	<0.34	331	14.9	78.9	0.143	0.128	0.0153	63.9	41.7	4.44	8.94	361 7	.12	7.02	0.7	101	<1	<1	•
- Hood Peak 6-Apr-2017 0.75 7.62 <td>McGregor Form Pd</td> <td>K13_10000</td> <td>-</td> <td>River Peak</td> <td>30-Mar-2016</td> <td>0.84</td> <td>7.60</td> <td>741</td> <td>247</td> <td>302</td> <td><0.60</td> <td><0.34</td> <td>356</td> <td>16.1</td> <td>148</td> <td><0.0051</td> <td><0.0050</td> <td><0.0010</td> <td>61.9</td> <td>48.8</td> <td>3.36</td> <td>23.3</td> <td>450</td> <td>.2</td> <td>8.48</td> <td>-1.7</td> <td>96.7</td> <td><u> </u></td> <td>-</td> <td><u> </u></td>	McGregor Form Pd	K13_10000	-	River Peak	30-Mar-2016	0.84	7.60	741	247	302	<0.60	<0.34	356	16.1	148	<0.0051	<0.0050	<0.0010	61.9	48.8	3.36	23.3	450	.2	8.48	-1.7	96.7	<u> </u>	-	<u> </u>
		r 13=12322	-	Flood Peak	6-Apr-2017	0.75	7.62	796	264	322	<0.60	<0.34	400	16.1	162	<0.0051	<0.0050	<0.0010	68.5	55.7	3.79	27.8	492 9	.31	9.1	1.1	102			
Flood Peak 7-Apr-2017 37.0 7.75 2240 233 285 <0.60 <0.34 467 422 282 <0.51 <0.50 <0.50 89.2 59.4 12.3 304 1310 22.9 22.4 1 102 0 0 0	Inlet Control Structure	G050C006	-	River Peak	30-Mar-2016	38.4	7.84	2340	206	252	<0.60	<0.34	477	539	295	<0.051	<0.050	<0.010	95.5	57.9	12.8	325	1450	24	25.5	-3	94.1	1	0	-
		60500006	-	Flood Peak	7-Apr-2017	37.0	7.75	2240	233	285	<0.60	<0.34	467	422	282	<0.051	< 0.050	<0.010	89.2	59.4	12.3	304	1310 2	2.9	22.4	1	102	0	0	-

TABLE D4-3 2016 & 2017 GENERAL GROUNDWATER QUALITY DATA

Notes:

- EQL = Estimated Quantitation Limit = The lowest level of the parameter that can be quantified with confidence
- E.C. = Electrical Conductivity
- T.D.S. = Total Dissolved Solids
- "-" = No Data
- 1. All values are expressed in milligrams per litre (mg/L) unless indicated otherwise.
- 2. Health Canada Canadian Drinking Water Quality Guidelines (HC-CDWQ). Federal-Provincial-Territorial Committee on Drinking Water, February 2017.
- MAC Maximum Acceptable Concentration
- AO Aesthetic Objectives
- 3. Cation Anion balance = sum of meq of Cations sum of meq of Anions X 100 = %
- sum of meg of Cations + sum of meg Anions 4. Cation-anion balances greater than the absolute 10% are highlighted for reference only.
- 5. Total coliforms should be monitored in the distribution system because they are used to indicate changes in water quality.
- a) Water leaving a treatment plant: Total coliforms should be measured in conjunction with other indicators to assess water quality; the presence of total coliforms indicates a serious breach in treatment.
- b) Distribution and storage systems: Detecting total coliforms can indicate regrowth of the bacteria in biofilms or intrusion of untreated water.
- c) Non-disinfected groundwater: The presence of total coliforms may indicate that the system is vulnerable to contamination, or it may be a sign of bacterial regrowth.
- 6. E. Coli is used as an indicator of the microbiological safety of drinking water. E. Coli monitoring should be used in conjunction with other indicators as part of a multi-barrier approach to producing acceptable quality drinking water.
- 7. Waterworks systems that use a surface water source or a groundwater source under the direct influence of surface water should filter the source water to meet the following health-based turbidity limits, as defined for specific treatment technologies.
- Where possible, filtration systems should be designed and operated to reduceturbidity levels as low as possible, with a treated water turbidity target of less than 0.1 NTU at all times. Where this is not achievable, the treated water turbidity levels from individual filters:
- a) For chemically assisted filtration, shall be less than or equal to 0.3 NTU in at least 95% of the measurements made, or at least 95% of the time each calendar month,
- and shall not exceed 1.0 NTU at any time.
- b) For slow sand or diatomaceous earth filtration, shall be less than or equal to 1.0 NTU in at least 95% of the measurements made, or at least 95% of the time each
- calendar month, and shall not exceed 3.0 NTU at any time.
- c) For membrane filtration, shall be less than or equal to 0.1 NTU in at least 99% of the measurements made, or at least 99% of the time each calendar month, and shall
- not exceed 0.3 NTU at any time. If membrane filtration is the sole treatment technology employed, some form of virus inactivation* should follow the filtration process.
- 8. Public acceptance of hardness varies considerably. Generally, hardness levels between 80 and 100 mg/L (as CaCO3) provide acceptable balance between corrosion and incrustation; Where water is softened by sodium ion exchange, it is recommended that a separate, unsoftened supply be retained for culinary and drinking purposes. 9. Systems using chloramine disinfection or that have naturally occurring ammonia should monitor the level of nitrate/nitrite in the distribution system. Homeowners with a well should test the concentration of nitrate/nitrite in their water supply.

- Exceedance of HC-CDWQ Drinking Water Criteria

TABLE D4-4
2017 WATER QUALITY ASSESSMENT - INSTRUMENTED WELLS

						CONDU	JCTIVITY				NITRATE		E. (COLI
WELL ID	YEAR	PROGRAM	PRE-MELT CONDUCTIVITY (March 2-3, 2017)	SPRING FLOOD CONDUCTIVITY (April 5 to 6, 2017)		CHANGE IS GREATER THAN 5% ⁽²⁾	MAGNITUDE OF WATER QUALITY CHANGE ⁽¹⁾	WELL HAS PRE-MELT GROUNDWATER CONDUCTIVITY VALUES SIMILAR TO THE FLOODWAY CHANNEL SURFACE WATER DURING THE FLOOD	CONDUCTIVITY VALUES FOR GROUNDWATER DO NOT CHANGE ASSOCIATED WITH THE SPRING MELT EVENT	PRE-MELT NITRATE PLUS NITRITE (as N)	SPRING FLOOD NITRATE PLUS NITRITE (as N) (April 5-6, 2017)		E.COLI DETECTED IN A DISINFECTED WELL IN PRE-MELT SAMPLING	
K13-12321	2017	Program A	1780	1030	73	Yes	A	No	No	4.48	2.89	55	No	No
K09-12316	2017	Program A	893	804	11	Yes	С	No	No	1.8	0.83	117	No	Yes ⁽⁴⁾
K09-12012	2017	Program A	1140	934	22	Yes	С	No	No	<0.01	<0.01	0	No	No
K11-12014	2017	Program A	687	531	29	Yes	В	No	No	0.159	0.372	-57	No	Yes ⁽⁵⁾
K11-12015	2017	Program A	614	489	26	Yes	В	No	No	0.0486	0.474	-90	No	Yes ⁽⁵⁾

Е

Notes: 1. Magnitude of water quality change: Type A (>50% change), Type B (25% to 50% change). Type C (10% to 25% change), Type D (5% to 10%) change 2. Changes of ≤ 5% are considered to be within the accuracy of the analysis and are considered "no change" for purposes of this analysis. 3. Negative % change values indicate higher concentrations for flood peak vs pre-melt sampling. 4. E coli was not detected in duplicate sample. 5. E.coli was not detected in follow up sampling on April 20, 2017.

- Water quality change >5% detected.

TABLE D4-4 2017 WATER QUALITY ASSESSMENT - INSTRUMENTED WELLS PAGE 1 OF 1

TABLE D4-5 2017 WATER QUALITY ASSESSMENT - NON-INSTRUMENTED WELLS

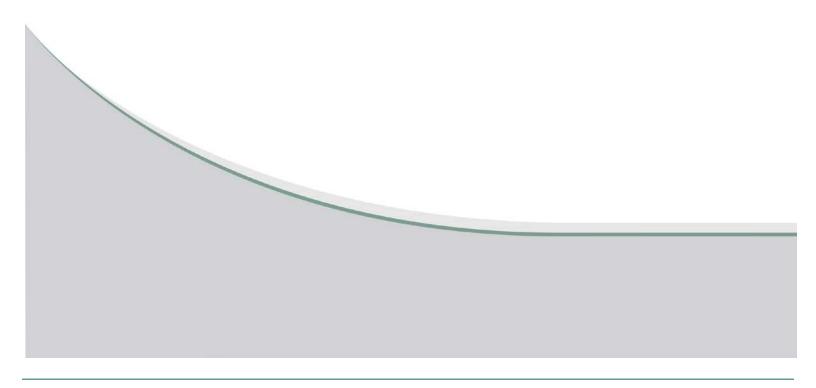
					CONDU	CTIVITY				NITRATE	
WELL ID	PROGRAM	PRE-MELT CONDUCTIVITY PREVIOUS YEAR (2011, 2013 or 2014)	SPRING FLOOD CONDUCTIVITY (April 5-6, 2017)	% CHANGE ⁽³⁾	CHANGE IS	MAGNITUDE OF WATER QUALITY CHANGE ⁽¹⁾	CONDUCTIVITY	CONDUCTIVITY VALUES FOR GROUNDWATER DO NOT CHANGE ASSOCIATED WITH THE SPRING MELT EVENT	PRE-MELT NITRATE PREVIOUS YEAR (2013 or 2014)		% CHANGE ⁽³⁾
U09-13571	Program A	1170	952	23	Yes	С	No	No	1.42	1.03	38
K11-12018	Program A	1090	1180	-8	Negative change	-	No	Yes	<0.0050	<0.01	0
K09-12011	Program A	465	463	0	No	-	Yes	Yes	<0.0051	<0.0051	0
K11-12017	Program A	1080	970	11	Yes	С	No	No	<0.0051	<0.0051	0
K11-12016	Program A	1050	1010	4	No	-	No	Yes	<0.0050	<0.0051	0
K13-12322	Program A	880	796	11	Yes	С	No	No	0.0116	<0.0051	127 ⁽⁵⁾
G050C006	Program A	2890	2240	29	Yes	В	No	No	<0.35	<0.051	0

Notes:

1. Magnitude of water quality change: Type A (50% change), Type B (25 to 50% change). Type C (10% to 25% change), Type D (5 to 10%) change

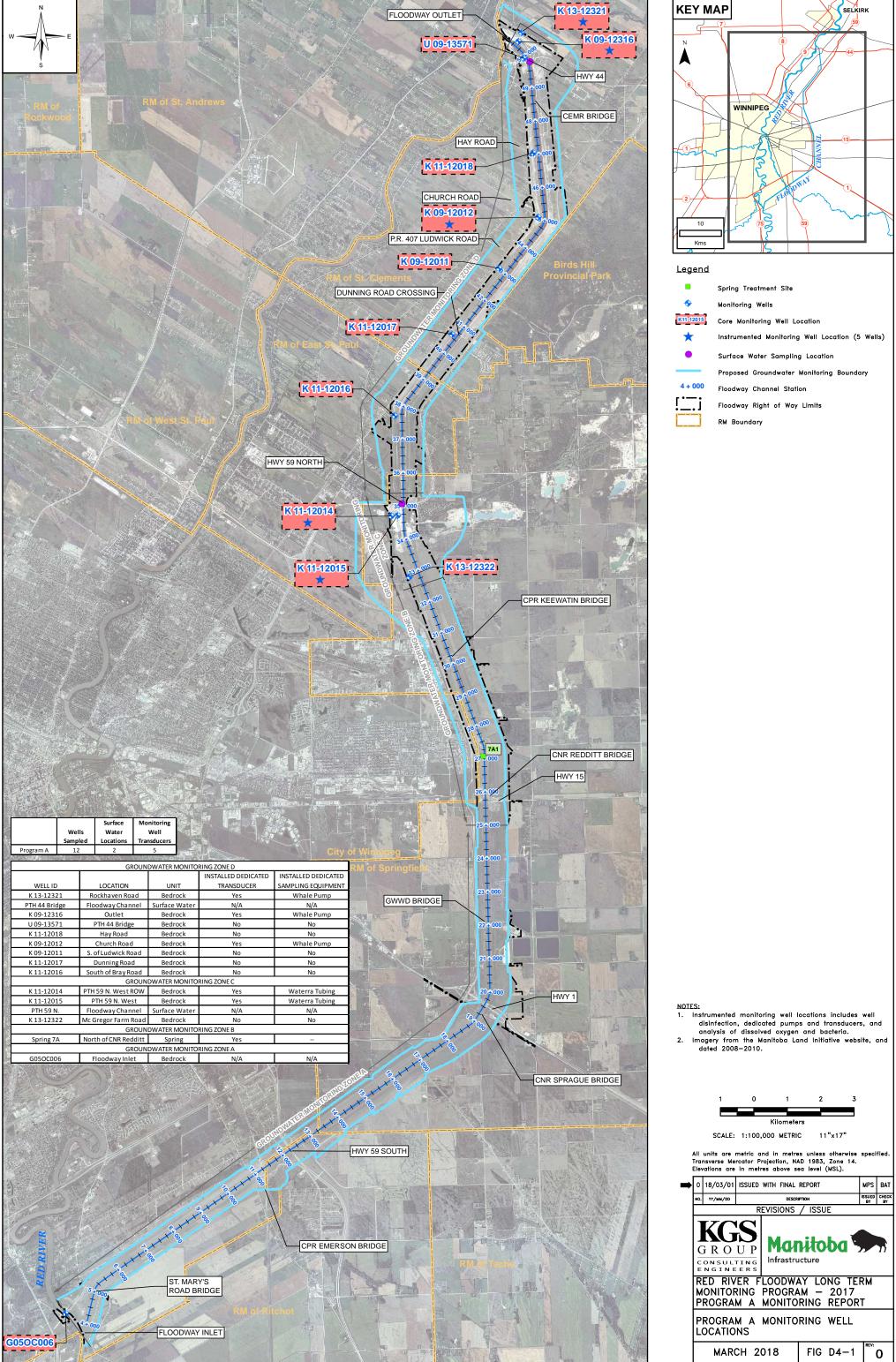
2. Changes of < 5% are considered to be within the accuracy of the analysis and are considered "no change" for purposes of this analysis.

3. Negative % change values indicate higher concentrations for flood peak vs pre-melt sampling.


4. Pre-melt value for previous years may not be representative of 2017; therefore, percent change may not be valid.

5. Change may not be valid due to low detection limits.

- Water quality change > 5% detected.



FIGURES

P:\Projects\2016\16-0300-002\Dwg\GIS\MXDs\Deliverable_D4\Rev0\16-0300-002_FigD4-1_Rev0.mxd

APPENDIX D4-A

FLOODWAY OPERATION AND RED RIVER WATER QUALITY

APPENDIX D4-A-1

TABLE D4-A-1 SUMMARY OF OBSERVED FLOW IN THE FLOODWAY DURING SPRING AND SUMMERY OPERATION

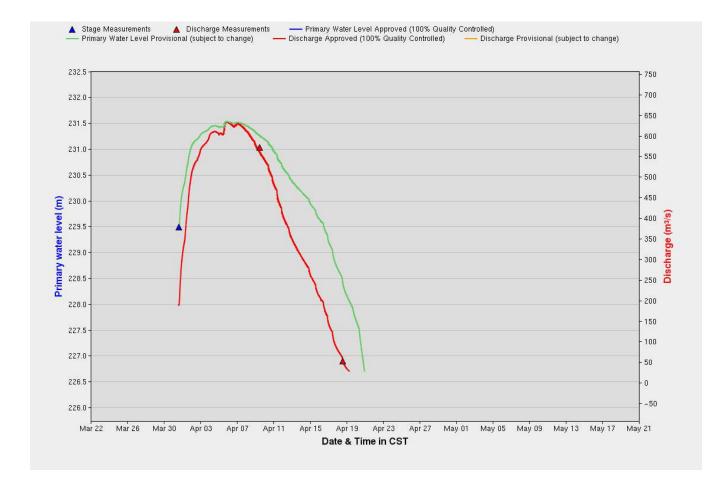
			Spring Operation	on			s	ummer Opera	tion		
Year	Peak Flow	Date of	Start of	End of	No. of Days	Peak Flow		Start of	End of	No. of Days	Comments
	(cms)	Peak Flow	Operation	Operation	of Operation	(cms)	Flow	Operation	Operation	of Operation	
1969	626	May 3	April 14	May 18	35	-	-	-	-	-	
1970	646	May 1	April 17	May 21	35	-	-	-	-	-	
1971	257	April 14	April 11	April 21	11	-	-	-	-	-	
1972	33.4	April 18	April 14	April 21	8	-	-	-	-	-	
1973	-	-	-	-	-	-	-	-	-	-	
1974	1040	April 24	April 17	May 17	31	-	-	-	-	-	
		& 25	May 21	May 30	10						
1975	267	May 7 & 8	April 30	May 19	20	-	-	-	-	-	
1976	292	April 11	April 7	April 18	12	-	-	-	-	-	
1977	-	-	-	-	-	-	-	-	-	-	
1978	513	April 16	April 9	May 3	25	-	-	-	-	-	
1979	1190	May 9	April 19	May 29	41	-	-	-	-	-	
1980	-	-	-	-	-	-	-	-	-	-	
1981	-	-	-	-	-	-	-	-	-	-	
1982	17.8	April 18	April 15	April 21	7	-	-	-	-	-	
1983	26.4	April 11	April 9	April 13	5	-	-	-	-	-	
1984	-	-	-	-	-	-	-	-	-	-	
1985	-	-	-	-	-	-	-	-	-	-	
1986	278	April 3	April 1	April 14	14	-	-	-	-	-	
		. 4 4	May 6	May 11	6						
1987	507	April 10	April 5	April 18	14	-	-	-	-	-	
1988	-	-	-	-	-	-	-	-	-	-	
1989	136	April 24	April 21	May 1	11	-	-	-	-	-	
1990	-	-	-	-	-	-	-	-	-	-	
1991	-	-	-	-	-	-	-	-	-	-	
1992	101	April 8	April 7	April 12	6	-	-	-	-	-	
1993	-	-	-	-	-	-	-	-	-	-	
1994	-	-	-	-	-	-	-	-	-	-	
1995	387	March 29	March 22	April 25	35	-	-	-	-	-	
1996	1100	April 30 & May 1 & 2	April 18	June 9	53	-	-	-	-	-	
1997	1880	May 1 & 2 May 3 & 4	April 19	June 2	45	-	-	-	-	-	
1998	191	April 1	March 30	April 6	8	-	-	-	-	-	
1999	445	April 16	April 3	May 1	29	-	-	-	-	-	
2000	-	-	-	-	-	-	-	-	-	-	
2001	598	April 28	April 5	May 20	46	-	-	-	-	-	
								June 13	June 25	13	
2002	-	-	-	-	-	159	July 6	July 4	July 10	7	
								July 17	July 26	10	
2003	-	-	-	-	-	-	-	-	-	-	
2004	446	April 5	March 31	April 21	22	294	June 12	June 10	June 30	21	
								June 9	July 24	46	
2005	433	April 8	April 2	April 22	21	657	July 4	July 31	August 3	5	
2006	941	April 15	April 5	May 7	33	-	-	-	-	-	
2007	119	April 12	April 3	April 16	14	23	June 29	June 28	July 2	5	Summer Flood was
2008	-	-	-	-		-	-	-		-	with no operation
					-						
2009	1208	April 21	April 8	May 24	47	-	-	- May 20	-	- 19	
2010	450	April 6	March 28	April 22 June 2	25	345	June 4	May 30	June 16	18	
2011	1019	May 4	April 9 -		55	64	July 10	July 7	July 15	8	
2012	- 444			-	-	-	-	-	-	-	-
2013		May 4	April 29	June 7	41	-		-	-	-	Spring Flood was
2014	142	April 21	41748	41756	9.0	68.0	July 5	June 30	July 13	14.0	with no operation
2015 2016	-	-	-	-	-	-	-	-	-	-	
2010	635	April 6	March 31	April 21	22	-	-	-	-	-	

TABLE D4-A-1 SUMMARY OF OBSERVED FLOW IN FLOODWAY DURING SPRING AND SUMMER OPERATION

Data is based on recorded flows from the Water Survey of Canada Gauge 05OC017 except for the 2006 data which is based on the Province of Manitoba's Daily Flood Forecast Reports

APPENDIX D4-A-2

RED RIVER AT TRANSCANADA HIGHWAY REAL-TIME DATA ENVIRONMENT CANADA



<u>Home</u> → <u>Environment and natural resources</u> → <u>Water level and flow</u> → <u>Real-Time Data</u> → <u>Hydrometric Data Search</u>

Real-Time Hydrometric Data Graph for RED RIVER FLOODWAY NEAR ST. NORBERT (050C017) [MB]

9 ' Station Notice

This station is used to record high water events only. Data will be reported once the elevation reaches approximately 226.700m.

Timeliness of the real-time data

Station Information

Active or discontinued: Province / Territory: Latitude: Active Manitoba 49° 45' 24" N

Longitude:	97° 07' 17" W
Gross drainage area:	120000 km ²
Effective drainage area:	N/A
Record length:	49 Years
Period of record:	1969 - 2017
Regulation type:	Regulated
Regulation length:	N/A
Real-time data available:	Yes
Sediment data available:	Yes
Type of water body:	River
RHBN:	No
EC Regional Office:	WINNIPEG
Data contributed by:	N/A
Datum of published data:	GEODETIC SURVEY OF CANADA DATUM (LOCAL 1929
	ADJ.)

Data Collection History

This table contains information pertaining to the historical changes of defined elements in the operation of a station.

Period of operation	Туре	Operation schedule	Gauge type	
1969 - 2001	Flow	Seasonal	Recorder	
2002 - 2017	Flow & Level	Seasonal	Recorder	

Date modified:

2017-07-13

<u>Home</u> → <u>Environment and natural resources</u> → <u>Water level and flow</u> → <u>Real-Time Data</u> → <u>Hydrometric Data Search</u>

Real-Time Hydrometric Data for RED RIVER FLOODWAY NEAR ST. NORBERT (050C017) [MB]

9 ' Station Notice

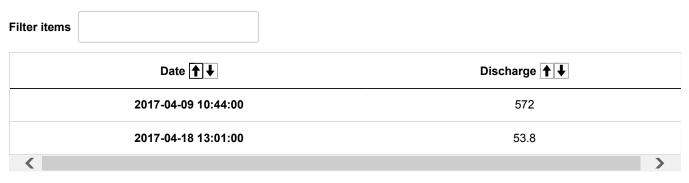
This station is used to record high water events only. Data will be reported once the elevation reaches approximately 226.700m.

Filter items

Showing 301 to 320 of 4,581 entries | Show

entries

20


V

This table provides real-time data in tabular format.

Date (CST) ↑ ↓	Primary water level (m) 🕇 🖡	Discharge (m³/s) ↑↓
2017-04-06 01:00:00	231.527	632
2017-04-06 01:05:00	231.525	632
2017-04-06 01:10:00	231.526	632
2017-04-06 01:15:00	231.532	633
2017-04-06 01:20:00	231.527	632
2017-04-06 01:25:00	231.528	632
2017-04-06 01:30:00	231.527	632
2017-04-06 01:35:00	231.528	632
2017-04-06 01:40:00	231.529	633
2017-04-06 01:45:00	231.523	631
2017-04-06 01:50:00	231.524	631
2017-04-06 01:55:00	231.532	634
2017-04-06 02:00:00	231.524	631
2017-04-06 02:05:00	231.525	631
2017-04-06 02:10:00	231.532	633

Date (CST) ↑ ↓	Primary water level (m) 🕇 븆	Discharge (m³/s) ↑↓
2017-04-06 02:15:00	231.524	631
2017-04-06 02:20:00	231.527	632
2017-04-06 02:25:00	231.528	632
2017-04-06 02:30:00	231.524	631
2017-04-06 02:35:00	231.528	632
- Previou	ıs 1 15 16 17 5	230 Next

Measured discharge

Timeliness of the real-time data

Station Information

Active or discontinued:	Active
Province / Territory:	Manitoba
Latitude:	49° 45' 24" N
Longitude:	97° 07' 17" W
Gross drainage area:	120000 km ²
Effective drainage area:	N/A
Record length:	49 Years
Period of record:	1969 - 2017
Regulation type:	Regulated
Regulation length:	N/A
Real-time data available:	Yes
Sediment data available:	Yes
Type of water body:	River
RHBN:	No
EC Regional Office:	WINNIPEG
Data contributed by:	N/A

Datum of published data:

GEODETIC SURVEY OF CANADA DATUM (LOCAL 1929 ADJ.)

Data Collection History

This table contains information pertaining to the historical changes of defined elements in the operation of a station.

Period of operation	Туре	Operation schedule	Gauge type
1969 - 2001	Flow	Seasonal	Recorder
2002 - 2017	Flow & Level	Seasonal	Recorder

Date modified:

2017-07-13

APPENDIX D4-A-3

RED RIVER AT GRAND FORKS, REAL-TIME WATER QUALITY DATA-USGS

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category: Current Conditions V Geographic Area: United States

GO

V

Click to hideNews Bulletins

Please see news on new formats

Full News <a>[

USGS 05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND

PROVISIONAL DATA SUBJECT TO REVISION

Available data for this site | Time-series: Current/Historical Observations V GO

Click to hidestation-specific text

Water Quality data provided in cooperation with the North Dakota Department of Health, the cities of Grand Forks and East Grand Forks, and the Minnesota Pollution Control Agency.

Gage height and discharge data provided in cooperation with the following:

USGS Feral Priority Streamgage (fomerly NSIP)

Station 050082500 Gage Height History Write-up

- Flood-tracking chart
- Streamflow duration hydrograph
- Current stage-discharge rating
- Water-quality Estimates

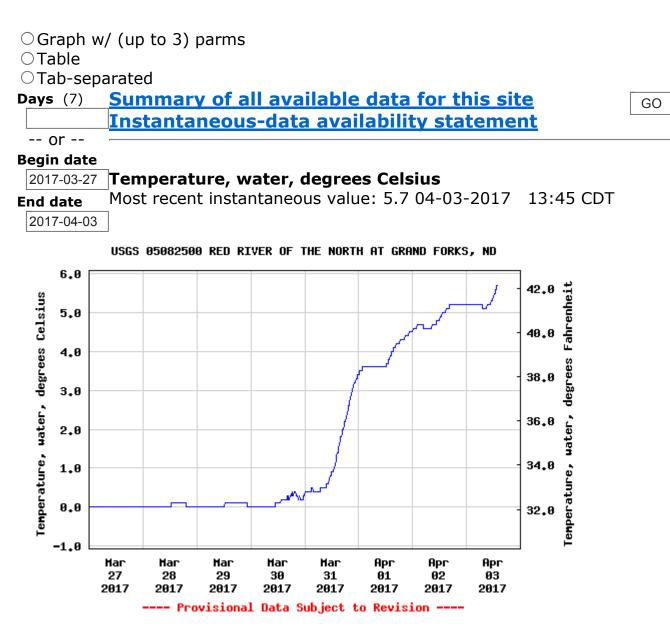
Webcam near Sorlie Bridge

Image is updated daily. Click to view older photos.

Temperature is displayed in kelvin (K). Time is displayed in GMT.

This station managed by the Grand Forks Field Office.

Available Parameters


Available Falailleters	Available Fellou
All 7 Available Parameters for this site	
✓ 00010 Temperature, water	2007-10-01 2017-04-03
✓ 00060 Discharge	2007-10-01 2017-04-03
✓ 00065 Gage height [Bubbler]	2007-10-01 2017-04-03
✓ 00095 Specific cond at 25C	2007-10-01 2017-04-03
✓ 00300 Dissolved oxygen	2007-10-01 2017-04-03
✓ 00400 pH	2007-10-01 2017-04-03
✓ 63680 Turbidity, Form Neph	2007-10-01 2017-04-03

Output format

- Graph
- ○Graph w/ stats
- \bigcirc Graph w/o stats

Available Period

2007-10-01	2017-04-03
2007-10-01	2017-04-03
2007-10-01	2017-04-03
2007-10-01	2017-04-03
2007-10-01	2017-04-03
2007-10-01	2017-04-03
2007-10-01	2017-04-03

Add up to 2 more sites and replot for "Temperature, water, degrees Celsius"

```
Enter up to 2 site

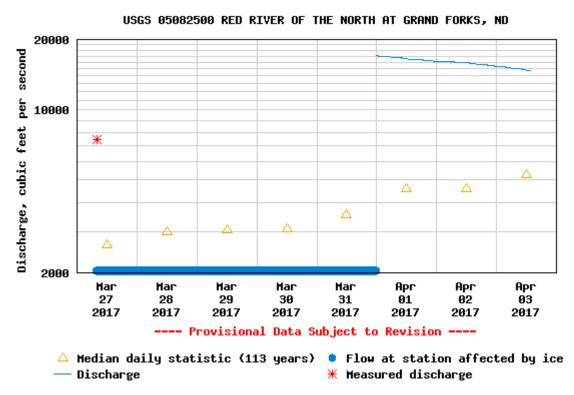
numbers separated

by a comma. A site

number consists of

8 to 15 digits

GO


Create presentation-quality / stand-alone graph. Subscribe to

2
```

Share this graph

Discharge, cubic feet per second

Most recent instantaneous value: 14800 04-03-2017 13:45 CDT

Add up to 2 more sites and replot for "Discharge, cubic feet per second"

Share this graph

Daily discharge, cubic feet per second -- statistics for Apr 3 -based on 113 years of record<u>more</u>

Min (1937)	25th percen- tile	Median		•	Most Recent Instantaneous Value Apr 3	Max (2009)	Gage height, feet,
207	2480	5270	9860	11500	14800	73000	[Bubbler] Most recent

instantaneous value: 22.84 04-03-2017 13:45 CDT

Add up to 2 more sites and replot for "Gage height, feet, [Bubbler]"

<u>?</u> Add site numbers <u>Note</u>

```
Enter up to 2 site

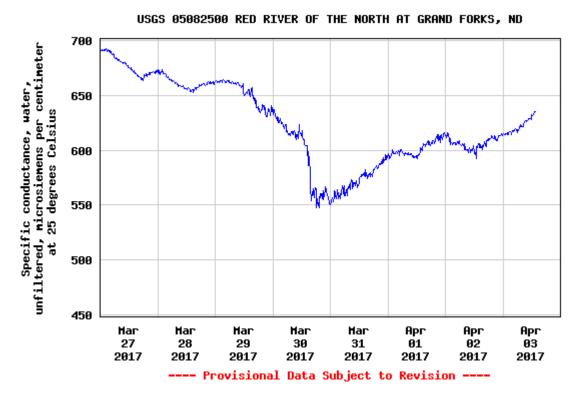
numbers separated

by a comma. A site

number consists of

8 to 15 digits

GO


Create presentation-quality / stand-alone graph. Subscribe to

?
```

Share this graph

Specific conductance, water, unfiltered, microsiemens per centimeter at 25 degrees Celsius

Most recent instantaneous value: 635 04-03-2017 13:45 CDT

Add up to 2 more sites and replot for "Specific conductance, water, unfiltered, microsiemens per centimeter at 25 degrees Celsius"

```
Enter up to 2 site

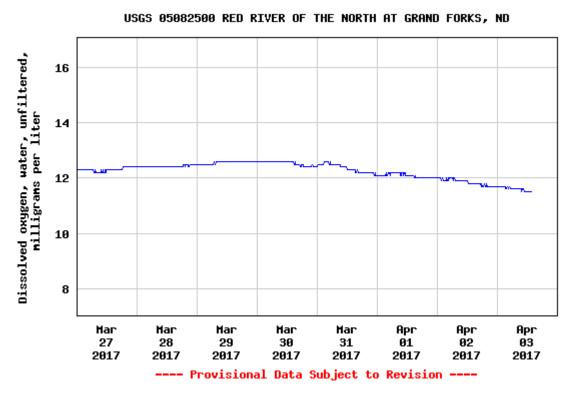
numbers separated

by a comma. A site

number consists of

8 to 15 digits

GO

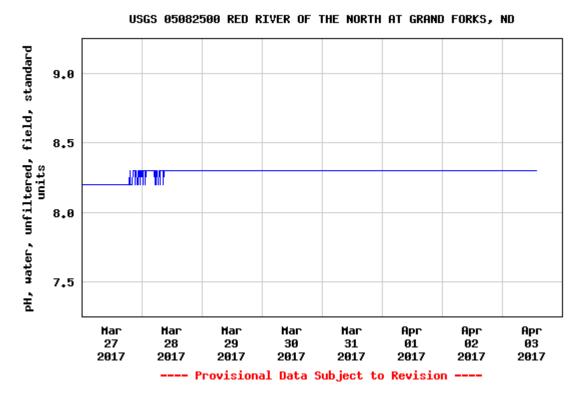

Create presentation-quality / stand-alone graph. Subscribe to

?
```

Share this graph

Dissolved oxygen, water, unfiltered, milligrams per liter

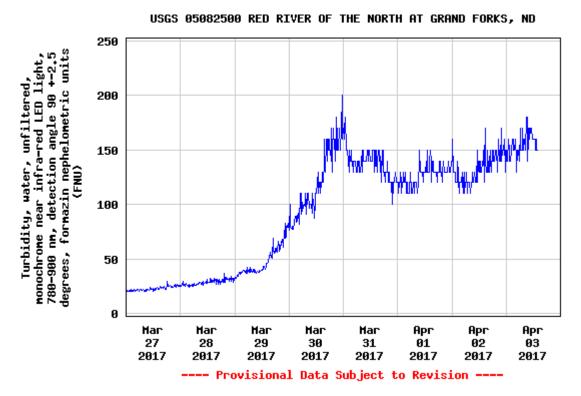
Most recent instantaneous value: 11.5 04-03-2017 13:45 CDT


Add up to 2 more sites and replot for "Dissolved oxygen, water, unfiltered, milligrams per liter"

Share this graph

pH, water, unfiltered, field, standard units

Most recent instantaneous value: 8.3 04-03-2017 13:45 CDT


Add up to 2 more sites and replot for "pH, water, unfiltered, field, standard units"

Share this graph

Turbidity, water, unfiltered, monochrome near infra-red LED light, 780-900 nm, detection angle 90 +-2.5 degrees, formazin nephelometric units (FNU)

Most recent instantaneous value: 150 04-03-2017 13:45 CDT

Add up to 2 more sites and replot for "Turbidity, water, unfiltered, monochrome near infra-red LED light, 780-900 nm, detection angle 90 +-2.5 degrees, formazin nephelometric units (FNU)"

? Add site numbers Note

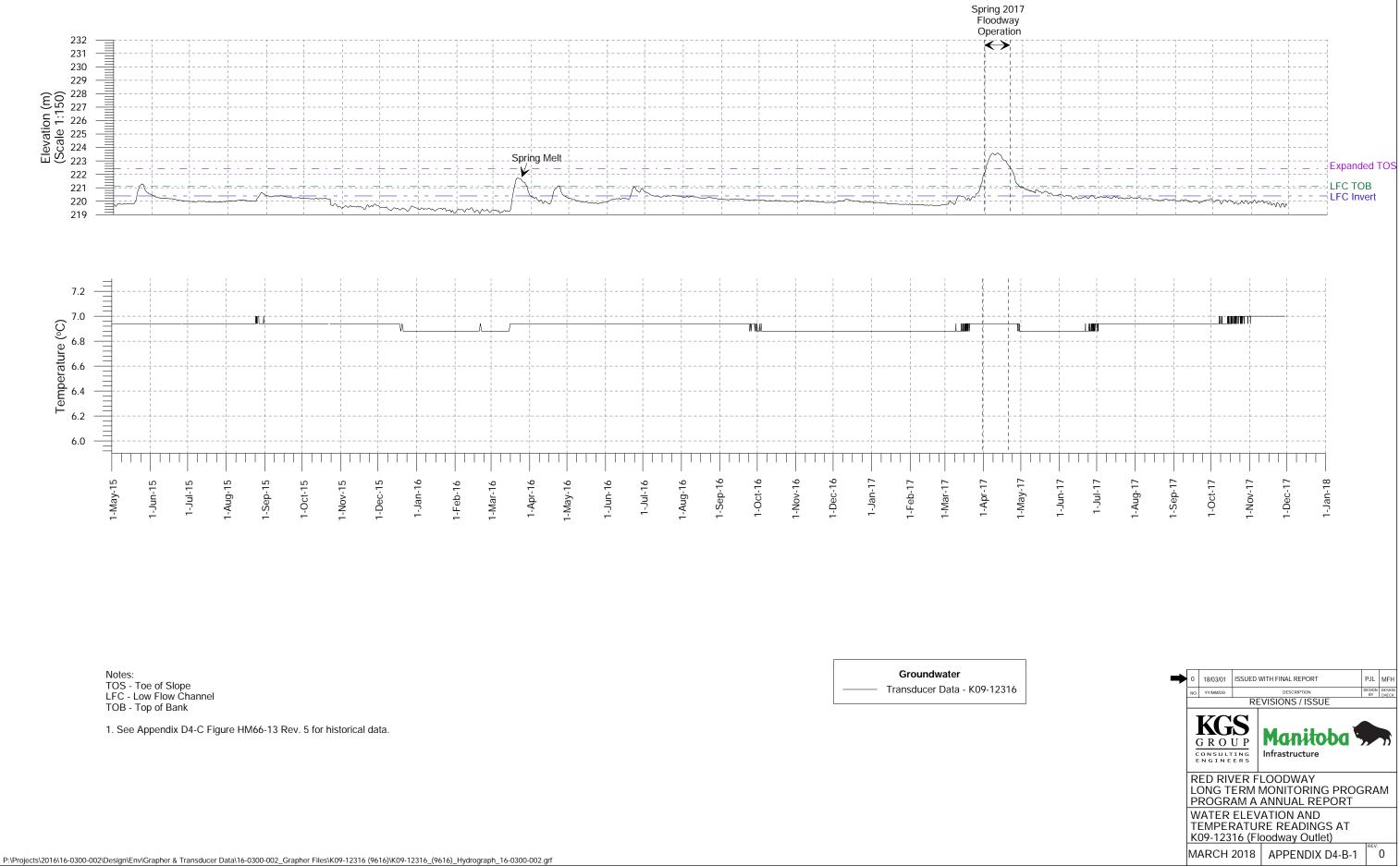
Enter up to 2 site numbers separated by a comma. A site number consists of 8 to 15 digits USGS Current Conditions for USGS 05082500 RED RIVER OF THE NORTH AT GR... Page 10 of 10

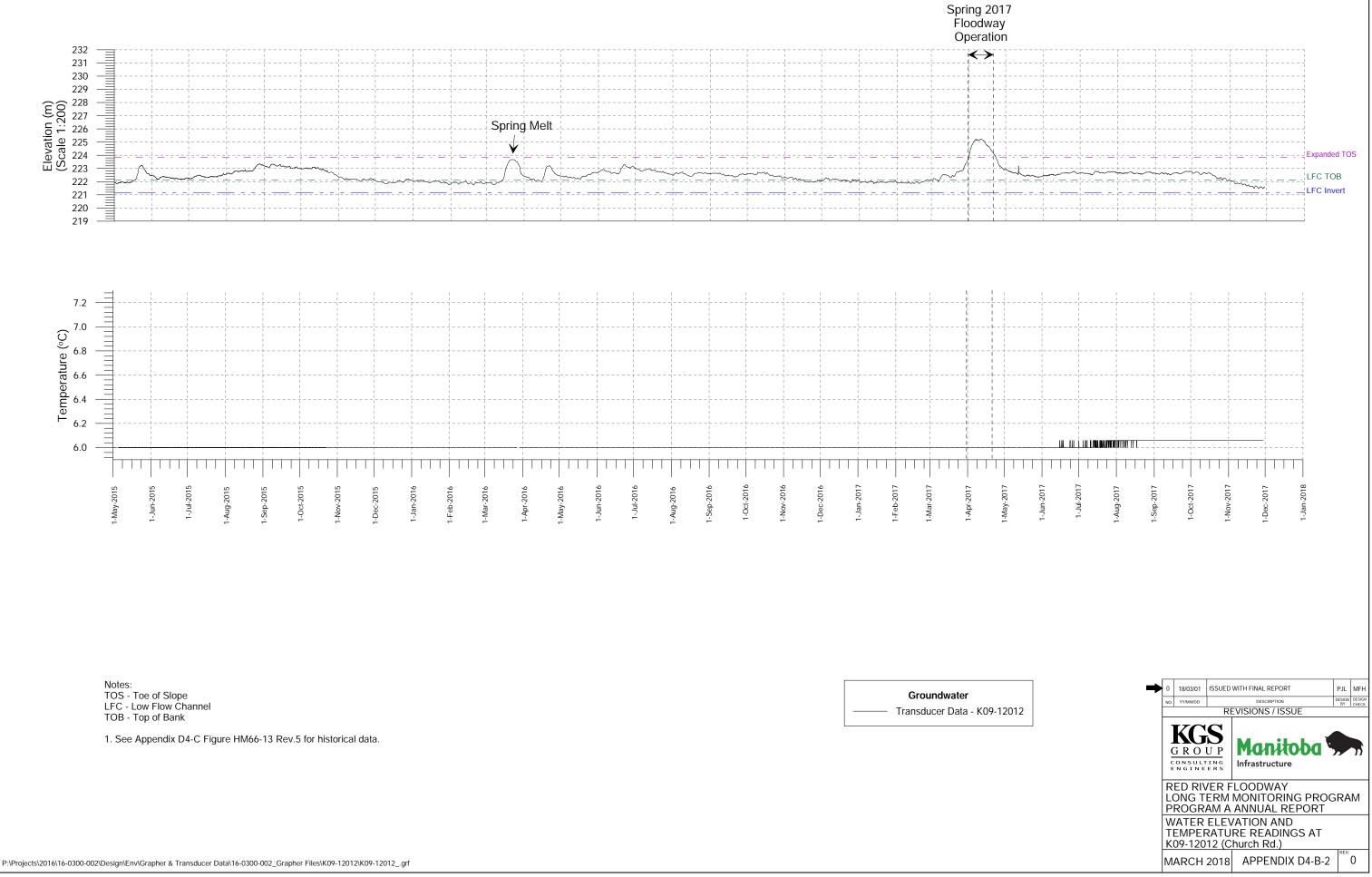
Create <u>presentation-quality</u> / <u>stand-alone</u> graph. Subscribe to <u>?</u> WaterAlert

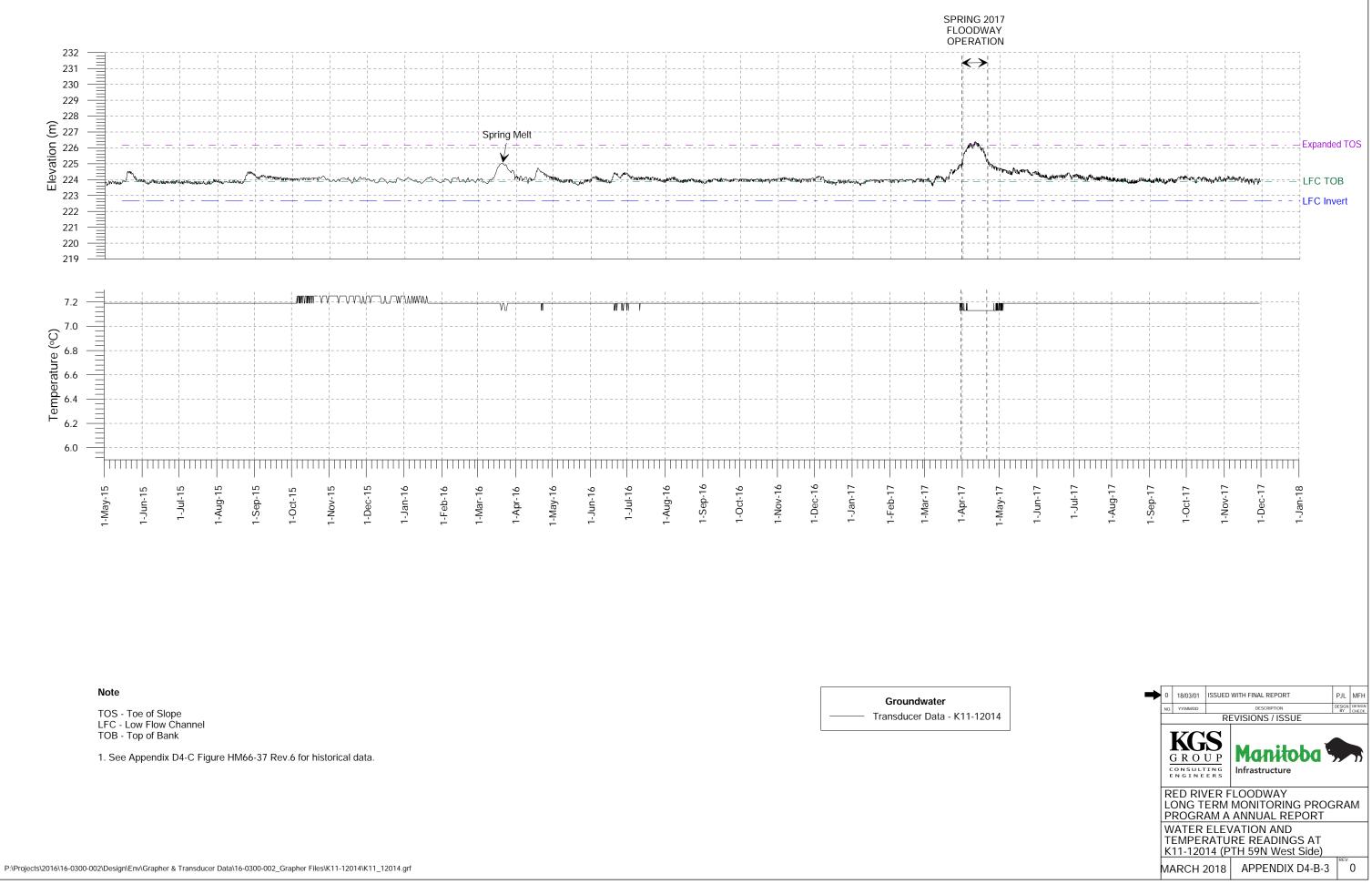
Share this graph

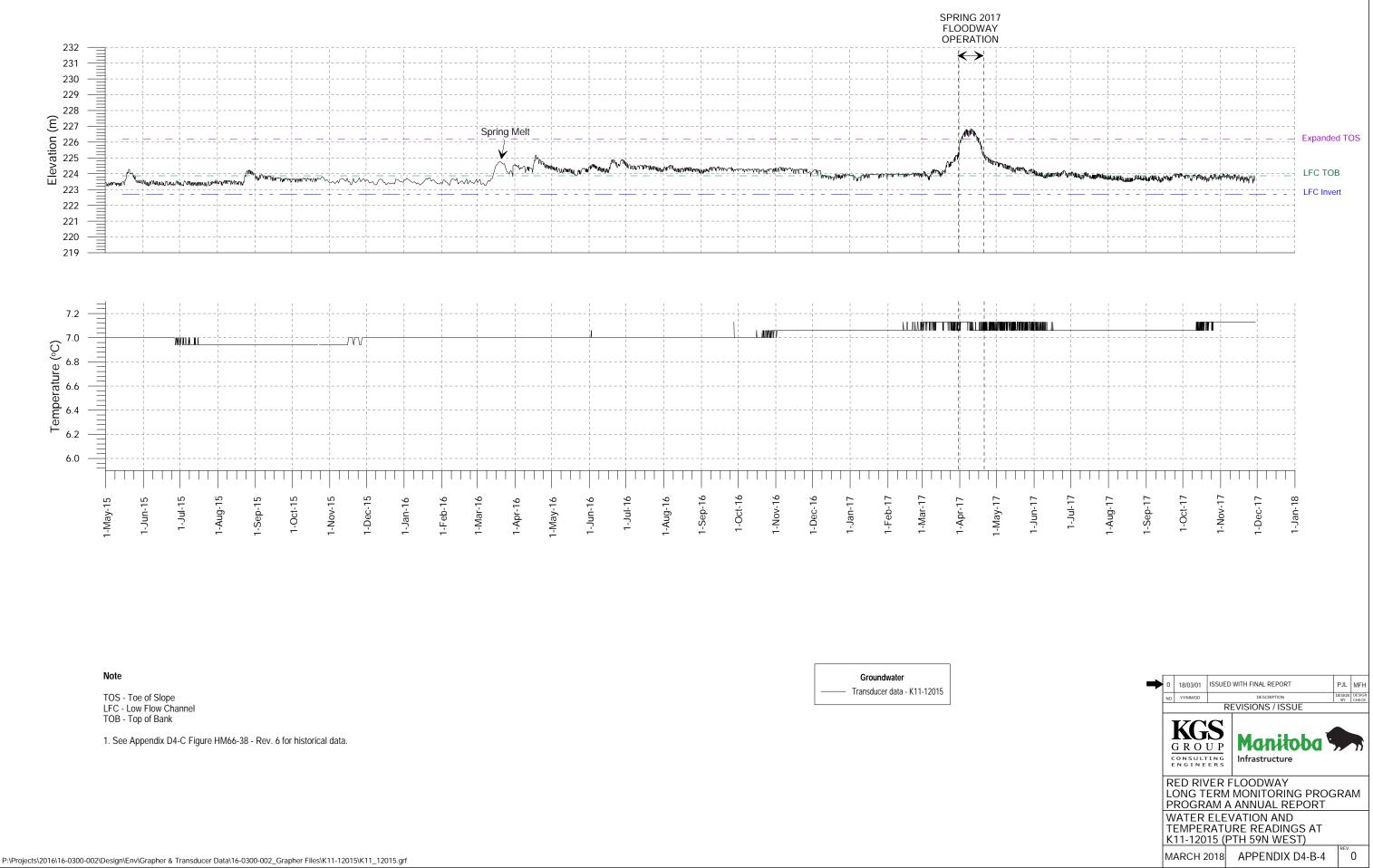
Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

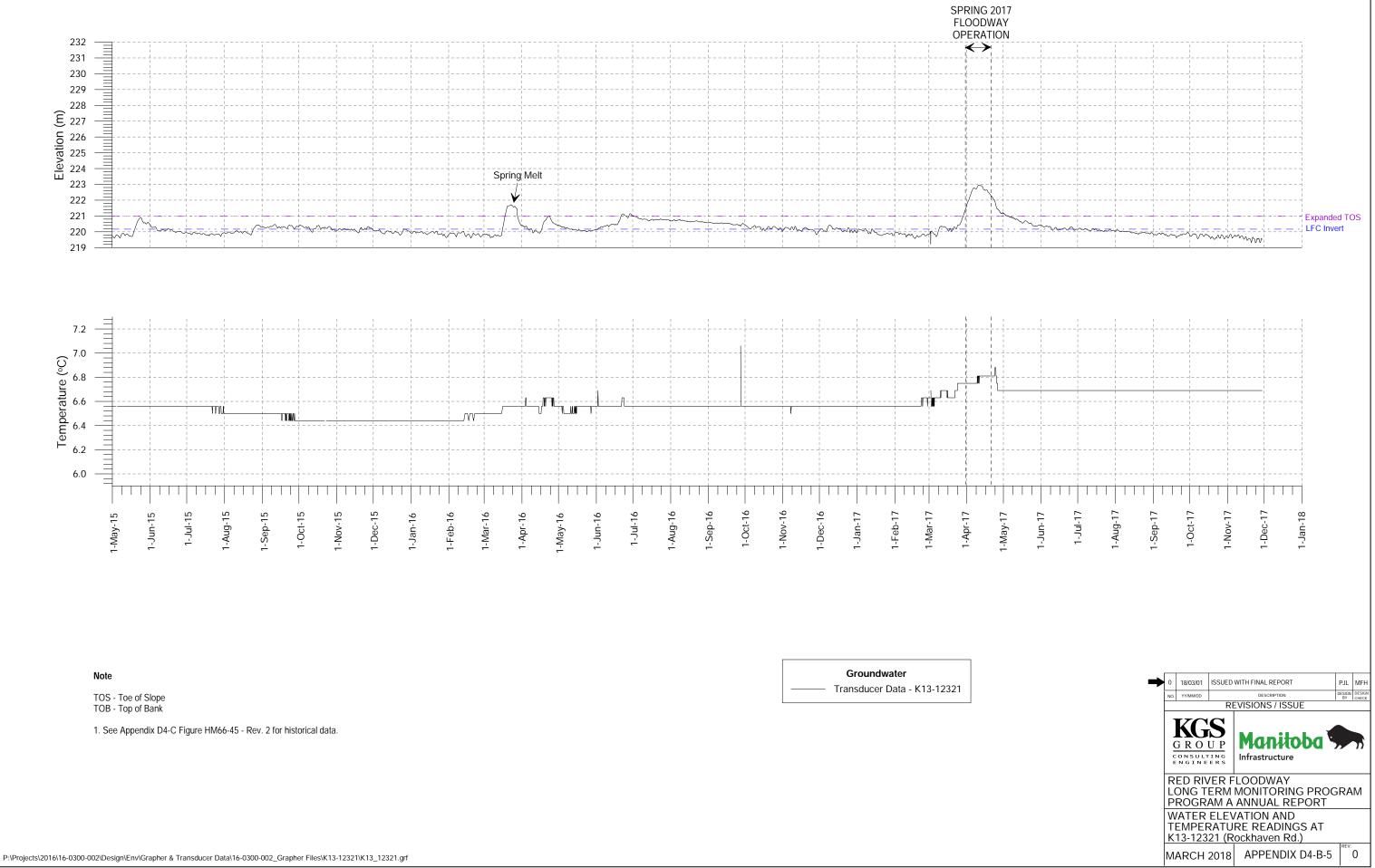
Accessibility	Plug-Ins	FOIA	Privacy	Policies and Notices						
U.S. Department of the Interior U.S. Geological Survey Title: USGS Current Conditions for the Nation										
URL: https://waterdata.usgs.gov/nwis/uv?										
Page Contact Ir	oformation: Nort	th Dakota I	Nator Data Su	nnort Team						

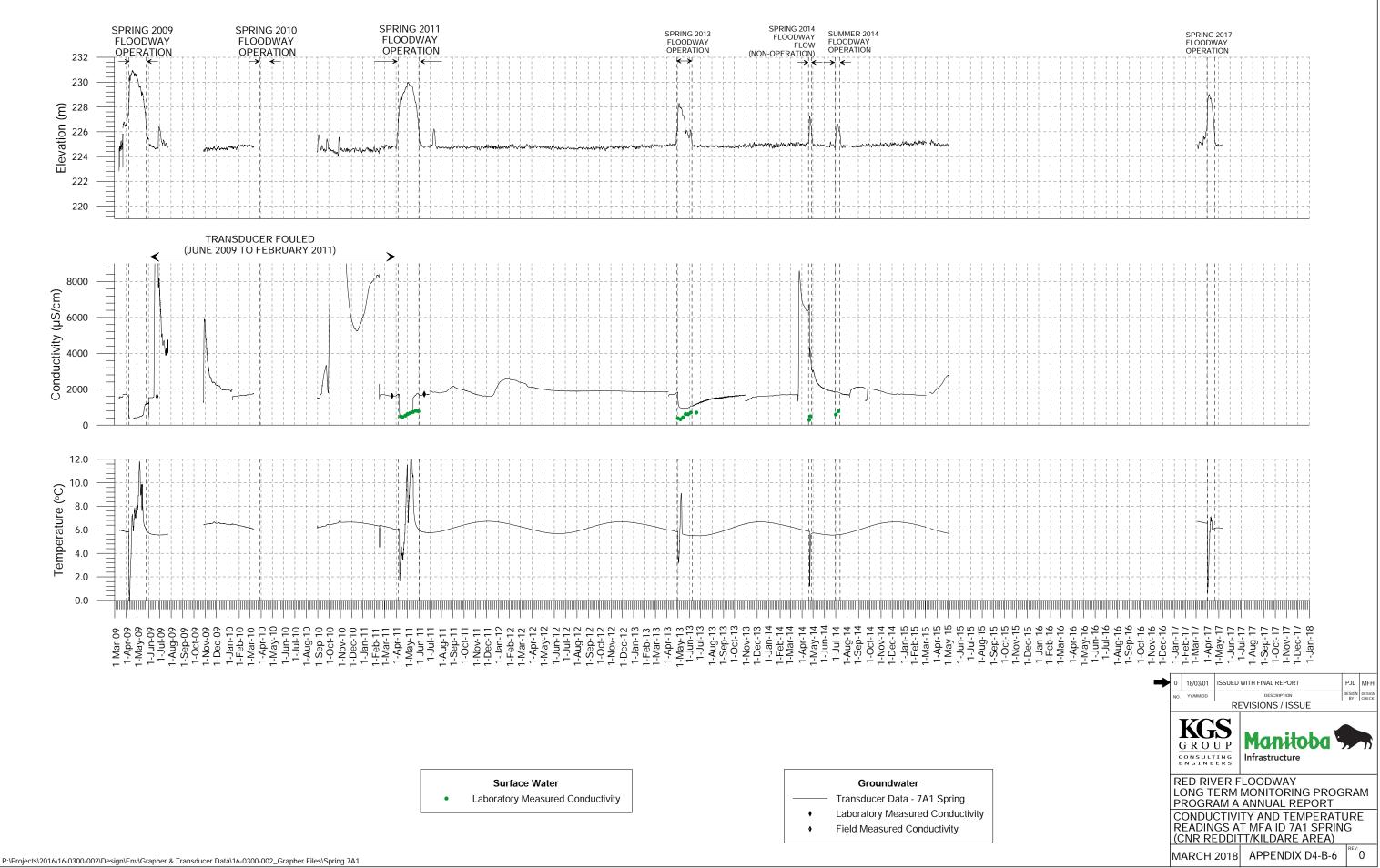

Page Contact Information: North Dakota Water Data Support Team Page Last Modified: 2017-04-03 15:54:43 EDT 1.13 0.81 caww01

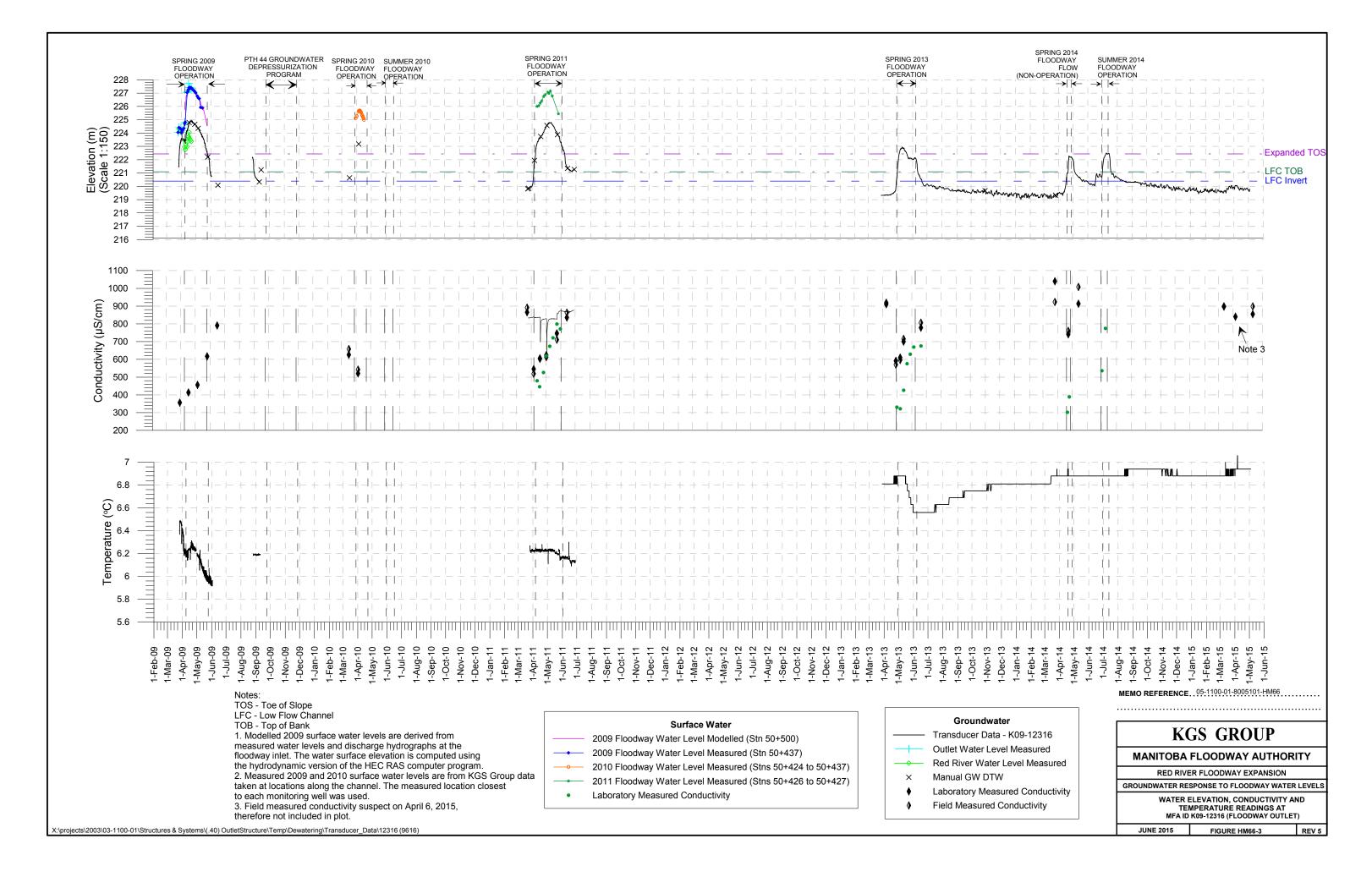


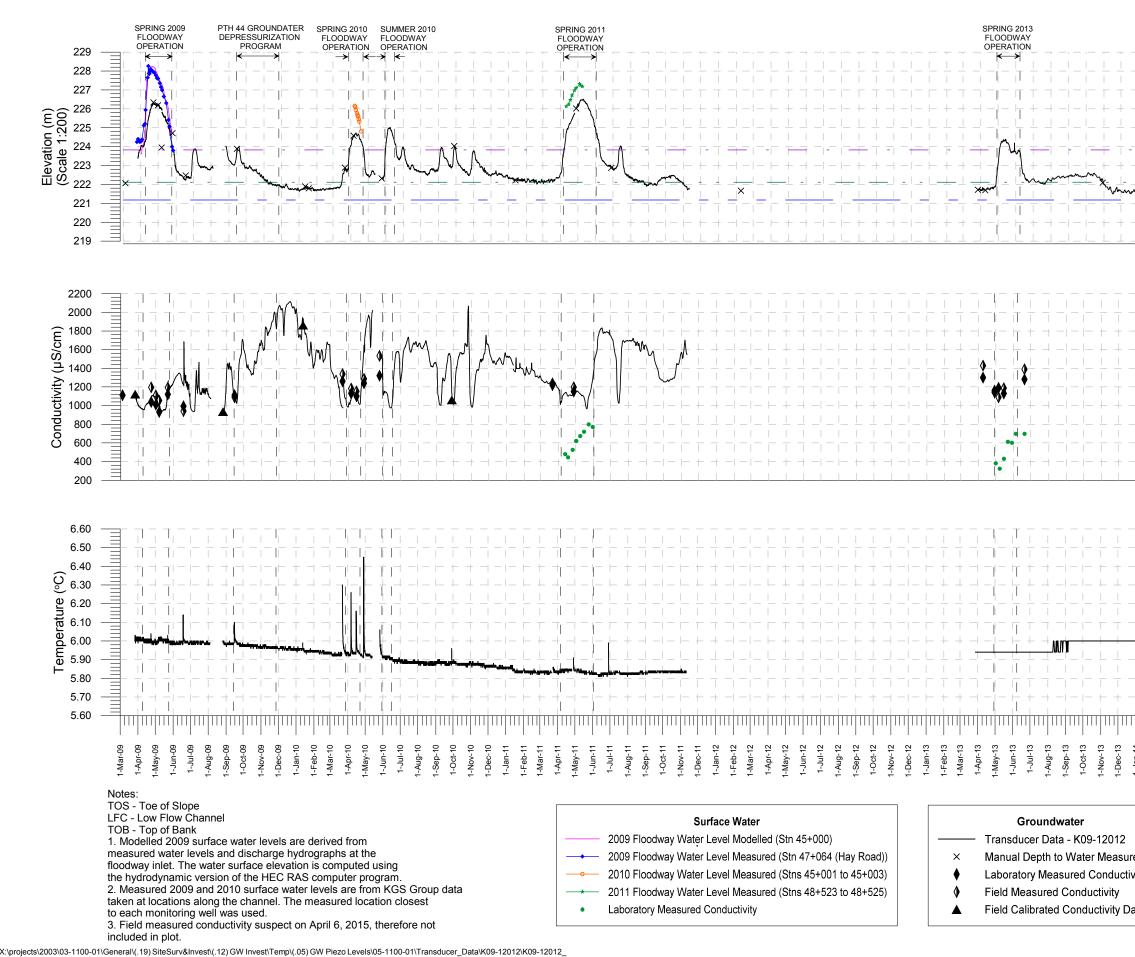

APPENDIX D4-B


2016 TO 2018 TRANSDUCER PROGRAM

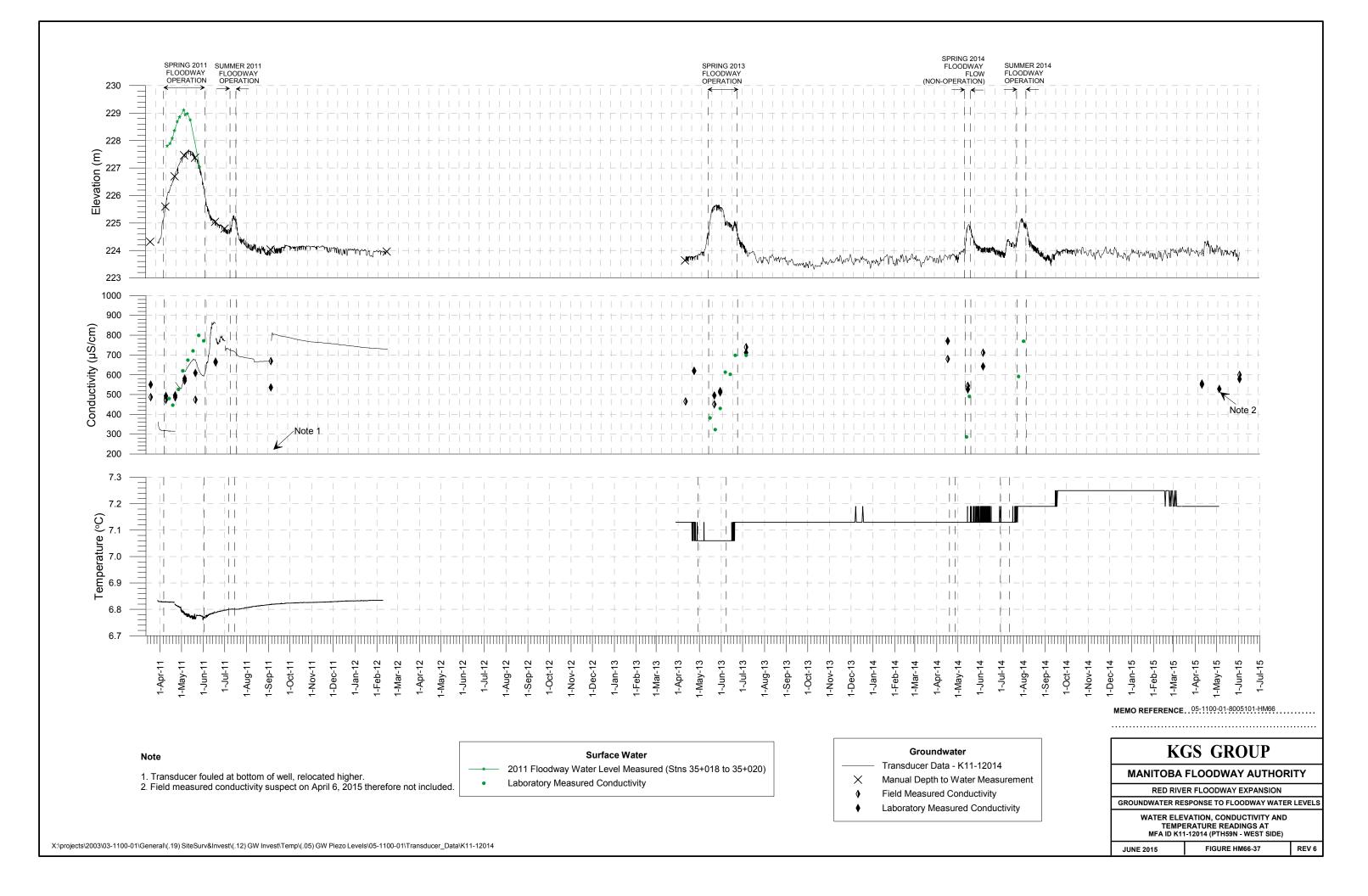


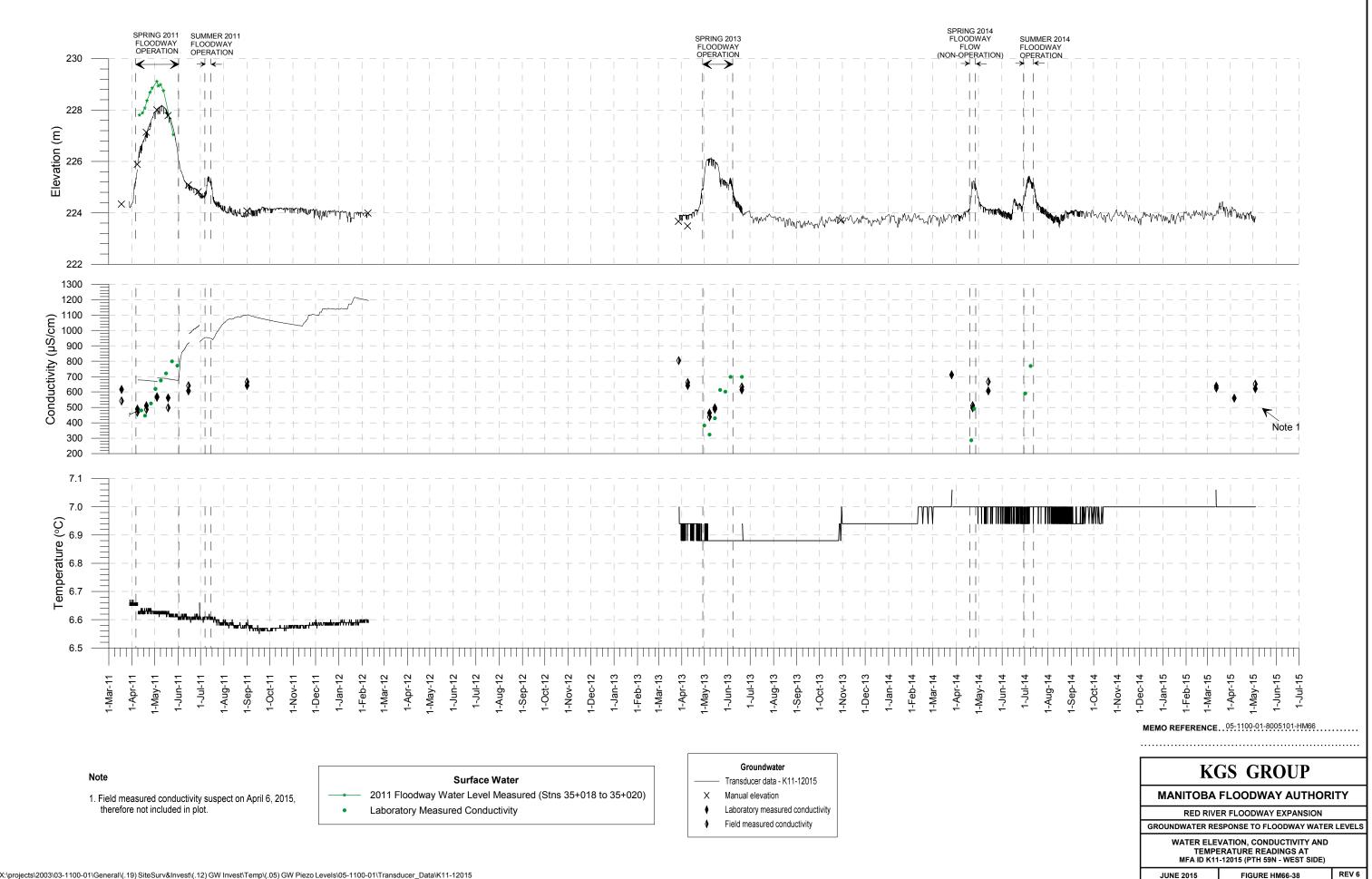


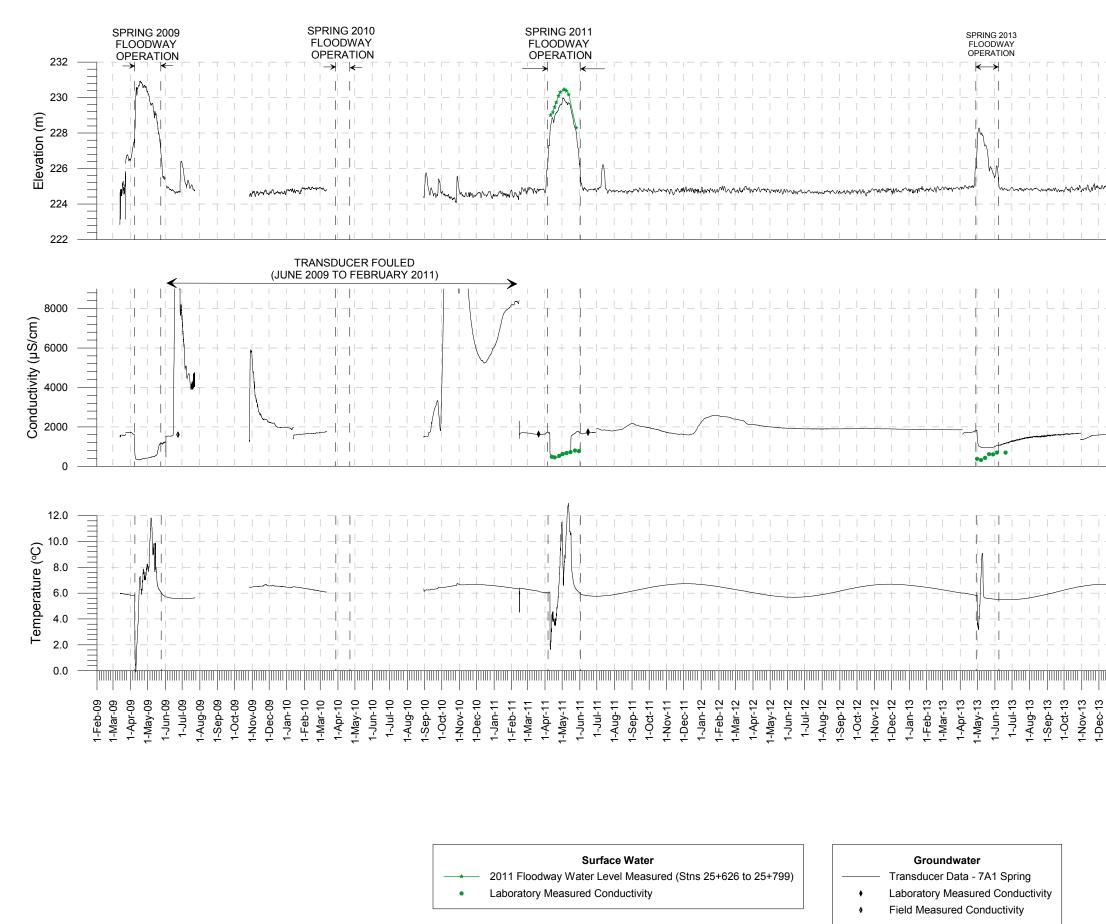




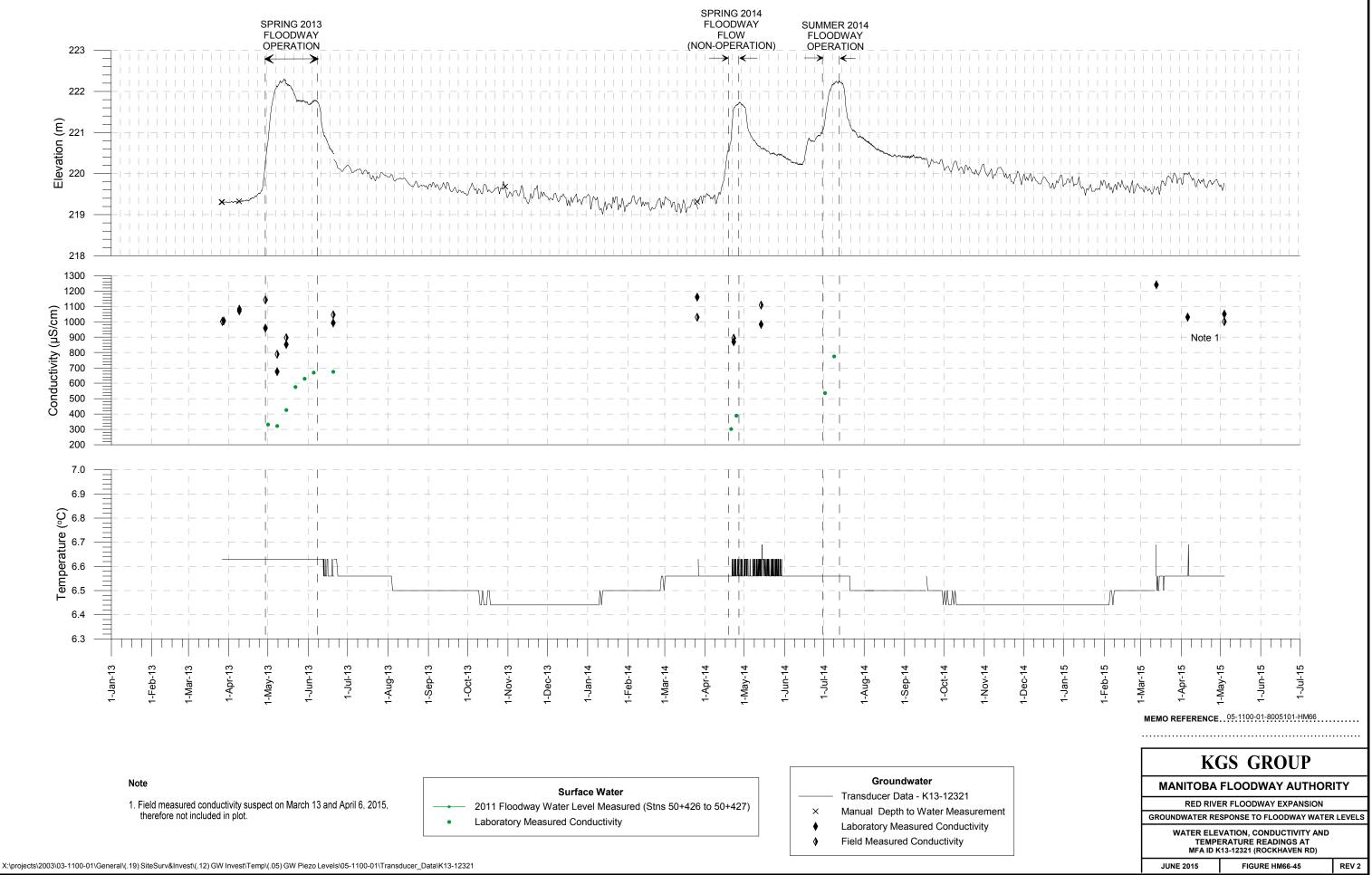
APPENDIX D4-C


HISTORICAL TRANSDUCER PROGRAM





SPRING 2014 FLOODWAY FLOW (NON-OPERATION)	SUMMER 2014 FLOODWAY OPERATION						
		xpanded TOS					
mon the firm		FC TOB					
	— <u>17 </u>	FC Invert					
$-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}+1$							
		3					
41 - </td <td>4 4 4 4 4 5 5 5 5 5 1 1 1 1 1 1 1 1 1</td> <td></td>	4 4 4 4 4 5 5 5 5 5 1 1 1 1 1 1 1 1 1						
1-Jan-14 1-Feb-14 1-Mar-14 1-Apr-14 1-May-14 1-Jun-14							
	MEMO REFERENCE. 05-1100-01-8005101-HM						
	KGS GROUP						
irement ivity	rement MANITOBA FLOODWAY AUTHORITY						
	RED RIVER FLOODWAY EXPANS						
ate GROUNDWATER RESPONSE TO FLOODWAY WATER LEVELS WATER ELEVATION, CONDUCTIVITY AND TEMPERATURE READINGS AT							
	MFA ID K09-12012 (Church Road JUNE 2015 FIGURE HM66-13	REV 5					



X:\projects\2003\03-1100-01\General\(.19) SiteSurv&Invest\(.12) GW Invest\Temp\(.07) ChannBaseflow GWDischarge\Spring 7A1 Transducer Data

FLOW	SUMMER 2014 FLOODWAY OPERATION	T T 1					
wywwwwwwwww	M manana manana	Myseman					
- - - + + H - - 							
+ ++							
-''''							
		ມ ມ ມ ມ ມ ມ ມ					
1-Jan-1 -Feb-1 -Mar-1 1-Apr-1 -May-1 1-Jun-1	1-Jul-14 1-Aug-14 1-Sep-14 1-Oct-14 1-Nov-14 1-Dec-14	1-Jan-15 1-Feb-15 1-Mar-15 1-Apr-15 -May-15 1-Jun-15					
	~~·~~	· · - ·					
MEMO REFERENCE. <u>95-1100-01-8005101-HM66</u>							
KGS GROUP							
	MANITOBA FLOODWAY AUTHORITY						
		RED RIVER FLOODWAY EXPANSION GROUNDWATER RESPONSE TO FLOODWAY WATER LEVELS					
	C TEMPI	CONDUCTIVITY AND TEMPERATURE READINGS AT MFA ID 7A1 SPRING (CNR REDDITT/KILDARE AREA)					
	JUNE 2015	FIGURE HM66-43	REV 5				

APPENDIX D4-D

2017 INSPECTION OF SPRING TREATMENT AREAS

APPENDIX D4-D-1

SUMMARY 2017 INSPECTION OF SPRING TREATMENT AREAS

APPENDIX D4-D-1 2017 INSPECTION OF SPRING TREATMENT AREAS

1.0 INTRODUCTION AND SCOPE OF WORK

Annual summer inspections of the previously treated groundwater spring discharge areas are required in the Long-term monitoring program and were conducted in September 2017 by KGS Group. At total of 23 spring areas were treated as part of the program between March 2009 and February 2011. Treatment of these sites involved the construction of pervious graded sand filters to minimize potential for direct groundwater and surface water flow interconnections to develop. The filters were designed to: restrict the exfiltration rate of groundwater discharge by using the clean lower permeability sand layer while allowing for continued piezometric pressure relief; protect against ongoing piping and development of additional flow pathways under exfiltrating conditions; and satisfy requirements to restrict infiltration of silt and pathogens (e.g. bacteria) if possible.

The purpose of the 2017 inspection program was to:

- Document the condition of treated spring areas;
- Verify that additional discharge areas have not developed at the periphery of the treated area or immediately adjacent;
- Verify that the sampling standpipe is undamaged and accessible; and
- Identify any maintenance/repairs necessary.

A summary of the inspected sites is included in Appendix Table D4-D-1. Inspection forms including sketches and select photos for each of the treated spring areas are included in Appendix D4-D-2.

Detailed maps of spring locations can be found in the 2017 Annual Inspection and Monitoring Report Deliverable D5. Spring locations are also included in the Floodway Drilling and Instrumentation Published Map File HM80 Rev 1 (November 2013) and the Compilation of Subsurface Investigations CCO-418Y-002g Rev0 included as a PDF copy in Appendix K of HM99.

Electronic files containing additional photographs and video of each site have been included on a CD only in Appendix D4-D2 of this report. This report serves as a complete documentation of baseline conditions in the Long-term monitoring period and can be compared to future conditions.

2.0 INSPECTION PROGRAM METHODOLOGY

KGS Group representatives completed the spring inspections on September 5 - 6, 2017. An aluminum boat and motor was used to access the treated spring sites with a handheld GPS used to identify the location of each of the sites. The inspection for each spring included:

- Photographs of the filter, discharge trench, low level and high level sampling pipes, flow paths, and any additional discharge areas;
- Videos of flowing springs;

- Assessment of any damage to the filter, discharge trench, or sampling pipes and the repairs required;
- Identification of any additional discharge areas in the vicinity (~500 m north and south) of the treated spring areas;
- Measurement of water levels within low level sampling pipes where possible;
- Overall assessment of how the filter is working relative to design.

Observations from the inspections were recorded on inspection forms (Appendix D1-2) and the photograph and video numbers and times were recorded to identify the treated spring area.

3.0 SUMMARY OF INSPECTION FINDINGS

3.1 CONDITION OF FILTERS

The constructed filters were found to be in good condition and were working as designed. Flow appeared to be coming up through the filter and discharging through the granular layer overlying the sand filter bed. No settlement or heaving of the filters was observed.

3.2 ADDITIONAL DISCHARGE AREAS

Some additional discharge (AD) locations outside of the filtered springs were observed as follows:

- AD17-1: Discharge location into the low flow channel (<0.1 USgpm) from the west side mid way between Church Rd. and Hay Rd. (UTM 648661, 5546623) is just 10 m downstream of a beaver dam across the low flow (UTM 648659, 5546613) and is potentially upstream water finding a new pathway around the dam as opposed to being from a spring source. This point is adjacent to the low flow channel and should be sampled for field conductivity and temperature in 2018 to confirm the discharge source.
- AD17-2: A second similar location of discharge (<0.1 USgpm) on the west side (UTM 648646, 5546742) is 129 m downstream of the beaver dam and it is possible that this also is a redirection of upstream water from the dam although this appears to be localized and no ponding is apparent at this location. Sampling for field conductivity and temperature should be conducted in 2018 to determine the source.
- AD17-3: During the 2016 springs inspection an additional discharge location (UTM 648624, 5547187) was observed on the east side of the low flow channel across from Hay Rd. This location was once again observed at UTM 648624, 5547181 and finds several fanned out pathways of individually low volume (<0.1 USgpm) discharge locations for approximately 64 m along the east side of the low flow channel. Total discharge approximately <5 USgpm. The source is apparent upstream of the discharge.
- AD17-4: On the west side, across the low flow channel from the previous discharge location there is also a section of discharge locations into the channel (<0.1 USgpm) that extend for approximately 88 m from a ponding location at UTM 648593, 5547218 to UTM 648587, 5547306.

• AD17-5: Low volume (<1 USgpm) discharge was observed mid-way between Hay Rd. and CEMR bridge on the east shore with no apparent ponding or source at UTM 648528, 5548099.

3.3 CONDITION OF DISCHARGE TRENCHES

The discharge trenches were constructed as shallow excavated trenches that were filled with riprap to grade or slightly above grade. It was observed that at 11 of the 23 treated spring sites, the rip rap within the discharge trenches was infilling with sediment and spring discharge was finding alternate flow paths to the Low Flow Channel. This resulted in overland flow toward the Low Flow Channel or flow into low areas near the filter, creating wet and soft areas. No significant erosion channels were observed at any of these locations.

The discharge trenches at the 5A1 and 7A1 locations were constructed as ditches (see photos in inspection reports) which appeared to be more effective in directing discharge flows along the design discharge flow path.

3.4 CONDITION OF SAMPLING PIPES

The two high level sampling pipes, at 11A2 and 18A1, were both found to be in good condition with no damage observed.

The 10 low level sampling pipes were generally found to be in good condition. At one location, 5A1, a 30 inch steel cover was missing from the protective casing.

4.0 REPAIRS REQUIRED

4.1 FILTERS

No repairs of the filters are required. The filters appear to be operating as designed.

4.2 ADDITIONAL DISCHARGE AREAS

In 2016 and 2017 additional eroded discharge areas were observed in a small area along the discharge trench at 9B2. Construction of a graded sand filter would minimize potential for direct groundwater and surface water flow interconnections to develop at this location.

Additional discharge areas AD17-1 through AD17-5 should be re-inspected in 2018 including field conductivity and temperature and source identification. Additional discharge locations AD17-1, AD17-2 and AD17-5 are adjacent to the channel; therefore remediation may not be practical. Discharge areas AD17-3 and AD 17-4 should be assessed for potential remediation.

4.3 DISCHARGE TRENCHES

The discharge trenches that were constructed with riprap to grade or above grade generally appeared to infill with sediment, resulting in spring flows finding alternate flow paths to the Low Flow Channel. Excavating out the existing discharge channel to create a ditch, similar to 5A1 and 7A1, would likely direct flow along the design discharge trench. Alternatively, constructing a new ditch, with riprap armouring, along the existing overland discharge path would also be

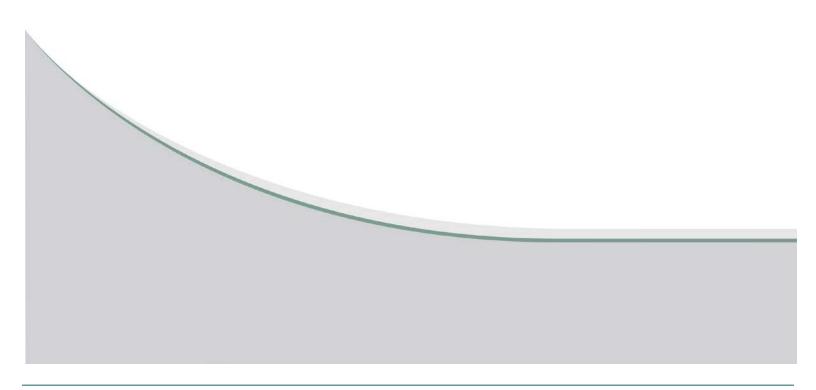
effective in limiting any erosion concerns with overland flow. The discharge trenches that require some repair include:

- 5A1 widening of the existing discharge ditch;
- 7C1 excavating out discharge trench to create ditch, constructing new discharge ditch;
- 8B1 excavating out discharge trench to create ditch;
- 8B2 excavating out discharge trench to create ditch;
- 8C1 excavating out discharge trench to create ditch;
- 9B1 constructing new discharge ditch;
- 9B2 excavating out discharge trench to create ditch;
- 10A1 excavating out discharge trench to create ditch;
- 11A1 constructing new discharge ditch;
- 18A1 excavating out discharge trench to create ditch, constructing new discharge ditch;
- 21A1 excavating out discharge trench to create ditch.

4.4 SAMPLING PIPES

The low level sampling pipes that require some repair include:

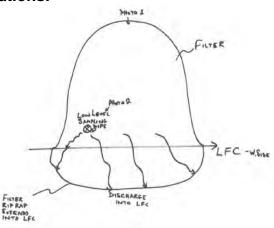
• 5A1 – replacing a missing 30 inch steel cover for vertical corrugated steel pipe casing;


TABLE D4-D1 2017 SUMMER INSPECTION OF SPRING TREATMENT AREAS

				1							
Site No.	Channel Side	Approximate Channel Station	Low Level Sampling Pipe Installed	High Level Sampling Pipe Installed	Northing	Easting	Flow Observed Summer 2017	Condition of Filter	Additional Discharge Areas in Vicinity of Filter	Constructed Discharge Trench Operating as Designed	Low Level Sampling Pipe Repairs Required
oring Area	Treatment Sites										
2A1	West	21+000	Yes	No	5523219	647097	Yes	Good	No	Yes	No
5A1	West	26+280	Yes	No	5528520	646961	Yes	Good	No	No	Yes, missing cover
7A1	West	27+060	Yes	No	5529304	646939	Yes	Good	Yes. Very low flow discharge 10 m upstream	Yes	No
	West		No	No					Yes. Very low flow: -7 m upstream; -14 m upstream; and - 70 m downstream		
7B2	E t	27+157	Ma a	Na	5529475	646951	Yes	Good	along LFC.	Yes	-
7C1	East	27+400	Yes	No	5529640	646969	Yes	Good	No	No	No
8B1	West	29+880	No	No	5531953	646023	Yes	Good	No	No	-
8B2	West	29+970	No Yes	No	5532027	645993	Yes	Good	No	No	-
8C1	West	30+080	No	No No	5532127	645959	Very Little	Good	No	No	No
9A6	East West	30+400	NO	No	5532480	645890	Yes	Good	No	Yes	-
9B1 9B2	East	30+840 30+978	NO	No	5532846 5532997	645734 645715	Very Little	Good	No Yes	No No	-
-	West		No	No			No	Good			-
10A1 11A1	West	31+000	Yes	No	5533022	645665	Yes	Good Good	No	No No	- No
11A1 11A2	East	31+290 33+900	Yes	Yes	5533274 5535772	645559 644767	Yes No	Good	No No	N/A (no flow)	No
16A2	West	42+180	No	No	5543145	647070	No	Good	No	No (Ponding)	-
17A2	East	42+769	Yes	No	5543545	647519	Yes	Good	No	Yes	No
17A2 18A1	West	42+709	Yes	Yes	5543620	647443	Yes	Good	No	No	No
18A2	West	42+800	No	No	5543620	647473	No	Good	No	N/A (no flow)	-
20A2	East	47+030	No	No	5547417	648610	Very Little	Good	No	N/A (no flow)	
20A2 21A1	West	47+030	No	No	5548152	648465	Very Little	Good	No	No	-
21A1 21A2	East	47+796	No	No	5548170	648545	Yes	Good	No	N/A (no flow)	-
23A1	West	49+395	No	No	5549740	648290	No	Good	No	N/A (no flow)	-
23A1 23A2	East	49+393	Yes	No	5549842	648355	Yes	Good	No	N/A (no flow)	No

APPENDIX D4-D-2

FIELD DOCUMENTATION



Treatment Site ID: 2A1

Site Description: West side, north of HWY1 bridge.

Date: September 5, 2017

Site Sketch and Photo Locations:

LFC-E.SINE

Photo 1: Spring treatment filter site 2A1.

Photo 2: Discharge into LFC at 2A1.

Filter Condition: Good Repairs Required: None

Approximate Flow: 8 USgpm

Additional Discharge Areas: No

Sampling Standpipe: Yes, low level Depth to bottom: Could not measure Depth to water: At surface Condition: Water above PVC, so left sealed to avoid cross contamination. Repairs Required: None.

Other Comments: Filter appears to be working effectively.

Treatment Site ID: 5A1

Site Description: West side, north of Redditt bridge.

Date: September 6, 2017

Site Sketch and Photo Locations:

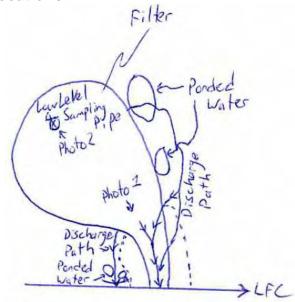


Photo 1: Spring treatment filter site 5A1 and constructed discharge trench.

Photo 2: Low level sampling pipe and protective steel casing at 5A1. Cover is missing.

Filter Condition: Good – water flowing along discharge channel as well as finding alternate flow paths to LFC. No significant erosion observed within overland discharge areas. Vegetation is quite grown over.

Repairs Required: Widening the discharge channel may focus flow along design discharge path and accommodate flows.

Approximate Flow: 10 USgpm

Additional Discharge Areas: No

Sampling Standpipe: Yes, low level Depth to bottom: Could not measure, 50 mm poly pipe, coiled in CMP protective casing Depth to water: Water has filled protective steel casing Condition: Missing a 30 inch cover Repairs Required: Replace the 30 inch cover

Other Comments: Filter appears to be working effectively other than alternate flow paths.

Treatment Site ID: 7A1 **Site Description:** West side, south of 7B2.

Date: September 5, 2017

Site Sketch and Photo Locations:

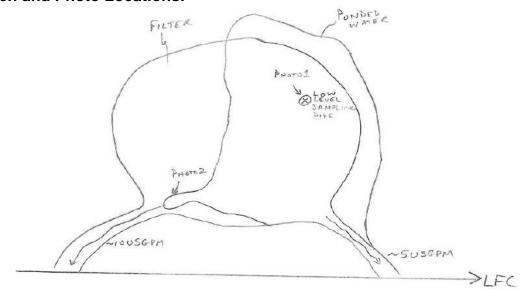


Photo 1: Low level sampling pipe and water within protective casing.

Photo 2: Discharge ditches at 7A1 effectively direct water to LFC.

Filter Condition: Good Repairs Required: None

Approximate Flow: 15 USgpm

Additional Discharge Areas: No

Sampling Standpipe: Yes, low level Depth to bottom: Could not measure, 50 mm poly pipe, coiled in CMP protective casing. Depth to water: Water has filled protective steel casing. Condition: Good Repairs Required: None

Other Comments: Large flow through filter, appears to be working effectively. Constructed discharge channels are formed as ditches and effectively direct discharge water to the LFC.

Treatment Site ID: 7B2 **Site Description:** West side, north of 7A1.

Date: September 5, 2017

Site Sketch and Photo Locations:

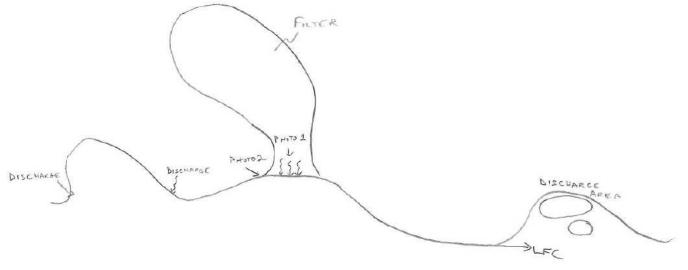


Photo 1: Spring treatment filter 7B2.

Photo 2: Filter discharge at 7B2 into LFC.

Filter Condition: Good Repairs Required: None

Approximate Flow: 4 USgpm

Additional Discharge Areas: Two very low flow discharge areas approximately 7 m and 14 m upstream along LFC. One area of discharge approximately 70 m downstream along LFC.

Sampling Standpipe: No

Other Comments: Filter appears to be working effectively.

Treatment Site ID: 7C1

Date: September 5, 2017 Site Description: East side, between Redditt and Keewatin bridges.

Site Sketch and Photo Locations:

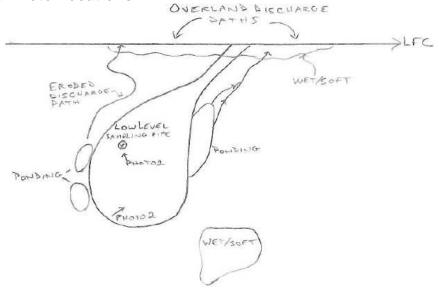


Photo 1: Spring treatment filter site 7C1.

Photo 2: Water flowing through 7C1 filter and finding alternate flow paths to LFC or ponding in low areas.

Filter Condition: Good – water finding alternate flow paths to LFC or ponding in low areas. Constructed discharge channel appears to be clogged with sediment. Eroded path on south side of filter.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path.

Approximate Flow: 4 USgpm

Additional Discharge Areas: No

Sampling Standpipe: Yes, low level Depth to bottom: Did not measure in order to avoid cross contamination. 2.41 m previously. Depth to water: 0 m (at top of pipe). Artesian when opened. Condition: Good Repairs Required: None

Other Comments: Filter appears to be working effectively other than the discharge channel. Very soft along LFC.

Treatment Site ID: 8B1 **Site Description:** West side, south of Keewatin bridge. Date: September 5, 2017

Site Sketch and Photo Locations:

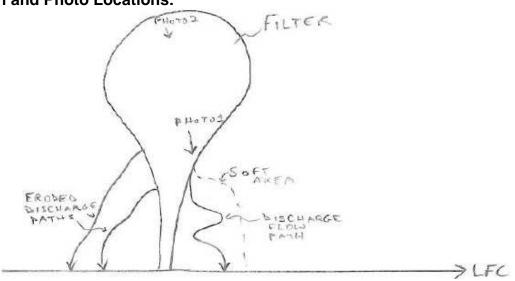


Photo 1: Water finding alternate flow path to LFC.

Photo 2: Spring treatment filter 8B1.

Filter Condition: Good – water finding alternate flow path to LFC. Constructed discharge channel appears to be clogged with sediment. Some erosion observed on south side in 2 paths but not currently flowing

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path.

Approximate Flow: 6 USgpm

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: Filter appears to be working effectively other than the discharge channel.

Treatment Site ID: 8C1

Date: September 5, 2017

Site Description: West side, south of Keewatin bridge, north of 8B2.

Site Sketch and Photo Locations:

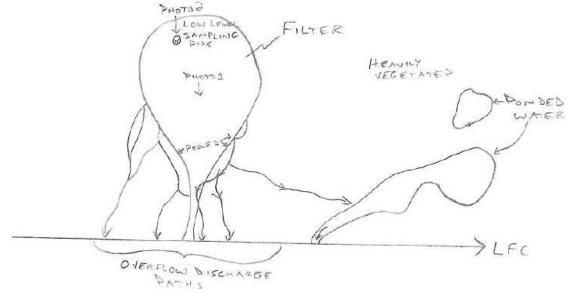


Photo 1: Spring treatment filter site 8C1 and constructed discharge trench.

Photo 2: Low level sampling pipe and protective steel casing at 8C1.

Filter Condition: Good – water finding alternate flow paths to LFC. Flow paths wet and soft, but not currently flowing. Constructed discharge channel appears to be clogged with sediment. No significant erosion observed within overland discharge areas.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path.

Approximate Flow: >0.1USgpm

Additional Discharge Areas: No. Sampling Standpipe: Yes, low level Depth to bottom: 2.93 m Depth to water: 0.20 m below steel casing. Condition: Good Repairs Required: None

Other Comments: Filter appears to be working effectively other than alternate flow path. Ponded area to the North of filter is discharging to LFC and appears to be sourced from the filter. PVC cap & threaded coupling was off of casing and was replaced upon inspection.

Treatment Site ID: 9A6

Date: September 5, 2017

Site Description: East side, north of CPR Keewatin bridge.

Site Sketch and Photo Locations:

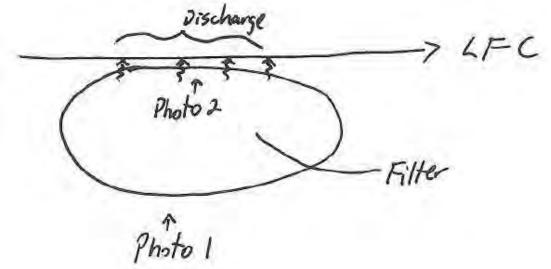


Photo 1: Spring treatment filter 9A6.

Photo 2: Spring 9A6 discharge into Low Flow Channel.

Filter Condition: Good

Repairs Required: None

Approximate Flow: 4 USgpm

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: Flow coming through filter, appears to be working effectively.

Treatment Site ID: 9B2

Date: September 5, 2017

Site Description: East side, north of CPR Keewatin Bridge.

Site Sketch and Photo Locations:

- Soft Area, Additional dishage points photo ? Photo Filte

Photos:

Photo 1: Additional discharge points along constructed discharge trench, very soft area.

Photo 2: Spring treatment filter 9B2.

Filter Condition: Good – water finding alternate flow paths to LFC. No significant erosion observed within overland discharge area.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path.

Approximate Flow: 0 USgpm

Additional Discharge Areas: Yes, piping observed along constructed discharge trench, very low flows. Further investigation treatment of additional discharge areas may be required.

Sampling Standpipe: No

Other Comments: Wet and soft along discharge trench and near LFC.

Treatment Site ID: 10A1 **Site Description:** West side, north of Keewatin bridge. Date: September 5, 2017

Site Sketch and Photo Locations:

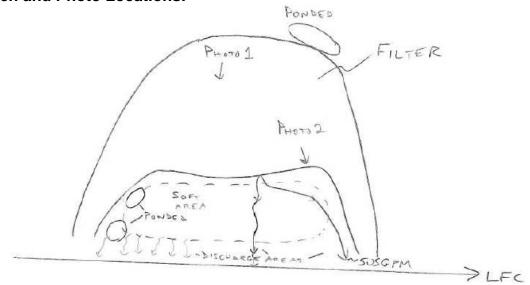


Photo 1: Spring treatment filter 10A1.

Photo 2: Water flowing through 10A1 filter and finding alternate flow paths to LFC.

Filter Condition: Good – water finding alternate flow paths to LFC. Constructed discharge channels appear to be clogged with sediment. No significant erosion observed within overland discharge area.

Repairs Required: Excavating rip rap from discharge channels and creating swales may focus flow along design discharge paths.

Approximate Flow: 5 USgpm at North discharge

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: Filter appears to be working effectively other than the discharge channels.

Treatment Site ID: 11A1

Site Description: West side, north of Keewatin bridge.

Date: September 5, 2017

Site Sketch and Photo Locations:

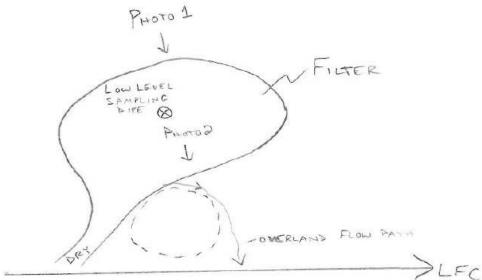


Photo 1: Spring treatment filter site 11A1 and low level sampling pipe, covered by vegetation.

Photo 2: Water flowing through 11A1 filter and finding alternate flow path to LFC.

Filter Condition: Good – water finding alternate flow path to LFC. Constructed discharge channel appears to be clogged with sediment. No significant erosion observed within overland discharge area.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path. Alternatively, construct a new swale along existing flow path.

Approximate Flow: 6 USgpm Additional Discharge Areas: No

Sampling Standpipe: Yes, low level Depth to bottom: 3.09 m (2016) Depth to water: 0.190 m below PVC TOC Condition: Good. Repairs: None.

Other Comments: Filter appears to be working effectively other than alternate flow path. Water flowing over very soft soil between filter and LFC.

Treatment Site ID: 11A2

Date: September 6, 2017

Site Description: East side of Floodway, south of PTH59N bridge.

Site Sketch and Photo Locations:

LFC Wet Area photo Z Filter -High Level Sampling Pipe Photo I

Photo 1: High level sampling pipe and protective CMP casing.

Photo 2: Water flowing through 11A2 filter and finding alternate flow paths to LFC.

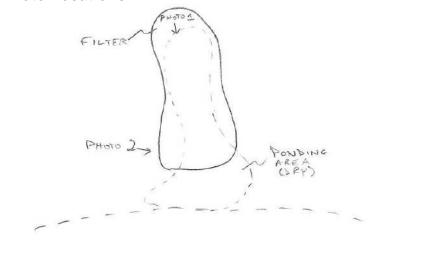
Filter Condition: Good

Repairs Required: None

Approximate Flow: 0 USgpm

Additional Discharge Areas: No

Sampling Standpipe: Yes, low level and high level Depth to bottom: 1.93 m (low level), soft at bottom (2016). Depth to water: 1.05m (low level) Condition: Good Repairs Required: None


Other Comments: There is no discharge trench constructed to Low Flow Channel. Dry around filter. Could add mono foam around PVC at opening in steel protector at high level standpipe but is a low priority.

Treatment Site ID: 16A2

Site Description: West side, north of Dunning Road.

Date: September 6, 2017

Site Sketch and Photo Locations:

LFC

Photo 1: Spring treatment filter 16A2.

Photo 2: Spring treatment filter 16A2.

Filter Condition: Good. No apparent discharge path to drain into LFC.

Repairs Required: None.

Approximate Flow: No Flow

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: No flow observed. Dried ponding area exists on and around filter. Heavily vegetated.

Treatment Site ID: 17A2 **Site Description:** East side, north of Dunning Road Date: September 6, 2017

Site Sketch and Photo Locations:

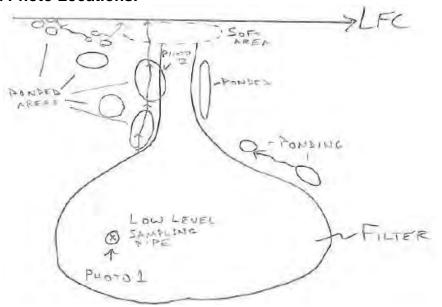


Photo 1: Spring treatment filter site 17A2 and low level sampling pipe.

Photo 2: Water ponding beside the French drain at 17A2.

Filter Condition: Good

Repairs Required: None

Approximate Flow: 2 USgpm

Additional Discharge Areas: Small discharge area along French Drain, may just be ponding water.

Sampling Standpipe: Yes, low level Depth to bottom: 1.510 m (2016) Depth to water: 0.319 m Condition: Good Repairs Required: None

Other Comments: Area around filter is dry; filter appears to be working well other than alternate flow path.

Treatment Site ID: 18A1

Date: September 6, 2017

Site Description: West side, north of LFC bike/pedestrian bridge.

Site Sketch and Photo Locations:

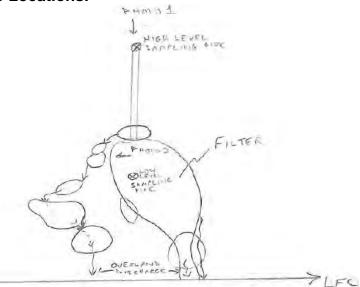


Photo 1: High level sampling pipe and protective CMP casing.

Photo 2: Water flowing through filter and finding alternate flow paths to LFC at 18A1.

Filter Condition: Good – water finding alternate flow paths to LFC. Constructed discharge channel appears to be clogged with sediment. No significant erosion observed within overland discharge areas.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path.

Approximate Flow: Path to South of discharge path ~ 15 USgpm. Path adjacent to discharge path ~ 3 USgpm.

Additional Discharge Areas: No

Sampling Standpipe: Yes, low level and high level.
Depth to bottom: 1.94 m (low level). Very soft at bottom.
Depth to water: 0.18 m (low level).
Condition: PVC has lifted up and is in contact with steel protective casing.
Repairs: None

Other Comments: Filter appears to be working effectively other than the discharge channel.

Treatment Site ID: 18A2

Date: September 6, 2017

Site Description: West side, approximately 100 m north of 18A1.

Site Sketch and Photo Locations:

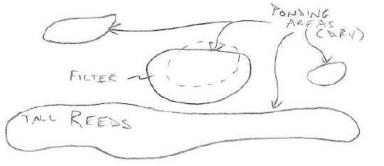


Photo 1: Spring treatment filter site 18A2.

Photo 2: Dried ponding area near spring treatment filter site 18A2.

Filter Condition: Good Repairs Required: None

Approximate Flow: No flow

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: Dried areas with reeds from surface water ponding around filter.

Treatment Site ID: 20A2 **Site Description:** East side, south of 21A2 Date: September 6, 2017

Site Sketch and Photo Locations:

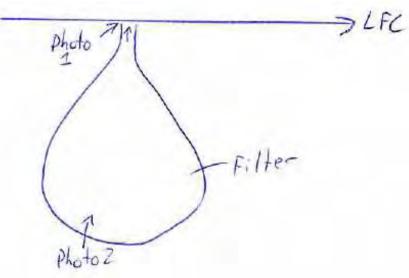


Photo 1: Tie-in of filter drain to Low Flow Channel.

Photo 2: Spring treatment filter 20A2.

Filter Condition: Good

Repairs Required: None

Approximate Flow: <0.1 USgpm

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: No flow observed, no wet or soft areas.

Treatment Site ID: 21A1

Site Description: West side, south of CEMR bridge.

Date: September 6, 2017

Site Sketch and Photo Locations:

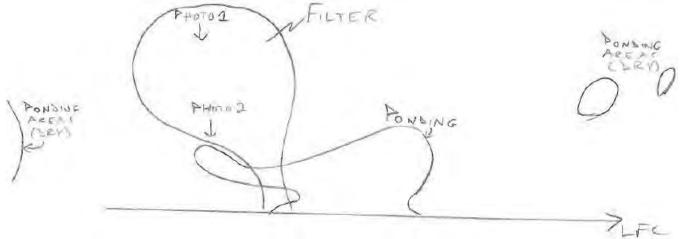


Photo 1: Spring treatment filter 21A1.

Photo 2: Water flowing through 21A1 filter and finding alternate flow path to LFC.

Filter Condition: Good – water finding alternate flow path to LFC. Constructed discharge channel appears to be clogged with sediment. No significant erosion observed within overland discharge area.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path.

Approximate Flow: <0.1 USgpm

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: Filter appears to be working effectively other than the discharge channel. LFC at filter elevation / above discharge channel.

Treatment Site ID: 21A2 **Site Description:** East side, north of 20A2 Date: September 6, 2017

Site Sketch and Photo Locations:

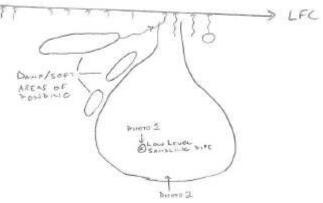


Photo 1: Spring treatment filter 21A2.

Photo 2: Tie-in of 21A2 filter drain to Low Flow Channel.

Filter Condition: Good

Repairs Required: None

Approximate Flow: 1 USGpm

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: No flow observed, no wet or soft areas around filter.

Treatment Site ID: 23A1

Site Description: West side, south of PTH 44 bridge.

Date: September 6, 2017

Site Sketch and Photo Locations:

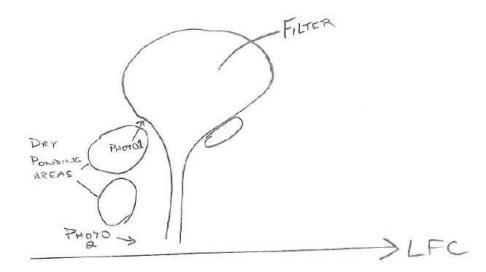


Photo 1: Spring treatment filter 23A1.

Photo 2: Tie in of discharge channel to LFC at 23A1.

Filter Condition: Good

Repairs Required: None

Approximate Flow: No Flow

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: Rip rap is filling with sediment, hard to see filter and discharge channel. Heavy vegetation.

Treatment Site ID: 23A2

Date: September 6, 2017

Site Description: East side, just south of PTH 44 bridge.

Site Sketch and Photo Locations:

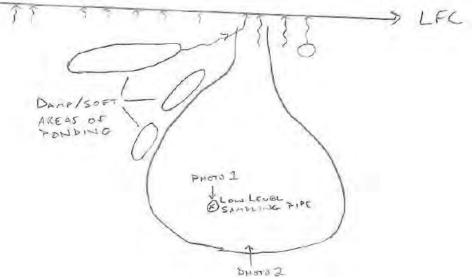


Photo 1: Low level sampling pipe steel protective casing.

Photo 2: Spring treatment filter site 23A2.

Filter Condition: Good

Repairs Required: None

Approximate Flow: <0.1 USgpm

Additional Discharge Areas: No

Sampling Standpipe: Yes, low level Depth to bottom: 1.56 m Depth to water: 0.145 m below PVC top of casing. Condition: Good. Repairs: None.

Other Comments: No wet or soft areas around filter.

Treatment Site ID: AD17-1

UTM: 14U 648661 5546623.

Date: September 6, 2017 Site Description: West side, approximately 10 m downstream of a beaver dam crossing the low flow channel. Located mid way between Church Rd. and Hay Rd.

Site Sketch and Photo Locations:

Photo 1: Additional discharge location facing upstream toward beaver dam.

Photo 2: Slow seepage at additional discharge location.

Approximate Flow: <0.1 USgpm

Other Comments: Additional discharge location 10 m downstream of beaver dam and is potentially diverted flow from the dam.

Treatment Site ID: AD17-2

Date: September 6, 2017

Site Description: West side, approximately 129 m downstream of a beaver dam that crosses the low flow channel. Located mid way between Church Rd. and Hay Rd. **UTM:** 14U 648646 5546742.

Photo 1: Additional discharge location facing west from mid channel.

Photo 2: Slow seepage at additional discharge location.

Approximate Flow: <0.1 USgpm

Other Comments: Additional discharge location 129 m downstream of beaver dam and potentially diverted flow from the dam as opposed to groundwater discharge.

Treatment Site ID: AD17-3

Date: September 6, 2017

Site Description: East side of channel across from Hay Rd. Across channel from AD17-4. **UTM:** 14U 0648624 5547181.

Apprent Source

Site Sketch and Photo Locations:

Photo 1: Additional discharge location apparent source pooling.

Photo 2: Low flow seepage into channel.

Approximate Flow: <0.1 USgpm individual streams. Approximately <5 USgpm total discharge.

Other Comments: Additional discharge location with low flow discharges into the channel spanning approximately 65 m from 14U 0648624 5547181 downstream to 14U 0648614 5547245.

Treatment Site ID: AD17-4

Date: September 6, 2017

Site Description: West side of channel across from Hay Rd. Across the channel from AD17-3. **UTM:** 14U 0648593 5547218.

Site Sketch and Photo Locations:

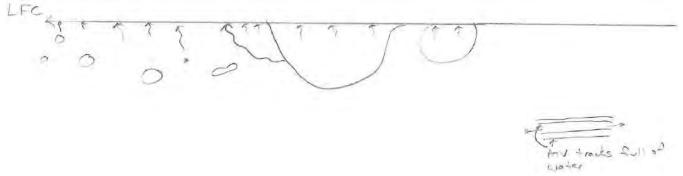


Photo 1: Additional discharge pooling and seepage.

Photo 2: Low flow seepage into channel.

Approximate Flow: <0.1 USgpm

Other Comments: Additional discharge location with low flow discharges into the channel spanning approximately 91 m from approximately 14U 0648593 5547218 downstream to 14U 0648587 5547306.

Treatment Site ID: AD17-5

Date: September 6, 2017

Site Description: West side of channel between Hay Rd. and CEMR Bridge and approximately 70 m south of Spring 21A2. **UTM:** 14U 0648099 5548528.

Photo 1: Additional discharge adjacent to low flow channel.

Photo 2: Low flow seepage into channel.

Approximate Flow: <0.1 USgpm

Other Comments: Additional discharge location with very low flow discharge adjacent to the low flow channel. No apparent ponding or source aside from channel slope.

APPENDIX D4-D-3


ADDITIONAL PHOTOGRAPHS AND VIDEO (INCLUDED ON DVD)

APPENDIX D4-E

LABORATORY REPORTS

KGS Group Consultants (Winnipeg) 865 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 ATTN: Marci Friedman Hamm

 Date:
 07-MAR-17

 PO No.:
 MI FLOODWAY

 WO No.:
 L1896850

 Project Ref:
 16-0300-002.1000.01

 Sample ID:
 K13-12321

 Sampled By:
 ADS/DL

 Date Collected:
 02-MAR-17

 Lab Sample ID:
 L1896850-1

 Matrix:
 GW

PAGE 1 of 7

Carbonate (CO3) <0.60	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Carbonate (CO3) -0.60 mg/L 06-MA Hydroxide (OH) -0.34 mg/L 06-MA Alkalinity, Total (as CaCO3) 576 mg/L 03-MA Chloride (CI) 236 mg/L 250 03-MA Conductivity 1780 umhos/cm 03-MA 03-MA Conductivity 1780 umhos/cm 03-MA 03-MA *Nitrate (as N) 4.48 mg/L 10 03-MA *Nitrate (as N) 4.48 mg/L 10 03-MA Sulfate (SO4) 87.2 mg/L 10 03-MA Sulfate (SO4) 87.2 mg/L 10 03-MA TDS (Calculated) 1020 mg/L 500 06-MA *Turbidity 0.30 NTU 0 03-MA pH 7.17 pH units 500 06-MA total Coliforms <1							
Hydroxide (OH) <0.34 mg/L 06-MA Alkalinity, Total (as CaCO3) 576 mg/L 03-MA Chloride (Cl) 236 mg/L 03-MA Conductivity 1780 umhos/cm 03-MA Hardness (as CaCO3) 938 mg/L 10 03-MA *Nitrate (as N) 4.48 mg/L 10 03-MA *Nitrate and Nitrite as N 4.48 mg/L 10 03-MA *Nitrate (as N) <0.0050	Bicarbonate (HCO3)	703		mg/L			06-MAR-1
Alkalinity, Total (as CaCO3) 576 mg/L 03-MA Chloride (Cl) 236 mg/L 250 03-MA Conductivity 1780 umhos/cm 03-MA Hardness (as CaCO3) 938 mg/L 500 06-MA *Nitrate (as N) 4.48 mg/L 10 03-MA *Nitrate and Nitrite as N 4.48 mg/L 10 03-MA Sulfate (SO4) 87.2 mg/L 10 03-MA Sulfate (SO4) 87.2 mg/L 10 03-MA TDS (Calculated) 1020 mg/L 1 03-MA *Turbidity 0.30 NTU 500 03-MA pH 7.17 pH units 500 03-MA total Coliforms <1		<0.60		mg/L			06-MAR-1
CaCO3) mg/L 250 03-MA Conductivity 1780 umhos/cm 03-MA Hardness (as CaCO3) 938 mg/L 500 06-MA *Nitrate (as N) 4.48 mg/L 10 03-MA *Nitrate (as N) 4.48 mg/L 10 03-MA *Nitrate and Nitrite as N 4.48 mg/L 10 03-MA Sulfate (SO4) 87.2 Mg/L 10 03-MA Sulfate (SO4) 87.2 mg/L 500 03-MA Sulfate (SO4) 87.2 mg/L 500 03-MA TDS (Calculated) 1020 mg/L 500 03-MA 'Turbidity 0.30 NTU 500 03-MA pH 7.17 pH units 500 03-MA total Coliforms <1	Hydroxide (OH)	<0.34		mg/L			06-MAR-
Conductivity 1780 umbos/cm 03-MA Hardness (as CaCO3) 938 mg/L 500 06-MA *Nitrate (as N) 4.48 mg/L 10 03-MA *Nitrate and Nitrite as N 4.48 mg/L 10 03-MA *Nitrate and Nitrite as N 4.48 mg/L 10 03-MA Sulfate (SO4) 87.2 mg/L 1 03-MA TDS (Calculated) 1020 mg/L 500 06-MA *Turbidity 0.30 NTU 500 06-MA pH 7.17 pH units 500 06-MA Total Coliform and E.coli by MPN QT97 Total Coliforms 41 MPN/100mL 0 02-MA Ion Balance Calculation <1		576		mg/L			03-MAR-
Hardness (as CaCO3) 938 mg/L 500 06-MA *Nitrate (as N) 4.48 mg/L 10 03-MA *Nitrate and Nitrite as N 4.48 mg/L 10 03-MA *Nitrate and Nitrite as N 4.48 mg/L 10 03-MA Sulfate (SO4) 87.2 mg/L 1 03-MA TDS (Calculated) 1020 mg/L 500 06-MA *Turbidity 0.30 NTU 500 06-MA pH 7.17 pH units 500 06-MA Total Coliforms <1	Chloride (Cl)	236		mg/L		250	03-MAR-
*Nitrate (as N) 4.48 mg/L 10 03-MAl *Nitrate and Nitrite as N 4.48 mg/L 10 03-MAl *Nitrate and Nitrite as N 4.48 mg/L 10 03-MAl *Nitrite (as N) <0.0050	Conductivity	1780		umhos/cm			03-MAR-
*Nitrate and Nitrite as N 4.48 mg/L 10 07-MA *Nitrite (as N) <0.0050	Hardness (as CaCO3)	938	(mg/L		500	06-MAR-
*Nitrite (as N) <0.0050 DLM mg/L 1 0.3 MA Sulfate (SO4) 87.2 mg/L 1 0.3 MA TDS (Calculated) 1020 mg/L 500 06-MA *Turbidity 0.30 NTU 03-MA pH 7.17 pH units 03-MA Total Coliforms and E.coli by MPN QT97 PH 03-MA Total Coliforms <1	*Nitrate (as N)	4.48		mg/L	10		03-MAR-
Sulfate (SO4)87.2mg/L50003-MATDS (Calculated)1020mg/L50006-MA*Turbidity0.30NTU03-MApH7.17pH units03-MATotal Coliforms<1	*Nitrate and Nitrite as N	4.48		mg/L	10		07-MAR-
TDS (Calculated)1020mg/L50006-MA*Turbidity0.30NTU03-MApH7.17pH units03-MATotal Coliform and E.coli by MPN QT97r002-MATotal Coliforms<1	*Nitrite (as N)	<0.0050	DLM	mg/L	1		03-MAR-
TDS (Calculated)1020mg/L50006-MA*Turbidity0.30NTU03-MA03-MApH7.17pH units03-MATotal Coliform and E.coli by MPN QT97rr0Total Coliforms<1	Sulfate (SO4)	87.2		mg/L		500	03-MAR-
*Turbidity0.30NTU03-MApH7.17pH units03-MATotal Coliform and E.coli by MPN QT97r03-MATotal Coliforms<1		1020	1	_			06-MAR-
pH7.17pH units03-MATotal Coliform and E.coli by MPN QT97	· · · · · ·	0.30]	5			03-MAR-
Total Coliform and E.coli by MPN QT97 </td <td>•</td> <td>7.17</td> <td></td> <td></td> <td></td> <td></td> <td>03-MAR-</td>	•	7.17					03-MAR-
Total Coliforms<1MPN/100mL002-MAEscherichia Coli<1	·						
Escherichia Coli<1MPN/100mL002-MAIon Balance Calculation<	-	<1		MPN/100mL	0		02-MAR-
Ion Balance108%07-MACation - Anion Balance3.7%07-MAAnion Sum20.3me/L07-MACation Sum21.9me/L07-MADissolved Metals by ICP-MS07-MACalcium (Ca)-Dissolved122mg/L03-MAMagnesium (Mg)- Dissolved154mg/L03-MAPotassium (K)-Dissolved6.32mg/L03-MA	Escherichia Coli	<1		MPN/100mL			02-MAR-
Cation - Anion Balance3.7%07-MAAnion Sum Cation Sum20.3me/L07-MADissolved Metals by ICP-MS21.9me/L07-MACalcium (Ca)-Dissolved122mg/L03-MAMagnesium (Mg)- Dissolved154mg/L03-MAPotassium (K)-Dissolved6.32mg/L03-MA	Ion Balance Calculation						
Anion Sum Cation Sum20.3me/L07-MA 07-MADissolved Metals by ICP-MS122mg/L03-MA 03-MACalcium (Ca)-Dissolved122mg/L03-MA 							07-MAR-
Cation Sum21.9me/L07-MADissolved Metals by ICP-MS </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>07-MAR-</td>							07-MAR-
Dissolved Metals by ICP-MS Calcium (Ca)-Dissolved 122 mg/L 03-MA Magnesium (Mg)- 154 mg/L 03-MA Dissolved Potassium (K)-Dissolved 6.32 mg/L 03-MA							
Calcium (Ca)-Dissolved122mg/L03-MAIMagnesium (Mg)- Dissolved154mg/L03-MAIPotassium (K)-Dissolved6.32mg/L03-MAI		21.9		me/L			UT-MAR-
Magnesium (Mg)- Dissolved154mg/L03-MAIPotassium (K)-Dissolved6.32mg/L03-MAI	-	100					02 MAP
Dissolved 6.32 mg/L 03-MA				U U			03-MAR-
	Dissolved	-		_			
Sodium (Na)-Dissolved 67.8 mg/L 200 03-MA				U U			03-MAR-
		67.8		U U		200	03-N

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

KGS Group Consultants (Winnipeg) 865 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 ATTN: Marci Friedman Hamm
 Date:
 07-MAR-17

 PO No.:
 MI FLOODWAY

 WO No.:
 L1896850

 Project Ref:
 16-0300-002.1000.01

 Sample ID:
 K13-12321

 Sampled By:
 ADS/DL

 Date Collected:
 02-MAR-17

 Lab Sample ID:
 L1896850-1

 Matrix:
 GW

PAGE 2 of 7

Test Description		0	Units of	CDWQG	Aesthetic	Date
Test Description	Result	Qualifier	Measure	MAC	Objective	Analyzed
CDWQG = Health Canada Guideline Limits updated	DECEMBER					
 CDWQG for Nitrate+Nitrite-N is the limit for nitrate only Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa A blank entry designates no known limit. A shaded value in the Results column exceeds CDWC 	guidelines on cor ater Quality	ventional treatn	nent and slow sand	N.D. = less than dei d or diatomaceous e	tection limit. arth filtration plea	se see
Approved by Hua Wo						
Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

 Date:
 07-MAR-17

 PO No.:
 MI FLOODWAY

 WO No.:
 L1896850

 Project Ref:
 16-0300-002.1000.01

 Sample ID:
 K09-12012

 Sampled By:
 ADS/DL

 Date Collected:
 02-MAR-17

 Lab Sample ID:
 L1896850-2

 Matrix:
 GW

PAGE 3 of 7

478 <0.60 <0.34 392 23.5 1140 609 <0.010 <0.010 <0.0020 277 779 226 7.36 <1	DLM DLM	mg/L mg/L mg/L mg/L umhos/cm mg/L mg/L mg/L mg/L mg/L mg/L	10 10 1	250	06-MAR-1 06-MAR-1 03-MAR-1 03-MAR-1 03-MAR-1 03-MAR-1 03-MAR-1 03-MAR-1 03-MAR-1
<0.60 <0.34 392 23.5 1140 609 <0.010 <0.010 <0.0020 277 779 226 7.36		mg/L mg/L mg/L umhos/cm mg/L mg/L mg/L mg/L mg/L mg/L	10		06-MAR-1 06-MAR-1 03-MAR-1 03-MAR-1 03-MAR-1 06-MAR-1 03-MAR-1 07-MAR-1
<0.34 392 23.5 1140 609 <0.010 <0.010 <0.0020 277 779 226 7.36		mg/L mg/L umhos/cm mg/L mg/L mg/L mg/L mg/L mg/L	10		06-MAR-1 03-MAR-1 03-MAR-1 03-MAR-1 06-MAR-1 03-MAR-1 07-MAR-1
392 23.5 1140 609 <0.010 <0.010 <0.0020 277 779 226 7.36		mg/L mg/L umhos/cm mg/L mg/L mg/L mg/L mg/L	10		03-MAR-1 03-MAR-1 03-MAR-1 06-MAR-1 03-MAR-1 07-MAR-1
23.5 1140 609 <0.010 <0.0020 277 779 226 7.36		mg/L umhos/cm mg/L mg/L mg/L mg/L mg/L	10		03-MAR-1 03-MAR-1 06-MAR-1 03-MAR-1 07-MAR-1
1140 609 <0.010 <0.010 2000 277 779 226 7.36		umhos/cm mg/L mg/L mg/L mg/L mg/L	10		03-MAR-1 06-MAR-1 03-MAR-1 07-MAR-1
609 <0.010 <0.010 <0.0020 277 779 226 7.36		mg/L mg/L mg/L mg/L mg/L	10	500	06-MAR-1 03-MAR-1 07-MAR-1
<0.010 <0.010 <0.0020 277 779 226 7.36		mg/L mg/L mg/L mg/L mg/L	10	500	03-MAR-1 07-MAR-1
<0.010 <0.0020 277 779 226 7.36		mg/L mg/L mg/L mg/L	10		07-MAR-1
<0.0020 277 779 226 7.36	DLM	mg/L mg/L mg/L	-		
277 779 226 7.36	DLM	mg/L mg/L	1		03-MAR-
779 226 7.36		mg/L			
226 7.36	1	U U		500	03-MAR-
7.36		-		500	06-MAR-
		NTU			03-MAR-
-1		pH units			03-MAR-
~1					
		MPN/100mL	0		02-MAR-
<1		MPN/100mL	0		02-MAR-
102		%			07-MAR-
1.0 14.3		%			07-MAR-
14.3 14.6		me/L me/L			07-MAR- 07-MAR-
					-
98.4		mg/L			03-MAR-
88.1		mg/L			03-MAR-
4.81		ma/l			03-MAR-
52.4		U U		200	03-MAR-
	88.1 4.81	88.1 4.81	88.1 mg/L 4.81 mg/L	88.1 mg/L 4.81 mg/L	88.1 mg/L 4.81 mg/L
	4.81	4.81	4.81 mg/L	4.81 mg/L	4.81 mg/L

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 07-MAR-17

 PO No.:
 MI FLOODWAY

 WO No.:
 L1896850

 Project Ref:
 16-0300-002.1000.01

 Sample ID:
 K09-12012

 Sampled By:
 ADS/DL

 Date Collected:
 02-MAR-17

 Lab Sample ID:
 L1896850-2

 Matrix:
 GW

PAGE 4 of 7

			Units of	CDWQG	Aesthetic	Date
Test Description	Result	Qualifier	Measure	MAC	Objective	Analyzed
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWC 	guidelines on cor ater Quality	ventional treatn	nent and slow sand	N.D. = less than det t or diatomaceous e	ection limit. arth filtration plea	se see
Approved by Hua Wo						
Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 07-MAR-17

 PO No.:
 MI FLOODWAY

 WO No.:
 L1896850

 Project Ref:
 16-0300-002.1000.01

 Sample ID:
 K11-12015

 Sampled By:
 ADS/DL

 Date Collected:
 02-MAR-17

 Lab Sample ID:
 L1896850-3

 Matrix:
 GW

PAGE 5 of 7

	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyze
Bicarbonate (HCO3)	326		mg/L			06-MAR-
Carbonate (CO3)	<0.60		mg/L			06-MAR-
Hydroxide (OH)	<0.34		mg/L			06-MAR
Alkalinity, Total (as CaCO3)	267		mg/L			03-MAR
Chloride (Cl)	14.6		mg/L		250	03-MAR
Conductivity	614		umhos/cm			03-MAR
Hardness (as CaCO	3) 349		mg/L		500	06-MAR
*Nitrate (as N)	0.0486		mg/L	10		03-MAR
*Nitrate and Nitrite as	N 0.0486		mg/L	10		07-MAR-
*Nitrite (as N)	<0.0010		mg/L	1		03-MAR
Sulfate (SO4)	58.3		mg/L		500	03-MAR
TDS (Calculated)	355		mg/L		500	06-MAR
*Turbidity	0.22		NTU			03-MAR
рН	7.64		pH units			03-MAR
Total Coliform and E.coli by MPN QT	97					
Total Coliforms	<1		MPN/100mL	0		02-MAR
Escherichia Coli	<1		MPN/100mL	0		02-MAR
on Balance Calculation						
Ion Balance	106		%			07-MAR
Cation - Anion Balan Anion Sum	ce 2.7 6.97		% me/L			07-MAR 07-MAR
Cation Sum	7.36		me/L			07-MAR
Dissolved Metals by ICP-MS						
Calcium (Ca)-Dissol	ved 68.8		mg/L			03-MAR
Magnesium (Mg)-	43.0		mg/L			03-MAR
Dissolved	h					
Potassium (K)-Disso	lved 4.16		mg/L			03-MAR

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 07-MAR-17

 PO No.:
 MI FLOODWAY

 WO No.:
 L1896850

 Project Ref:
 16-0300-002.1000.01

 Sample ID:
 K11-12015

 Sampled By:
 ADS/DL

 Date Collected:
 02-MAR-17

 Lab Sample ID:
 L1896850-3

 Matrix:
 GW

PAGE 6 of 7

delines on con Quality	itrate then the lir ventional treatm	Measure nit is 10mg/L < or ent and slow sand	MAC N.D. = less than det I or diatomaceous e	Objective ection limit.	Analyzed
f present as Ni delines on con Quality	itrate then the lir ventional treatm	nit is 10mg/L < or ent and slow sand	N.D. = less than det l or diatomaceous e	ection limit.	
	esthetic Objecti	ve.		aran mu'anon piea	se see

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Guidelines & Objectives

Sample Parameter Qualifier key listed:

Qualifier	Description							
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).							
Health Canada	MAC Health Related Criteria Limits							
Nitrate/Nitrite-N*								
Lead*	A cumulative body poison, uncommon in naturally occurring hard waters.							
Fluoride*	Present in fluoridated water supplies at 0.8 mg/L to reduce dental caries. Elevated levels causes fluorosis (mottling of teeth).							
Total Coliforms*	Criteria is 0 CFU/100mL. Adverse health effects.							
E. Coli*	Criteria is 0 CFU/100 mL. Certain E. Coli bacteria can be life threatening.							

*Health Canada Canadian Drinking Water Quality Guidelines (MAC limit)

Aesthetic Objective Concentration Levels

Aesilielic Objective Colic	
Alkalinity	Acid neutralizing capacity. Usually a measure of carbonate and bicarbonates and calculated and reported as calcium carbonate.
Balance	Quality control parameter ratioing cations to anions
Bicarbonate	See Alkalinity. Report as the anion HCO3-1
Carbonate	See Alkalinity. Reported at the anion CO3-2
Calcium	See Hardness. Common major cation of water chemistry.
Chloride	Common major anion of water chemistry.
Conductance	Physical test measuring water salinity (dissolved ions or solids)
Hardness	Classical measure or capacity of water to precipitate soap (chiefly calcium and magnesium ions). Causes scaling tendency in water if carbonates/bicarbonates are present (if >200 mg/L). For drinking water purposes waters with results <200 mg/L are considered acceptable, results >200 mg/L are considered poor but can be tolerated. Results >500 mg/L are unacceptable.
Hydroxide	See alkalinity
Magnesium	See hardness. Common major cation of water chemistry. Elevated levels (>125 mg/L) may exert a cathartic or diuretic action.
рН	Measure of water acidity/alkalinity. Normal range is 7.0-8.5.
Potassium	Common major cation of water chemistry.
Sodium	Common major cation of water chemistry. Measure of salinity (saltiness). The aesthetic objective (not related to health) for sodium in drinking water is 200 mg/L. However, where sodium concentration of the drinking water exceeds 20 mg/L, it is recommended that any person on a sodium restricted diet consult with his/her physician or Medical Officer of Health concerning the use of that water.
Sulphate	Common major anion of water chemistry. Elevated levels may exert a cathartic or diuretic action.
Total Dissolved Solids	A measure of water salinity.
Iron	Causes staining to laundry and porcelain and astringent taste. Oxidizes to red-brown precipitate on exposure to air.
Manganese Heterotrophic	Elevated levels may cause staining of laundry and porcelain.
Plate Count	Criteria is 500 cfu/mL Measure of heterotrophic bacteria present.

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			-	.,				
		Workorder	: L189685	0	Report Date: 07	-MAR-17	Pa	ige 1 of
865 V Winn	Group Consultant Vaverly Street - 3r ipeg MB R3T 5P	rd Floor 4						
Contact: Marci	Friedman Hamm							
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
LK-TITR-WP	Water							
Batch R36681								
WG2489325-4 LC Alkalinity, Total (as C	-		104.0		%		85-115	03-MAR-17
WG2489325-1 ME								
Alkalinity, Total (as C	CaCO3)		<1.0		mg/L		1	03-MAR-17
L-IC-N-WP	Water							
Batch R36690								
WG2488595-2 LC Chloride (Cl)	S		101.0		%		90-110	03-MAR-17
WG2488595-1 ME	8		101.0		,0		30-110	03-101413-17
Chloride (Cl)			<0.50		mg/L		0.5	03-MAR-17
C-WP	Water							
Batch R36681	96							
WG2489325-3 LC Conductivity	S		101.4		%		90-110	03-MAR-1
WG2489325-1 ME	3							
Conductivity			<1.0		umhos/cm		1	03-MAR-17
IET-D-MS-WP	Water							
Batch R36681	157							
WG2488763-2 LC Calcium (Ca)-Dissol	-		101.3		%		80-120	
Magnesium (Mg)-Dis			101.5		%		80-120	03-MAR-17 03-MAR-17
Potassium (K)-Disso			103.0		%		80-120	03-MAR-17
Sodium (Na)-Dissolv			106.1		%		80-120	03-MAR-17
WG2488763-1 ME							00 120	00 10/11
Calcium (Ca)-Dissol			<0.20		mg/L		0.2	03-MAR-17
Magnesium (Mg)-Dis	ssolved		<0.050		mg/L		0.05	03-MAR-17
Potassium (K)-Disso	lved		<0.10		mg/L		0.1	03-MAR-17
Sodium (Na)-Dissolv	ved		<0.050		mg/L		0.05	03-MAR-17
02-L-IC-N-WP	Water							
Batch R36690)31							
WG2488595-2 LC Nitrite (as N)	S		99.8		%		90-110	03-MAR-17
WG2488595-1 ME Nitrite (as N)	3		<0.0010		mg/L		0.001	03-MAR-17
	Water				č			

NO3-L-IC-N-WP

Water

		Workorder:	L189685	0 R	eport Date: 07-	MAR-17	Ра	ge 2 of 4
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO3-L-IC-N-WP	Water							
Batch R3669	031							
WG2488595-2 LO Nitrate (as N)	CS		102.1		%		90-110	03-MAR-17
WG2488595-1 M Nitrate (as N)	В		<0.0050		mg/L		0.005	03-MAR-17
PH-WP	Water							
Batch R3668	196							
WG2489325-2 L 0 рН	cs		7.41		pH units		7.3-7.5	03-MAR-17
SO4-IC-N-WP	Water							
Batch R3669	031							
WG2488595-2 LO Sulfate (SO4)	CS		101.7		%		90-110	03-MAR-17
WG2488595-1 M Sulfate (SO4)	В		<0.30		mg/L		0.3	03-MAR-17
TC,EC-QT97-WP	Water							
Batch R3667	047							
	UP	L1896850-1						
Total Coliforms		<1	<1	RPD-NA	MPN/100mL	N/A	65	02-MAR-17
Escherichia Coli		<1	<1	RPD-NA	MPN/100mL	N/A	65	02-MAR-17
WG2488106-1 M Total Coliforms	В		<1		MPN/100mL		1	00 MAD 47
Escherichia Coli			<1		MPN/100mL			02-MAR-17
			<1		MPN/100mL		1	02-MAR-17
TURBIDITY-WP	Water							
Batch R3668								
WG2489372-2 LO Turbidity	CS		101.5		%		85-115	03-MAR-17
WG2489372-1 M Turbidity	В		<0.10		NTU		0.1	03-MAR-17

Workorder: L1896850

Report Date: 07-MAR-17

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1896850

Report Date: 07-MAR-17

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рН							
	1	02-MAR-17 12:40	03-MAR-17 11:43	0.25	23	hours	EHTR-FM
	2	02-MAR-17 14:30	03-MAR-17 11:43	0.25	21	hours	EHTR-FM
	3	02-MAR-17 16:00	03-MAR-17 11:43	0.25	20	hours	EHTR-FM

Legend & Qualifier Definitions:

EHTR-FM:	Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR:	Exceeded ALS recommended hold time prior to sample receipt.
EHTL:	Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT:	Exceeded ALS recommended hold time prior to analysis.
Rec. HT:	ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1896850 were received on 02-MAR-17 16:40.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

10-231789

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

L1896850

Page <u>|</u> of <u>/</u>___

Report To	ort To Report Format / Distribution					e Reque	= st:(Ruchie	uhiect.to a	vailabilit	v - C <u>ont</u> a	ct ALS to	confirm T/	AT)		
Company: KGS Grum	Standard:	Other (sp	ecify):		~	Regular	st III							•	$\overline{)}$
Contact: Marci Friedman-Hamm	Select: Pl		Digital	Fax		Priority(2	4 11	1.414		i tigi ti			(IX I)		Ĩ
Contact: Marci Friedman-Hamm Address: 865 Waveley St3 Klour	Email 1:	Melvin @Kasgron	p. com, PLine	Makasarana		Emerger	∦					H(J# [Ī
Himmpy, MB R3T SPY Phone: Fax:	185 Waveley St3" floor Email 1: AMelvin@Kasgronp.cum, PLindl@Kasgronp. Imnpry, MS R3T Spy Email 2: MFHzmm@Kasgronp.cum					Same Da	iy		L189	9685(D-COF	C			Ī
Phone: Fax:							<u> </u>								
Invoice To Same as Report ? (circle) Yes or No (if No, provide details)	Client / Pr	roject Information					(Ind	cate Fil	tered o	r Prese	rved, 1	/P)		·'ı'	/
Copy of Invoice with Report? (circle)	Job #:	16-0300-0			\square	\square	$\overline{\mathcal{A}}$			\sim		$\overline{\nabla}$	\square	\square	
Company:	PO/AFE:	MI Floodura	\sim		8										
Contact:		Fluodway	/		ĪŽ										
Address:					1 ನ	ž									ers
Phone: Fax:	Quote #:	Q55656			1 ပီ	-			1						taine
Lab Work Order # (lab use only)	ALS Contact:	ALS Judy Sampler AD/01			Cullu-	-9797-1									of Con
Sample Identification (This description will appear on the report)		Date (dd mmm yar)	Time (bh:mm)	Sample Type	KCS-Raunu-O-FJU-W	TC, Q									Number of Containers
		(dd-mmm-yy)		<u> </u>						,	\rightarrow	_	+-+	+	
×13-12321		02-MAR-17	•••	GW	X	X						_	—┨		3
K09 - 12012			14:30	GW	\times	$\left \right\rangle$									3
K11 -12015		~	16:00	64	X	\mathbf{X}									3
			_ · · ·								-				
													++		
		+			• •								++		
													\vdash		
·															
													<u>+</u> +		
			· · · ·						<u> </u>			<u> </u>	++		
· · · · · · · · · · · · · · · · · · ·								_					╉╼╾┥		
		ļ		<u> </u>									<u> </u>		
					1										
Special Instructions / Regulation with water	r or land use (CCI	ME- Freshwater Ac	quatic Life/BC C	SR-Commercial/A	B Tier	1-Nat	ural/ETC) / Haza	ardous	Detail	s		<u></u>		
GW samples not field filtered Metals bottles de han preservative															
	plete all portions	of this form may d	elav analysis.	Please fill in this fo	orm LE	GIBL	<u>. </u>								
		-						hite - re	eport o	ODV.					
By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified / ,7 SHIPMENT RELEASE (client use) SHIPMENT RECEPTION (lab use only)						Pays			-	_)N (lab	use only	v)		
	ceived by:	Date:	Time:	Temperature:	Verifi	ed by:		Date		_	Time:			rvation	s:
Released by: MMU Date: MR Time: Rel 205 3/12 / 6/0	Ba												Yes / I	No ?	
	<u></u>										_	IF			
REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFOR	RMATION		WHITE - LAB	ORATORY COPY	YËLL	OW - C	LIENT CO	DPY				GENF	F 18.01	Front	

 Date:
 08-MAR-17

 PO No.:
 FLOODWAY PREMELT

 WO No.:
 L1897170

 Project Ref:
 16-0300-002.1000.02

 Sample ID:
 K09-12316

 Sampled By:
 ACM/ADS

 Date Collected:
 03-MAR-17

 Lab Sample ID:
 L1897170-1

 Matrix:
 GW

PAGE 1 of 7

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissolved Floodway						
Bicarbonate (HCO3)	527		mg/L			06-MAR-17
Carbonate (CO3)	<0.60		mg/L			06-MAR-1
Hydroxide (OH)	<0.34		mg/L			06-MAR-1
*Nitrate and Nitrite as N	1.80		mg/L	10		07-MAR-1
рН						
pH	7.32		pH units			03-MAR-1
Turbidity						
*Turbidity	<0.10		NTU			03-MAR-1
TDS calculated						
TDS (Calculated)	539		mg/L		500	08-MAR-1
Sulfate in Water by IC		1				
Sulfate (SO4)	59.0		mg/L		500	03-MAR-1
Nitrite in Water by IC (Low Level)					000	
*Nitrite (as N)	<0.0010		mg/L	1		03-MAR-1
	<0.0010		IIIg/L	1		00 101/11/11
Nitrate in Water by IC (Low Level)	1.80			10		02 MAD 4
*Nitrate (as N)	1.60		mg/L	10		03-MAR-1
Ion Balance Calculation	100					
Ion Balance Cation - Anion Balance	106 3.0		%			08-MAR-1 08-MAR-1
Anion Sum	10.8		me/L			08-MAR-1
Cation Sum	11.5		me/L			08-MAR-1
Hardness Calculated						
Hardness (as CaCO3)	523		mg/L		500	08-MAR-1
Dissolved Metals by ICP-MS]				
Calcium (Ca)-Dissolved	77.8		mg/L			07-MAR-1
Magnesium (Mg)-	79.8		mg/L			07-MAR-1
Dissolved	4.60		_			07-MAR-1
Potassium (K)-Dissolved Sodium (Na)-Dissolved	21.3		mg/L		200	07-MAR-1
	21.0		mg/L		200	
Conductivity	000		upp k = = / = = /			
Conductivity	893		umhos/cm			03-MAR-1
Chloride in Water by IC						
Chloride (Cl)	29.5		mg/L		250	03-MAR-1
Alkalinity, Total (as CaCO3)						
Alkalinity, Total (as CaCO3)	432		mg/L			03-MAR-1
Total and E. coli to endpoint by QT97						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 08-MAR-17

 PO No.:
 FLOODWAY PREMELT

 WO No.:
 L1897170

 Project Ref:
 16-0300-002.1000.02

 Sample ID:
 K09-12316

 Sampled By:
 ACM/ADS

 Date Collected:
 03-MAR-17

 Lab Sample ID:
 L1897170-1

 Matrix:
 GW

PAGE 2 of 7

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total and E. coli to endpoint by QT97						
Total Coliforms	<1		MPN/100mL	0		03-MAR-17
Escherichia Coli	<1		MPN/100mL	0		03-MAR-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWG 	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration plea	ase see
Approved by Judy Dalmaijer Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 08-MAR-17

 PO No.:
 FLOODWAY PREMELT

 WO No.:
 L1897170

 Project Ref:
 16-0300-002.1000.02

 Sample ID:
 K11-12014

 Sampled By:
 ACM/ADS

 Date Collected:
 03-MAR-17

 Lab Sample ID:
 L1897170-2

 Matrix:
 GW

PAGE 3 of 7

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Disso	lved Floodway						
	Bicarbonate (HCO3)	391		mg/L			06-MAR-17
	Carbonate (CO3)	<0.60		mg/L			06-MAR-17
	Hydroxide (OH)	<0.34		mg/L			06-MAR-17
	*Nitrate and Nitrite as N	0.159		mg/L	10		07-MAR-17
рН							
-	рН	7.39		pH units			03-MAR-1
Turbidity							
	*Turbidity	0.71		NTU			03-MAR-1
TDS calculat	ted						
	TDS (Calculated)	413		mg/L		500	08-MAR-17
Sulfate in Wa	· · · ·			3			
	Sulfate (SO4)	67.6		mg/L		500	03-MAR-17
Nitrito in Wa	iter by IC (Low Level)	0.10					
Nume in wa	*Nitrite (as N)	<0.0010		mg/L	4		03-MAR-17
	()	<0.0010		iiig/L	1		00-101/41/-11
Nitrate in wa	ater by IC (Low Level)	0 150			10		02 MAR 1-
	*Nitrate (as N)	0.159		mg/L	10		03-MAR-17
Ion Balance		400					
	Ion Balance Cation - Anion Balance	102		% %			08-MAR-17
	Anion Sum	8.18		% me/L			08-MAR-1
	Cation Sum	8.36		me/L			08-MAR-17
Hardness Ca	alculated						
	Hardness (as CaCO3)	397		mg/L		500	08-MAR-17
Dissolved M	letals by ICP-MS			Ū			
Diccontra	Calcium (Ca)-Dissolved	80.3		mg/L			07-MAR-17
	Magnesium (Mg)-	47.7		mg/L			07-MAR-17
	Dissolved			_			
	Potassium (K)-Dissolved	4.44		mg/L		200	07-MAR-17
	Sodium (Na)-Dissolved	7.14		mg/L		200	
Conductivity		007		. ,			
	Conductivity	687		umhos/cm			03-MAR-17
Chloride in V	-						
	Chloride (Cl)	12.6		mg/L		250	03-MAR-17
Alkalinity, To	otal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	320		mg/L			03-MAR-17
Total and E.	coli to endpoint by QT97						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 08-MAR-17

 PO No.:
 FLOODWAY PREMELT

 WO No.:
 L1897170

 Project Ref:
 16-0300-002.1000.02

 Sample ID:
 K11-12014

 Sampled By:
 ACM/ADS

 Date Collected:
 03-MAR-17

 Lab Sample ID:
 L1897170-2

 Matrix:
 GW

PAGE 4 of 7

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total and E. coli to endpoint by QT97						
Total Coliforms	<1		MPN/100mL	0		03-MAR-17
Escherichia Coli	<1		MPN/100mL	0		03-MAR-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWC 	guidelines on cor ater Quality	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration ple	ase see
Approved by Judy Dalmaijer Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 08-MAR-17

 PO No.:
 FLOODWAY PREMELT

 WO No.:
 L1897170

 Project Ref:
 16-0300-002.1000.02

 Sample ID:
 MW100

 Sampled By:
 ACM/ADS

 Date Collected:
 03-MAR-17

 Lab Sample ID:
 L1897170-3

 Matrix:
 GW

PAGE 5 of 7

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Disso	lved Floodway						
	Bicarbonate (HCO3)	524		mg/L			06-MAR-1
	Carbonate (CO3)	<0.60		mg/L			06-MAR-1
	Hydroxide (OH)	<0.34		mg/L			06-MAR-1
	*Nitrate and Nitrite as N	1.81		mg/L	10		07-MAR-1
рН							
	рН	7.32		pH units			03-MAR-1
Turbidity							
	*Turbidity	0.11		NTU			03-MAR-1
TDS calculat	ted						
	TDS (Calculated)	537		mg/L		500	08-MAR-1
Sulfate in W	ater by IC						
	Sulfate (SO4)	58.8		mg/L		500	03-MAR-1
Nitrite in Wa	ter by IC (Low Level)						
	*Nitrite (as N)	<0.0010		mg/L	1		03-MAR-1
Nitrate in Wa	ater by IC (Low Level)						
	*Nitrate (as N)	1.81		mg/L	10		03-MAR-1
Ion Balance	Calculation						
	Ion Balance	106		%			08-MAR-1
	Cation - Anion Balance	3.0		%			08-MAR-1
	Anion Sum Cation Sum	10.8 11.4		me/L			08-MAR-1
		11.4		me/L			08-MAR-1
Hardness Ca	Hardness (as CaCO3)	521				500	08-MAR-1
<u>.</u>		521		mg/L		500	00-101/41
Dissolved M	letals by ICP-MS	77.8					07-MAR-1
	Calcium (Ca)-Dissolved Magnesium (Mg)-	79.3		mg/L mg/L			07-MAR-1
	Dissolved			iiig/L			
	Potassium (K)-Dissolved	4.49		mg/L			07-MAR-1
	Sodium (Na)-Dissolved	21.2		mg/L		200	07-MAR-1
Conductivity							
	Conductivity	900		umhos/cm			03-MAR-1
Chloride in V	-						
	Chloride (Cl)	29.5		mg/L		250	03-MAR-1
Alkalinity, To	otal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	430		mg/L			03-MAR-1
Total and E.	coli to endpoint by QT97						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

 Date:
 08-MAR-17

 PO No.:
 FLOODWAY PREMELT

 WO No.:
 L1897170

 Project Ref:
 16-0300-002.1000.02

 Sample ID:
 MW100

 Sampled By:
 ACM/ADS

 Date Collected:
 03-MAR-17

 Lab Sample ID:
 L1897170-3

 Matrix:
 GW

PAGE 6 of 7

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total and E. coli to endpoint by QT97						
Total Coliforms	<1		MPN/100mL	0		03-MAR-17
Escherichia Coli	<1		MPN/100mL	0		03-MAR-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQ 	guidelines on cor iter Quality	ventional treatn	ent and slow sand	N.D. = less than de d or diatomaceous e	tection limit. arth filtration plea	se see
Approved by Judy Dalmaijer Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

PAGE 7 of 7

Guidelines & Objectives

Health Canada MAC Health Related Criteria Limits

Nitrate/Nitrite-N*	Criteria limit is 10 mg/L (1.0 mg/L if present as all Nitrite-N). High concentrations may contribute to blue baby syndrome in infants.
Lead*	A cumulative body poison, uncommon in naturally occurring hard waters.
Fluoride*	Present in fluoridated water supplies at 0.8 mg/L to reduce dental caries. Elevated levels causes fluorosis (mottling of teeth).
Total Coliforms*	Criteria is 0 CFU/100mL. Adverse health effects.
E. Coli*	Criteria is 0 CFU/100 mL. Certain E. Coli bacteria can be life threatening.

*Health Canada Canadian Drinking Water Quality Guidelines (MAC limit)

Aesthetic Objective Concentration Levels

Alkalinity	Acid neutralizing capacity. Usually a measure of carbonate and bicarbonates and calculated and reported as calcium carbonate.
Balance	Quality control parameter ratioing cations to anions
Bicarbonate	See Alkalinity. Report as the anion HCO3-1
Carbonate	See Alkalinity. Reported at the anion CO3-2
Calcium	See Hardness. Common major cation of water chemistry.
Chloride	Common major anion of water chemistry.
Conductance	Physical test measuring water salinity (dissolved ions or solids)
Hardness	Classical measure or capacity of water to precipitate soap (chiefly calcium and magnesium ions). Causes scaling tendency in water if carbonates/bicarbonates are present (if >200 mg/L). For drinking water purposes waters with results <200 mg/L are considered acceptable, results >200 mg/L are considered poor but can be tolerated. Results >500 mg/L are unacceptable.
Hydroxide	See alkalinity
Magnesium	See hardness. Common major cation of water chemistry. Elevated levels (>125 mg/L) may exert a cathartic or diuretic action.
рН	Measure of water acidity/alkalinity. Normal range is 7.0-8.5.
Potassium	Common major cation of water chemistry.
Sodium	Common major cation of water chemistry. Measure of salinity (saltiness). The aesthetic objective (not related to health) for sodium in drinking water is 200 mg/L. However, where sodium concentration of the drinking water exceeds 20 mg/L, it is recommended that any person on a sodium restricted diet consult with his/her physician or Medical Officer of Health concerning the use of that water.
Sulphate	Common major anion of water chemistry. Elevated levels may exert a cathartic or diuretic action.
Total Dissolved Solids	A measure of water salinity.
Iron Manganese	Causes staining to laundry and porcelain and astringent taste. Oxidizes to red-brown precipitate on exposure to air. Elevated levels may cause staining of laundry and porcelain.
Heterotrophic	
Plate Count	Criteria is 500 cfu/mL Measure of heterotrophic bacteria present.

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder	: L189717	0	Report Date: 08	-MAR-17	Pa	ige 1 of
865 Wa Winnipe	oup Consultant verly Street - 3 g MB R3T 5P	rd Floor 24						
Somaet.	riedman Hamm							
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
LK-TITR-WP	Water							
Batch R3668196	6							
WG2489325-9 LCS Alkalinity, Total (as Ca	CO3)		102.6		%		85-115	03-MAR-17
WG2489325-6 MB Alkalinity, Total (as Ca	CO3)		<1.0		mg/L		1	03-MAR-17
CL-IC-N-WP	Water							
Batch R366903	1							
WG2488595-6 LCS Chloride (Cl)			100.7		%		90-110	03-MAR-17
WG2488595-5 MB								
Chloride (Cl)			<0.50		mg/L		0.5	03-MAR-17
EC-WP	Water							
Batch R3668196	6							
WG2489325-8 LCS Conductivity			101.1		%		90-110	03-MAR-1
WG2489325-6 MB Conductivity			<1.0		umhos/cm		1	03-MAR-17
MET-D-MS-WP	Water							
Batch R3669328	3							
WG2490118-2 LCS	d		100.5		%		00.400	
Calcium (Ca)-Dissolve Magnesium (Mg)-Disso			100.5		%		80-120	07-MAR-17
Potassium (K)-Dissolv			100.0		%		80-120 80-120	07-MAR-17 07-MAR-17
Sodium (Na)-Dissolved			104.6		%		80-120	07-MAR-17
WG2490118-1 MB	-		10.10		70		00-120	07-107-17
Calcium (Ca)-Dissolve	d		<0.20		mg/L		0.2	07-MAR-17
Magnesium (Mg)-Disso	olved		<0.050		mg/L		0.05	07-MAR-17
Potassium (K)-Dissolve	ed		<0.10		mg/L		0.1	07-MAR-17
Sodium (Na)-Dissolved	t		<0.050		mg/L		0.05	07-MAR-17
IO2-L-IC-N-WP	Water							
Batch R366903	1							
WG2488595-6 LCS Nitrite (as N)			100.0		%		90-110	03-MAR-1
WG2488595-5 MB Nitrite (as N)			<0.0010		mg/L		0.001	03-MAR-17
	Water				-			

NO3-L-IC-N-WP

Water

		Workorder:	L189717	0 R	eport Date: 08-	MAR-17	Page 2 of 4		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
NO3-L-IC-N-WP	Water								
Batch R3669031									
WG2488595-6 LCS Nitrate (as N)			101.3		%		90-110	03-MAR-17	
WG2488595-5 MB Nitrate (as N)			<0.0050		mg/L		0.005	03-MAR-17	
PH-WP	Water								
Batch R3668196									
WG2489325-7 LCS рН			7.41		pH units		7.3-7.5	03-MAR-17	
SO4-IC-N-WP	Water								
Batch R3669031									
WG2488595-6 LCS Sulfate (SO4)			101.8		%		90-110	03-MAR-17	
WG2488595-5 MB Sulfate (SO4)			<0.30		mg/L		0.3	03-MAR-17	
TC,EC-QT97-ENDPT-WP	Water								
Batch R3668315 WG2488779-2 DUP		L1897170-1							
Total Coliforms		<1	<1	RPD-NA	MPN/100mL	N/A	65	03-MAR-17	
Escherichia Coli		<1	<1	RPD-NA	MPN/100mL	N/A	65	03-MAR-17	
WG2488779-1 MB Total Coliforms			<1		MPN/100mL		1	03-MAR-17	
Escherichia Coli			<1		MPN/100mL		1	03-MAR-17	
TURBIDITY-WP	Water							-	
Batch R3668273									
WG2489372-5 LCS Turbidity			102.0		%		85-115	03-MAR-17	
WG2489372-4 MB Turbidity			<0.10		NTU		0.1	03-MAR-17	

Workorder: L1897170

Report Date: 08-MAR-17

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1897170

Report Date: 08-MAR-17

Page 4 of 4

		Sample						
ALS Produc	t Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Te	sts							
pН								
		1	03-MAR-17 11:00	03-MAR-17 11:43	0.25	0.72	hours	EHTR-FM
Legend & Q	ualifier Definition	s:						
EHTR-FM: EHTR: EHTL: EHT: Rec. HT:	Exceeded ALS r Exceeded ALS r	ecommend ecommend ecommend	ed hold time prior to san ed hold time prior to san ed hold time prior to ana ed hold time prior to ana ne (see units)	nple receipt. alysis. Sample was rec				piry.

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1897170 were received on 03-MAR-17 14:20.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

		·							1	0- 2	317	'90		
ALS) Environmental		897170-COF		Form	r						Page	<u>(</u>		[
Report To				<u> </u>	1		t:(Rush subje				> confirm ⊺A	J)		
Company: KGS GROUP	Standard:	➤ Other (s		<u> </u>	<u>IX</u>		Standard Turn							
Contact: Marci fered Man Hamn Address: 365 Waverry Street 3th fbor wph				Fax	Į		4 Business D							
Address: \$65 wavery street 3th thor with	Email 1: /	HAMM@K	hs group 1C	0~	┣		y (1-2 Busine					afirm TAT		
MB V3TEP4	Email 2: 🖠	LINDRUL	Chi yront.	<u>un</u>	┢──	Same Day	y or Weekend		-		m IA1			
Phone: <u>).04 - 996 - 1209</u> Fax: <u>896 - 5754</u> Invoice To Same as Report ? (circle) Yes or No (if No, provide details)		MELUINOK		0~	┥		(] = =] = =		alysis R				<u> </u>	
Invoice To Same as Report ? (circle) 'res or No (if No, provide details) Copy of Invoice with Report? (circle) Yes or No		oject Information			<u> </u>	<u> </u>				eserved,	F/P)		->	
		-0300-002			K⊊	< +		<	4	+		\vdash	4	
Company: Contact: Accounts Pomorel	POTAFE:	flood way 1	<u>re Melt</u>		19									
Contact: Accounts Payaitle	LSD: A	roduce min	667		- 5	9								n
Phone: Fax:		n -101			-4	<u>3</u>							- Long	Ë
Lab Work Order # (lab use only)	ALS	<u>255656</u> Judy	Sampler: A(~	+ ADS	K65- Coula-2-10-7	tblo -							Number of Containers	
Sample # Sample Identification (This description will appear on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	K65-9	75, 82			-				Mumha	NUNUC
Kog- 12316		03-Mar-17	11:00	GTW	K	1							3	5
KII - 12014		1	12:00	Gw	X	X							3	
			13:00	1	4	×				+		\vdash	3	-
MW 100		11	10.00	Gw_	<u> </u>					+	<u> </u>	+-+		<u>`</u>
									_	+	<u> </u>	\vdash		
									_					
		1	·····							+ +				
					<u> · · ·</u>						<u> </u>	┢──┼╴	-+-	_
										<u> </u>	_	\vdash		
					<u> </u>			 -				┟──┼╴		
									•					_
Special Instructions / Regulation with water	r or land use (CCI	ME- Freshwater A	quatic Life/BC C	SR-Commercial/A	B Tier	1-Natu	ral/ETC) /	/ Hazard	lous Det	tails	·····	<u> </u>		
NOT F. Hursd Not prese	out							•						
Failure to comp By the use of this form the user acknow		-	-	Please fill in this f as specified on th				ite - repe	ort copy					
SHIPMENT RELEASE (client use)		IPMENT RECEPT			T	_					use only	()		
Released by Date: Time: Re	ceived by:	Date: 14:20	Time: 3-3-17	Temperature:		ied by:		Date:		Time:		Observ Yes / N		
REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFOR		<u> </u>			_	0.00		<u> </u>		<u> </u>			add SIF	
NETER TO BACK FAGE FOR ALS LOCATIONS AND SAMPLING INFOR	MATION		WHILE - LAB	ORATORY COPY	TELL	.099 - GL	JENT COP	ſŦ			GENF	= 18.01	Front	

KGS Group Consultants (Winnipeg) ATTN: MIKE SMITH 865 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 Date Received: 06-APR-17 Report Date: 17-APR-17 14:59 (MT) Version: FINAL

Client Phone: 204-896-1209

Certificate of Analysis

Lab Work Order #: L1910112 Project P.O. #: NOT SUBMIT

Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 16-0300-002

Hua Wo Chemistry Laboratory Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1910112-1 K09-12011							
Sampled By: ADS/RAP on 06-APR-17 @ 09:00							
Matrix: GW							
ROU1W Dissolved Floodway							
Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	294		1.2	mg/L		10-APR-17	
Alkalinity, Carbonate							
Carbonate (CO3)	<0.60		0.60	mg/L		10-APR-17	
Alkalinity, Hydroxide Hydroxide (OH)	<0.34		0.34	mg/L		10-APR-17	
Alkalinity, Total (as CaCO3)	0.01		0.01				
Alkalinity, Total (as CaCO3)	241		1.0	mg/L		07-APR-17	R3695945
Chloride in Water by IC							
Chloride (Cl)	7.12		0.50	mg/L		07-APR-17	R3701562
Conductivity	100		4.0				D0005045
Conductivity	463		1.0	umhos/cm		07-APR-17	R3695945
Dissolved Metals by ICP-MS Calcium (Ca)-Dissolved	48.1		0.20	mg/L	07-APR-17	07-APR-17	R3696515
Magnesium (Mg)-Dissolved	28.7		0.050	mg/L	07-APR-17	07-APR-17	R3696515
Potassium (K)-Dissolved	2.67		0.10	mg/L	07-APR-17	07-APR-17	R3696515
Sodium (Na)-Dissolved	8.67		0.050	mg/L	07-APR-17	07-APR-17	R3696515
Hardness Calculated				-			
Hardness (as CaCO3)	239		0.54	mg/L		11-APR-17	
Ion Balance Calculation							
Ion Balance	97.7			%		17-APR-17	
Cation - Anion Balance Anion Sum	-1.2			%		17-APR-17	
Cation Sum	5.33 5.21			me/L me/L		17-APR-17 17-APR-17	
Nitrate in Water by IC (Low Level)	5.21			IIIE/L			
Nitrate (as N)	<0.0050		0.0050	mg/L		07-APR-17	R3701562
Nitrate+Nitrite				5			
Nitrate and Nitrite as N	<0.0051		0.0051	mg/L		17-APR-17	
Nitrite in Water by IC (Low Level)							
Nitrite (as N)	0.0014		0.0010	mg/L		07-APR-17	R3701562
Sulfate in Water by IC Sulfate (SO4)	14.0		0.20	ma/l		07-APR-17	D2704562
TDS calculated	14.9		0.30	mg/L		07-APR-17	R3701562
TDS (Calculated)	255		5.0	mg/L		11-APR-17	
Turbidity							
Turbidity	1.13		0.10	NTU		07-APR-17	R3696292
pH							
рН	7.73		0.10	pH units		07-APR-17	R3695945
L1910112-2 K11-12017							
Sampled By: ADS/RAP on 06-APR-17 @ 10:00							
Matrix: GW							
ROU1W Dissolved Floodway							
Alkalinity, Bicarbonate Bicarbonate (HCO3)	320		1.2	mg/L		10-APR-17	
Alkalinity, Carbonate	020		1.2	g/ L			
Carbonate (CO3)	<0.60		0.60	mg/L		10-APR-17	
Alkalinity, Hydroxide				-			
Hydroxide (OH)	<0.34		0.34	mg/L		10-APR-17	
Alkalinity, Total (as CaCO3)				P		07 400 4-	Deesse
Alkalinity, Total (as CaCO3)	262		1.0	mg/L		07-APR-17	R3695945
Chloride in Water by IC							

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1910112-2 K11-12017							
Sampled By: ADS/RAP on 06-APR-17 @ 10:00							
Matrix: GW							
Chloride in Water by IC							
Chloride (Cl)	20.0		0.50	mg/L		07-APR-17	R3701562
Conductivity							
Conductivity	970		1.0	umhos/cm		07-APR-17	R3695945
Dissolved Metals by ICP-MS Calcium (Ca)-Dissolved	82.6		0.00	mg/L	07-APR-17	07-APR-17	DOCOCEAE
Magnesium (Mg)-Dissolved	65.5		0.20 0.050	mg/L	07-APR-17 07-APR-17	07-APR-17 07-APR-17	R3696515 R3696515
Potassium (K)-Dissolved	3.86		0.10	mg/L	07-APR-17	07-APR-17	R3696515
Sodium (Na)-Dissolved	45.0		0.050	mg/L	07-APR-17	07-APR-17	R3696515
Hardness Calculated							
Hardness (as CaCO3)	476		0.54	mg/L		11-APR-17	
Ion Balance Calculation						/- · - · -	
lon Balance Cation - Anion Balance	104			%		17-APR-17	
Cation - Anion Balance Anion Sum	2.0 11.1			% me/L		17-APR-17 17-APR-17	
Cation Sum	11.1			me/L		17-APR-17 17-APR-17	
Nitrate in Water by IC (Low Level)							
Nitrate (as N)	<0.0050		0.0050	mg/L		07-APR-17	R3701562
Nitrate+Nitrite							
Nitrate and Nitrite as N	<0.0051		0.0051	mg/L		17-APR-17	
Nitrite in Water by IC (Low Level) Nitrite (as N)	<0.0010		0.0010	mg/L		07-APR-17	R3701562
Sulfate in Water by IC							
Sulfate (SO4)	255		0.30	mg/L		07-APR-17	R3701562
TDS calculated	000		5.0				
TDS (Calculated)	630		5.0	mg/L		11-APR-17	
Turbidity Turbidity	2.55		0.10	NTU		07-APR-17	R3696292
рН				_		-	
рН	7.56		0.10	pH units		07-APR-17	R3695945
L1910112-3 K11-12016							
Sampled By: ADS/RAP on 06-APR-17 @ 11:30							
Matrix: GW							
ROU1W Dissolved Floodway							
Alkalinity, Bicarbonate Bicarbonate (HCO3)	366		1.2	mg/L		10-APR-17	
Alkalinity, Carbonate			1.2				
Carbonate (CO3)	<0.60		0.60	mg/L		10-APR-17	
Alkalinity, Hydroxide							
Hydroxide (OH)	<0.34		0.34	mg/L		10-APR-17	
Alkalinity, Total (as CaCO3)			4.0	ma = //			D0005045
Alkalinity, Total (as CaCO3)	300		1.0	mg/L		07-APR-17	R3695945
Chloride in Water by IC Chloride (Cl)	14.6		0.50	mg/L		07-APR-17	R3701562
Conductivity				5			
Conductivity	1010		1.0	umhos/cm		07-APR-17	R3695945
Dissolved Metals by ICP-MS							
Calcium (Ca)-Dissolved	92.7		0.20	mg/L	07-APR-17	07-APR-17	R3696515
Magnesium (Mg)-Dissolved	70.5		0.050	mg/L	07-APR-17	07-APR-17	R3696515
Potassium (K)-Dissolved Sodium (Na)-Dissolved	4.45 37.5		0.10 0.050	mg/L mg/L	07-APR-17 07-APR-17	07-APR-17 07-APR-17	R3696515 R3696515
Hardness Calculated	37.5		0.050	iiig/L		UI-AF K-11	12080212

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1910112-3 K11-12016							
Sampled By: ADS/RAP on 06-APR-17 @ 11:30							
Matrix: GW							
Hardness Calculated							
Hardness (as CaCO3)	522		0.54	mg/L		11-APR-17	
Ion Balance Calculation							
Ion Balance	104			%		17-APR-17	
Cation - Anion Balance	2.0			%		17-APR-17	
Anion Sum	11.7			me/L		17-APR-17	
Cation Sum	12.2			me/L		17-APR-17	
Nitrate in Water by IC (Low Level) Nitrate (as N)	<0.0050		0.0050	mg/L		07-APR-17	R3701562
Nitrate+Nitrite	<0.0000		0.0000			01 / 11 / 11	100701002
Nitrate and Nitrite as N	<0.0051		0.0051	mg/L		17-APR-17	
Nitrite in Water by IC (Low Level)							
Nitrite (as N)	<0.0010		0.0010	mg/L		07-APR-17	R3701562
Sulfate in Water by IC							
Sulfate (SO4)	254		0.30	mg/L		07-APR-17	R3701562
TDS calculated TDS (Calculated)	654		5.0	mg/L		11-APR-17	
Turbidity	034		5.0	Ing/L		1 1-74F 14•17	
Turbidity	0.33		0.10	NTU		07-APR-17	R3696292
рН							
рН	7.50		0.10	pH units		07-APR-17	R3695945
L1910112-4 K11-12014							
Sampled By: ADS/RAP on 06-APR-17 @ 12:45							
Matrix: GW							
ROU1W Dissolved Floodway							
Alkalinity, Bicarbonate	054		4.0				
Bicarbonate (HCO3) Alkalinity, Carbonate	254		1.2	mg/L		10-APR-17	
Carbonate (CO3)	<0.60		0.60	mg/L		10-APR-17	
Alkalinity, Hydroxide			0.00				
Hydroxide (OH)	<0.34		0.34	mg/L		10-APR-17	
Alkalinity, Total (as CaCO3)							
Alkalinity, Total (as CaCO3)	208		1.0	mg/L		07-APR-17	R3695945
Chloride in Water by IC	4.7		0.50				D0704500
Chloride (Cl)	11.7		0.50	mg/L		07-APR-17	R3701562
Conductivity Conductivity	531		1.0	umhos/cm		07-APR-17	R3695945
Dissolved Metals by ICP-MS							
Calcium (Ca)-Dissolved	52.7		0.20	mg/L	07-APR-17	07-APR-17	R3696515
Magnesium (Mg)-Dissolved	33.4		0.050	mg/L	07-APR-17	07-APR-17	R3696515
Potassium (K)-Dissolved	4.35		0.10	mg/L	07-APR-17	07-APR-17	R3696515
Sodium (Na)-Dissolved	9.19		0.050	mg/L	07-APR-17	07-APR-17	R3696515
Hardness Calculated Hardness (as CaCO3)	260		0 5 4	mc/l		11-APR-17	
Ion Balance Calculation	269		0.54	mg/L		11-AFK-17	
Ion Balance	100			%		17-APR-17	
Cation - Anion Balance	0.2			%		17-APR-17	
Anion Sum	5.87			me/L		17-APR-17	
Cation Sum	5.89			me/L		17-APR-17	
Nitrate in Water by IC (Low Level)							
Nitrate (as N)	0.372		0.0050	mg/L		07-APR-17	R3701562
Nitrate+Nitrite							

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1910112-4 K11-12014							
Sampled By: ADS/RAP on 06-APR-17 @ 12:45							
Matrix: GW							
Nitrate+Nitrite							
Nitrate and Nitrite as N	0.372		0.0051	mg/L		17-APR-17	
Nitrite in Water by IC (Low Level)				3			
Nitrite (as N)	<0.0010		0.0010	mg/L		07-APR-17	R3701562
Sulfate in Water by IC							
Sulfate (SO4)	64.7		0.30	mg/L		07-APR-17	R3701562
TDS calculated							
TDS (Calculated)	301		5.0	mg/L		11-APR-17	
Turbidity Turbidity	2.35		0.10	NTU		07-APR-17	R3696292
pH	2.35		0.10	NIO		07-AI 10-17	13090292
рН	7.73		0.10	pH units		07-APR-17	R3695945
•							
Total Coliform and E.coli by MPN QT97							
Total Coliforms	17		1	MPN/100mL		06-APR-17	R3695036
Escherichia Coli	1		1	MPN/100mL		06-APR-17	R3695036
L1910112-5 K11-12015							
Sampled By: ADS/RAP on 06-APR-17 @ 13:45							
Matrix: GW							
ROU1W Dissolved Floodway							
Alkalinity, Bicarbonate							
Bicarbonate (HCO3)	233		1.2	mg/L		10-APR-17	
Alkalinity, Carbonate Carbonate (CO3)	<0.60		0.60	mg/L		10-APR-17	
Alkalinity, Hydroxide	<0.00		0.00	ing/∟			
Hydroxide (OH)	<0.34		0.34	mg/L		10-APR-17	
Alkalinity, Total (as CaCO3)				5			
Alkalinity, Total (as CaCO3)	191		1.0	mg/L		07-APR-17	R3695945
Chloride in Water by IC							
Chloride (Cl)	12.6		0.50	mg/L		07-APR-17	R3701562
Conductivity	400		4.0	umbaa/am			D0005045
Conductivity	489		1.0	umhos/cm		07-APR-17	R3695945
Dissolved Metals by ICP-MS Calcium (Ca)-Dissolved	49.3		0.20	mg/L	07-APR-17	07-APR-17	R3696515
Magnesium (Mg)-Dissolved	30.5		0.050	mg/L	07-APR-17	07-APR-17	R3696515
Potassium (K)-Dissolved	3.96		0.10	mg/L	07-APR-17	07-APR-17	R3696515
Sodium (Na)-Dissolved	9.14		0.050	mg/L	07-APR-17	07-APR-17	R3696515
Hardness Calculated							
Hardness (as CaCO3)	249		0.54	mg/L		11-APR-17	
Ion Balance Calculation	100						
Ion Balance Cation - Anion Balance	102			%		17-APR-17 17-APR-17	
Anion Sum	5.36			% me/L		17-APR-17 17-APR-17	
Cation Sum	5.47			me/L		17-APR-17	
Nitrate in Water by IC (Low Level)							
Nitrate (as N)	0.474		0.0050	mg/L		07-APR-17	R3701562
Nitrate+Nitrite							
Nitrate and Nitrite as N	0.474		0.0051	mg/L		17-APR-17	
Nitrite in Water by IC (Low Level)						07 400 4-	D070/700
Nitrite (as N)	<0.0010		0.0010	mg/L		07-APR-17	R3701562
Sulfate in Water by IC Sulfate (SO4)	55.4		0.30	mg/L		07-APR-17	R3701562
TDS calculated	55.4		0.50	iiig/L			13701302

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1910112-5 K11-12015							
Sampled By: ADS/RAP on 06-APR-17 @ 13:45							
Matrix: GW							
TDS calculated							
TDS (Calculated)	276		5.0	mg/L		11-APR-17	
Turbidity							
Turbidity	1.44		0.10	NTU		07-APR-17	R3696292
рН рН	7.79		0.10	pH units		07-APR-17	R3695945
pii	1.15		0.10	priums		07-4110-17	13093943
Total Coliform and E.coli by MPN QT97							
Total Coliforms	12		1	MPN/100mL		06-APR-17	R3695036
Escherichia Coli	2		1	MPN/100mL		06-APR-17	R3695036
L1910112-6 K13-12322							
Sampled By: ADS/RAP on 06-APR-17 @ 14:45							
Matrix: GW							
ROU1W Dissolved Floodway							
Alkalinity, Bicarbonate Bicarbonate (HCO3)	322		1.2	mg/L		10-APR-17	
Alkalinity, Carbonate							
Carbonate (CO3)	<0.60		0.60	mg/L		10-APR-17	
Alkalinity, Hydroxide							
Hydroxide (OH)	<0.34		0.34	mg/L		10-APR-17	
Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3)	264		1.0	mg/L		07-APR-17	R3695945
Chloride in Water by IC	204		1.0	iiig/L		07-4110-17	13093943
Chloride (Cl)	16.1		0.50	mg/L		07-APR-17	R3701562
Conductivity							
Conductivity	796		1.0	umhos/cm		07-APR-17	R3695945
Dissolved Metals by ICP-MS Calcium (Ca)-Dissolved	68.5		0.20	mg/L	07-APR-17	07-APR-17	R3696515
Magnesium (Mg)-Dissolved	55.7		0.20	mg/L	07-APR-17	07-APR-17	R3696515
Potassium (K)-Dissolved	3.79		0.10	mg/L	07-APR-17	07-APR-17	R3696515
Sodium (Na)-Dissolved	27.8		0.050	mg/L	07-APR-17	07-APR-17	R3696515
Hardness Calculated							
Hardness (as CaCO3)	400		0.54	mg/L		11-APR-17	
Ion Balance Calculation Ion Balance	102			%		17-APR-17	
Cation - Anion Balance	1.1			%		17-APR-17	
Anion Sum	9.10			me/L		17-APR-17	
Cation Sum	9.31			me/L		17-APR-17	
Nitrate in Water by IC (Low Level)							
Nitrate (as N)	<0.0050		0.0050	mg/L		07-APR-17	R3701562
Nitrate+Nitrite Nitrate and Nitrite as N	<0.0051		0.0051	mg/L		17-APR-17	
Nitrite in Water by IC (Low Level)			0.0001	g, L			
Nitrite (as N)	<0.0010		0.0010	mg/L		07-APR-17	R3701562
Sulfate in Water by IC			_				
Sulfate (SO4)	162		0.30	mg/L		07-APR-17	R3701562
TDS calculated TDS (Calculated)	492		5.0	mg/L		11-APR-17	
Turbidity			0.0	ing/L		1 1 7 U IX-17	
Turbidity	0.75		0.10	NTU		07-APR-17	R3696292
pH							
рН	7.62		0.10	pH units		07-APR-17	R3695945

Sample Details	s/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1910112-6 Sampled By: Matrix:	K13-12322 ADS/RAP on 06-APR-17 @ 14:45 GW							

Reference Information

LS Test Code	Matrix	Test Description	Method Reference**
LK-CO3CO3-CALC-WP	Water	Alkalinity, Carbonate	CALCULATION
		its acid neutralizing capacity.Alkalinity is impair carbonate is calculated and reported as mg (arted by bicarbonate, carbonate and hydroxide components of wate CO3 2-/L.
NLK-HCO3HCO3-CALC- VP	Water	Alkalinity, Bicarbonate	CALCULATION
		its acid neutralizing capacity.Alkalinity is impair bicarbonate is calculated and reported as more	arted by bicarbonate, carbonate and hydroxide components of wate HCO3-/L
LK-OHOH-CALC-WP	Water	Alkalinity, Hydroxide	CALCULATION
		its acid neutralizing capacity.Alkalinity is impart hydroxide is calculated and reported as mg C	arted by bicarbonate, carbonate and hydroxide components of wate DH-/L.
LK-TITR-WP	Water	Alkalinity, Total (as CaCO3)	APHA 2320B
			arted by bicarbonate, carbonate and hydroxide components of the successive HCO3- and H2CO3 endpoints indicated
CL-IC-N-WP	Water	Chloride in Water by IC	EPA 300.1 (mod)
norganic anions are analy	zed by Ion C	Chromatography with conductivity and/or UV d	etection.
C-WP	Water	Conductivity	APHA 2510B
Conductivity of an aqueou and chemically inert electr		fers to its ability to carry an electric current. C	conductance of a solution is measured between two spatially fixed
TL-SOLIDS-CALC-WP	Water	TDS calculated	CALCULATION
IARDNESS-CALC-WP	Water	Hardness Calculated	APHA 2340B
		ess) is calculated from the sum of Calcium an incentrations are preferentially used for the ha	d Magnesium concentrations, expressed in CaCO3 equivalents. rdness calculation.
ONBALANCE-CALC-WP	Water	Ion Balance Calculation	APHA 1030E
			guidance from APHA Standard Methods (1030E Checking calculated ion balance (% difference of cations minus anions)
ncluded where data is pre	sent. Ion Ba		ns. Dissolved species are used where available. Minor ions are accurately for waters with very low electrical conductivity (EC), an ted as:
on Balance (%) = [Cation	Sum-Anion	Sum] / [Cation Sum+Anion Sum]	
IET-D-MS-WP	Water	Dissolved Metals by ICP-MS	APHA 3030B/EPA 6020A-D
his analysis involves filtra	ation (APHA	3030B) and analysis by inductively coupled p	asma - mass spectrometry (EPA Method 6020A).
IO2+NO3-CALC-L-WP	Water	Nitrate+Nitrite	CALCULATION
IO2-L-IC-N-WP	Water	Nitrite in Water by IC (Low Level)	EPA 300.1 (mod)
norganic anions are analy	zed by Ion C	Chromatography with conductivity and/or UV d	etection.
	Water	Nitrate in Water by IC (Low Level)	EPA 300.1 (mod)
IO3-L-IC-N-WP	zed by Ion C	Chromatography with conductivity and/or UV d	etection.
			APHA 4500H
norganic anions are analy	Water	рН	
norganic anions are analy PH-WP The pH of a sample is the		•	
PH-WP		•	tiometric measurement using a standard hydrogen electrode and EPA 300.1 (mod)
norganic anions are analy PH-WP The pH of a sample is the eference electrode. SO4-IC-N-WP	determinatio Water	on of the activity of the hydrogen ions by poter	tiometric measurement using a standard hydrogen electrode and EPA 300.1 (mod)

Reference Information

PAGE 9 of 9 Version: FINAL

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**

This analysis is carried out using procedures adapted from APHA Method 9223B "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The sample is mixed with a mixture of hydrolyzable substrates and then sealed in a 97-well packet. The packet is incubated at $35.0 - 0.5^{\circ}$ C for 18 or 24 hours and then the number of wells exhibiting positive responses are counted. The final results are obtained by comparing the number of positive responses to a probability table.

TURBIDITY-WP Water Turbidity

APHA 2130B (modified)

Turbidity in aqueous matrices is determined by the nephelometric method.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WP	ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder:	L191011	2	Report Date: 17	-APR-17	Pa	ige 1 of 5
	KGS Group Consultan 865 Waverly Street - 3 Winnipeg MB R3T 5F MIKE SMITH	rd Floor						
Contact. Fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
			hooun	quantor				, and jeou
ALK-TITR-WP	Water							
Batch R WG2507657-5 Alkalinity, Tota	-	L1910112-1 241	240		mg/L	0.2	20	07-APR-17
WG2507657-4 Alkalinity, Tota			106.3		%		85-115	07-APR-17
WG2507657-1 Alkalinity, Tota			<1.0		mg/L		1	07-APR-17
CL-IC-N-WP	Water							
Batch R WG2507551-3 Chloride (Cl)	23701562 DUP	L1910112-1 7.12	7.26		mg/L	1.8	20	07-APR-17
WG2507551-2 Chloride (Cl)	LCS		96.7		%		90-110	07-APR-17
WG2507551-1 Chloride (Cl)	МВ		<0.50		mg/L		0.5	07-APR-17
WG2507551-4 Chloride (Cl)	MS	L1910112-1	98.0		%		75-125	07-APR-17
EC-WP	Water							
Batch R WG2507657-5 Conductivity	23695945 DUP	L1910112-1 463	464		umhos/cm	0.2	10	07-APR-17
WG2507657-3 Conductivity	LCS		99.7		%		90-110	07-APR-17
WG2507657-1 Conductivity	МВ		<1.0		umhos/cm		1	07-APR-17
MET-D-MS-WP	Water							
	3696515							
WG2507468-2 Calcium (Ca)-I			102.1		%		80-120	07-APR-17
Magnesium (M			108.8		%		80-120	07-APR-17
Potassium (K)	-Dissolved		106.4		%		80-120	07-APR-17
Sodium (Na)-E	Dissolved		109.0		%		80-120	07-APR-17
WG2507468-1 Calcium (Ca)-l			<0.20		mg/L		0.2	07-APR-17
Magnesium (Mg)-Dissolved		<0.050		mg/L		0.05	07-APR-17	
Potassium (K)	-Dissolved		<0.10		mg/L		0.1	07-APR-17
Sodium (Na)-E	Dissolved		<0.050		mg/L		0.05	07-APR-17
NO2-L-IC-N-WP	Water							

			Workorder:	L191011	2 Re	• port Date: 1	7-APR-17	Pa	ge 2 of 5
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO2-L-IC-N-WP		Water							
Batch R3	3701562								
WG2507551-3 Nitrite (as N)	DUP		L1910112-1 0.0014	0.0011	J	mg/L	0.0003	0.002	07-APR-17
WG2507551-2 Nitrite (as N)	LCS			98.9		%		90-110	07-APR-17
WG2507551-1 Nitrite (as N)	MB			<0.0010		mg/L		0.001	07-APR-17
WG2507551-4 Nitrite (as N)	MS		L1910112-1	96.4		%		75-125	07-APR-17
NO3-L-IC-N-WP		Water							
	3701562								
WG2507551-3 Nitrate (as N)	DUP		L1910112-1 <0.0050	<0.0050	RPD-NA	mg/L	N/A	20	07-APR-17
WG2507551-2 Nitrate (as N)	LCS			99.2		%		90-110	07-APR-17
WG2507551-1 Nitrate (as N)	MB			<0.0050		mg/L		0.005	07-APR-17
WG2507551-4 Nitrate (as N)	MS		L1910112-1	98.7		%		75-125	07-APR-17
PH-WP		Water							
Batch R	3695945								
WG2507657-5 рН	DUP		L1910112-1 7.73	7.71	J	pH units	0.02	0.2	07-APR-17
WG2507657-2 рН	LCS			7.40		pH units		7.3-7.5	07-APR-17
SO4-IC-N-WP		Water							
Batch R3	3701562								
WG2507551-3 Sulfate (SO4)	DUP		L1910112-1 14.9	15.1		mg/L	1.4	20	07-APR-17
WG2507551-2 Sulfate (SO4)	LCS			99.7		%		90-110	07-APR-17
WG2507551-1 Sulfate (SO4)	MB			<0.30		mg/L		0.3	07-APR-17
WG2507551-4 Sulfate (SO4)	MS		L1910112-1	97.3		%		75-125	07-APR-17
TC,EC-QT97-WP		Water							

		Workorder: L1910112			eport Date: 17-	Pa	Page 3 of 5		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
TC,EC-QT97-WP	Water								
Batch R3695030 WG2507032-2 DUP Total Coliforms	5	L1910112-4 17	16		MPN/100mL	6.6	65	06-APR-17	
Escherichia Coli		1	<1	RPD-NA	MPN/100mL	N/A	65	06-APR-17	
WG2507032-1 MB Total Coliforms			<1		MPN/100mL		1	06-APR-17	
Escherichia Coli			<1		MPN/100mL		1	06-APR-17	
TURBIDITY-WP	Water								
Batch R3696292 WG2507688-2 LCS Turbidity	2		103.0		%		85-115	07-APR-17	
WG2507688-1 MB Turbidity			<0.10		NTU		0.1	07-APR-17	

Workorder: L1910112

Report Date: 17-APR-17

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1910112

Report Date: 17-APR-17

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рН							
	1	06-APR-17 09:00	07-APR-17 12:03	0.25	27	hours	EHTR-FM
	2	06-APR-17 10:00	07-APR-17 12:03	0.25	26	hours	EHTR-FM
	3	06-APR-17 11:30	07-APR-17 12:03	0.25	24	hours	EHTR-FM
	4	06-APR-17 12:45	07-APR-17 12:03	0.25	23	hours	EHTR-FM
	5	06-APR-17 13:45	07-APR-17 12:03	0.25	22	hours	EHTR-FM
	6	06-APR-17 14:45	07-APR-17 12:03	0.25	21	hours	EHTR-FM

Legend & Qualifier Definitions:

EHTR-FM: EHTR:	Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended. Exceeded ALS recommended hold time prior to sample receipt.
EHTL: EHT:	Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry. Exceeded ALS recommended hold time prior to analysis.
Rec. HT:	ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1910112 were received on 06-APR-17 16:10.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

10- 232026

Δ				Chain of Custody / Canada Toll F	Analytical Rec ree: 1 800 668	uest Form 9878	;	<u></u>	NI(1	(
ALS E	Environmer	ntal			alsglobal.com			$[\mathcal{Y}]$	51/0		P	'age	/0f	
Report To	mike	Smill	Repor	rt Format/Distributio	n		Service Be	quest:(Rush	cubiect to ava	ilability_ C <u>or</u>	tact ALS to co	onfirm TAT)		—––––
Company:	LG-S G-RA	NO	Standa	ard:Qther (s	pecify):		Regi	lar (Stande	i i sereni	Hereit vier eine				=
Contact:	MIKE S	MITH			Digital	Fax	Prior	ity(2-4 Bus	- II II HUUU	 		8 6 6 7 7 8 7	HI H HA	
Address: 🗸	65 WAVERI	EY ST, 3RD FLOUR	- Email	1: MSmiHCK	-> CAND, CO	٩	Eme	rgency (1-2		1886 (B. H.C.		A H i I II I		ł
	UNIDEG MB.	R3+5P4	Email	Email 2: MEHAMMEKES GAWD, (UM				e Day or V		L1910	112-CC	ΨС		-
Phone: D	4 '476-1009'	Fax: 704 896-1	0754 h	maiquALLE(MESGRAP	COM	4							
		le) Yes or No (if No, provide	details) Client	/ Project Information			7	<u>(In</u>	idicate Filter	ed or Pre	served, F/	۳ ٦		<u></u> /
<u></u> _,		eport? (circle) Yes of No	Job #:		<u> 107</u>						\angle		ΔZ]
	KGS GROUP		PO / A	FE:			9	04						
Contact: Br	LL MACQUARRI	<u>é</u>	LSD:					14		1				
Address: 56		51, BRD FLOOR, WA	in peg, MD	<u>_</u>				365						ers
Phone: ၇၇၀	1 896 - 1701	Fax: JUY 896- 6	7754 Quote	* のいのう										Itain
Lab Work Ore	der # (lab use only)		✤ ALS Conta	nct: GTAIG	Sampler:	tos/kap								r of Containers
Sample #	(7)	Sample Identification		Date	Time	Sample Type	۲°							Number
		is description will appear on th	е герога)	(dd-mmm-yy)	(hh:mm)								<u> </u>	
	n n	07-10011	•	A0416/17	1 1 1	GN								2
	L K	1-12017			1000			,						ð
	ĸ	11-12016			1130		I IX							2
	iχ.	11-12014			12 45		\mathbf{x}	171	··· • • • • • • • • • • • • • • • • • •					3
	$ \qquad \qquad$	11-12015	<u> </u>		1345	<u> </u>	$\frac{1}{\lambda}$	ᠵᡰ᠊ᢒᡰ				+		
	<u> </u>		•		1945	<u> </u>	-	$+ \rightarrow$	_			- -		3
	<u> </u>	13-12322		V	193	γ						+		Э
		•												
		······································					+ +	- -			· · · · · · · · · · · · · · · · · · ·	+ +		+
	·····											++	<u> </u>	
			· · · · · · · · ·					+						+
	Snecis	al Instructions / Regulation w	with water or land use	COME Erochwater A	guatia Life/BC (SP Commercial/A	B Tior 1 k	latural/E	[]	doue Dot	ule			┶┥
	: NOT EL	al mar decionar regulation a		CONE- Freshwatel A	•				/					
METAL	5 2001 14	ELD FILIDED INOT		<u> </u>					uk Si	Ampli	<u></u>			
	_		e to complete all portio											
		the use of this form the use	r acknowledges and a				e oack pa	-						
Released by		ASE (client use)	Received by:	SHIPMENT RECEPT	ION (lab use only Time:	/) Temperature:	Verified		HIPMENT V	ERIFICAT	ION (lab u Time:		Observatio	ons:
	Min	HPP-16/7	1610	AD-11 (17	0.0			<i>оу.</i>				Y	/es / No ? f Yes add	?
REI	FER TO BACK PAGE FOR	ALS LOCATIONS AND SAMPLI	NG INFORMATION VAN	dt.	WHITE - LAB	ORATORY COPY			COPY			GENF 1	18.01 Fron	ıt
							1	and and a second						

 Date:
 13-APR-17

 PO No.:
 L1909579

 WO No.:
 L1909579

 Project Ref:
 16-0300-002

 Sample ID:
 K13-12321

 Sampled By:
 AS/RAP

 Date Collected:
 05-APR-17

 Lab Sample ID:
 L1909579-1

 Matrix:
 GW

PAGE 1 of 11

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Disso	lved Floodway						
	Bicarbonate (HCO3)	542		mg/L			07-APR-17
	Carbonate (CO3)	<0.60		mg/L			07-APR-17
	Hydroxide (OH)	<0.34		mg/L			07-APR-1
	*Nitrate and Nitrite as N	2.89		mg/L	10		13-APR-17
рН							
	рН	7.57		pH units			06-APR-1
Turbidity							
	*Turbidity	0.33		NTU			06-APR-17
TDS calcula	ted						
	TDS (Calculated)	580		mg/L		500	11-APR-17
Sulfate in W	ater by IC						
	Sulfate (SO4)	75.6		mg/L		500	06-APR-1
Nitrite in Wa	ter by IC (Low Level)						
	*Nitrite (as N)	<0.0020	DLM	mg/L	1		06-APR-1
Nitrate in Wa	ater by IC (Low Level)						
	*Nitrate (as N)	2.89		mg/L	10		06-APR-17
Ion Balance	Calculation						
	Ion Balance	105		%			13-APR-1
	Cation - Anion Balance	2.3		%			13-APR-1
	Anion Sum Cation Sum	11.8 12.4		me/L			13-APR-1 13-APR-1
Useda ses C		12.4		me/L			IS-AFK-I
Hardness Ca	Hardness (as CaCO3)	552				500	11-APR-1
		552		mg/L		500	
Dissolved M	letals by ICP-MS	78.2					07-APR-1
	Calcium (Ca)-Dissolved Magnesium (Mg)-	86.6		mg/L mg/L			07-APR-1
	Dissolved			_			
	Potassium (K)-Dissolved	4.89		mg/L			07-APR-1
	Sodium (Na)-Dissolved	27.6		mg/L		200	07-APR-1
Conductivity							
	Conductivity	1030		umhos/cm			06-APR-1
Chloride in N	-						
	Chloride (Cl)	40.4		mg/L		250	06-APR-17
Alkalinity, To	otal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	445		mg/L			06-APR-1
Total Colifor	rm and E.coli by MPN QT97						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 13-APR-17

 PO No.:
 L1909579

 WO No.:
 L1909579

 Project Ref:
 16-0300-002

 Sample ID:
 K13-12321

 Sampled By:
 AS/RAP

 Date Collected:
 05-APR-17

 Lab Sample ID:
 L1909579-1

 Matrix:
 GW

PAGE 2 of 11

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97						
Total Coliforms	2		MPN/100mL	0	[05-APR-17
Escherichia Coli	<1		MPN/100mL	0		05-APR-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQ 	guidelines on cor iter Quality	ventional treatm	ent and slow san	N.D. = less than de d or diatomaceous e	tection limit. arth filtration plea	se see
Approved by Ulne						
Hua Wo						
Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 13-APR-17

 PO No.:
 L1909579

 WO No.:
 L1909579

 Project Ref:
 16-0300-002

 Sample ID:
 K09-12316

 Sampled By:
 AS/RAP

 Date Collected:
 05-APR-17

 Lab Sample ID:
 L1909579-2

 Matrix:
 GW

PAGE 3 of 11

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Disso	lved Floodway						
	Bicarbonate (HCO3)	393		mg/L			07-APR-17
	Carbonate (CO3)	<0.60		mg/L			07-APR-17
	Hydroxide (OH)	<0.34		mg/L			07-APR-17
	*Nitrate and Nitrite as N	0.832		mg/L	10		13-APR-17
рН							
	рН	7.72		pH units			06-APR-17
Turbidity							
-	*Turbidity	0.28		NTU			06-APR-17
TDS calculat	ted						
	TDS (Calculated)	456		mg/L		500	11-APR-17
Sulfate in Wa							
	Sulfate (SO4)	73.2		mg/L		500	06-APR-17
Nitrite in Wa	ter by IC (Low Level)			5			
	*Nitrite (as N)	<0.0020	DLM	mg/L	1		06-APR-17
Nitrate in Wa	ater by IC (Low Level)						
	*Nitrate (as N)	0.832		mg/L	10		06-APR-17
Ion Balance		0.002		ing/L	10		
Ion Balance	Ion Balance	104		%			13-APR-17
	Cation - Anion Balance	1.7		%			13-APR-17
	Anion Sum	9.00		me/L			13-APR-17
	Cation Sum	9.32		me/L			13-APR-17
Hardness Ca	alculated						
	Hardness (as CaCO3)	398		mg/L		500	11-APR-17
Dissolved M	etals by ICP-MS						
	Calcium (Ca)-Dissolved	64.3		mg/L			07-APR-17
	Magnesium (Mg)-	57.6		mg/L			07-APR-17
	Dissolved Potassium (K)-Dissolved	4.42		mg/L			07-APR-17
	Sodium (Na)-Dissolved	28.8		mg/L		200	07-APR-17
Conductivity							
Conductivity	Conductivity	804		umhos/cm			06-APR-17
Chloride in V	-						
	Chloride (Cl)	34.5		mg/L		250	06-APR-17
Alkalinity T		04.0		iiig/L		200	
Airaillity, 10	otal (as CaCO3) Alkalinity, Total (as	323		mg/L			06-APR-17
	CaCO3)	020		111g/L			
Total Colifor	rm and E.coli by MPN QT97						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 13-APR-17

 PO No.:
 L1909579

 WO No.:
 L1909579

 Project Ref:
 16-0300-002

 Sample ID:
 K09-12316

 Sampled By:
 AS/RAP

 Date Collected:
 05-APR-17

 Lab Sample ID:
 L1909579-2

 Matrix:
 GW

PAGE 4 of 11

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97						
Total Coliforms	2	1	MPN/100mL	0		05-APR-17
Escherichia Coli	1		MPN/100mL	0		05-APR-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQ 	guidelines on cor iter Quality	ventional treatm	ent and slow san	N.D. = less than de d or diatomaceous e	tection limit. arth filtration plea	se see
Approved by Mone						
Hua Wo						
Account Manager						
ADDDECC, 1220 Niekwe Deed Feet Unit				1		

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 13-APR-17

 PO No.:
 L1909579

 WO No.:
 L1909579

 Project Ref:
 16-0300-002

 Sample ID:
 U09-13571

 Sampled By:
 AS/RAP

 Date Collected:
 05-APR-17

 Lab Sample ID:
 L1909579-3

 Matrix:
 GW

PAGE 5 of 11

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissol	lved Floodway						
	Bicarbonate (HCO3)	431		mg/L			07-APR-17
	Carbonate (CO3)	<0.60		mg/L			07-APR-17
	Hydroxide (OH)	<0.34		mg/L			07-APR-17
	*Nitrate and Nitrite as N	1.03		mg/L	10		13-APR-17
рН							
•	рН	7.44		pH units			06-APR-17
Turbidity							
2	*Turbidity	0.50		NTU			06-APR-17
TDS calculate	ed						
	TDS (Calculated)	552		mg/L		500	11-APR-17
Sulfate in Wa							
	Sulfate (SO4)	105		mg/L		500	06-APR-17
Nitrite in Wat	ter by IC (Low Level)						
	*Nitrite (as N)	<0.0020	DLM	mg/L	1		06-APR-17
Nitrata in Wa	iter by IC (Low Level)	1010020		ing/E			
Nillale III wa	*Nitrate (as N)	1.03		mg/L	10		06-APR-17
Ion Delense		1.00		ling/L	10		
Ion Balance	Ion Balance	106		%			13-APR-17
	Cation - Anion Balance	2.7		%			13-APR-1
	Anion Sum	10.6		me/L			13-APR-1
	Cation Sum	11.2		me/L			13-APR-17
Hardness Ca	lculated						
	Hardness (as CaCO3)	466		mg/L		500	11-APR-17
Dissolved Me	etals by ICP-MS						
	Calcium (Ca)-Dissolved	71.9		mg/L			07-APR-17
	Magnesium (Mg)-	69.5		mg/L			07-APR-17
	Dissolved Potassium (K)-Dissolved	5.01		mg/L			07-APR-17
	Sodium (Na)-Dissolved	41.5		mg/L		200	07-APR-1
Conductivity						200	
Conductivity	Conductivity	952		umhos/cm			06-APR-17
Chlorido in M		552					
Chloride in W	Vater by IC Chloride (Cl)	46.9				050	06-APR-17
	. ,	40.9		mg/L		250	
Alkalinity, To	otal (as CaCO3)	050					
	Alkalinity, Total (as CaCO3)	353		mg/L			06-APR-17

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 13-APR-17

 PO No.:
 L1909579

 WO No.:
 L1909579

 Project Ref:
 16-0300-002

 Sample ID:
 U09-13571

 Sampled By:
 AS/RAP

 Date Collected:
 05-APR-17

 Lab Sample ID:
 L1909579-3

 Matrix:
 GW

PAGE 6 of 11

			Units of		Acathotia	Data
Test Description	Result	Qualifier	Measure	MAC	Objective	Analyzed
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015			ĺ	
Test Description CDWQG = Health Canada Guideline Limits updated * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa • A blank entry designates no known limit. • A shaded value in the Results column exceeds CDWO Approved by Hua Wo Account Manager	DECEMBER y. If present as N guidelines on cor ater Quality	2015 litrate then the li ventional treatn	Measure mit is 10mg/L < or nent and slow san	N.D. = less than de	tection limit.	

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 13-APR-17

 PO No.:
 L1909579

 WO No.:
 L1909579

 Project Ref:
 16-0300-002

 Sample ID:
 K11-12018

 Sampled By:
 AS/RAP

 Date Collected:
 05-APR-17

 Lab Sample ID:
 L1909579-4

 Matrix:
 GW

PAGE 7 of 11

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Disso	blved Floodway						
	Bicarbonate (HCO3)	741		mg/L			07-APR-17
	Carbonate (CO3)	<0.60		mg/L			07-APR-17
	Hydroxide (OH)	<0.34		mg/L			07-APR-17
	*Nitrate and Nitrite as N	<0.010		mg/L	10		13-APR-17
рН							
	рН	7.19		pH units			06-APR-17
Turbidity							
	*Turbidity	2.88		NTU			06-APR-17
TDS calcula	ted						
	TDS (Calculated)	704		mg/L		500	11-APR-17
Sulfate in W	ater by IC						
	Sulfate (SO4)	107		mg/L		500	06-APR-1
Nitrite in Wa	ater by IC (Low Level)						
	*Nitrite (as N)	<0.0020	DLM	mg/L	1		06-APR-17
Nitrate in Wa	ater by IC (Low Level)						
	*Nitrate (as N)	<0.010	DLM	mg/L	10		06-APR-17
Ion Balance	Calculation				-		
	Ion Balance	101		%			13-APR-17
	Cation - Anion Balance	0.6		%			13-APR-1
	Anion Sum	14.4		me/L			13-APR-1
	Cation Sum	14.6		me/L			13-APR-17
Hardness Ca							
	Hardness (as CaCO3)	657		mg/L		500	11-APR-17
Dissolved M	letals by ICP-MS						
	Calcium (Ca)-Dissolved	87.7		mg/L			07-APR-1
	Magnesium (Mg)- Dissolved	106		mg/L			07-APR-1
	Potassium (K)-Dissolved	5.31		mg/L			07-APR-17
	Sodium (Na)-Dissolved	31.0		mg/L		200	07-APR-1
Conductivity	у						
	Conductivity	1180		umhos/cm			06-APR-1
Chloride in	Water by IC						
	Chloride (CI)	1.8	DLM	mg/L		250	06-APR-17
Alkalinity, Te	otal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	608		mg/L			06-APR-17

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

PAGE 8 of 11

Test Description	Result	Qualifier	Units of	CDWQG	Aesthetic	Date
			Measure	MAC	Objective	Analyzed
CDWQG = Health Canada Guideline Limits updated * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWC	guidelines on cor ater Quality	litrate then the li ventional treatm	ent and slow sand	N.D. = less than de l or diatomaceous e	tection limit. arth filtration plea	se see
Approved by <u>MML</u> Hua Wo Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 13-APR-17

 PO No.:
 L1909579

 WO No.:
 L1909579

 Project Ref:
 16-0300-002

 Sample ID:
 MW-100

 Sampled By:
 AS/RAP

 Date Collected:
 05-APR-17

 Lab Sample ID:
 L1909579-5

 Matrix:
 GW

PAGE 9 of 11

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Disso	lved Floodway						
	Bicarbonate (HCO3)	395		mg/L			07-APR-17
	Carbonate (CO3)	<0.60		mg/L			07-APR-1
	Hydroxide (OH)	<0.34		mg/L			07-APR-1
	*Nitrate and Nitrite as N	0.838		mg/L	10		13-APR-1
рН							
•	рН	7.61		pH units			06-APR-1
Turbidity							
	*Turbidity	0.19		NTU			06-APR-1
TDS calcula							
100 calcula	TDS (Calculated)	460		mg/L		500	11-APR-1
Sulfate in W	х <i>у</i>			ing/E		500	
Sunate in w	Sulfate (SO4)	73.0		mg/L		500	06-APR-1
		70.0		ling/L		500	
Nitrite in Wa	ter by IC (Low Level)	0.0021	DLM				
	*Nitrite (as N)	0.0021	DLM	mg/L	1		06-APR-1
Nitrate in Wa	ater by IC (Low Level)						
	*Nitrate (as N)	0.836		mg/L	10		06-APR-1
Ion Balance	Calculation						
	Ion Balance	106		%			13-APR-1
	Cation - Anion Balance	2.7		%			13-APR-1
	Anion Sum Cation Sum	9.03 9.53		me/L me/L			13-APR-1 13-APR-1
llandraaa G		9.55		me/L			13-AFK-1
Hardness Ca		406				500	11-APR-1
	Hardness (as CaCO3)	406		mg/L		500	II-APK-I
Dissolved M	letals by ICP-MS						
	Calcium (Ca)-Dissolved	64.3 59.6		mg/L			07-APR-1
	Magnesium (Mg)- Dissolved	59.6		mg/L			07-APR-1
	Potassium (K)-Dissolved	4.53		mg/L			07-APR-1
	Sodium (Na)-Dissolved	29.9		mg/L		200	07-APR-1
Conductivity	y						
	Conductivity	802		umhos/cm			06-APR-1
Chloride in \	Water by IC						
	Chloride (CI)	34.7		mg/L		250	06-APR-1
Alkalinity. To	otal (as CaCO3)			Ŭ			
Animity, N	Alkalinity, Total (as CaCO3)	324		mg/L			06-APR-1
Total Colifor	rm and E.coli by MPN QT97						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 13-APR-17

 PO No.:
 L1909579

 WO No.:
 L1909579

 Project Ref:
 16-0300-002

 Sample ID:
 MW-100

 Sampled By:
 AS/RAP

 Date Collected:
 05-APR-17

 Lab Sample ID:
 L1909579-5

 Matrix:
 GW

PAGE 10 of 11

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97]	
Total Coliforms Escherichia Coli	1 <1	1	MPN/100mL	0		05-APR-17 05-APR-17
			MPN/100mL	0		03-AF K-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER					
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWG 	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de a or diatomaceous e	tection limit. arth filtration plea	ise see
Approved by						
Hua Wo						
Account Manager						
ADDDESS, 1220 Niekwa Dood Fast, Unit	10 Winning M	1	1	1	I	L

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Guidelines & Objectives

Sample Parameter Qualifier key listed:

Qualifier	scription							
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).							
Health Canada	MAC Health Related Criteria Limits							
Nitrate/Nitrite-N*								
Lead*	A cumulative body poison, uncommon in naturally occurring hard waters.							
Fluoride*	Present in fluoridated water supplies at 0.8 mg/L to reduce dental caries. Elevated levels causes fluorosis (mottling of teeth).							
Total Coliforms*	Criteria is 0 CFU/100mL. Adverse health effects.							
E. Coli*	Criteria is 0 CFU/100 mL. Certain E. Coli bacteria can be life threatening.							

*Health Canada Canadian Drinking Water Quality Guidelines (MAC limit)

Aesthetic Objective Concentration Levels

Aesthetic Objective Conce	
Alkalinity	Acid neutralizing capacity. Usually a measure of carbonate and bicarbonates and calculated and reported as calcium carbonate.
Balance	Quality control parameter ratioing cations to anions
Bicarbonate	See Alkalinity. Report as the anion HCO3-1
Carbonate	See Alkalinity. Reported at the anion CO3-2
Calcium	See Hardness. Common major cation of water chemistry.
Chloride	Common major anion of water chemistry.
Conductance	Physical test measuring water salinity (dissolved ions or solids)
Hardness	Classical measure or capacity of water to precipitate soap (chiefly calcium and magnesium ions). Causes scaling tendency in water if carbonates/bicarbonates are present (if >200 mg/L). For drinking water purposes waters with results <200 mg/L are considered acceptable, results >200 mg/L are considered poor but can be tolerated. Results >500 mg/L are unacceptable.
Hydroxide	See alkalinity
Magnesium	See hardness. Common major cation of water chemistry. Elevated levels (>125 mg/L) may exert a cathartic or diuretic action.
pH	Measure of water acidity/alkalinity. Normal range is 7.0-8.5.
Potassium	Common major cation of water chemistry.
Sodium	Common major cation of water chemistry. Measure of salinity (saltiness). The aesthetic objective (not related to health) for sodium in drinking water is 200 mg/L. However, where sodium concentration of the drinking water exceeds 20 mg/L, it is recommended that any person on a sodium restricted diet consult with his/her physician or Medical Officer of Health concerning the use of that water.
Sulphate	Common major anion of water chemistry. Elevated levels may exert a cathartic or diuretic action.
Total Dissolved Solids	A measure of water salinity.
Iron	Causes staining to laundry and porcelain and astringent taste. Oxidizes to red-brown precipitate on exposure to air.
Manganese Heterotrophic	Elevated levels may cause staining of laundry and porcelain.
Plate Count	Criteria is 500 cfu/mL Measure of heterotrophic bacteria present.

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder	L190957	'9 I	Report Date: 13	-APR-17	Pa	ige 1 of 4
Client: Contact:	KGS Group Consultan 865 Waverly Street - 3 Winnipeg MB R3T 5F MIKE SMITH	rd Floor						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-TITR-WP	Water							
	R3694853							
WG2506984-4 Alkalinity, Tot	4 LCS tal (as CaCO3)		106.6		%		85-115	06-APR-17
WG2506984-9 Alkalinity, Tot	9 LCS tal (as CaCO3)		103.7		%		85-115	06-APR-17
WG2506984- Alkalinity, Tot	1 MB tal (as CaCO3)		<1.0		mg/L		1	06-APR-17
WG2506984-0 Alkalinity, Tot	6 MB tal (as CaCO3)		<1.0		mg/L		1	06-APR-17
CL-IC-N-WP	Water							
Batch	R3699289							
WG2506750-2 Chloride (Cl)			97.3		%		90-110	06-APR-17
WG2506750-7 Chloride (Cl)			<0.50		mg/L		0.5	06-APR-17
EC-WP	Water							
	R3694853							
WG2506984-3 Conductivity	3 LCS		100.1		%		90-110	06-APR-17
WG2506984-8 Conductivity	8 LCS		100.5		%		90-110	06-APR-17
WG2506984- Conductivity	1 MB		<1.0		umhos/cm		1	06-APR-17
WG2506984-6 Conductivity	6 MB		<1.0		umhos/cm		1	06-APR-17
MET-D-MS-WP	Water							
	R3696515							
WG2507468-2 Calcium (Ca)			102.1		%		80-120	07-APR-17
	(Mg)-Dissolved		108.8		%		80-120	07-APR-17
Potassium (K	. <u>.</u> ,		106.4		%		80-120	07-APR-17
Sodium (Na)-	-Dissolved		109.0		%		80-120	07-APR-17
WG2507468- Calcium (Ca)			<0.20		mg/L		0.2	07-APR-17
	(Mg)-Dissolved		<0.050		mg/L		0.05	07-APR-17
Potassium (K	()-Dissolved		<0.10		mg/L		0.1	07-APR-17
Sodium (Na)-	-Dissolved		<0.050		mg/L		0.05	07-APR-17

NO2-L-IC-N-WP

		Workorder:	L190957	9 R	eport Date: 13-	APR-17	Pa	ige 2 of 4
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO2-L-IC-N-WP	Water							
Batch R3699289								
WG2506750-2 LCS Nitrite (as N)			97.8		%		90-110	06-APR-17
WG2506750-1 MB Nitrite (as N)			<0.0010		mg/L		0.001	06-APR-17
NO3-L-IC-N-WP	Water							
Batch R3699289 WG2506750-2 LCS Nitrate (as N)			98.6		%		90-110	06-APR-17
WG2506750-1 MB Nitrate (as N)			<0.0050		mg/L		0.005	06-APR-17
PH-WP	Water							
Batch R3694853								
WG2506984-2 LCS рН			7.40		pH units		7.3-7.5	06-APR-17
WG2506984-7 LCS рН			7.40		pH units		7.3-7.5	06-APR-17
SO4-IC-N-WP	Water							
Batch R3699289 WG2506750-2 LCS			00.0		0/			
Sulfate (SO4) WG2506750-1 MB			98.3		%		90-110	06-APR-17
Sulfate (SO4)			<0.30		mg/L		0.3	06-APR-17
TC,EC-QT97-WP	Water							
Batch R3694400								
WG2506317-1 DUP Total Coliforms		L1909579-1 2	1	J	MPN/100mL	1	2	05-APR-17
Escherichia Coli		<1	<1	RPD-NA	MPN/100mL	N/A	65	05-APR-17
WG2506317-2 MB Total Coliforms			<1		MPN/100mL		1	05-APR-17
Escherichia Coli			<1		MPN/100mL		1	05-APR-17
TURBIDITY-WP	Water							
Batch R3695959 WG2506922-2 LCS Turbidity			104.0		%		85-115	06-APR-17
WG2506922-1 MB Turbidity			<0.10		NTU		0.1	06-APR-17

Workorder: L1909579

Report Date: 13-APR-17

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1909579

Report Date: 13-APR-17

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рН							
	1	05-APR-17 10:30	06-APR-17 12:52	0.25	26	hours	EHTR-FM
	2	05-APR-17 11:25	06-APR-17 12:52	0.25	25	hours	EHTR-FM
	3	05-APR-17 13:00	06-APR-17 12:52	0.25	24	hours	EHTR-FM
	4	05-APR-17 15:00	06-APR-17 12:52	0.25	22	hours	EHTR-FM
	5	05-APR-17 14:25	06-APR-17 12:52	0.25	23	hours	EHTR-FM

Legend & Qualifier Definitions:

EHTR-FM: EHTR:	Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
	Exceeded ALS recommended hold time prior to sample receipt.
EHTL:	Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT:	Exceeded ALS recommended hold time prior to analysis.
Rec. HT:	ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1909579 were received on 05-APR-17 16:50.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

10-232025

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878

ALS E	Environmen		Ch		Analytical Rec ree: 1 800 668 alsglobal.com			Ĺ	[90	95	79		Page)of	<u> </u>
Report To	MILE DI	mill	Report Fo	rmat / Distribution	1			<u> </u>	t (Rush sub				I T A	······]
Company:	KAS GR	WP .	Standard:	Other (sp	ecify):		U	egular (S	Standard Tu			JY INTI		n i h i ii j f	1 🛙
Contact:	865 WAVER		OA Select: PD		Digital	Fax		Priority(2-	4 Business i			' J) { (J) {		***	<i>i 1</i> 11
Address:	NINNIDEG, MB	135 594	Email 1:	MSmith	P. R. K.S.G.R.	up. (om		Emergend	y (1-2 Busif		Ľ	1909579			1 810
			Email 2:	MFHAmme				Same Day	or Weeker		-			2	
Phone: 204	896-1009	Fax: 204 876-078	9 4	WMACQU.	ANAIER KG	SGRUDP. Com	ų			<u> </u>	·····		<u>.</u>		
		e) Yes or No (if No, provide detail		oject Information		/			(Indic	ate Filte	red or Pre	served, F	7P)		ן ו
		port? (circle) Yes or No	Job #:	6-0300-	1002			\leq			\langle / \rangle		\square	\angle	1
Company:	KUS GR	orp	PO/AFE	·			- FLW/Yup	0.							
Contact:	BILL MA	CQUARLIE	LSD:				크	ξ							
Address:		Way 55, 340 Flor				· · · · · · ·		dM-L							sec
Phone: 7	M 896 - 100	Fax! DOY 8916-075	Quote #:	<u>Q562</u>	271			e- 1							Containers
Lab Work Or	der # (lab use only)	· · -	ALS Contact: (CRAIL	Sampler: A	es]RAP	KG-Railu-D	C-QT							5
Sample #		Sample Identification		Date	Time	Semale Tune	1	(s)	1						Number
Sample #	(Thi	s description will appear on the repo	(ho	(dd-mmm-yy)	(hh:mm)	Sample Type	N	5							ž
	- KI3	-12321		ADGE S/17	1030	GW	X	X							3
	109	-12211	. 	17	1125	1	\mathbf{v}	त्रे					· · · ·		3
	$\wedge 0$	12070			1105	<u> </u>		X			_			·	+₹
		=100 ×1			1300	<u>├ </u>	1	-1-1-	_			┝──┢─			⊣्य
	K 1-	- 120 18		\square	1500		X	1							9
	L MW-	100		APRIL S/17	1425	Gw	X	$X \vdash$							3
		•					Í								
		• • • • • • • • •							_						
	· · · · · · · · · · · · · · · · · · ·	÷										<u> </u>			+
							<u> </u>			+					
· · · · · · · · · · · · · · · · · · ·	<u> </u>														
	• .														
		· · ·													
×							+		_						
	Specia	I Instructions / Regulation with w	ater or land use (CCI	VE- Freshwater A	quatic Life/BC C	L SR-Commercial/A	BTier	1-Natu	ral/ETC)	/ Hazar	dous Det	ails			<u></u>
METALS											11	XIL R	ortin	<u>e</u>	
NOT F	Field Filtered	: Not Preserved in Fi	11: LAB	TO FIL	TER AN	1) PRESI	erv	E	S Ar	PLE	5	1 x 2.5Dm	 	150mL	L-Sa
		; Not Preserved in fi Failure to c	omplete all portions								{*		<u>~ / (</u>		
		the use of this form the user ackr		-						nite - rer	off conv				
	SHIPMENT RELEA			IPMENT RECEPTI				Page (. <u></u>	
Released by:		Date: Time:	Received by:	Date:	Time:	Temperature:	Verifi	ed by:	5812	Date:		TION (lab) Observati	ons:
A //	h.	April 5/17 16:50	· B			die		cu uy,				lane,		Yes / No ?	
_ <u>/ M</u>	sm-		<u>V</u> 1	5-4-17	16:50	<u> </u>								If Yes add	SIF
REF	FER TO BACK PAGE FOR	ALS LOCATIONS AND SAMPLING IN	FORMATION		WHITE - LAB	ORATORY COPY	YELL	OM - CI	IENT CO	り -			GENF	18.01 From	nt
									f	1					

 Date:
 13-APR-17

 PO No.:
 L1909582

 WO No.:
 L1909582

 Project Ref:
 16-0300-002

 Sample ID:
 PTH-44

 Sampled By:
 APS/RAP

 Date Collected:
 05-APR-17

 Lab Sample ID:
 L1909582-1

 Matrix:
 SW

PAGE 1 of 7

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Total Flo	bodway						
	Bicarbonate (HCO3)	164		mg/L			07-APR-17
	Carbonate (CO3)	<0.60		mg/L			07-APR-17
	Hydroxide (OH)	<0.34		mg/L			07-APR-17
	*Nitrate and Nitrite as N	0.943		mg/L	10		13-APR-17
рН				_			
•	рН	7.84		pH units			06-APR-17
Turbidity							
	*Turbidity	171		NTU			06-APR-17
Total Metals by	ICP-MS						
· · · · · · · · · · · · · · · · · · ·	Calcium (Ca)-Total	44.3		mg/L			07-APR-17
	Magnesium (Mg)-Total	20.4		mg/L			07-APR-17
	Potassium (K)-Total	9.13		mg/L			07-APR-17
	Sodium (Na)-Total	15.1		mg/L		200	07-APR-17
TDS calculated	I						
	TDS (Calculated)	236		mg/L		500	11-APR-17
Sulfate in Wate	er by IC						
	Sulfate (SO4)	54.0		mg/L		500	06-APR-17
Nitrite in Water	by IC (Low Level)						
	*Nitrite (as N)	0.0521		mg/L	1		06-APR-17
Nitrate in Wate	r by IC (Low Level)						
	*Nitrate (as N)	0.890		mg/L	10		06-APR-17
Ion Balance Ca	alculation						
	Ion Balance	113		%			13-APR-17
	Cation - Anion Balance	6.2		%			13-APR-17
	Anion Sum	4.23		me/L			13-APR-17
	Cation Sum	4.79		me/L			13-APR-17
Hardness Calc							
	Hardness (as CaCO3)	195	НТС	mg/L		500	11-APR-17
Conductivity							
	Conductivity	394		umhos/cm			06-APR-17
Chloride in Wa	ter by IC						
	Chloride (Cl)	12.5		mg/L		250	06-APR-17
Alkalinity, Tota	l (as CaCO3)						
	Alkalinity, Total (as CaCO3)	134		mg/L			06-APR-17
	Phosphorus (P)-Total	0.520		mg/L			11-APR-17
	Ammonia, Total (as N)	0.137		mg/L			07-APR-17

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

 Date:
 13-APR-17

 PO No.:
 L1909582

 WO No.:
 L1909582

 Project Ref:
 16-0300-002

 Sample ID:
 PTH-44

 Sampled By:
 APS/RAP

 Date Collected:
 05-APR-17

 Lab Sample ID:
 L1909582-1

 Matrix:
 SW

PAGE 2 of 7

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Escherichia Coli	8		MPN/100mL	0		06-APR-17
Total Coliforms	2090		MPN/100mL	0		06-APR-17
Total Kjeldahl Nitrogen	1.19		mg/L			13-APR-17
Total Suspended Solids	173		mg/L			10-APR-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For g Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQ Approved by <u>Hua Wo</u> Account Manager	guidelines on cor ter Quality	ventional treatm	ent and slow sand	N.D. = less than de	tection limit. arth filtration plea	ase see

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 13-APR-17

 PO No.:
 L1909582

 WO No.:
 L1909582

 Project Ref:
 16-0300-002

 Sample ID:
 PTH-59

 Sampled By:
 APS/RAP

 Date Collected:
 05-APR-17

 Lab Sample ID:
 L1909582-2

 Matrix:
 SW

PAGE 3 of 7

Test Description		Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Total Floodway							
Bicarbonate (HCC	3)	165		mg/L			07-APR-17
Carbonate (CO3)		<0.60		mg/L			07-APR-17
Hydroxide (OH)		<0.34		mg/L			07-APR-17
*Nitrate and Nitrite	as N	0.945		mg/L	10		13-APR-17
рН							
рН		7.86		pH units			06-APR-17
Turbidity							
*Turbidity		163		NTU			06-APR-17
Total Metals by ICP-MS							
Calcium (Ca)-Tota	ı	44.0		mg/L			07-APR-17
Magnesium (Mg)-	Fotal	20.6		mg/L			07-APR-17
Potassium (K)-Tot		9.19		mg/L			07-APR-17
Sodium (Na)-Tota		15.5		mg/L		200	07-APR-17
TDS calculated							
TDS (Calculated)		239		mg/L		500	11-APR-17
Sulfate in Water by IC							
Sulfate (SO4)		55.9		mg/L		500	06-APR-17
Nitrite in Water by IC (Low Level)							
*Nitrite (as N)		0.0490		mg/L	1		06-APR-17
Nitrate in Water by IC (Low Level)							
*Nitrate (as N)		0.896		mg/L	10		06-APR-17
Ion Balance Calculation							
Ion Balance		112		%			13-APR-17
Cation - Anion Bal	ance	5.6		%			13-APR-17
Anion Sum Cation Sum		4.30 4.81		me/L me/L			13-APR-17 13-APR-17
Hardness Calculated		4.01		me/L			
Hardness Calculated Hardness (as CaC	:03)	195	нтс	mg/L		500	11-APR-17
		100		iiig/L		500	
Conductivity Conductivity		403		umhos/cm			06-APR-17
		400		unnos/cm			
Chloride in Water by IC Chloride (Cl)		12.8		mg/L		250	06-APR-17
		12.0		1119/L		200	
Alkalinity, Total (as CaCO3) Alkalinity, Total (a:		135					06-APR-17
CaCO3)	5	135		mg/L			00-APK-17
Phosphorus (P)-Te	otal	0.505		mg/L			11-APR-17
Ammonia, Total (a		0.134		mg/L			07-APR-17

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

KGS Group Consultants (Winnipeg) 865 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 ATTN: MIKE SMITH

 Date:
 13-APR-17

 PO No.:
 L1909582

 WO No.:
 L1909582

 Project Ref:
 16-0300-002

 Sample ID:
 PTH-59

 Sampled By:
 APS/RAP

 Date Collected:
 05-APR-17

 Lab Sample ID:
 L1909582-2

 Matrix:
 SW

PAGE 4 of 7

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed				
Escherichia Coli	3		MPN/100mL	0		06-APR-17				
Total Coliforms	2430		MPN/100mL	0		06-APR-17				
Total Kjeldahl Nitrogen	1.19		mg/L			13-APR-17				
Total Suspended Solids	172		mg/L			10-APR-17				
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015								
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only. If present as Nitrate then the limit is 10mg/L < or N.D. = less than detection limit. * Turbidity guideline based on membrane filtration. For guidelines on conventional treatment and slow sand or diatomaceous earth filtration please see Summary Table of Guidelines for Canadian Drinking Water Quality - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQG MAC and/ or Aesthetic Objective. 										
Approved by <u>MMM</u> Hua Wo Account Manager										

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 13-APR-17

 PO No.:
 L1909582

 WO No.:
 L1909582

 Project Ref:
 16-0300-002

 Sample ID:
 SW-100

 Sampled By:
 APS/RAP

 Date Collected:
 05-APR-17

 Lab Sample ID:
 L1909582-3

 Matrix:
 SW

PAGE 5 of 7

Test	Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Total Floodwa	у						
Bica	arbonate (HCO3)	164		mg/L			07-APR-17
Carl	bonate (CO3)	<0.60		mg/L			07-APR-17
Hyd	roxide (OH)	<0.34		mg/L			07-APR-17
*Nitra	ate and Nitrite as N	0.943		mg/L	10		13-APR-17
рН							
pH		7.83		pH units			06-APR-17
Turbidity							
*Turk	pidity	172		NTU			06-APR-17
Total Metals by ICP-N	IS						
-	cium (Ca)-Total	43.8		mg/L			07-APR-17
Мас	nesium (Mg)-Total	20.6		mg/L			07-APR-17
	assium (K)-Total	9.51		mg/L			07-APR-17
Sod	ium (Na)-Total	15.1		mg/L		200	07-APR-17
TDS calculated							
TDS	S (Calculated)	236		mg/L		500	11-APR-17
Sulfate in Water by IC	2						
Sulf	ate (SO4)	54.1		mg/L		500	06-APR-17
Nitrite in Water by IC	(Low Level)						
*Nitri	te (as N)	0.0513		mg/L	1		06-APR-17
Nitrate in Water by IC	(Low Level)						
*Nitra	ate (as N)	0.892		mg/L	10		06-APR-17
Ion Balance Calculat	ion						
Ion	Balance	113		%			13-APR-17
	on - Anion Balance	6.2		%			13-APR-17
	on Sum on Sum	4.23 4.79		me/L me/L			13-APR-17 13-APR-17
Hardness Calculated		4.75		IIIe/L			13-AI IX-17
	dness (as CaCO3)	194	нтс	mg/L		500	11-APR-17
		104		iiig/L		500	
Conductivity	ductivity	398		umhos/cm			06-APR-17
		390		unnos/cm			
Chloride in Water by		12.4		m~//		050	06-APR-17
	oride (Cl)	12.4		mg/L		250	00-APK-17
Alkalinity, Total (as C	•	105					
	alinity, Total (as CO3)	135		mg/L			06-APR-17
Pho	sphorus (P)-Total	0.519		mg/L			11-APR-17
	monia, Total (as N)	0.145		mg/L			07-APR-17

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

KGS Group Consultants (Winnipeg) 865 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 ATTN: MIKE SMITH

 Date:
 13-APR-17

 PO No.:
 L1909582

 WO No.:
 L1909582

 Project Ref:
 16-0300-002

 Sample ID:
 SW-100

 Sampled By:
 APS/RAP

 Date Collected:
 05-APR-17

 Lab Sample ID:
 L1909582-3

 Matrix:
 SW

PAGE 6 of 7

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Escherichia Coli	4		MPN/100mL	0		06-APR-17
Total Coliforms	1450		MPN/100mL	0		06-APR-17
Total Kjeldahl Nitrogen	1.22		mg/L			13-APR-17
Total Suspended Solids	176		mg/L			10-APR-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWG 	guidelines on cor iter Quality	ventional treatm	ent and slow san	N.D. = less than de d or diatomaceous e	tection limit. arth filtration ple	ase see
Approved by <u>WMM</u> Hua Wo Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Sample Parameter Qualifier key listed:

Qualifier	Description
HTC	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).
Health Canada	MAC Health Related Criteria Limits
Nitrate/Nitrite-N*	Criteria limit is 10 mg/L (1.0 mg/L if present as all Nitrite-N). High concentrations may contribute to blue baby syndrome in infants.
Lead*	A cumulative body poison, uncommon in naturally occurring hard waters.
Fluoride*	Present in fluoridated water supplies at 0.8 mg/L to reduce dental caries. Elevated levels causes fluorosis (mottling of teeth).
Total Coliforms*	Criteria is 0 CFU/100mL. Adverse health effects.

E. Coli* Criteria is 0 CFU/100 mL. Certain E. Coli bacteria can be life threatening.

*Health Canada Canadian Drinking Water Quality Guidelines (MAC limit)

Aesthetic Objective Concentration Levels

Aesthetic Objective Conce	
Alkalinity	Acid neutralizing capacity. Usually a measure of carbonate and bicarbonates and calculated and reported as calcium carbonate.
Balance	Quality control parameter ratioing cations to anions
Bicarbonate	See Alkalinity. Report as the anion HCO3-1
Carbonate	See Alkalinity. Reported at the anion CO3-2
Calcium	See Hardness. Common major cation of water chemistry.
Chloride	Common major anion of water chemistry.
Conductance	Physical test measuring water salinity (dissolved ions or solids)
Hardness	Classical measure or capacity of water to precipitate soap (chiefly calcium and magnesium ions). Causes scaling tendency in water if carbonates/bicarbonates are present (if >200 mg/L). For drinking water purposes waters with results <200 mg/L are considered acceptable, results >200 mg/L are considered poor but can be tolerated. Results >500 mg/L are unacceptable.
Hydroxide	See alkalinity
Magnesium	See hardness. Common major cation of water chemistry. Elevated levels (>125 mg/L) may exert a cathartic or diuretic action.
рН	Measure of water acidity/alkalinity. Normal range is 7.0-8.5.
Potassium	Common major cation of water chemistry.
Sodium	Common major cation of water chemistry. Measure of salinity (saltiness). The aesthetic objective (not related to health) for sodium in drinking water is 200 mg/L. However, where sodium concentration of the drinking water exceeds 20 mg/L, it is recommended that any person on a sodium restricted diet consult with his/her physician or Medical Officer of Health concerning the use of that water.
Sulphate	Common major anion of water chemistry. Elevated levels may exert a cathartic or diuretic action.
Total Dissolved Solids	A measure of water salinity.
Iron	Causes staining to laundry and porcelain and astringent taste. Oxidizes to red-brown precipitate on exposure to air.
Manganese Heterotrophic	Elevated levels may cause staining of laundry and porcelain.
Plate Count	Criteria is 500 cfu/mL Measure of heterotrophic bacteria present.

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Workorder:	L190958	2	Report Date: 13-	APR-17	Pa	age 1 of 6
Client:	865 Wav	oup Consultant rerly Street - 3 g MB R3T 5P	ts (Winnipeg) rd Floor		_				
Contact:	MIKE SN				<u> </u>				
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-TITR-WP		Water							
Batch F WG2506984-9 Alkalinity, Tota				103.7		%		85-115	06-APR-17
WG2506984-6 Alkalinity, Tota	MB			<1.0		mg/L		1	06-APR-17
CL-IC-N-WP		Water							
Batch F	3699289								
WG2506750-3 Chloride (Cl)	DUP		L1909582-1 12.5	12.4		mg/L	0.1	20	06-APR-17
WG2506750-2 Chloride (Cl)	LCS			97.3		%		90-110	06-APR-17
WG2506750-1 Chloride (Cl)	MB			<0.50		mg/L		0.5	06-APR-17
WG2506750-4 Chloride (Cl)	MS		L1909582-1	91.8		%		75-125	06-APR-17
EC-QT97-ENDPT	-WP	Water							
Batch F	3695066								
WG2506616-1 Escherichia C	-		L1909582-2 3	2		MPN/100mL	43	65	06-APR-17
WG2506616-2 Escherichia C				<1		MPN/100mL		1	06-APR-17
EC-WP		Water							
Batch F WG2506984-8	R3694853								
Conductivity WG2506984-6	МВ			100.5		%		90-110	06-APR-17
Conductivity				<1.0		umhos/cm		1	06-APR-17
MET-T-MS-WP		Water							
WG2507424-2									
Calcium (Ca)-				103.4		%		80-120	07-APR-17
Magnesium (N				108.9		%		80-120	07-APR-17
Potassium (K)				105.7		%		80-120	07-APR-17
Sodium (Na)-				107.3		%		80-120	07-APR-17
WG2507424-1 Calcium (Ca)-				<0.20		mg/L		0.2	07-APR-17
Magnesium (N				<0.20		mg/L		0.2	07-APR-17 07-APR-17
Potassium (K)				<0.10		mg/L		0.05	07-APR-17 07-APR-17
	, 1000			50.10		····9/ -		0.1	

		Workorder:	Vorkorder: L1909582		Report Date: 13-	-APR-17	Page 2 of 6			
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
MET-T-MS-WP Batch R3696515 WG2507424-1 MB Sodium (Na)-Total	Water		<0.050		mg/L		0.05	07-APR-17		
N-TOTKJ-WP	Water									
BatchR3699448WG2509472-14LCSTotal Kjeldahl Nitrogen			85.9		%		75-125	13-APR-17		
WG2509472-13 MB Total Kjeldahl Nitrogen			<0.20		mg/L		0.2	13-APR-17		
NH3-COL-WP	Water									
Batch R3695662 WG2507672-2 LCS Ammonia, Total (as N)			99.9		%		85-115	07-APR-17		
WG2507672-1 MB Ammonia, Total (as N)			<0.010		mg/L		0.01	07-APR-17		
NO2-L-IC-N-WP	Water									
Batch R3699289 WG2506750-3 DUP Nitrite (as N) N		L1909582-1 0.0521	0.0515		mg/L	1.1	20	06-APR-17		
WG2506750-2 LCS Nitrite (as N)			97.8		%		90-110	06-APR-17		
WG2506750-1 MB Nitrite (as N)			<0.0010		mg/L		0.001	06-APR-17		
WG2506750-4 MS Nitrite (as N)		L1909582-1	93.3		%		75-125	06-APR-17		
NO3-L-IC-N-WP	Water									
Batch R3699289 WG2506750-3 DUP Nitrate (as N) Nitrate		L1909582-1 0.890	0.895		mg/L	0.5	20	06-APR-17		
WG2506750-2 LCS Nitrate (as N)			98.6		%	0.0	90-110	06-APR-17		
WG2506750-1 MB Nitrate (as N)			<0.0050		mg/L		0.005	06-APR-17		
WG2506750-4 MS Nitrate (as N)		L1909582-1	92.3		%		75-125	06-APR-17		
P-T-COL-WP	Water									

		Workorder:	L190958	2	Report Date: 13-	APR-17	Page 3 of 6				
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed			
P-T-COL-WP	Water										
Batch R3696605											
WG2508785-2 LCS Phosphorus (P)-Total			97.2		%		80-120	11-APR-17			
WG2508785-1 MB Phosphorus (P)-Total			<0.010		mg/L		0.01	11-APR-17			
PH-WP	Water										
Batch R3694853 WG2506984-7 LCS рН			7.40		pH units		2075				
рп			7.40		pri units		7.3-7.5	06-APR-17			
SO4-IC-N-WP	Water										
Batch R3699289											
WG2506750-3 DUP Sulfate (SO4)		L1909582-1 54.0	54.1		mg/L	0.0	20	06-APR-17			
WG2506750-2 LCS Sulfate (SO4)			98.3		%		90-110	06-APR-17			
WG2506750-1 MB Sulfate (SO4)			<0.30		mg/L		0.3	06-APR-17			
WG2506750-4 MS Sulfate (SO4)		L1909582-1	90.1		%		75-125	06-APR-17			
SOLIDS-TOTSUS-WP	Water										
Batch R3696607											
WG2508320-10 LCS Total Suspended Solids			93.3		%		85-115	10-APR-17			
WG2508320-9 MB Total Suspended Solids			<5.0		mg/L		5	10-APR-17			
TC-QT97-ENDPT-WP	Water										
Batch R3695063											
WG2506628-1 DUP Total Coliforms		L1909582-2 2430	1580		MPN/100mL	42	65	06-APR-17			
WG2506628-2 MB Total Coliforms			<1		MPN/100mL		1	06-APR-17			
TURBIDITY-WP	Water										
Batch R3695959											
WG2506922-3 DUP Turbidity		L1909582-1 171	167		NTU	2.4	15	06-APR-17			
WG2506922-2 LCS Turbidity			104.0		%		85-115	06-APR-17			

		Workorder	: L190958	32	Report Date:	13-APR-17	Pa	age 4 of 6
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TURBIDITY-WP	Water							
Batch R369595 WG2506922-1 MB	9							
Turbidity			<0.10		NTU		0.1	06-APR-17

Workorder: L1909582

Report Date: 13-APR-17

Page 5 of 6

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material

Certified Reference Material Continuing Calibration Verification CRM CCV

CVS Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

Workorder: L1909582

Report Date: 13-APR-17

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifie
Physical Tests							
рН							
	1	05-APR-17 12:00	06-APR-17 12:52	0.25	25	hours	EHTR-FM
	2	05-APR-17 16:00	06-APR-17 12:52	0.25	21	hours	EHTR-FN
	3	05-APR-17 14:00	06-APR-17 12:52	0.25	23	hours	EHTR-FM

Legend & Qualifier Definitions:

EHTR-FM:	Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR:	Exceeded ALS recommended hold time prior to sample receipt.
EHTL:	Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT:	Exceeded ALS recommended hold time prior to analysis.
Rec. HT:	ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1909582 were received on 05-APR-17 16:50.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

- 232023

.

				ain of Custody / Canada Toll F www.a				Ĺ	_(^C	109582					Page	1	of			
Report To	MIKE	Smith	Report Fo	rmat / Distributior			Service		_	T	 1 ##100							_		
Company:	KACC	TRUP	Standard:	Other (sp				Regular	(Stand	- 81	## # #		H () Z			H I I III	110	<u> </u>		
Contact:	Mike	Smill a	Select: PD		Digital	Fax		Priority(2-4 Bu	I I			II (19)5)		 	# 		í.		
Address: 84				msmith	OKC-ST.A.			Emerge	ncy (1			L1:	9095	82-C		11 F F H (1)	• •#	Ì		
Mb.	12-504		ACHAMA	D Wasa	ALCON COM		Same D	ay or					V2-Q1	JFU			- L			
hone: Yr	1896-1819	Fax: 204 896-095	54 Bh	Email 2: MEHAMMP KCSGROA, (M BUMACQUARTICE KESKER, COM						Analysis requeen										
nvoice To	Same as Report ? (circle	e) Yes or No (if No, provide detail		oject Information		<u></u>	(Indicate Filtered or Preserved, F/P)													
	Copy of Invoice with Rep	port? (circle) Yes or No	Job #:	6-0300-0	107										//	17	\square			
Company:	G-S Gau		PO/AFE:	V	· · · · · · · · · · · · · · · · · · ·		آماً					E E	2		r		1-			
Contact: But	MACQUARS	16	LSD:		·····															
Address: \$6	5 WALER	ST BRP FLOOD					Ĩ		٩	4		ŝ	4					5		
Phone: $\chi_{1}\gamma_{1}$ $\xi_{1}\xi_{1}$ $J_{0}\gamma_{1}$ $Fax:$				Quote #: Q56271					3	47	S S	Ë,	Ž					aine		
			ALS	Const		20/000	1	5	-7	ਨੂੰ	ති	é	2					Sont		
Lab Work Order # (lab use only)			Contact:	ALS Contact: (f-A 1 (otku	-Col-	Solids-Torsus	5	-0797-END					Number of Containers		
		Sample Identification		Date	Time		KGS ROUTU-	Ľ	÷	NH3	8	7	ସ୍				!	ber		
Sample #	(Thi	s description will appear on the repo	ort)	(dd-mmm-yy)	(hh:mm)	Sample Type	S	71	-7	5	R,	2	5					5		
	ρ	मन्यम	· · · · · · · · · · · · · · · · · · ·	April 5/17	12-00	Sw	$\overline{\nabla}$	$\frac{1}{\chi}$	$\frac{\lambda}{\lambda}$	$\overline{\nabla}$	Ϋ́	$\overline{\nabla}$	$\overline{\mathbf{v}}$				-	5		
							$ \langle \cdot \rangle $		<u> </u>		\ominus	쉬	- Č					2		
	V/	H-59		ADRICS/17	1600	Sw	Х	X	X	X	\boldsymbol{X}	X	X							
	51	N-100		April5/17	1100	Sw	$ \times $	XI	X	X	$ \chi $	XI	хI							
									<u> </u>		Z_``-		\sim							
			· · · · · ·]					· · · · .							
							ŀ													
																· ···				
				ļ										Ì						
		······································											_							
							···			-										
	l			ME Enclosed and				4 1 1 - 4						<u>. </u>				<u> </u>		
, · ·	Specia	Instructions / Regulation with w	ater or land use (CC)	WE-Freshwater A																
SAMPLE	S NOT CUT	ERED; SAMPLES P	RESERVEN IN	FIFIN	11125	OUTINE OML METALS	(Nit)	12	(<i>~)</i> x?5	0,~C 10,~l		ore	Sque	F) ~e) Bc	ucti					
			omplete all portions		lelav analysis.	Please fill in this fo		4								+				
	Byf	the use of this form the user ackr		-	• •					e whi	te - re	port c	opy.							
SHIPMENT RELEASE (client use) SHIPMENT RECEPTION (lab use only)										SHIPM	IENT	VERIF	ICATI	ON (lat	use or	ıly)				
Released by:		Date: / Time:	Received by:	Date:	Time:	Temperature:	Verifi	ed by:			Date			Time:			ervatio	ns:		
\wedge	1 mm	ADRIL SAL 1 (150	kn	5-4-17	16:50	Y °C											/ No ?			
/ ·		116 11 196	<u> </u>								L	7				_	s add S			
RE	FER TO BACK PAGE FOR	ALS LOCATIONS AND SAMPLING IN	FORMATION		WHILE - LAB	SORATORY COPY	YELL	OW - C	CLIEN	I COP	ŤĦ	1			GEI	NF 18.0	1 Front			

 Date:
 17-APR-17

 PO No.:
 L1910474

 WO No.:
 L1910474

 Project Ref:
 16-0300-002

 Sample ID:
 K09-12012

 Sampled By:
 ADS/RAP

 Date Collected:
 07-APR-17

 Lab Sample ID:
 L1910474-1

 Matrix:
 GW

PAGE 1 of 5

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Disso	lved Floodway						
	Bicarbonate (HCO3)	395		mg/L			10-APR-17
	Carbonate (CO3)	<0.60		mg/L			10-APR-17
	Hydroxide (OH)	<0.34		mg/L			10-APR-17
	*Nitrate and Nitrite as N	<0.010		mg/L	10		17-APR-17
рН							
•	рН	7.55		pH units			07-APR-17
Turbidity							
	*Turbidity	16.5		NTU			07-APR-17
TDS calculat	·			_			
	TDS (Calculated)	575		mg/L		500	11-APR-17
Sulfate in Wa			1	iiig/ =		000	
Sunate in Wa	Sulfate (SO4)	180		mg/L		500	07-APR-17
		100		ilig/L		500	
Nitrite in wa	ter by IC (Low Level)	-0.0020	DLM				07-APR-17
	*Nitrite (as N)	<0.0020	DLIM	mg/L	1		07-APR-17
Nitrate in Wa	ater by IC (Low Level)						
	*Nitrate (as N)	<0.010	DLM	mg/L	10		07-APR-17
Ion Balance							
	Ion Balance	96.0		%			17-APR-17
	Cation - Anion Balance Anion Sum	-2.0 10.9		%			17-APR-17 17-APR-17
	Cation Sum	10.5		me/L me/L			17-APR-17
Hardness Ca				1110/ 2			
	Hardness (as CaCO3)	430		mg/L		500	11-APR-17
Dissolved M	etals by ICP-MS			iiig/ =		000	
DISSOIVEU IVI	Calcium (Ca)-Dissolved	71.0		mg/L			10-APR-17
	Magnesium (Mg)-	61.3		mg/L			10-APR-17
	Dissolved			_			
	Potassium (K)-Dissolved	3.83		mg/L			10-APR-17
	Sodium (Na)-Dissolved	40.7		mg/L		200	10-APR-17
Conductivity							
	Conductivity	934		umhos/cm			07-APR-17
Chloride in V	-						
	Chloride (CI)	23.6		mg/L		250	07-APR-17
Alkalinity, To	otal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	324		mg/L			07-APR-17
Total Colifor	m and E.coli by MPN QT97						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 17-APR-17

 PO No.:
 L1910474

 WO No.:
 L1910474

 Project Ref:
 16-0300-002

 Sample ID:
 K09-12012

 Sampled By:
 ADS/RAP

 Date Collected:
 07-APR-17

 Lab Sample ID:
 L1910474-1

 Matrix:
 GW

PAGE 2 of 5

			Units of	CDWQG	Aesthetic	Date
Test Description	Result	Qualifier	Measure	MAC	Objective	Analyzed
Total Coliform and E.coli by MPN QT97						
Total Coliforms	1		MPN/100mL	0		07-APR-17
Escherichia Coli	<1		MPN/100mL	0		07-APR-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER					
 CDWQG for Nitrate+Nitrite-N is the limit for nitrate only Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa A blank entry designates no known limit. A shaded value in the Results column exceeds CDWQ 	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de d or diatomaceous e	tection limit. arth filtration plea	se see
Approved by Hua Wo Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 17-APR-17

 PO No.:
 L1910474

 WO No.:
 L1910474

 Project Ref:
 16-0300-002

 Sample ID:
 G050C006

 Sampled By:
 ADS/RAP

 Date Collected:
 07-APR-17

 Lab Sample ID:
 L1910474-2

 Matrix:
 GW

PAGE 3 of 5

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Total Floodway						
Bicarbonate (HCO3)	285		mg/L			10-APR-17
Carbonate (CO3)	<0.60		mg/L			10-APR-17
Hydroxide (OH)	<0.34		mg/L			10-APR-17
*Nitrate and Nitrite as N	<0.051		mg/L	10		17-APR-17
рН						
pH	7.75		pH units			07-APR-17
Turbidity						
*Turbidity	37.0		NTU			07-APR-17
Total Metals by ICP-MS						
Calcium (Ca)-Total	89.2		mg/L			10-APR-17
Magnesium (Mg)-Total	59.4		mg/L			10-APR-17
Potassium (K)-Total	12.3		mg/L			10-APR-17
Sodium (Na)-Total	304		mg/L		200	10-APR-17
TDS calculated						
TDS (Calculated)	1310		mg/L		500	11-APR-17
Sulfate in Water by IC						
Sulfate (SO4)	282		mg/L		500	07-APR-17
Nitrite in Water by IC (Low Level)						
*Nitrite (as N)	<0.010	DLM	mg/L	1		07-APR-17
Nitrate in Water by IC (Low Level)						
*Nitrate (as N)	<0.050	DLM	mg/L	10		07-APR-17
Ion Balance Calculation						
Ion Balance	102		%			17-APR-17
Cation - Anion Balance	1.0		%			17-APR-17
Anion Sum	22.4		me/L			17-APR-17
Cation Sum	22.9		me/L			17-APR-17
Hardness Calculated						
Hardness (as CaCO3)	467	HTC	mg/L		500	11-APR-17
Conductivity						
Conductivity	2240		umhos/cm			07-APR-17
Chloride in Water by IC						
Chloride (Cl)	422		mg/L		250	07-APR-17
Alkalinity, Total (as CaCO3)						
Alkalinity, Total (as CaCO3)	233		mg/L			07-APR-17
Total Coliform and E.coli						
Total Coliforms	0		MPN/100mL	0		07-APR-17

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

KGS Group Consultants (Winnipeg) 865 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 ATTN: MIKE SMITH

 Date:
 17-APR-17

 PO No.:
 L1910474

 WO No.:
 L1910474

 Project Ref:
 16-0300-002

 Sample ID:
 G050C006

 Sampled By:
 ADS/RAP

 Date Collected:
 07-APR-17

 Lab Sample ID:
 L1910474-2

 Matrix:
 GW

PAGE 4 of 5

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli						
Escherichia Coli	0		MPN/100mL	0		07-APR-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER					
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQ 	guidelines on cor Iter Quality	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration plea	ase see
Approved by <u>MML</u> Hua Wo Account Manager						
ADDDESS: 1329 Niakwa Poad Fast Unit						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Guidelines & Objectives

Sample Parameter Qualifier key listed:

Qualifier	Description					
HTC	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).					
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).					
Health Canada	MAC Health Related Criteria Limits					
Nitrate/Nitrite-N*						
Lead*	A cumulative body poison, uncommon in naturally occurring hard waters.					
Fluoride* Total Coliforms*	Present in fluoridated water supplies at 0.8 mg/L to reduce dental caries. Elevated levels causes fluorosis (mottling of teeth). Criteria is 0 CFU/100mL. Adverse health effects.					
E. Coli*	Criteria is 0 CFU/100 mL. Certain E. Coli bacteria can be life threatening.					
*Health Canada Canadian Drinking Water Quality Guidelines (MAC limit)						
	tive Concentration Levels					
Alkalinity	Acid neutralizing capacity. Usually a measure of carbonate and bicarbonates and calculated and reported as calcium carbonate.					
Balance	Quality control parameter ratioing cations to anions					
Bicarbonate Carbonate	See Alkalinity. Report as the anion HCO3-1 See Alkalinity. Reported at the anion CO3-2					
Carbonate	See Aikalinity. Reported at the anion CO3-2 See Hardness. Common major cation of water chemistry.					
Chloride	Common major anion of water chemistry.					
Conductance	Physical test measuring water salinity (dissolved ions or solids)					
Hardness	Classical measure or capacity of water to precipitate soap (chiefly calcium and magnesium ions). Causes scaling tendency in water if carbonates/bicarbonates are present (if >200 mg/L). For drinking water purposes waters with results <200 mg/L are considered acceptable, results >200 mg/L are considered poor but can be tolerated. Results >500 mg/L are unacceptable.					
Hydroxide	See alkalinity					
Magnesium pH	See hardness. Common major cation of water chemistry. Elevated levels (>125 mg/L) may exert a cathartic or diuretic action. Measure of water acidity/alkalinity. Normal range is 7.0-8.5.					
Potassium	Common major cation of water chemistry.					
Sodium	Common major cation of water chemistry. Measure of salinity (saltiness). The aesthetic objective (not related to health) for sodium in drinking water is 200 mg/L. However, where sodium concentration of the drinking water exceeds 20 mg/L, it is recommended that any person on a sodium restricted diet consult with his/her physician or Medical Officer of Health concerning the use of that water.					
Sulphate	Common major anion of water chemistry. Elevated levels may exert a cathartic or diuretic action.					
Total Dissolved						
Iron	Causes staining to laundry and porcelain and astringent taste. Oxidizes to red-brown precipitate on exposure to air.					
Manganese Heterotrophic	Elevated levels may cause staining of laundry and porcelain.					
Plate Count	Criteria is 500 cfu/mL Measure of heterotrophic bacteria present.					

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder	: L191047	4	Report Date: 17	-APR-17	Pa	ige 1 of 5
865 Win	S Group Consultan Waverly Street - 3 nipeg MB R3T 5F	rd Floor						
Contact:	E SMITH							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-TITR-WP	Water							
Batch R369	5945							
WG2507657-14 L Alkalinity, Total (as			104.4		%		05 115	
WG2507657-11 N			104.4		70		85-115	07-APR-17
Alkalinity, Total (as			<1.0		mg/L		1	07-APR-17
CL-IC-N-WP	Water							
Batch R370 ²								
WG2507551-10 L								
Chloride (Cl)			98.8		%		90-110	07-APR-17
	IB		0.50				0.5	
Chloride (Cl)			<0.50		mg/L		0.5	07-APR-17
EC-WP	Water							
Batch R369								
WG2507657-13 L Conductivity	65		99.6		%		90-110	07-APR-17
WG2507657-11 N Conductivity	IB		<1.0		umhos/cm		1	07-APR-17
MET-D-MS-WP	Water							
Batch R3690	6478							
WG2508671-2 L Calcium (Ca)-Disso			100.2		%		80-120	10-APR-17
Magnesium (Mg)-D	Dissolved		98.4		%		80-120	10-APR-17
Potassium (K)-Diss	solved		99.2		%		80-120	10-APR-17
Sodium (Na)-Disso	lved		99.9		%		80-120	10-APR-17
WG2508671-1 N								
Calcium (Ca)-Diss			<0.20		mg/L		0.2	10-APR-17
Magnesium (Mg)-E			<0.050		mg/L		0.05	10-APR-17
Potassium (K)-Diss Sodium (Na)-Disso			<0.10 <0.050		mg/L		0.1	10-APR-17
			<0.000		mg/L		0.05	10-APR-17
MET-T-MS-WP	Water							
Batch R3690 WG2508594-2 L	6478 CS							
Calcium (Ca)-Total			100.1		%		80-120	10-APR-17
Magnesium (Mg)-T	otal		104.9		%		80-120	10-APR-17
Potassium (K)-Tota	al		101.7		%		80-120	10-APR-17
Sodium (Na)-Total			100.3		%		80-120	10-APR-17
WG2508594-1 N	IB							

				-	•			
		Workorder	: L191047	'4	Report Date: 17-	APR-17	Pa	ige 2 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
IET-T-MS-WP	Water							
Batch R3696478								
WG2508594-1 MB Calcium (Ca)-Total			<0.20		mg/L		0.2	10-APR-17
Magnesium (Mg)-Total			<0.050		mg/L		0.05	10-APR-17
Potassium (K)-Total			<0.10		mg/L		0.1	10-APR-17
Sodium (Na)-Total			<0.050		mg/L		0.05	10-APR-17
IO2-L-IC-N-WP	Water							
Batch R3701562								
WG2507551-10 LCS Nitrite (as N)			99.3		%		90-110	07-APR-17
WG2507551-9 MB Nitrite (as N)			<0.0010		mg/L		0.001	07-APR-17
IO3-L-IC-N-WP	Water							
Batch R3701562 WG2507551-10 LCS								
Nitrate (as N) WG2507551-9 MB			99.98		%		90-110	07-APR-17
Nitrate (as N)			<0.0050		mg/L		0.005	07-APR-17
PH-WP	Water							
Batch R3695945 WG2507657-12 LCS pH			7.41		pH units		7.3-7.5	07-APR-17
604-IC-N-WP	Water							
Batch R3701562								
WG2507551-10 LCS Sulfate (SO4)			99.1		%		90-110	07-APR-17
WG2507551-9 MB Sulfate (SO4)			<0.30		mg/L		0.3	07-APR-17
C,EC-QT51-WP	Water							
Batch R3695522								
WG2507727-3 DUP Total Coliforms		L1910474-2 0	0		MPN/100mL	0.0	65	07-APR-17
Escherichia Coli		0	0		MPN/100mL	0.0	65	07-APR-17
WG2507727-2 MB Total Coliforms			0		MPN/100mL		1	07-APR-17
Escherichia Coli			0		MPN/100mL		1	07-APR-1
IC,EC-QT97-WP	Water							

TC,EC-QT97-WP

		Workorder	: L191047	0474 Report Date: 17-APR-17			Page 3 of 5		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
TC,EC-QT97-WP	Water								
Batch R369551 WG2507701-2 DUP Total Coliforms		L1910474-1 1	<1	RPD-NA	MPN/100mL	N/A	65	07-APR-17	
Escherichia Coli		<1	<1	RPD-NA	MPN/100mL	N/A	65	07-APR-17	
WG2507701-1 MB Total Coliforms Escherichia Coli			<1 <1		MPN/100mL MPN/100mL		1	07-APR-17	
TURBIDITY-WP	Water		<1		WIF N/ TOOTIL		1	07-APR-17	
Batch R369629 WG2507688-5 LCS Turbidity			103.0		%		85-115	07-APR-17	
WG2507688-4 MB Turbidity			<0.10		NTU		0.1	07-APR-17	

Workorder: L1910474

Report Date: 17-APR-17

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1910474

Report Date: 17-APR-17

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рН							
	1	07-APR-17 09:30	07-APR-17 12:03	0.25	2.6	hours	EHTR-FM
	2	07-APR-17 11:30	07-APR-17 12:03	0.25	0.48	hours	EHTR-FM
Legend & Qualifier Definitio	ns:						

egend & Qualifier Definitions:

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1910474 were received on 07-APR-17 12:20.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

'n

10-232892

ALS E	Environmer	ntal		L1910474	-COFC									Page	of	
Report To	<u></u>		 	ormaty ישוואלי	n		Servic	e Reau	est:(Ru	sh suhieci	to availab	ility - Cor	atact ALS to	o confirm TA	AT)	
Company:	1/15 Ge	ONP ,	Standard				5	2			ound Times					
Contact: /	nike Si	niTH	Standard Select:		Digital	Fax	<u> . ~</u>					· · · ·		to confirm Tr	 AT	
Address:	265 WAVER	BY ST, BRO FLOOR, h	June Ma Email 1	MC m TH	VLSGRA	LA CAR		+ • • • •						ct ALS to cor		
	RJTSPY		Email 2:	MEHAMM	ROJORO	PALP COM	Same Day or Weekend Emergency - Contact ALS to confirm TAT									
	04-896-1209	Fax: 204-896-07	EU BM	ACQUARRI	TO KIS	1RASOP WOR	Analysis Request						·			
		le) Yes or No (if No, provide detail		Project Information		Gitte of Jour	(Indicate Filtered or Preserved, F/P)									
		port? (circle) Yes or No	Job #:	16-0300-			17	\square	Ń		77	1 >	\Box	イン		7
Company: K	65 GROUP	<u> </u>	PO / AFI	Z			K						F-F.		FF	
Contact: B	LL MACQUA	RRIF	LSD:			······································	1 d			۲ ک	1	•].	<u>h</u> M		
Address: 86										3		. 0		닁		ŝ
Phone: 204			Quote #	Q56271			1 ∄	3		12	MH100	E :		751		aine
	der # (lab use only)			CRAIF	Sampler:	ves/Rive	S-ROUIN	FLONY -		76,56-0797	-5-R06	- 2mG		2-Q		r of Containers
Sample #	(Th	Sample Identification is description will appear on the rep	ort)	Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	2	77		22				47		Number
					· · · · · · · · · · · · · · · · · · ·		X			\mathbf{X}^{\dagger}	<u> </u>			<u> </u>	╋───┼──	3
· · · ·	K09-120			07-04-17		GW				\wedge		/			┟──┼─	
	605000	06		07-04-17	1130	GW	<u> </u>						>	×	$ \downarrow $	3
														_		
							1									
					· · · ·								<u>├</u> }		┢	
							-			ļ		-	├		┢──┼──	
							<u> </u>									
												1				
· · · ·					- · · · · · · · · · · · · · · · · · · ·		<u> </u>				·	-	<u>├</u>			
	· · · · · · · · · · · · · · · · · · ·							+				-	┝──┼─		┝──┝─	
¦														<u> </u>	┝━─┼─	
								i							<u> </u>	
	Specia	al Instructions / Regulation with w	vater or land use (C	CME- Freshwater A												
GROUNDS	WATER SAMPLES	METALS TO BE FILTER	ED AND PRE	SERVED	G050C00	16 . Not FIG	10 F	71L761	९६०	80	r PA	LESE/	RULA	in	FIELD	
			complete all portion		delay analysis.	Please fill in this fo	orm L	EGIBL	.Y.							
	Ву	the use of this form the user ack	nowledges and agr	ees with the Terms	and Conditions	as specified on th	e baci	k page	e of th	e white	- report	сору.				
 	SHIPMENT RELEA	ASE (client use)		HIPMENT RECEPT	ION (lab use onl	y}	[ę	SHIPME		FICAT	ION (lab	use only	<i>(</i>)	
Released by:		Date: Time:	Received by:	Date:	Time:	Temperature:	Veri	fied by			Date:		Time:		Observa	
Kai 1	Palka.	07/04/17 12/5	b.	7-4-17	12:20	10° °C								ſ	Yes / No If Yes ac	
		ALS LOCATIONS AND SAMPLING IN		<u> </u>		SORATORY COPY		014							= 18.01 Fr	
RE.	FER TO BAUK PAGE FUR	ALD LOCATIONS AND DAME SING IN			WHITE - LAD	JURAIURT UUPT	TELL	- 1044	ULIEN	I COPY				GENF	18.01 FI	I U I K

 Date:
 24-APR-17

 PO No.:
 1912053

 WO No.:
 L1912053

 Project Ref:
 16-0300-002.1100.02

 Sample ID:
 PTH 44

 Sampled By:
 AN/RP

 Date Collected:
 12-APR-17

 Lab Sample ID:
 L1912053-1

 Matrix:
 SW

PAGE 1 of 6

Test Des	cription	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Total Floodway							
Bicarbo	nate (HCO3)	195		mg/L			13-APR-17
Carbon	ate (CO3)	<0.60		mg/L			13-APR-17
Hydroxi	de (OH)	<0.34		mg/L			13-APR-17
*Nitrate	and Nitrite as N	0.893		mg/L	10		20-APR-17
рН							
рН		7.97		pH units			12-APR-17
Turbidity							
*Turbidit	у	107		NTU			13-APR-17
Total Metals by ICP-MS							
	n (Ca)-Total	53.6		mg/L			13-APR-17
-	sium (Mg)-Total	22.8		mg/L			13-APR-17
	um (K)-Total	7.85		mg/L			13-APR-17
Sodium	(Na)-Total	21.3		mg/L		200	13-APR-17
TDS calculated							
TDS (C	alculated)	316		mg/L		500	17-APR-17
Sulfate in Water by IC							
Sulfate	(SO4)	95.8		mg/L		500	12-APR-17
Nitrite in Water by IC (Lo	•						
*Nitrite (as N)	0.0226		mg/L	1		12-APR-17
Nitrate in Water by IC (Lo	ow Level)						
*Nitrate	(as N)	0.870		mg/L	10		12-APR-17
Ion Balance Calculation							
Ion Bala		98.3		%			20-APR-17
Cation - Anion S	Anion Balance	-0.8 5.78		%			20-APR-17
Cation		5.68		me/L me/L			20-APR-17 20-APR-17
Hardness Calculated				1110/2			
	ss (as CaCO3)	228	нтс	mg/L		500	17-APR-17
Conductivity		_					
Conductivity	tivity	524		umhos/cm			12-APR-17
Chloride in Water by IC							
Chloride	e (CI)	18.6		mg/L		250	12-APR-17
Alkalinity, Total (as CaC	. ,					200	
	y, Total (as	160		mg/L			12-APR-17
Callos)						
Phosph	orus (P)-Total	0.329		mg/L			17-APR-17
	iia, Total (as N)	0.048		mg/L			13-APR-17

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

 Date:
 24-APR-17

 PO No.:
 L1912053

 WO No.:
 L1912053

 Project Ref:
 16-0300-002.1100.02

 Sample ID:
 PTH 44

 Sampled By:
 AN/RP

 Date Collected:
 12-APR-17

 Lab Sample ID:
 L1912053-1

 Matrix:
 SW

PAGE 2 of 6

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Escherichia Coli	6	MBHT	MPN/100mL	0		12-APR-17
Total Coliforms	1300	MBHT	MPN/100mL	0		12-APR-17
Total Kjeldahl Nitrogen	1.10		mg/L			21-APR-17
Total Suspended Solids	124		mg/L			13-APR-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQ Approved by Hua Wo Approved by Hua Wo	guidelines on cor ater Quality	ventional treatm	ent and slow sand	N.D. = less than de	tection limit. arth filtration plea	ase see
Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 24-APR-17

 PO No.:
 1912053

 WO No.:
 L1912053

 Project Ref:
 16-0300-002.1100.02

 Sample ID:
 PTH 59

 Sampled By:
 AN/RP

 Date Collected:
 12-APR-17

 Lab Sample ID:
 L1912053-2

 Matrix:
 SW

PAGE 3 of 6

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Total Flo	oodway						
	Bicarbonate (HCO3)	199		mg/L			13-APR-17
	Carbonate (CO3)	<0.60		mg/L			13-APR-17
	Hydroxide (OH)	<0.34		mg/L			13-APR-17
	*Nitrate and Nitrite as N	0.885		mg/L	10		20-APR-17
рН							
	рН	7.96		pH units			12-APR-17
Turbidity							
· · · · · · · · · · · · · · · · · · ·	*Turbidity	112		NTU			13-APR-17
Total Metals b	v ICP-MS						
	Calcium (Ca)-Total	54.7		mg/L			13-APR-17
	Magnesium (Mg)-Total	24.9		mg/L			13-APR-17
	Potassium (K)-Total	8.26		mg/L			13-APR-17
	Sodium (Na)-Total	22.6		mg/L		200	13-APR-17
TDS calculated	d i i i i i i i i i i i i i i i i i i i						
	TDS (Calculated)	327		mg/L		500	17-APR-17
Sulfate in Wate	er by IC						
	Sulfate (SO4)	99.0		mg/L		500	12-APR-17
Nitrite in Wate	r by IC (Low Level)						
	*Nitrite (as N)	0.0220		mg/L	1		12-APR-17
Nitrate in Wate	er by IC (Low Level)						
	*Nitrate (as N)	0.863		mg/L	10		12-APR-17
Ion Balance Ca	alculation			_			
	Ion Balance	101		%			20-APR-17
	Cation - Anion Balance	0.4		%			20-APR-17
	Anion Sum	5.93		me/L			20-APR-17
	Cation Sum	5.98		me/L			20-APR-17
Hardness Calc							
	Hardness (as CaCO3)	239	НТС	mg/L		500	17-APR-17
Conductivity							
	Conductivity	534		umhos/cm			12-APR-17
Chloride in Wa	ater by IC						
	Chloride (Cl)	19.3		mg/L		250	12-APR-17
Alkalinity, Tota	al (as CaCO3)						
-	Alkalinity, Total (as CaCO3)	163		mg/L			12-APR-17
	Phosphorus (P)-Total	0.336		mg/L			17-APR-17
	Ammonia, Total (as N)	0.048		mg/L			13-APR-17

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

KGS Group Consultants (Winnipeg) 865 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 ATTN: Marci Friedman Hamm
 Date:
 24-APR-17

 PO No.:
 L1912053

 WO No.:
 L1912053

 Project Ref:
 16-0300-002.1100.02

 Sample ID:
 PTH 59

 Sampled By:
 AN/RP

 Date Collected:
 12-APR-17

 Lab Sample ID:
 L1912053-2

 Matrix:
 SW

PAGE 4 of 6

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Escherichia Coli	9		MPN/100mL	0		12-APR-17
Total Coliforms	1550		MPN/100mL	0		12-APR-17
Total Kjeldahl Nitrogen	1.19		mg/L			21-APR-17
Total Suspended Solids	62		mg/L			13-APR-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa A blank entry designates no known limit. A shaded value in the Results column exceeds CDWC Approved by	guidelines on cor ater Quality	ventional treatm	ent and slow sand	N.D. = less than de	tection limit. arth filtration plea	ase see

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Guidelines & Objectives

Sample Parameter Qualifier key listed:

Qualifier	Description
MBHT	The APHA 30 hour hold time was exceeded for microbiological testing. Samples processed within 48 hours from time of sampling may

be valid in some cases (refer to Health Canada guidance).

HTC

FC Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).

Health Canada MAC Health Related Criteria Limits

ficulti ounduu mAo ficulti	
Nitrate/Nitrite-N*	Criteria limit is 10 mg/L (1.0 mg/L if present as all Nitrite-N). High concentrations may contribute to blue baby syndrome in infants.
Lead*	A cumulative body poison, uncommon in naturally occurring hard waters.
Fluoride*	Present in fluoridated water supplies at 0.8 mg/L to reduce dental caries. Elevated levels causes fluorosis (mottling of teeth).
Total Coliforms*	Criteria is 0 CFU/100mL. Adverse health effects.
E. Coli*	Criteria is 0 CFU/100 mL. Certain E. Coli bacteria can be life threatening.

*Health Canada Canadian Drinking Water Quality Guidelines (MAC limit)

Aesthetic Objective Concentration Levels

Alkalinity	Acid neutralizing capacity. Usually a measure of carbonate and bicarbonates and calculated and reported as calcium carbonate.
Balance	Quality control parameter ratioing cations to anions
Bicarbonate	See Alkalinity. Report as the anion HCO3-1
Carbonate	See Alkalinity. Reported at the anion CO3-2
Calcium	See Hardness. Common major cation of water chemistry.
Chloride	Common major anion of water chemistry.
Conductance	Physical test measuring water salinity (dissolved ions or solids)
Hardness	Classical measure or capacity of water to precipitate soap (chiefly calcium and magnesium ions). Causes scaling tendency in water if carbonates/bicarbonates are present (if >200 mg/L). For drinking water purposes waters with results <200 mg/L are considered acceptable, results >200 mg/L are considered poor but can be tolerated. Results >500 mg/L are unacceptable.
Hydroxide	See alkalinity
Magnesium	See hardness. Common major cation of water chemistry. Elevated levels (>125 mg/L) may exert a cathartic or diuretic action.
pH	Measure of water acidity/alkalinity. Normal range is 7.0-8.5.
Potassium	Common major cation of water chemistry.
Sodium	Common major cation of water chemistry. Measure of salinity (saltiness). The aesthetic objective (not related to health) for sodium in drinking water is 200 mg/L. However, where sodium concentration of the drinking water exceeds 20 mg/L, it is recommended that any person on a sodium restricted diet consult with his/her physician or Medical Officer of Health concerning the use of that water.
Sulphate	Common major anion of water chemistry. Elevated levels may exert a cathartic or diuretic action.
Total Dissolved Solids	A measure of water salinity.
Iron	Causes staining to laundry and porcelain and astringent taste. Oxidizes to red-brown precipitate on exposure to air.
Manganese Heterotrophic	Elevated levels may cause staining of laundry and porcelain.
Plate Count	Criteria is 500 cfu/mL Measure of heterotrophic bacteria present.

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder:	L191205	3	- Report Date: 24-	APR-17	Pa	ige 1 of 6
Client:								
Contact: Test	Mat		Result	Qualifier	Units	RPD	Limit	Analyzed
			Result	quanter	Units		Linit	Analyzea
ALK-TITR-WP	Wa	ter						
WG2510283-5	R3699078 5 DUP al (as CaCO3)	L1912053-2 163	166		mg/L	1.6	20	12-APR-17
WG2510283-4 Alkalinity, Tot	LCS al (as CaCO3)		103.7		%		85-115	12-APR-17
WG2510283-1 Alkalinity, Tot	MB al (as CaCO3)		<1.0		mg/L		1	12-APR-17
CL-IC-N-WP	Wa	ter						
	R3703428							
WG2510009-7 Chloride (Cl)		L1912053-1 18.6	18.6		mg/L	0.2	20	12-APR-17
WG2510009-6 Chloride (Cl)	6 LCS		100.4		%		90-110	12-APR-17
WG2510009-5 Chloride (Cl)	5 MB		<0.50		mg/L		0.5	12-APR-17
WG2510009-8 Chloride (Cl)	B MS	L1912053-1	92.4		%		75-125	12-APR-17
EC-QT97-ENDPT	-WP Wa	ter						
Batch I	R3699144							
WG2510249-2 Escherichia C		L1912053-1 6	6		MPN/100mL	0.0	65	12-APR-17
WG2510249-1 Escherichia C			<1		MPN/100mL		1	12-APR-17
EC-WP	Wa	ter						
Batch I	R3699078							
WG2510283-5 Conductivity		L1912053-2 534	534		umhos/cm	0.0	10	12-APR-17
WG2510283-3 Conductivity	LCS		98.3		%		90-110	12-APR-17
WG2510283-1 Conductivity	MB		<1.0		umhos/cm		1	12-APR-17
MET-T-MS-WP	Wa	ter						
WG2510758-2								
Calcium (Ca)			101.6		%		80-120	13-APR-17
Magnesium (I			106.6		%		80-120	13-APR-17
Potassium (K			108.5		%		80-120	13-APR-17
Sodium (Na)-	Iotal		106.5		%		80-120	13-APR-17

				-				
		Workorder:	L191205	3	Report Date: 2	4-APR-17	Pa	age 2 of 6
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WP	Water							
Batch R3700483								
WG2510758-1 MB								
Calcium (Ca)-Total			<0.20		mg/L		0.2	13-APR-17
Magnesium (Mg)-Total			<0.050		mg/L		0.05	13-APR-17
Potassium (K)-Total			<0.10		mg/L		0.1	13-APR-17
Sodium (Na)-Total			<0.050		mg/L		0.05	13-APR-17
N-TOTKJ-WP	Water							
Batch R3704391								
WG2513163-14 LCS								
Total Kjeldahl Nitrogen			110.3		%		75-125	21-APR-17
WG2513163-13 MB								
Total Kjeldahl Nitrogen			<0.20		mg/L		0.2	21-APR-17
NH3-COL-WP	Water							
Batch R3700525								
WG2509993-6 LCS								
Ammonia, Total (as N)			100.3		%		85-115	13-APR-17
WG2509993-5 MB			0.040					
Ammonia, Total (as N)			<0.010		mg/L		0.01	13-APR-17
NO2-L-IC-N-WP	Water							
Batch R3703428								
WG2510009-7 DUP		L1912053-1	0.0000		~~~/l	0.0	00	
Nitrite (as N)		0.0226	0.0228		mg/L	0.8	20	12-APR-17
WG2510009-6 LCS Nitrite (as N)			99.5		%		90-110	12-APR-17
			55.5		70		90-110	12-AFK-17
WG2510009-5 MB Nitrite (as N)			<0.0010		mg/L		0.001	12-APR-17
WG2510009-8 MS		L1912053-1			5		0.001	12701017
Nitrite (as N)		E1912033-1	89.4		%		75-125	12-APR-17
NO3-L-IC-N-WP	Water							
Batch R3703428								
WG2510009-7 DUP		L1912053-1						
Nitrate (as N)		0.870	0.865		mg/L	0.6	20	12-APR-17
WG2510009-6 LCS								
Nitrate (as N)			101.3		%		90-110	12-APR-17
WG2510009-5 MB								
Nitrate (as N)			<0.0050		mg/L		0.005	12-APR-17
WG2510009-8 MS		L1912053-1						
Nitrate (as N)			92.1		%		75-125	12-APR-17

		Workorder:	1 101205	- :2	Poport Data: 04			
Test	Matrix	Reference	Result	Qualifier	Report Date: 24- Units	RPD	Limit	age 3 of 6
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
P-T-COL-WP	Water							
Batch R3701485								
WG2511815-2 LCS Phosphorus (P)-Total			98.0		%		80-120	17-APR-17
WG2511815-1 MB Phosphorus (P)-Total			<0.010		mg/L		0.01	17-APR-17
PH-WP	Water							
Batch R3699078								
WG2510283-5 DUP		L1912053-2						
рН		7.96	7.95	J	pH units	0.01	0.2	12-APR-17
WG2510283-2 LCS рН			7.41		pH units		7.3-7.5	12-APR-17
SO4-IC-N-WP	Water							
Batch R3703428								
WG2510009-7 DUP		L1912053-1						
Sulfate (SO4)		95.8	95.8		mg/L	0.1	20	12-APR-17
WG2510009-6 LCS								
Sulfate (SO4)			101.7		%		90-110	12-APR-17
WG2510009-5 MB								
Sulfate (SO4)			<0.30		mg/L		0.3	12-APR-17
WG2510009-8 MS		L1912053-1						
Sulfate (SO4)			89.5		%		75-125	12-APR-17
SOLIDS-TOTSUS-WP	Water							
Batch R3700847								
WG2510503-14 LCS								
Total Suspended Solids			99.3		%		85-115	13-APR-17
WG2510503-13 MB								
Total Suspended Solids			<5.0		mg/L		5	13-APR-17
TC-QT97-ENDPT-WP	Water							
Batch R3699141								
WG2510255-2 DUP		L1912053-1						
Total Coliforms		1300	1200		MPN/100mL	7.7	65	12-APR-17
WG2510255-1 MB								
Total Coliforms			<1		MPN/100mL		1	12-APR-17
TURBIDITY-WP	Water							
Batch R3699557								
WG2511053-3 DUP		L1912053-1						
Turbidity		107	105		NTU	1.9	15	13-APR-17

TURBIDITY-WP			Workorder	L191205	53	Report Date: 2	4-APR-17	Pa	ge 4 of 6
Test		Matrix Referen		Result	Qualifier	Units	RPD	Limit	Analyzed
TURBIDITY-WP		Water							
Batch F	R3699557								
	LCS			100.5		%		85-115	13-APR-17
WG2511053-1 Turbidity	MB			<0.10		NTU		0.1	13-APR-17

Workorder: L1912053

Report Date: 24-APR-17

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.

Workorder: L1912053

Report Date: 24-APR-17

Hold Time Exceedances:

ALS Product Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рH							
•	1	12-APR-17 09:25	12-APR-17 12:58	0.25	3.6	hours	EHTR-FM
	2	12-APR-17 10:25	12-APR-17 12:58	0.25	2.6	hours	EHTR-FM

Legend & Qualifier Definitions:

EHTR-FM:	Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR:	Exceeded ALS recommended hold time prior to sample receipt.
EHTL: EHT: Rec. HT:	Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry. Exceeded ALS recommended hold time prior to analysis. ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1912053 were received on 12-APR-17 10:50.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

								1()-		
(ALS)			/ Analytical R Free: 1 800 6 alsglobal.com	68 9878	1	191	200	53	Page	_/_∘	of J
Report To	Repor	Format / Distribution	<u></u>		<u></u>						" -
Company:	Standa		specify):				subject to ava	ilability - Conta	act ALS to confirm	TAT)	
Contact:	Select:				Regula				() 6(60) 1 () (66)		
Address:	Email 1		Digital	Fax	Priority	• • • • • •	i Bu a (Bai Bai			A I I I	
	Email 2		<u> </u>		Emerg					# F B H	
Phone: Fax:		· · · · · · · · · · · · · · · · · · ·			Same		L19	12053-0	COFC		
nvoice To Same as Report ? (circle) Yes or No (if No, provide	details) Client /	Project Information	······································								
Copy of Invoice with Report? (circle) Yes or No	Job #:					(eu ur Frese	nveu, r/r)		T
Company:	PO / AF	E:			\mathbb{K}	\leq			$\overline{\mathcal{N}}$		7
Contact: ACCOUNTS VALICALIE	LSD:				_					T-F	_
Address:											
Phone: Fax:	Quote #	:			-						lers
ab Work Order # (lab use only)	ALS Contact	:	Sampler:		1						Contain
Sample # Sample Identification (This description will appear on the	report)	Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	┫╴╽╴╽						Number of Containers
		12-Mol-17			┝╺┼╾┥		┿╾┽╸	┥		┢╾┝	
				·+	╉╾╴┠──┨						5
		12-APe1-17	12:25								5
										+-+-	<u> </u>
							+-+-		┿╾┼╾╸	┼─┽━	
					┽╌┼─┼		╉━┼━	┥─┼─			
				<u> </u>	╉━─╎──┤						
						_					_
									-+	┢━┼━	-+
		· ·					+-+-			┟──┝─	
				<u>+</u>	┞━╌┠╼╌╀		┥╼┥╴	+-+			
		-++			┟──┼──┼						
		╶┠╼╼─┈────┤		·							
								+		┢╼╌┠╌╸	-+
					┝╶┼╾┼		┼──┼──╸	┽╼┼╸	+	┝──╂──	
Special Instructions / Regulation with	water or land use (CC	ME- Freshwater Ag	uatic Life/BC C	SR-Commercial/Al			╇				
					5 Her 1-Natu	ral/ETC)	Hazardo	us Details			
	_										
Failure to	complete all portions	of this form may de	lav analysis .								
By the use of this form the user ac	knowledges and agree	e with the Terms	anay analysis. P	rease fill in this fo	rm LEGIBLY.						
By the use of this form the user ac SHIPMENT RELEASE (client use)	ou ou	S with the forms an	d Conditions a	as specified on the	back page o	f the whi	ite - report	сору.			
leased by: Date: Time:	Received by:	IPMENT RECEPTIO	N (lab use only)						(lab use only)		
And way April 10:55	h	Date: An \ 12/67	ت۵:۲۵ (۵:۶۵)	Temperature:	Verified by:		Date:	Tim	ne:	/ Observatio Yes / No ?	ons:
REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING	INFORMATION					_	B			lf Yes add	SIF
				RATORY COPY	YELLOW - CLI	ENT COP	Y TV	\overline{V}		18.01 Fron	

 Date:
 24-APR-17

 PO No.:
 L1915625

 WO No.:
 L1915625

 Project Ref:
 16-0300-002

 Sample ID:
 K13-12321

 Sampled By:
 PJL/RP

 Date Collected:
 20-APR-17

 Lab Sample ID:
 L1915625-1

 Matrix:
 GW

PAGE 1 of 6

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Caliform and E cali by MPN 0707						
Total Coliform and E.coli by MPN QT97 Total Coliforms	<1		MPN/100mL	0		21-APR-17
Escherichia Coli	<1		MPN/100mL MPN/100mL	0 0		21-APR-17
			WI N/ TOOML	0		21701017
CDWQG = Health Canada Guideline Limits updated	DECEMBER					
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQ 	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration plea	se see
Approved by						
Hua Wo						
Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 24-APR-17

 PO No.:
 L1915625

 WO No.:
 L1915625

 Project Ref:
 16-0300-002

 Sample ID:
 K09-12316

 Sampled By:
 PJL/RP

 Date Collected:
 20-APR-17

 Lab Sample ID:
 L1915625-2

 Matrix:
 GW

PAGE 2 of 6

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97	2					21-APR-17
Total Coliforms Escherichia Coli	3 <1		MPN/100mL MPN/100mL	0		21-APR-17 21-APR-17
				0		21-AL 10-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER					
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQ 	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de l or diatomaceous e	tection limit. arth filtration plea	se see
Approved by Ulme						
Hua Wo						
Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 24-APR-17

 PO No.:
 L1915625

 WO No.:
 L1915625

 Project Ref:
 16-0300-002

 Sample ID:
 K09-12012

 Sampled By:
 PJL/RP

 Date Collected:
 20-APR-17

 Lab Sample ID:
 L1915625-3

 Matrix:
 GW

PAGE 3 of 6

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97						
Total Coliforms	<1		MPN/100mL	0		21-APR-17
Escherichia Coli	<1		MPN/100mL	0		21-APR-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQ 	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de l or diatomaceous e	tection limit. arth filtration plea	ase see
Approved by						
Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 24-APR-17

 PO No.:
 L1915625

 WO No.:
 L1915625

 Project Ref:
 16-0300-002

 Sample ID:
 K11-12014

 Sampled By:
 PJL/RP

 Date Collected:
 20-APR-17

 Lab Sample ID:
 L1915625-4

 Matrix:
 GW

PAGE 4 of 6

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97						
Total Coliforms	3	1	MPN/100mL	0		21-APR-17
Escherichia Coli	<1		MPN/100mL	0		21-APR-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 CDWQG for Nitrate+Nitrite-N is the limit for nitrate only Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa A blank entry designates no known limit. A shaded value in the Results column exceeds CDWQ 	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de l or diatomaceous e	tection limit. arth filtration plea	se see
Approved by Mone						
Hua Wo Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 24-APR-17

 PO No.:
 L1915625

 WO No.:
 L1915625

 Project Ref:
 16-0300-002

 Sample ID:
 K11-12015

 Sampled By:
 PJL/RP

 Date Collected:
 20-APR-17

 Lab Sample ID:
 L1915625-5

 Matrix:
 GW

PAGE 5 of 6

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97						
Total Coliforms	3		MPN/100mL	0		21-APR-17
Escherichia Coli	<1		MPN/100mL	0]	21-APR-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQ 	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de d or diatomaceous e	tection limit. arth filtration plea	ase see
Approved by <u>MML</u> Hua Wo Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

L1915625 CONTD

PAGE 6 of 6

Guidelines & Objectives

Health Canada MAC Health Related Criteria Limits

Nitrate/Nitrite-N*	Criteria limit is 10 mg/L (1.0 mg/L if present as all Nitrite-N). High concentrations may contribute to blue baby syndrome in infants.
Lead*	A cumulative body poison, uncommon in naturally occurring hard waters.
Fluoride*	Present in fluoridated water supplies at 0.8 mg/L to reduce dental caries. Elevated levels causes fluorosis (mottling of teeth).
Total Coliforms*	Criteria is 0 CFU/100mL. Adverse health effects.
E. Coli*	Criteria is 0 CFU/100 mL. Certain E. Coli bacteria can be life threatening.

*Health Canada Canadian Drinking Water Quality Guidelines (MAC limit)

Aesthetic Objective Concentration Levels

Alkalinity	Acid neutralizing capacity. Usually a measure of carbonate and bicarbonates and calculated and reported as calcium carbonate.
Balance	Quality control parameter ratioing cations to anions
Bicarbonate	See Alkalinity. Report as the anion HCO3-1
Carbonate	See Alkalinity. Reported at the anion CO3-2
Calcium	See Hardness. Common major cation of water chemistry.
Chloride	Common major anion of water chemistry.
Conductance	Physical test measuring water salinity (dissolved ions or solids)
Hardness	Classical measure or capacity of water to precipitate soap (chiefly calcium and magnesium ions). Causes scaling tendency in water if carbonates/bicarbonates are present (if >200 mg/L). For drinking water purposes waters with results <200 mg/L are considered acceptable, results >200 mg/L are considered poor but can be tolerated. Results >500 mg/L are unacceptable.
Hydroxide	See alkalinity
Magnesium	See hardness. Common major cation of water chemistry. Elevated levels (>125 mg/L) may exert a cathartic or diuretic action.
рН	Measure of water acidity/alkalinity. Normal range is 7.0-8.5.
Potassium	Common major cation of water chemistry.
Sodium	Common major cation of water chemistry. Measure of salinity (saltiness). The aesthetic objective (not related to health) for sodium in drinking water is 200 mg/L. However, where sodium concentration of the drinking water exceeds 20 mg/L, it is recommended that any person on a sodium restricted diet consult with his/her physician or Medical Officer of Health concerning the use of that water.
Sulphate	Common major anion of water chemistry. Elevated levels may exert a cathartic or diuretic action.
Total Dissolved Solids	A measure of water salinity.
Iron Manganese	Causes staining to laundry and porcelain and astringent taste. Oxidizes to red-brown precipitate on exposure to air. Elevated levels may cause staining of laundry and porcelain.
Heterotrophic	
Plate Count	Criteria is 500 cfu/mL Measure of heterotrophic bacteria present.

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Workorder	: L191562	25 R	eport Date: 24-	APR-17	P	age 1 of 2
Client:	865 Wav	oup Consultan erly Street - 3 g MB R3T 5F							
Contact:	PAUL LI	NDELL							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TC,EC-QT97-V	WP	Water							
Batch	R3704398								
WG251489	9-1 DUP		L1915625-2						
Total Colife	orms		3	2		MPN/100mL	43	65	21-APR-17
Escherichia	a Coli		<1	<1	RPD-NA	MPN/100mL	N/A	65	21-APR-17
WG251489	9-2 MB								
Total Colife	orms			<1		MPN/100mL		1	21-APR-17
Escherichia	a Coli			<1		MPN/100mL		1	21-APR-17

Workorder: L1915625

Report Date: 24-APR-17

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

10-232747

		L1915625-COFC				Page of						of
Report To	Re				Servio	e Reque	st:(Rush s	ubject to availa	bility - Conta	act ALS to cor	nfirm TAT)	
Company: K-C-S (Standard				V	Regular	(Standard T	furnaround Time	s - Business	Days)		
Contact: Paul Linder	Select: P		Digital	Fax		Priority(2	4 Busines	s Days}-50% su	rcharge - Cor	ntact ALS to o	onfirm TAT	
Address 265 Waverley St. WPA NB		plindelle		Picom		Emerger	icy (1-2 Bus	siness Days)-10	0% Surcharg	e - Contact Al	S to confirm TAT	т —
KYAZAG	Email 2: v	nsmithe	Kasarova,	uzm		Same Da	ay or Week	end Emergency	- Contact AL	S to confirm T	AT	
Phone: 204-803-0720 Fax:	mfh	2 mm RK95	Group. Got	~	ŀ			Ana	lysis Red	quest		
Invoice To Same as Report ? (circle) Yes or No (if No, provide deta	ails) Client / P	roject Information					(Indi	icate Filtere	d or Prese	erved, F/F	')	
Copy of Invoice with Report? (circle) Yes or No,	Job #:) (6-0300-1	0.2		\square							/
Company:	PO / AFE				r	6				- T -		
Contact:	LSD:				1 4	-WP						
Address:					₿Ĺ ľ	5						្ត
Phone: Fax:	Quote #:	Q5627	1			019	1					aine
Lab Work Order # (lab use only)	ALS Contact:	Judy D.	Sampler: P) [/RP	4	5						r of Containers
Sample Identification Sample # (This description will appear on the re	port)	Date (dd-mmm-yy)	Time (hh:mm)	Sample Type		L L			10	\mathcal{T}		Number
K13-12321		20-Apr-17	13:06	GW		X			TN.			١
K09-12316		I I I	14:05	1		X		· ·				1
						4						
K09-12012		 	15:02	<u> </u>		X						
KII-12014			16:40			X						1
K11-12015			16:05			X						1
									•			
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·											
				· · ·								
	,,,,,		1		1							
Special Instructions / Regulation with	water or land use (CC	ME-Freshwater A	quatic Life/BC C	SR-Commercial/A	B Tie	r 1-Nati	ural/ETC) / Hazardo	ous Detai	ls		└───┛
	complete all portions	-								· · · ·		
By the use of this form the user ac				· · ·	e bacl	k page				<u></u>		
SHIPMENT RELEASE (client use) Released by:	Received by:	HIPMENT RECEPT	ION (lab use only Time:) Temperature:	Vori	fied by:		PMENT VE		ON (lab us Time:		natione
Apr. 2017	neceived by.	Apr 2/17	~			fied by:		Date:		141118;	Yes /	rvations: No ? add SIF
REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING I	NFORMATION	<u> </u>		ORATORY COPY	YELL	_OW - C	LIENT CO	OPY			GENF 18.01	Front

 Date:
 25-APR-17

 PO No.:
 L1914447

 WO No.:
 L1914447

 Project Ref:
 16-0300-002.1100.62

 Sample ID:
 PTH 44

 Sampled By:
 ATM+GS

 Date Collected:
 19-APR-17

 Lab Sample ID:
 L1914447-1

 Matrix:
 SW

PAGE 1 of 5

Test D	escription	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Total Floodway							
Bicarl	ponate (HCO3)	230		mg/L			21-APR-17
Carbo	onate (CO3)	9.96		mg/L			21-APR-17
Hydro	oxide (OH)	<0.34		mg/L			21-APR-17
*Nitrat	e and Nitrite as N	0.597		mg/L	10		20-APR-17
рН							
рН		8.53		pH units			20-APR-17
Turbidity							
*Turbi	dity	54.0		NTU			20-APR-17
Total Metals by ICP-MS	6						
	um (Ca)-Total	69.3		mg/L			20-APR-17
Magn	esium (Mg)-Total	33.0		mg/L			20-APR-17
	sium (K)-Total	7.61		mg/L			20-APR-17
Sodiu	m (Na)-Total	36.4		mg/L		200	20-APR-17
TDS calculated							
TDS	(Calculated)	423		mg/L		500	21-APR-17
Sulfate in Water by IC							
Sulfat	te (SO4)	124		mg/L		500	19-APR-17
Nitrite in Water by IC (Low Level)						
*Nitrite	e (as N)	0.0109		mg/L	1		19-APR-17
Nitrate in Water by IC (Low Level)						
*Nitrat	e (as N)	0.586		mg/L	10		19-APR-17
Ion Balance Calculation	n						
Ion B	alance	106		%			21-APR-17
	n - Anion Balance	2.9		%			21-APR-17
Anion	i Sum n Sum	7.50 7.95		me/L			21-APR-17
	n Sum	7.95		me/L			21-APR-17
Hardness Calculated	ness (as CaCO3)	309	нтс			500	21-APR-17
	1635 (d5 0d005)	303		mg/L		500	
Conductivity	uctivity.	644					20 400 47
	uctivity	044		umhos/cm			20-APR-17
Chloride in Water by IC		07.4					40 400 17
	ide (CI)	27.4		mg/L		250	19-APR-17
Alkalinity, Total (as Ca							
Alkali CaCC	nity, Total (as 03)	205		mg/L			20-APR-17
Phos	ohorus (P)-Total	0.219		mg/L			20-APR-17
	erichia Coli	4		MPN/100mL	0	1	19-APR-17

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

 Date:
 25-APR-17

 PO No.:
 L1914447

 WO No.:
 L1914447

 Project Ref:
 16-0300-002.1100.62

 Sample ID:
 PTH 44

 Sampled By:
 ATM+GS

 Date Collected:
 19-APR-17

 Lab Sample ID:
 L1914447-1

 Matrix:
 SW

PAGE 2 of 5

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliforms	236	(MPN/100mL	0	(19-APR-17
Total Kjeldahl Nitrogen	0.85		mg/L			25-APR-17
Total Suspended Solids	52		mg/L			21-APR-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
CDWQG = Health Canada Guideline Limits updated * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQ Approved by <u>Hua Wo</u> Account Manager	 If present as N guidelines on cor ater Quality 	litrate then the li ventional treatm	ent and slow sand	N.D. = less than de	tection limit. arth filtration plea	ise see

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 25-APR-17

 PO No.:
 L1914447

 WO No.:
 L1914447

 Project Ref:
 16-0300-002.1100.62

 Sample ID:
 PTH 59

 Sampled By:
 ATM+GS

 Date Collected:
 19-APR-17

 Lab Sample ID:
 L1914447-2

 Matrix:
 SW

PAGE 3 of 5

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Total Floodway							
	Bicarbonate (HCO3)	241		mg/L			21-APR-17
	Carbonate (CO3)	<0.60		mg/L			21-APR-17
	Hydroxide (OH)	<0.34		mg/L			21-APR-17
	*Nitrate and Nitrite as N	0.522		mg/L	10		20-APR-17
рН				_			
•	рН	8.03		pH units			20-APR-17
Turbidity							
	*Turbidity	26.0		NTU			20-APR-17
Total Metals b	ov ICP-MS						
	Calcium (Ca)-Total	63.6		mg/L			20-APR-17
	Magnesium (Mg)-Total	33.7		mg/L			20-APR-17
	Potassium (K)-Total	7.26		mg/L			20-APR-17
	Sodium (Na)-Total	43.4		mg/L		200	20-APR-17
TDS calculate	d						
	TDS (Calculated)	437		mg/L		500	21-APR-17
Sulfate in Wat	ter by IC						
	Sulfate (SO4)	123		mg/L		500	19-APR-17
Nitrite in Wate	er by IC (Low Level)						
	*Nitrite (as N)	0.0056		mg/L	1		19-APR-17
Nitrate in Wate	er by IC (Low Level)						
	*Nitrate (as N)	0.517		mg/L	10		19-APR-17
Ion Balance C	alculation						
	Ion Balance	102		%			21-APR-17
	Cation - Anion Balance	1.2		%			21-APR-17
	Anion Sum	7.83		me/L			21-APR-17
	Cation Sum	8.02		me/L			21-APR-17
Hardness Cal							
	Hardness (as CaCO3)	298	НТС	mg/L		500	21-APR-17
Conductivity							
	Conductivity	696		umhos/cm			20-APR-17
Chloride in Wa	ater by IC						
	Chloride (Cl)	45.3		mg/L		250	19-APR-17
Alkalinity, Tot	al (as CaCO3)						
-	Alkalinity, Total (as CaCO3)	198		mg/L			20-APR-17
	Phosphorus (P)-Total	0.176		mg/L			20-APR-17
	Escherichia Coli	<1		MPN/100mL	0		19-APR-17

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

 Date:
 25-APR-17

 PO No.:
 1914447

 WO No.:
 L1914447

 Project Ref:
 16-0300-002.1100.62

 Sample ID:
 PTH 59

 Sampled By:
 ATM+GS

 Date Collected:
 19-APR-17

 Lab Sample ID:
 L1914447-2

 Matrix:
 SW

PAGE 4 of 5

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliforms	34		MPN/100mL	0		19-APR-17
Total Kjeldahl Nitrogen	0.66		mg/L			25-APR-17
Total Suspended Solids	<20		mg/L			21-APR-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 CDWQG for Nitrate+Nitrite-N is the limit for nitrate only Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa A blank entry designates no known limit. A shaded value in the Results column exceeds CDWC 	guidelines on cor ater Quality	ventional treatm	ent and slow sand	N.D. = less than de l or diatomaceous e	ection limit. arth filtration plea	se see
Approved by Hua Wo Baccount Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Sample Parameter Qualifier key listed:

Qualifier	Description
HTC	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).
Health Canada	MAC Health Related Criteria Limits
Nitrate/Nitrite-N*	Criteria limit is 10 mg/L (1.0 mg/L if present as all Nitrite-N). High concentrations may contribute to blue baby syndrome in infants.
Lead*	A cumulative body poison, uncommon in naturally occurring hard waters.
Fluoride*	Present in fluoridated water supplies at 0.8 mg/L to reduce dental caries. Elevated levels causes fluorosis (mottling of teeth).
Total Coliforms*	Criteria is 0 CFU/100mL. Adverse health effects.

E. Coli* Criteria is 0 CFU/100 mL. Certain E. Coli bacteria can be life threatening.

*Health Canada Canadian Drinking Water Quality Guidelines (MAC limit)

Aesthetic Objective Concentration Levels

Aesthetic Objective Conce	
Alkalinity	Acid neutralizing capacity. Usually a measure of carbonate and bicarbonates and calculated and reported as calcium carbonate.
Balance	Quality control parameter ratioing cations to anions
Bicarbonate	See Alkalinity. Report as the anion HCO3-1
Carbonate	See Alkalinity. Reported at the anion CO3-2
Calcium	See Hardness. Common major cation of water chemistry.
Chloride	Common major anion of water chemistry.
Conductance	Physical test measuring water salinity (dissolved ions or solids)
Hardness	Classical measure or capacity of water to precipitate soap (chiefly calcium and magnesium ions). Causes scaling tendency in water if carbonates/bicarbonates are present (if >200 mg/L). For drinking water purposes waters with results <200 mg/L are considered acceptable, results >200 mg/L are considered poor but can be tolerated. Results >500 mg/L are unacceptable.
Hydroxide	See alkalinity
Magnesium	See hardness. Common major cation of water chemistry. Elevated levels (>125 mg/L) may exert a cathartic or diuretic action.
pH	Measure of water acidity/alkalinity. Normal range is 7.0-8.5.
Potassium	Common major cation of water chemistry.
Sodium	Common major cation of water chemistry. Measure of salinity (saltiness). The aesthetic objective (not related to health) for sodium in drinking water is 200 mg/L. However, where sodium concentration of the drinking water exceeds 20 mg/L, it is recommended that any person on a sodium restricted diet consult with his/her physician or Medical Officer of Health concerning the use of that water.
Sulphate	Common major anion of water chemistry. Elevated levels may exert a cathartic or diuretic action.
Total Dissolved Solids	A measure of water salinity.
Iron	Causes staining to laundry and porcelain and astringent taste. Oxidizes to red-brown precipitate on exposure to air.
Manganese Heterotrophic	Elevated levels may cause staining of laundry and porcelain.
Plate Count	Criteria is 500 cfu/mL Measure of heterotrophic bacteria present.

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder:	L191444	17	Report Date: 25-	APR-17	Pa	ige 1 of 5
865	S Group Consultant Waverly Street - 3 nipeg MB R3T 5P	rd Floor						
Contact: Mare	ci Friedman Hamm	I						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-TITR-WP	Water							
Batch R3703	3793							
WG2514610-4 L Alkalinity, Total (as	CS CaCO3)		106.0		%		85-115	20-APR-17
WG2514610-1 M Alkalinity, Total (as	I B CaCO3)		<1.0		mg/L		1	20-APR-17
CL-IC-N-WP	Water							
Batch R3703	3254							
WG2513477-6 Lu Chloride (Cl)	CS		101.4		%		90-110	19-APR-17
WG2513477-5 M Chloride (Cl)	B		<0.50		mg/L		0.5	19-APR-17
EC-QT97-ENDPT-WP	Water							
Batch R3703	3405							
WG2513621-2 D Escherichia Coli	UP	L1914447-1 4	4		MPN/100mL	0.0	65	19-APR-17
WG2513621-1 M Escherichia Coli	B		<1		MPN/100mL		1	19-APR-17
EC-WP	Water							
Batch R3703	3793							
WG2514610-3 L Conductivity	CS		100.8		%		90-110	20-APR-17
WG2514610-1 M Conductivity	B		<1.0		umhos/cm		1	20-APR-17
MET-T-MS-WP	Water							
Batch R3703								
	cs		404.4		0/			
Calcium (Ca)-Total			104.1		%		80-120	20-APR-17
Magnesium (Mg)-T			105.9		%		80-120	20-APR-17
Potassium (K)-Tota	ai		104.1		%		80-120	20-APR-17
Sodium (Na)-Total	_		105.8		%		80-120	20-APR-17
WG2513897-1 M Calcium (Ca)-Total			<0.20		mg/L		0.2	20-APR-17
Magnesium (Mg)-T	otal		<0.050		mg/L		0.05	20-APR-17
Potassium (K)-Tota	al		<0.10		mg/L		0.1	20-APR-17
Sodium (Na)-Total			<0.050		mg/L		0.05	20-APR-17
· · ·					÷			

N-TOTKJ-WP

Water

		•	-	
		Workorder: L1914447	Report Date: 25-APR-	17 Page 2 of 5
Fest	Matrix	Reference Result Qu	alifier Units RF	PD Limit Analyzed
N-TOTKJ-WP	Water			
Batch R3706224				
WG2514643-16 LCS Total Kjeldahl Nitrogen		84.3	%	75-125 24-APR-17
WG2514643-13 MB Total Kjeldahl Nitrogen		<0.20	mg/L	0.2 24-APR-17
NO2-L-IC-N-WP	Water			
Batch R3703254				
WG2513477-6 LCS Nitrite (as N)		102.0	%	90-110 19-APR-17
WG2513477-5 MB Nitrite (as N)		<0.0010	mg/L	0.001 19-APR-17
NO3-L-IC-N-WP	Water			
Batch R3703254				
WG2513477-6 LCS Nitrate (as N)		101.9	%	90-110 19-APR-17
WG2513477-5 MB Nitrate (as N)		<0.0050	mg/L	0.005 19-APR-17
P-T-COL-WP	Water			
Batch R3703768				
WG2513584-2 LCS Phosphorus (P)-Total		99.8	%	80-120 20-APR-17
WG2513584-1 MB Phosphorus (P)-Total		<0.010	mg/L	0.01 20-APR-17
PH-WP	Water			
Batch R3703793				
WG2514610-2 LCS рН		7.39	pH units	7.3-7.5 20-APR-17
SO4-IC-N-WP	Water			
Batch R3703254				
WG2513477-6 LCS Sulfate (SO4)		102.6	%	90-110 19-APR-17
WG2513477-5 MB Sulfate (SO4)		<0.30	mg/L	0.3 19-APR-17
SOLIDS-TOTSUS-WP	Water			

		Workorder:	Workorder: L1914447		Report Date: 25-APR-17		Page 3 of 5	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SOLIDS-TOTSUS-WP	Water							
Batch R37049	970							
WG2514724-2 LC Total Suspended Sc	-		98.7		%		85-115	21-APR-17
WG2514724-1 ME Total Suspended Sc			<5.0		mg/L		5	21-APR-17
TC-QT97-ENDPT-WP	Water							
Batch R37034	402							
WG2513617-2 DL Total Coliforms	IP	L1914447-1 236	187		MPN/100mL	23	65	19-APR-17
WG2513617-1 ME Total Coliforms	3		<1		MPN/100mL		1	19-APR-17
TURBIDITY-WP	Water							
Batch R37039 WG2514357-2 LC Turbidity			100.5		%		85-115	20-APR-17
WG2514357-1 ME Turbidity	3		<0.10		NTU		0.1	20-APR-17

Workorder: L1914447

Report Date: 25-APR-17

Page 4 of 5

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material

Certified Reference Material Continuing Calibration Verification CRM CCV

CVS Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

Workorder: L1914447

Report Date: 25-APR-17

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рН							
	1	19-APR-17 09:50	20-APR-17 12:00	0.25	26	hours	EHTR-FM
	2	19-APR-17 10:00	20-APR-17 12:00	0.25	26	hours	EHTR-FM
Legend & Qualifier Definitio	ns:						

EHTR-FM:	Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR:	Exceeded ALS recommended hold time prior to sample receipt.
EHTL:	Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT:	Exceeded ALS recommended hold time prior to analysis.
Rec. HT:	ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1914447 were received on 19-APR-17 11:00.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Report To Report To Better Format End to result (C) not (C) report (C) not (C) (C) Report (C)	for surcharge,	Number of Containers
Contact: Marcui fluttomini Hann Ouality Control (QC) Report with Report Yes No P Printry (24 buildess days if received by 3pm) Address: Ges Warren Agent Agen		Number of Containers
Address: 0 Citeria on Report - provide datalis below if box checked E Emergency (1-2 backness days if received by 3pm) Phone: 0 0 Citeria on Report - provide datalis below if box checked E Same day or weekend emergency if received by 3pm) Phone: 0 Email 1 or Fax MAIL MAIL FAX EE Same day or weekend emergency if received by 10m - contrad ALS in Main Control of EXE or P Invoice To Same as Report To Email 2 Amelvin D excerved (From Pittered To Pittered on Proceed Distribution Indicate Filtered (From Filtered on Proceed Group Distribution Company: Company: Email 1 or Fax Accounts Accounts Pay alog te ALS Quote #: 0 56 2 2 1 Oil and Gas Required Fileids (cilent use) 3 4 3 4 3 4 3 4		Number of Containers
Address: 065 L2auorty 34 101 MG figst 101 <td< td=""><td></td><td>Number of Containers</td></td<>		Number of Containers
204 - 396-1209 Email 2 Analysis Request Invoice To Same as Report To Ygr No Invoice Distribution Indexe Filtered (F). Preserved (FP) below Company: Company: Email 2 MAIL MAIL FAX Contact: Email 2 Mail Contact: Email 2 Mail Contact: FAX Project Information Oil and Gas Required Fields (client use) 3 4 3 4 ALS Quote # 05.6.2.71 Approver ID: Cost Center: 3 3 4 4 Invoice Work Order # (lab use only) ALS Contact: Routing Code: 4 3 4 <td></td> <td>Number of Containers</td>		Number of Containers
Invoice To Same as Report To Yg T No Invoice Distribution Indicate Filtered (F). Preserved (F) or Filtered and Preserved (F) or Filtered and Preserved (F). Copy of Invoice with Report T Yes No Select Invoice Distribution: MAL MAL MAL FAX Company: Email 1 or Fax Accounts Pay 4bble FAX FAX FAX Contact: Email 2 Email 2 FAX FAX FAX FAX ALS Quote #: Q 56 Q 71 Approver ID: Cost Center: Gost Center: Gost Center: Gost Center: Job # //b-0300-007 //b0. 6Q Excount: Routing Code: FAX FAX FAX ALS Quote #: Cost Center: Job # Job # </td <td></td> <td>I I N⊍mber of Containers</td>		I I N⊍mber of Containers
Company: Email 1 or Fax Accounts Pay 4bble Contact: Email 2 Project Information Oil and Gas Required Fields (client use) ALS Quote #: Q 56 Q 71 Job # //6-0300-001. Job # //6-0300-001. PO / AFE: //600 Fload way Location: LSD: Fload way Location: Location: ALS Lab Work Order # (lab use only) ALS Contact: ALS Contact: Date Time Sample Type (This description will appear on the report) (dd-mmm-yy) When the first the first the first the report ///2000 Store With 444 //2000 Store		Number of Containers
Job # //6-0300-001. //00, 62 GL Account: Routing Code: 3 3 1 <t< td=""><td></td><td>Number of Containers</td></t<>		Number of Containers
Job # //6-0300-001. //00, 62 GL Account: Routing Code: 3 3 1 <t< td=""><td></td><td>Number of Containers</td></t<>		Number of Containers
Job # //6-0300-001. //00, 62 GL Account: Routing Code: 3 3 1 <t< td=""><td></td><td>Number of Container</td></t<>		Number of Container
Job # //6-0300-001. //00, 62 GL Account: Routing Code: 3 3 1 <t< td=""><td></td><td>Number of Conta</td></t<>		Number of Conta
LSD: Flagh Way Location: LSD: Flagh Way Location: ALS Lab Work Order # (lab use only) ALS Contact: ALS Sample # Sample Identification and/or Coordinates (tab use only) (This description will appear on the report) (tab use only) (This description will appear on the report) (tab use only) (This description will appear on the report)		Number of C
LSD: Flagh Way Location: LSD: Flagh Way Location: ALS Lab Work Order # (lab use only) ALS Contact: ALS Sample # Sample Identification and/or Coordinates (tab use only) (This description will appear on the report) (tab use only) (This description will appear on the report) (tab use only) (This description will appear on the report)		Number
ALS Lab Work Order # (lab use only) ALS Contact: MLS Contact: Sampler: MLS Contact: Sampler: MLS Contact: Sampler: MLS Contact: ALS Sample # (lab use only) Sample Identification and/or Coordinates (Ide use only) Date Time (hh.mm) Sample Type 1/2 1/2 ALS Sample # (lab use only) (This description will appear on the report) (dd-mmm-yy) (hh.mm) Sample Type 1/2 1/2 ALS Contact: Date Time (hh.mm) Sample Type 1/2 1/2 1/2		Numt
ALS Lab Work Order # (lab use only) ALS Contact: Sampler: ALS Sample # Sample Identification and/or Coordinates (Itab use only) Date Time (hh.mm) Time Sample Type 3 + 1 + 2 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5		Z
ALS Sample # (tab use only) Sample Identification and/or Coordinates (This description will appear on the report) Date (dd-mmm-yy) Time (hh.mm) Sample Type y + z O H H 97.4 97.4 97.60 Sw X		
$\frac{19}{14} \frac{44}{44} \qquad \frac{19}{49} \frac{49}{1-14} \frac{9}{50} \frac{50}{5\omega} \times \frac{5}{2} \times \frac{5}{2} \times \frac{5}{2}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5
		5
		-
		-
		-
		_
ever an increase the Satylens of the		
with the second state of t		
19 19 19 19 19 19 19 19 19 19 19 19 19 1		
	oniv) a social de	
Drinking Water (DW) Samples ¹ (client use) Special Instructions / Specify Criteria to add on report (client Use) Frozen SIF Observations Yes		
Are samples taken from a Regulated DW System?	_	
TYes No Are samples for human drinking water use? D \$75, kiellet **	—	_
	MPERATURES °C	
TYes or KNo t at them		
SHIPMENT RELEASE (client use)	IV)	
Released by: Date: Time: Received by: Ariel MELui Mail Mail Date: Time: REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY YELLOW - CLIENT COPY		

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

 Date:
 28-APR-17

 PO No.:
 FLOODWAY

 WO No.:
 L1917469

 Project Ref:
 16-0300-002.1100.02

 Sample ID:
 PTH 44

 Sampled By:
 ATM+GS

 Date Collected:
 26-APR-17

 Lab Sample ID:
 L1917469-1

 Matrix:
 SW

PAGE 1 of 5

Te	est Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Total Flood	way						
E	Bicarbonate (HCO3)	337		mg/L			27-APR-17
(Carbonate (CO3)	3.96		mg/L			27-APR-17
ł	Hydroxide (OH)	<0.34		mg/L			27-APR-17
1*	Nitrate and Nitrite as N	0.0552		mg/L	10		28-APR-17
рН							
	рΗ	8.33		pH units			26-APR-17
Turbidity							
-	Furbidity	24.0		NTU			27-APR-17
Total Metals by IC	P-MS						
	Calcium (Ca)-Total	73.2		mg/L			27-APR-17
	Magnesium (Mg)-Total	43.6		mg/L			27-APR-17
F	Potassium (K)-Total	4.69		mg/L			27-APR-17
	Sodium (Na)-Total	29.3		mg/L		200	27-APR-17
TDS calculated							
٦	TDS (Calculated)	431		mg/L		500	28-APR-17
Sulfate in Water b	y IC						
ç	Sulfate (SO4)	71.9		mg/L		500	26-APR-17
Nitrite in Water by	/ IC (Low Level)						
1*	Nitrite (as N)	0.0016		mg/L	1		26-APR-17
Nitrate in Water by	y IC (Low Level)						
1*	Nitrate (as N)	0.0536		mg/L	10		26-APR-17
Ion Balance Calcu	Ilation						
I	on Balance	105		%			28-APR-17
(Cation - Anion Balance	2.4		%			28-APR-17
	Anion Sum	8.23		me/L			28-APR-17
(Cation Sum	8.64		me/L			28-APR-17
Hardness Calcula							
ł	Hardness (as CaCO3)	362	HTC	mg/L		500	28-APR-17
Conductivity							
(Conductivity	704		umhos/cm			26-APR-17
Chloride in Water	by IC						
(Chloride (Cl)	38.1		mg/L		250	26-APR-17
Alkalinity, Total (a	is CaCO3)						
	Alkalinity, Total (as CaCO3)	283		mg/L			26-APR-17
I	Phosphorus (P)-Total	0.100		mg/L			28-APR-17
	Escherichia Coli	30		MPN/100mL	0	1	26-APR-17

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

 Date:
 28-APR-17

 PO No.:
 FLOODWAY

 WO No.:
 L1917469

 Project Ref:
 16-0300-002.1100.02

 Sample ID:
 PTH 44

 Sampled By:
 ATM+GS

 Date Collected:
 26-APR-17

 Lab Sample ID:
 L1917469-1

 Matrix:
 SW

PAGE 2 of 5

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliforms	548		MPN/100mL	0		26-APR-17
Total Kjeldahl Nitrogen	0.56		mg/L			28-APR-17
Total Suspended Solids	26.0		mg/L			27-APR-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWG 	guidelines on cor ater Quality	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	ection limit. arth filtration plea	se see
Approved by <u>Hua Wo</u> Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 28-APR-17

 PO No.:
 FLOODWAY

 WO No.:
 L1917469

 Project Ref:
 16-0300-002.1100.02

 Sample ID:
 PTH 59

 Sampled By:
 ATM+GS

 Date Collected:
 26-APR-17

 Lab Sample ID:
 L1917469-2

 Matrix:
 SW

PAGE 3 of 5

ROU1W Total Floodway Bicarbonat Carbonate						Objective	Analyzed
Carbonate	e (HCO3)	336		mg/L			27-APR-17
	(CO3)	6.00		mg/L			27-APR-17
Hydroxide	(OH)	<0.34		mg/L			27-APR-17
*Nitrate and	Nitrite as N	0.0233		mg/L	10		28-APR-17
рН							
рН		8.38		pH units			26-APR-17
Turbidity							
*Turbidity		22.3		NTU			27-APR-17
Total Metals by ICP-MS							
Calcium (C	a)-Total	71.5		mg/L			27-APR-17
Magnesiun	n (Mg)-Total	41.7		mg/L			27-APR-17
Potassium	(K)-Total	4.15		mg/L			27-APR-17
Sodium (N	a)-Total	20.7		mg/L		200	27-APR-17
TDS calculated							
TDS (Calc	ulated)	396		mg/L		500	28-APR-17
Sulfate in Water by IC							
Sulfate (SC	04)	63.0		mg/L		500	26-APR-17
Nitrite in Water by IC (Low I	_evel)						
*Nitrite (as I	N)	0.0011		mg/L	1		26-APR-17
Nitrate in Water by IC (Low	Level)						
*Nitrate (as	N)	0.0221		mg/L	10		26-APR-17
Ion Balance Calculation							
Ion Balanc	e	104		%			28-APR-17
Cation - Ar	ion Balance	1.9		%			28-APR-17
Anion Sum		7.71		me/L			28-APR-17
Cation Sun	n	8.01		me/L			28-APR-17
Hardness Calculated							
Hardness (as CaCO3)	350	HTC	mg/L		500	28-APR-17
Conductivity							
Conductivit	iy	649		umhos/cm			26-APR-17
Chloride in Water by IC							
Chloride (C	CI)	24.3		mg/L		250	26-APR-17
Alkalinity, Total (as CaCO3)							
Alkalinity, ⊺ CaCO3)	Fotal (as	285		mg/L			26-APR-17
Phosphoru	s (P)-Total	0.092		mg/L			28-APR-17
Escherichia		6		MPN/100mL	0	1	26-APR-17

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

 Date:
 28-APR-17

 PO No.:
 FLOODWAY

 WO No.:
 L1917469

 Project Ref:
 16-0300-002.1100.02

 Sample ID:
 PTH 59

 Sampled By:
 ATM+GS

 Date Collected:
 26-APR-17

 Lab Sample ID:
 L1917469-2

 Matrix:
 SW

PAGE 4 of 5

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliforms	308	[MPN/100mL	0		26-APR-17
Total Kjeldahl Nitrogen	<0.20		mg/L			28-APR-17
Total Suspended Solids	18.0		mg/L			27-APR-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQ 	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration plea	ise see
Approved by <u>Hua Wo</u> Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Sample Parameter Qualifier key listed:

Qualifier	Description
HTC	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).
Health Canada	MAC Health Related Criteria Limits
Nitrate/Nitrite-N	^t Criteria limit is 10 mg/L (1.0 mg/L if present as all Nitrite-N). High concentrations may contribute to blue baby syndrome in infants.
Lead*	A cumulative body poison, uncommon in naturally occurring hard waters.
Fluoride*	Present in fluoridated water supplies at 0.8 mg/L to reduce dental caries. Elevated levels causes fluorosis (mottling of teeth).
Total Coliforms*	Criteria is 0 CFU/100mL. Adverse health effects.
E. Coli*	Criteria is 0 CFU/100 mL. Certain E. Coli bacteria can be life threatening.

*Health Canada Canadian Drinking Water Quality Guidelines (MAC limit)

Aesthetic Objective Concentration Levels

Aesthetic Objective Conce	
Alkalinity	Acid neutralizing capacity. Usually a measure of carbonate and bicarbonates and calculated and reported as calcium carbonate.
Balance	Quality control parameter ratioing cations to anions
Bicarbonate	See Alkalinity. Report as the anion HCO3-1
Carbonate	See Alkalinity. Reported at the anion CO3-2
Calcium	See Hardness. Common major cation of water chemistry.
Chloride	Common major anion of water chemistry.
Conductance	Physical test measuring water salinity (dissolved ions or solids)
Hardness	Classical measure or capacity of water to precipitate soap (chiefly calcium and magnesium ions). Causes scaling tendency in water if carbonates/bicarbonates are present (if >200 mg/L). For drinking water purposes waters with results <200 mg/L are considered acceptable, results >200 mg/L are considered poor but can be tolerated. Results >500 mg/L are unacceptable.
Hydroxide	See alkalinity
Magnesium	See hardness. Common major cation of water chemistry. Elevated levels (>125 mg/L) may exert a cathartic or diuretic action.
pH	Measure of water acidity/alkalinity. Normal range is 7.0-8.5.
Potassium	Common major cation of water chemistry.
Sodium	Common major cation of water chemistry. Measure of salinity (saltiness). The aesthetic objective (not related to health) for sodium in drinking water is 200 mg/L. However, where sodium concentration of the drinking water exceeds 20 mg/L, it is recommended that any person on a sodium restricted diet consult with his/her physician or Medical Officer of Health concerning the use of that water.
Sulphate	Common major anion of water chemistry. Elevated levels may exert a cathartic or diuretic action.
Total Dissolved Solids	A measure of water salinity.
Iron	Causes staining to laundry and porcelain and astringent taste. Oxidizes to red-brown precipitate on exposure to air.
Manganese Heterotrophic	Elevated levels may cause staining of laundry and porcelain.
Plate Count	Criteria is 500 cfu/mL Measure of heterotrophic bacteria present.

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder:	L191746	9 R	eport Date: 28-	APR-17	Pa	ge 1 of
865 Wave Winnipeg	erly Street - 3rc MB R3T 5P4	Floor						
Marci Frie	dman Hamm							
	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
	Water							
3708790								
	O3)		103.4		%		85-115	26-APR-17
	O3)		<1.0		mg/L		1	26-APR-17
	Water							
3709509								
LCS			102.1		%		90-110	26-APR-17
MB			<0.50		mg/L		0.5	26-APR-17
WP	Water							
3709048								
		L1917469-1 30	15	DUP-H	MPN/100mL	66	65	26-APR-17
MB oli			<1		MPN/100mL		1	26-APR-17
	Water							
3708790								
B LCS			98.9		%		90-110	26-APR-17
MB			<1.0		umhos/cm		1	26-APR-17
	Water							-
3709489								
			99.2		%		80-120	27-APR-17
			99.3		%		80-120	27-APR-17
-Total			97.8		%		80-120	27-APR-17
otal			104.3		%		80-120	27-APR-17
MB Fotal			<0.20		mg/L		0.2	27-APR-17
lg)-Total			<0.050		mg/L		0.05	27-APR-17
-Total			<0.10		mg/L		0.1	27-APR-17
	865 Wave Winnipeg Marci Frie 3708790 4 LCS II (as CaCC I MB II (as CaCC I MB 3709488 DUP DII MB DII 3708790 3 LCS I MB 3709489 LCS Total Ig)-Total -Total	865 Waverly Street - 3rd Winnipeg MB R3T 5P4 Marci Friedman Hamm Matrix Water 3708790 4 LCS I (as CaCO3) 4 MB I (as CaCO3) Water 3709509 LCS MB WP Water 3709048 DUP bli MB bli WB bli Water 3708790 3 LCS I MB Water 3708790 3 LCS I MB Water 3709489 LCS Total Ig)-Total -Total Total	Matrix Reference Water 3708790 4 LCS il (as CaCO3) WB il (as CaCO3) Water 3709509 LCS MB WP Water 3709048 DUP L1917469-1 oli MB Water 3708790 3 LCS I MB Water 3708790 3 LCS Total ig)-Total 'otal ig)-Total	865 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 Matrix Reference Result Water 3708790 103.4 4 LCS 103.4 103.4 I (as CaCO3) 103.4 103.4 MB 103.4 103.4 I (as CaCO3) <1.0	KGS Group Consultants (Winnipeg) Mass Street - 3rd Floor Winnipeg MB_R3T 5P4 Matrix Reference Result Qualifier Water 103.4 103.4 103.4 MB 103.2 103.4 103.4 I (as CaCO3) 103.4 103.4 103.4 MB 10(as CaCO3) <100.1 100.1 Water 102.1 102.1 102.1 JUP L1917469-1 00.50 0UP-H MB 20.50 0UP-H 30 15 0UP-H MB 20.50 21.0 21.0 21.0 21.0 MB L1917469-1 00.50 0UP-H 00.50 0UP-H MB 20.50 98.9 98.9 14.00 98.9 14.00	KGS Group Consultants (Winnipeg) Marci Friedman Hamm Reference Result Qualifier Units Matrix Reference Result Qualifier Units 3708790 Image: Status of the s	KSS Group Consultants (Winnipeg) B85 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 Marci Friedman Hamm Reference Result Qualifier Units RPD Matrix Reference Result Qualifier Units RPD Vater	Marki RSS Group Consultants (Winnipeg) B85 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 Marki Preidman Hamm Reference Result Qualifier Units RPD Limit Water

N-TOTKJ-WP

Water

		•	•			
		Workorder: L1917469	Report Date: 28-	APR-17	Pa	ge 2 of 5
lest .	Matrix	Reference Result	Qualifier Units	RPD	Limit	Analyzed
N-TOTKJ-WP	Water					
Batch R3709933 WG2517909-10 LCS Total Kjeldahl Nitrogen		86.6	%		75-125	28-APR-17
WG2517909-9 MB Total Kjeldahl Nitrogen		<0.20	mg/L		0.2	28-APR-17
NO2-L-IC-N-WP	Water					
Batch R3709509 WG2517201-6 LCS						
Nitrite (as N) WG2517201-5 MB		99.9	%		90-110	26-APR-17
Nitrite (as N)		<0.0010	mg/L		0.001	26-APR-17
NO3-L-IC-N-WP Batch R3709509 WG2517201-6 LCS	Water					
Nitrate (as N)		102.7	%		90-110	26-APR-17
WG2517201-5 MB Nitrate (as N)		<0.0050	mg/L		0.005	26-APR-17
P-T-COL-WP	Water					
Batch R3709860 WG2518578-2 LCS Phosphorus (P)-Total		97.2	%		80-120	28-APR-17
WG2518578-1 MB Phosphorus (P)-Total		<0.010	mg/L		0.01	28-APR-17
PH-WP	Water					
Batch R3708790 WG2517804-12 LCS рН		7.43	pH units		7.3-7.5	26-APR-17
SO4-IC-N-WP	Water					
Batch R3709509 WG2517201-6 LCS Sulfate (SO4)		103.5	%		90-110	26-APR-17
WG2517201-5 MB Sulfate (SO4)		<0.30	mg/L		0.3	26-APR-17
SOLIDS-TOTSUS-WP	Water					

		Workorder:	L191746	9	Report Date: 28-	APR-17	Pa	ige 3 of 5
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SOLIDS-TOTSUS-WP	Water							
Batch R3709608 WG2517427-6 LCS Total Suspended Solids			94.7		%		85-115	27-APR-17
WG2517427-5 MB Total Suspended Solids			<5.0		mg/L		5	27-APR-17
TC-QT97-ENDPT-WP	Water							
Batch R3709045 WG2517557-2 DUP Total Coliforms		L1917469-1 548	488		MPN/100mL	11	65	26-APR-17
WG2517557-1 MB Total Coliforms			<1		MPN/100mL		1	26-APR-17
TURBIDITY-WP	Water							
Batch R3709522 WG2518234-2 LCS Turbidity			100.0		%		85-115	27-APR-17
WG2518234-1 MB Turbidity			<0.10		NTU		0.1	27-APR-17

Workorder: L1917469

Report Date: 28-APR-17

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
DUP-H	Duplicate results outside ALS DQO, due to sample heterogeneity.

Workorder: L1917469

Report Date: 28-APR-17

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рН							
	1	26-APR-17 09:30	26-APR-17 12:30	0.25	3.1	hours	EHTR-FM
	2	26-APR-17 10:00	26-APR-17 12:30	0.25	2.4	hours	EHTR-FM
Legend & Qualifier Definitio	ns:						

EHTR-FM:	Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR:	Exceeded ALS recommended hold time prior to sample receipt.
EHTL: EHT: Rec. HT:	Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry. Exceeded ALS recommended hold time prior to analysis. ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1917469 were received on 26-APR-17 10:50.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Re Canada Tol www.alsglobal.com	ody (COC) / Analytical quest Form Free: 1 800 668 9878	L19174	69-COFC				cou	C Numb	er: 14 Page	- 5 74	03 • 49	854	4
Report To		t/Distribution		- 3 89956	OBLAICE D	ever delo	w (Rush Turn	around Tir	πe (ŤAT) is	not availal	ble for all te	ests)	
Company: 458 a rou P	Select Report Format: 🛛 🏠 F	DF 🔀 EXCEL 🔲 EDD (DIGITAI	.) R 🗌	Regular	(Standard	TAT if rec	ceived by 3pm	1)					
Contact: Marci Lelithonans hann	Quality Control (QC) Report with Re	port 🕅 Yes 🗌 No	P	Priority	(2-4 busine	ess days il	f received by 3	3pm)					
Address:	Criteria on Report - provide details be		E	Emerge	ncy (1-2 bi	isiness da	iys if received	by 3pm)					
965 waverly strent 3d floor wfh MB BIEFY		EMAIL MAIL FAX	E2		-		gency if rece	ived by 10	0am ~ cont	act ALS for	r surcharge		_
Phone:	Email 1 or Fax methom @K6501	on com month @Kundred	for Specify D	ate Requ	ired for E	E2,E or I	P:						
	Email 2 Americand @V 6541000.co	~ PLINAIL & Konkarour	1 CON					is Requ	Jest				
Invoice To Same as Report To Yes T No	Invoice D	istribution		Indicate	Filtered (F), Preserv	ed (P) or Filte	red and P	reserved (H	F/P) below			
Copy of Invoice with Report T Yes T No	Select Invoice Distribution:	EMAIL MAIL FAX											
Company:	Email 1 or Fax Accounts Da	- abolix				7		1				+	1
Contact:	Email 2		e		1 2	Y'M		1					
Project Information	Oil and Gas Require	ed Fields (client use)	-13	t a	END Paris	-ENDA							Number of Containers
ALS Quote #: Q56,271	Approver ID:	Cost Center:	5	3	2	3							Ę
Job #: 1/0-0300-002, 1/00, 02	GL Account:	Routing Code:		+ i	3	1 ^{III}							8
PO/AFE: //www.	Activity Code:			+ 5 <i>J</i>									i oi
LSD: Line Line	Location:		1 3	ע כ ע וי	1 +	¢.							Ē
LOD. <u>- FIDAAWGA</u>		T	-13 ĭ	える		5							ž
ALS Lab Work Order # (lab use only)	ALS Contact	Sampler:	2001	む う	니길	Ŗ							
	July Jata	ATAtas	- 15	1-	5	q							
ALS Sample # Sample Identification and/or Coordinates (lab use only) (This description will appear on the report)	Date	Time Sample Ty	ne 6 .	1 7	Ľ	5 M							
(This description will appear on the report)	(dd-mmm-yy)	(hh:mm)	<u> </u>	2 8	18	1							
J 114 44	1 - 26 - Atr- 13	1 9:30 SW	<u> </u>	$\langle X \rangle$	X	X							5
1 1 File 59	26-Agrit	1000 SW	<u>></u> >	14	8	シー							r
					T								- T
					 								+
		· · · · ·			╉╍╌┦							_ 	
												_	
an is show a set the second second													
		<u>·</u> ╡··───						+	<u> </u>			-	-
		· • · · • · · · • • • • • • • • • • • • 			+				┨──┤			 	-
k branch of constract h i with		<u> </u>			+ - +			+				<u> </u>	
success and the chain of strong		<u> </u>											
					I T	1				T			
्रो ^{क्} स, _{भ्रा} , त्या, त्या, संग्री संग्री द्या संग्रह रह				1				1			_ <u>†</u>		1
				l retación des	SAMP	LE COI	IDITION A	S RECE	EIVED (12	ab use c	only) 🗇		.
Drinking Water (DW) Samples ¹ (client use) Special	Instructions / Specify Criteria to add or	n report (client Use)	Frozen					bserva		Yes		No	
Are samples taken from a Regulated DW System?		····	Ice packs	Yes	ō	No	Custo			Yes			ŏ
Γ Yes Γ No			Cooling In					1.000					
Are samples for human drinking water use? Lat				LCOOLER		TURES	Construction		FINAL COC	LER TEM	IPERATURE	ES °C	
Tayles is the No.			ч		T	· · · · ·		<u></u>					
SHIPMENT RELEASE (dient use)	ININIAL SHIPMENT RECEP	TION (lab use only)	1971 (1972) (1972) 1972 (1972) (1972)		्ःः हाष		PMENT R	ידמשחש	ION (Inh.	uee only	<u>h si s</u>		
Released by: Day: Time: Receive		Date:	Received	<u>, , , , , , , , , , , , , , , , , , , </u>	<u>in an Fill</u>	ine offi	- MILINE R	Date:	Qin (iab	Time:	<u> </u>	<u> </u>	
alance Aprille	. 2	26-4- A 10:50											
REPER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION			LOW - CLIENT	COPY		_		IN/	4-FM-0328e v09 F	Front/OK January	2014		

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

 Date:
 19-MAY-17

 PO No.:
 L1925268

 WO No.:
 L1925268

 Project Ref:
 16-0300-002

 Sample ID:
 K13-12321

 Sampled By:
 PJL/LM

 Date Collected:
 11-MAY-17

 Lab Sample ID:
 L1925268-1

 Matrix:
 GW

PAGE 1 of 13

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Disso	lved Floodway						
	Bicarbonate (HCO3)	661		mg/L			16-MAY-1
	Carbonate (CO3)	<0.60		mg/L			16-MAY-1
	Hydroxide (OH)	<0.34		mg/L			16-MAY-1
	*Nitrate and Nitrite as N	3.31		mg/L	10		19-MAY-1
рН							
	рН	7.30		pH units			12-MAY-1
Turbidity							
	*Turbidity	16.0		NTU			12-MAY-1
TDS calculat	ted						
	TDS (Calculated)	836		mg/L		500	16-MAY-1
Sulfate in W	ater by IC						
	Sulfate (SO4)	86.9		mg/L		500	13-MAY-1
Nitrite in Wa	iter by IC (Low Level)						
	*Nitrite (as N)	<0.0050	DLM	mg/L	1		13-MAY-1
Nitrate in Wa	ater by IC (Low Level)						
	*Nitrate (as N)	3.31		mg/L	10		13-MAY-1
Ion Balance	Calculation						
	Ion Balance	106		%			19-MAY-1
	Cation - Anion Balance	2.9		%			19-MAY-1
	Anion Sum	16.9		me/L			19-MAY-1
	Cation Sum	17.9		me/L			19-MAY-1
Hardness Ca							
	Hardness (as CaCO3)	792		mg/L		500	16-MAY-1
Dissolved M	letals by ICP-MS						
	Calcium (Ca)-Dissolved	105		mg/L			15-MAY-1
	Magnesium (Mg)- Dissolved	129		mg/L			15-MAY-1
	Potassium (K)-Dissolved	6.13		mg/L			15-MAY-1
	Sodium (Na)-Dissolved	42.9		mg/L		200	15-MAY-1
Conductivity	y .						
-	Conductivity	1440		umhos/cm			12-MAY-1
Chloride in \	Water by IC						
	Chloride (Cl)	141		mg/L		250	13-MAY-1
Alkalinity. To	otal (as CaCO3)						
····· · , ···	Alkalinity, Total (as CaCO3)	542		mg/L			12-MAY-1
Total Colifor	rm and E.coli by MPN QT97						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 19-MAY-17

 PO No.:
 L

 WO No.:
 L1925268

 Project Ref:
 16-0300-002

 Sample ID:
 K13-12321

 Sampled By:
 PJL/LM

 Date Collected:
 11-MAY-17

 Lab Sample ID:
 L1925268-1

 Matrix:
 GW

PAGE 2 of 13

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97 Total Coliforms Escherichia Coli	<1 <1		MPN/100mL MPN/100mL	0 0		12-MAY-17 12-MAY-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQ 	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration plea	se see
Approved by <u>Shannon Sawatzky</u> Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 19-MAY-17

 PO No.:
 L1925268

 WO No.:
 L1925268

 Project Ref:
 16-0300-002

 Sample ID:
 K09-12316

 Sampled By:
 PJL/LM

 Date Collected:
 11-MAY-17

 Lab Sample ID:
 L1925268-2

 Matrix:
 GW

PAGE 3 of 13

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Disso	lved Floodway						
	Bicarbonate (HCO3)	465		mg/L			16-MAY-17
	Carbonate (CO3)	<0.60		mg/L			16-MAY-17
	Hydroxide (OH)	<0.34		mg/L			16-MAY-17
	*Nitrate and Nitrite as N	1.49		mg/L	10		19-MAY-1
рН							
•	рН	7.50		pH units			12-MAY-1
Turbidity							
2	*Turbidity	0.25		NTU			12-MAY-1
TDS calcula	ted						
	TDS (Calculated)	486		mg/L		500	16-MAY-1
Sulfate in W	. ,			5			
	Sulfate (SO4)	63.4		mg/L		500	13-MAY-17
Nitrite in Wa	ater by IC (Low Level)						
	*Nitrite (as N)	0.0080		mg/L	1		13-MAY-17
Nitrato in W	ater by IC (Low Level)	0.0000		ing/L	1		
Nitrate III W	*Nitrate (as N)	1.48		mg/L	10		13-MAY-17
Ion Balance		1.40		iiig/L	10		
Ion Balance	Ion Balance	102		%			19-MAY-17
	Cation - Anion Balance	1.2		%			19-MAY-1
	Anion Sum	9.85		me/L			19-MAY-1
	Cation Sum	10.1		me/L			19-MAY-17
Hardness C	alculated						
	Hardness (as CaCO3)	452		mg/L		500	16-MAY-17
Dissolved M	letals by ICP-MS						
	Calcium (Ca)-Dissolved	74.2		mg/L			15-MAY-17
	Magnesium (Mg)-	64.8		mg/L			15-MAY-17
	Dissolved Potassium (K)-Dissolved	4.46		mg/L			15-MAY-17
	Sodium (Na)-Dissolved	21.7		mg/L		200	15-MAY-1
Conductivity						200	
Conductivity	y Conductivity	844		umhos/cm			12-MAY-17
Chile data da d		044		unnos/un			
Chloride in	-	28.5				050	12 MAX 4
	Chloride (Cl)	20.0		mg/L		250	13-MAY-17
Alkalinity, T	otal (as CaCO3)	201					
	Alkalinity, Total (as CaCO3)	381		mg/L			12-MAY-17
Total Colifo	rm and E.coli by MPN QT97						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 19-MAY-17

 PO No.:
 L1925268

 WO No.:
 L1925268

 Project Ref:
 16-0300-002

 Sample ID:
 K09-12316

 Sampled By:
 PJL/LM

 Date Collected:
 11-MAY-17

 Lab Sample ID:
 L1925268-2

 Matrix:
 GW

PAGE 4 of 13

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97						40 14474
Total Coliforms Escherichia Coli	<1 <1		MPN/100mL	0		12-MAY-17 12-MAY-17
			MPN/100mL	0		12-1014 1-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 CDWQG for Nitrate+Nitrite-N is the limit for nitrate only Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa A blank entry designates no known limit. A shaded value in the Results column exceeds CDWC 	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de	tection limit. arth filtration plea	se see
Approved by <u>Shannon Sawatzky</u> Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 19-MAY-17

 PO No.:
 L1925268

 WO No.:
 L1925268

 Project Ref:
 16-0300-002

 Sample ID:
 K09-12012

 Sampled By:
 PJL/LM

 Date Collected:
 11-MAY-17

 Lab Sample ID:
 L1925268-3

 Matrix:
 GW

PAGE 5 of 13

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Disso	blved Floodway						
	Bicarbonate (HCO3)	473		mg/L			16-MAY-17
	Carbonate (CO3)	<0.60		mg/L			16-MAY-17
	Hydroxide (OH)	<0.34		mg/L			16-MAY-17
	*Nitrate and Nitrite as N	<0.010		mg/L	10		19-MAY-17
рН							
	рН	7.47		pH units			12-MAY-1
Turbidity							
	*Turbidity	0.50		NTU			12-MAY-1
TDS calcula	ited						
	TDS (Calculated)	728	(mg/L		500	16-MAY-1
Sulfate in W	/ater by IC						
	Sulfate (SO4)	242		mg/L		500	13-MAY-17
Nitrite in Wa	ater by IC (Low Level)						
	*Nitrite (as N)	<0.0020	DLM	mg/L	1		13-MAY-17
Nitrate in W	ater by IC (Low Level)						
	*Nitrate (as N)	<0.010	DLM	mg/L	10		13-MAY-17
Ion Balance	Calculation				-		
	Ion Balance	105		%			19-MAY-1
	Cation - Anion Balance	2.4		%			19-MAY-1
	Anion Sum	13.3		me/L			19-MAY-1
	Cation Sum	14.0		me/L			19-MAY-1
Hardness C							
	Hardness (as CaCO3)	589		mg/L		500	16-MAY-17
Dissolved M	letals by ICP-MS						
	Calcium (Ca)-Dissolved	97.9		mg/L			15-MAY-1
	Magnesium (Mg)- Dissolved	83.7		mg/L			15-MAY-1
	Potassium (K)-Dissolved	4.85		mg/L			15-MAY-1
	Sodium (Na)-Dissolved	47.9		mg/L		200	15-MAY-1
Conductivity	у						
	Conductivity	1090		umhos/cm			12-MAY-17
Chloride in	Water by IC						
	Chloride (CI)	19.2		mg/L		250	13-MAY-17
Alkalinity, T	otal (as CaCO3)						
······,	Alkalinity, Total (as CaCO3)	387		mg/L			12-MAY-17
Total Colifor	rm and E.coli by MPN QT97						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 19-MAY-17

 PO No.:
 L1925268

 WO No.:
 L1925268

 Project Ref:
 16-0300-002

 Sample ID:
 K09-12012

 Sampled By:
 PJL/LM

 Date Collected:
 11-MAY-17

 Lab Sample ID:
 L1925268-3

 Matrix:
 GW

PAGE 6 of 13

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97 Total Coliforms Escherichia Coli	<1 <1		MPN/100mL MPN/100mL	0		12-MAY-17 12-MAY-17
CDWQG = Health Canada Guideline Limits updated * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQ	guidelines on cor iter Quality	itrate then the li ventional treatm	ent and slow sand	N.D. = less than de d or diatomaceous e	tection limit. arth filtration plea	se see
Approved by <u>Shannon Sawatzky</u> Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 19-MAY-17

 PO No.:
 L1925268

 WO No.:
 L1925268

 Project Ref:
 16-0300-002

 Sample ID:
 K11-12015

 Sampled By:
 PJL/LM

 Date Collected:
 11-MAY-17

 Lab Sample ID:
 L1925268-4

 Matrix:
 GW

PAGE 7 of 13

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Disso	lved Floodway						
	Bicarbonate (HCO3)	302		mg/L			16-MAY-17
	Carbonate (CO3)	<0.60		mg/L			16-MAY-17
	Hydroxide (OH)	<0.34		mg/L			16-MAY-1
	*Nitrate and Nitrite as N	0.143		mg/L	10		19-MAY-1
рН							
P.I.	рН	7.68		pH units			12-MAY-1
Turbidity	F			pri anto			
Turbialty	*Turbidity	0.21		NTU			12-MAY-1
TDS calculat		0.21		NIC N			12 100 11
1D5 calculat	TDS (Calculated)	361				500	16-MAY-1
		301		mg/L		500	10-101/4 1 - 1
Sulfate in Wa	•	70.0					
	Sulfate (SO4)	78.9		mg/L		500	13-MAY-17
Nitrite in Wa	ter by IC (Low Level)						
	*Nitrite (as N)	0.0153		mg/L	1		13-MAY-17
Nitrate in Wa	ater by IC (Low Level)						
	*Nitrate (as N)	0.128		mg/L	10		13-MAY-17
Ion Balance	Calculation						
	Ion Balance	101		%			19-MAY-17
	Cation - Anion Balance	0.7		%			19-MAY-1
	Anion Sum	7.02		me/L			19-MAY-1
	Cation Sum	7.12		me/L			19-MAY-1
Hardness Ca	alculated						
	Hardness (as CaCO3)	331		mg/L		500	16-MAY-17
Dissolved M	etals by ICP-MS						
	Calcium (Ca)-Dissolved	63.9		mg/L			15-MAY-17
	Magnesium (Mg)-	41.7		mg/L			15-MAY-1
	Dissolved Retassium (K) Dissolved	4.44		~~~/l			15-MAY-1
	Potassium (K)-Dissolved Sodium (Na)-Dissolved	4.44 8.94		mg/L mg/L		200	15-MAY-1
Construction in	. ,	0.04		1119/L		200	
Conductivity		045		in the f			
	Conductivity	615		umhos/cm			12-MAY-17
Chloride in V	-						
	Chloride (Cl)	14.9		mg/L		250	13-MAY-1
Alkalinity, To	otal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	248		mg/L			12-MAY-17
Total Colifor	m and E.coli by MPN QT97						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 19-MAY-17

 PO No.:
 L1925268

 WO No.:
 L1925268

 Project Ref:
 16-0300-002

 Sample ID:
 K11-12015

 Sampled By:
 PJL/LM

 Date Collected:
 11-MAY-17

 Lab Sample ID:
 L1925268-4

 Matrix:
 GW

PAGE 8 of 13

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97 Total Coliforms Escherichia Coli	<1 <1		MPN/100mL MPN/100mL	0 0		12-MAY-17 12-MAY-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQ 	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de d or diatomaceous e	tection limit. arth filtration plea	ase see
Approved by <u>Account Manager</u>						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 19-MAY-17

 PO No.:
 L1925268

 WO No.:
 L1925268

 Project Ref:
 16-0300-002

 Sample ID:
 K11-12014

 Sampled By:
 PJL/LM

 Date Collected:
 11-MAY-17

 Lab Sample ID:
 L1925268-5

 Matrix:
 GW

PAGE 9 of 13

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Disso	lved Floodway						
	Bicarbonate (HCO3)	370		mg/L			16-MAY-17
	Carbonate (CO3)	<0.60		mg/L			16-MAY-17
	Hydroxide (OH)	<0.34		mg/L			16-MAY-17
	*Nitrate and Nitrite as N	0.314		mg/L	10		19-MAY-17
рН							
•	рН	7.52		pH units			12-MAY-17
Turbidity							
	*Turbidity	1.50		NTU			12-MAY-1
TDS calcula				_			
	TDS (Calculated)	394		mg/L		500	16-MAY-17
Sulfate in W	· · · · ·						
Sunate III W	Sulfate (SO4)	65.4		mg/L		500	13-MAY-17
		00.4		iiig/L		500	
Nitrite in wa	ter by IC (Low Level) *Nitrite (as N)	<0.0010					13-MAY-17
		<0.0010		mg/L	1		13-101/41-17
Nitrate in Wa	ater by IC (Low Level)	0.014					
	*Nitrate (as N)	0.314		mg/L	10		13-MAY-17
Ion Balance							
	Ion Balance	103		%			19-MAY-17
	Cation - Anion Balance Anion Sum	1.6 7.79		% me/L			19-MAY-17
	Cation Sum	8.04		me/L			19-MAY-17
Hardness Ca	alculated						
	Hardness (as CaCO3)	379		mg/L		500	16-MAY-17
Dissolved M	letals by ICP-MS						
Dissolved in	Calcium (Ca)-Dissolved	75.6		mg/L			15-MAY-17
	Magnesium (Mg)-	46.3		mg/L			15-MAY-17
	Dissolved			_			
	Potassium (K)-Dissolved	4.48		mg/L			15-MAY-17
	Sodium (Na)-Dissolved	7.98		mg/L		200	15-MAY-17
Conductivity							
	Conductivity	672		umhos/cm			12-MAY-17
Chloride in	-						
	Chloride (CI)	12.3		mg/L		250	13-MAY-17
Alkalinity, To	otal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	303		mg/L			12-MAY-17
Total Colifor	rm and E.coli by MPN QT97						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 19-MAY-17

 PO No.:
 L1925268

 WO No.:
 L1925268

 Project Ref:
 16-0300-002

 Sample ID:
 K11-12014

 Sampled By:
 PJL/LM

 Date Collected:
 11-MAY-17

 Lab Sample ID:
 L1925268-5

 Matrix:
 GW

PAGE 10 of 13

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97 Total Coliforms	<1		MPN/100mL	0		12-MAY-17
Escherichia Coli	<1		MPN/100mL	0		12-MAY-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQ 	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de d or diatomaceous e	tection limit. arth filtration plea	se see
Approved by <u>Shannon Sawatzky</u> Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

KGS Group Consultants (Winnipeg) 865 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 ATTN: PAUL LINDELL
 Date:
 19-MAY-17

 PO No.:
 L1925268

 WO No.:
 L1925268

 Project Ref:
 16-0300-002

 Sample ID:
 K11-100

 Sampled By:
 PJL/LM

 Date Collected:
 11-MAY-17

 Lab Sample ID:
 L1925268-6

 Matrix:
 GW

PAGE 11 of 13

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Disso	lved Floodway						
	Bicarbonate (HCO3)	368		mg/L			16-MAY-17
	Carbonate (CO3)	<0.60		mg/L			16-MAY-17
	Hydroxide (OH)	<0.34		mg/L			16-MAY-17
	*Nitrate and Nitrite as N	0.321		mg/L	10		19-MAY-1
рН				5			
pri	рН	7.48		pH units			12-MAY-1
Turbidity	P			pri unito			
Turblatty	*Turbidity	1.60		NTU			12-MAY-1
		1.00		NIC N			
TDS calcula	TDS (Calculated)	396				500	16-MAY-17
	· · · · ·	390		mg/L		500	10-101/4 1 - 1
Sulfate in W	•	05.0					
	Sulfate (SO4)	65.9		mg/L		500	13-MAY-17
Nitrite in Wa	ter by IC (Low Level)						
	*Nitrite (as N)	<0.0010		mg/L	1		13-MAY-17
Nitrate in Wa	ater by IC (Low Level)						
	*Nitrate (as N)	0.321		mg/L	10		13-MAY-17
Ion Balance	Calculation						
	Ion Balance	105		%			19-MAY-17
	Cation - Anion Balance	2.5		%			19-MAY-17
	Anion Sum	7.77		me/L			19-MAY-17
	Cation Sum	8.17		me/L			19-MAY-17
Hardness Ca	alculated						
	Hardness (as CaCO3)	385		mg/L		500	16-MAY-17
Dissolved M	letals by ICP-MS						
	Calcium (Ca)-Dissolved	76.8		mg/L			15-MAY-17
	Magnesium (Mg)-	47.0		mg/L			15-MAY-17
	Dissolved Potassium (K)-Dissolved	4.58					15-MAY-17
	Sodium (Na)-Dissolved	8.11		mg/L mg/L		200	15-MAY-17
Conductivit		0.11		111g/L		200	
Conductivity		670					12 14 14
	Conductivity	678		umhos/cm			12-MAY-17
Chloride in \	-						
	Chloride (Cl)	12.2		mg/L		250	13-MAY-17
Alkalinity, To	otal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	302		mg/L			12-MAY-17
Total Colifor	rm and E.coli by MPN QT97						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 19-MAY-17

 PO No.:
 L

 WO No.:
 L1925268

 Project Ref:
 16-0300-002

 Sample ID:
 K11-100

 Sampled By:
 PJL/LM

 Date Collected:
 11-MAY-17

 Lab Sample ID:
 L1925268-6

 Matrix:
 GW

PAGE 12 of 13

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97 Total Coliforms Escherichia Coli	<1 <1		MPN/100mL	0		12-MAY-17 12-MAY-17
			MPN/100mL	0		12-1014 1-17
 CDWQG = Health Canada Guideline Limits updated * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWC 	guidelines on cor iter Quality	litrate then the lin	ent and slow sand	N.D. = less than de d or diatomaceous e	tection limit. arth filtration plea	se see
Approved by Shannon Sawatzky Account Manager						

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Guidelines & Objectives

Sample Parameter Qualifier key listed:

Qualifier	Description							
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).							
Health Canada MAC Health Related Criteria Limits								
Nitrate/Nitrite-N*								
Lead*	A cumulative body poison, uncommon in naturally occurring hard waters.							
Fluoride*	Present in fluoridated water supplies at 0.8 mg/L to reduce dental caries. Elevated levels causes fluorosis (mottling of teeth).							
Total Coliforms*	Criteria is 0 CFU/100mL. Adverse health effects.							
E. Coli*	Criteria is 0 CFU/100 mL. Certain E. Coli bacteria can be life threatening.							

*Health Canada Canadian Drinking Water Quality Guidelines (MAC limit)

Aesthetic Objective Concentration Levels

Aesthetic Objective Conc	
Alkalinity	Acid neutralizing capacity. Usually a measure of carbonate and bicarbonates and calculated and reported as calcium carbonate.
Balance	Quality control parameter ratioing cations to anions
Bicarbonate	See Alkalinity. Report as the anion HCO3-1
Carbonate	See Alkalinity. Reported at the anion CO3-2
Calcium	See Hardness. Common major cation of water chemistry.
Chloride	Common major anion of water chemistry.
Conductance	Physical test measuring water salinity (dissolved ions or solids)
Hardness	Classical measure or capacity of water to precipitate soap (chiefly calcium and magnesium ions). Causes scaling tendency in water if carbonates/bicarbonates are present (if >200 mg/L). For drinking water purposes waters with results <200 mg/L are considered acceptable, results >200 mg/L are considered poor but can be tolerated. Results >500 mg/L are unacceptable.
Hydroxide	See alkalinity
Magnesium	See hardness. Common major cation of water chemistry. Elevated levels (>125 mg/L) may exert a cathartic or diuretic action.
рН	Measure of water acidity/alkalinity. Normal range is 7.0-8.5.
Potassium	Common major cation of water chemistry.
Sodium	Common major cation of water chemistry. Measure of salinity (saltiness). The aesthetic objective (not related to health) for sodium in drinking water is 200 mg/L. However, where sodium concentration of the drinking water exceeds 20 mg/L, it is recommended that any person on a sodium restricted diet consult with his/her physician or Medical Officer of Health concerning the use of that water.
Sulphate	Common major anion of water chemistry. Elevated levels may exert a cathartic or diuretic action.
Total Dissolved Solids	A measure of water salinity.
Iron	Causes staining to laundry and porcelain and astringent taste. Oxidizes to red-brown precipitate on exposure to air.
Manganese Heterotrophic	Elevated levels may cause staining of laundry and porcelain.
Plate Count	Criteria is 500 cfu/mL Measure of heterotrophic bacteria present.

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder	: L192526	-	Report Date: 19	-MAY-17	Pa	ige 1 of
865 Wave Winnipeg	up Consultants erly Street - 3rd MB R3T 5P4	Floor						-
Contact: PAUL LIN		.		0				
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-TITR-WP	Water							
Batch R3723163								
WG2528203-4 LCS Alkalinity, Total (as CaCo	O3)		101.7		%		85-115	12-MAY-17
WG2528203-1 MB	,						00 110	
Alkalinity, Total (as CaCo	O3)		<1.0		mg/L		1	12-MAY-17
L-IC-N-WP	Water							
Batch R3727082								
WG2528207-2 LCS								
Chloride (Cl)			99.6		%		90-110	13-MAY-17
WG2528207-1 MB Chloride (Cl)			<0.50		mg/L		0.5	10 MAV 1-
			<0.50		ilig/E		0.5	13-MAY-17
C-WP	Water							
Batch R3723163								
WG2528203-3 LCS Conductivity			100.4		%		90-110	12-MAY-17
WG2528203-1 MB							00110	
Conductivity			<1.0		umhos/cm		1	12-MAY-17
IET-D-MS-WP	Water							
Batch R3724764								
WG2528480-2 LCS								
Calcium (Ca)-Dissolved			103.7		%		80-120	15-MAY-17
Magnesium (Mg)-Dissolv			99.0		%		80-120	15-MAY-17
Potassium (K)-Dissolved			104.0		%		80-120	15-MAY-17
Sodium (Na)-Dissolved			103.1		%		80-120	15-MAY-17
WG2528480-1 MB Calcium (Ca)-Dissolved			<0.20		mg/L		0.2	15-MAY-17
Magnesium (Mg)-Dissolv	ved		<0.050		mg/L		0.05	15-MAY-17
Potassium (K)-Dissolved			<0.10		mg/L		0.1	15-MAY-17
Sodium (Na)-Dissolved			<0.050		mg/L		0.05	15-MAY-17
O2-L-IC-N-WP	Water							
Batch R3727082								
WG2528207-2 LCS								
Nitrite (as N)			99.3		%		90-110	13-MAY-17
WG2528207-1 MB								
Nitrite (as N)			<0.0010		mg/L		0.001	13-MAY-17
	Water							

NO3-L-IC-N-WP

Water

		Workorder:	L192526	8 R	eport Date: 19-I	MAY-17	Pa	ge 2 of 4
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO3-L-IC-N-WP	Water							
Batch R3727082								
WG2528207-2 LCS Nitrate (as N)			100.2		%		90-110	13-MAY-17
WG2528207-1 MB Nitrate (as N)			<0.0050		mg/L		0.005	13-MAY-17
PH-WP	Water							
Batch R3723163								
WG2528203-2 LCS рН			7.39		pH units		7.3-7.5	12-MAY-17
SO4-IC-N-WP	Water							
Batch R3727082								
WG2528207-2 LCS Sulfate (SO4)			100.5		%		90-110	13-MAY-17
WG2528207-1 MB Sulfate (SO4)			<0.30		mg/L		0.3	13-MAY-17
TC,EC-QT97-WP	Water							
Batch R3720747								
WG2527190-2 DUP		L1925268-1						
Total Coliforms		<1	<1	RPD-NA	MPN/100mL	N/A	65	12-MAY-17
Escherichia Coli		<1	<1	RPD-NA	MPN/100mL	N/A	65	12-MAY-17
WG2527190-1 MB Total Coliforms			<1		MPN/100mL		1	12-MAY-17
Escherichia Coli			<1		MPN/100mL		1	12-MAY-17
TURBIDITY-WP	Water						·	12 100 (1 1)
Batch R3725707								
WG2527406-5 LCS Turbidity			99.5		%		85-115	12-MAY-17
WG2527406-4 MB Turbidity			<0.10		NTU		0.1	12-MAY-17

Workorder: L1925268

Report Date: 19-MAY-17

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1925268

Report Date: 19-MAY-17

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рН							
	1	11-MAY-17 10:43	12-MAY-17 12:00	0.25	25	hours	EHTR-FM
	2	11-MAY-17 11:30	12-MAY-17 12:00	0.25	24	hours	EHTR-FM
	3	11-MAY-17 13:35	12-MAY-17 12:00	0.25	22	hours	EHTR-FM
	4	11-MAY-17 14:35	12-MAY-17 12:00	0.25	21	hours	EHTR-FM
	5	11-MAY-17 15:30	12-MAY-17 12:00	0.25	20	hours	EHTR-FM
	6	11-MAY-17 18:10	12-MAY-17 12:00	0.25	18	hours	EHTR-FM

Legend & Qualifier Definitions:

EHTR-FM:	Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR:	Exceeded ALS recommended hold time prior to sample receipt.
EHTL: EHT: Rec. HT:	Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry. Exceeded ALS recommended hold time prior to analysis. ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1925268 were received on 12-MAY-17 08:00.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS	Environmental www.alsglobal.com		ody (COC) / / quest Form I Free: 1 800 668	•		L1925268-	COF			·		COC Num	ber: 1 4 Page	1	503 °′-	}95 	8
Report To	····			Report Format	ħ <u> </u>		· · · · · · · · · · · · · · · · · · ·		*			Turnaround 1		s not avail:	lable for al	l tests)	
Company: K	GS Group		Select Report For	mat: 🗹 PC	F 🖌 EXCEL 📋	EDD (DIGITAL)	R	2	Regular (Stand	ard TAT if	received b	y 3pm) ~ j 1	4				
Contact:	A Lindell		Quality Control (Q	C) Report with Rep	ort 🗌 Yes	i 🗌 No	Р		Priority (2-4 bu	siness day	s if receive	ed by 3pm)			ja S 🖸		
Address:			Criteria on Rep	port - provide details bel	ow if box checked		E		Emergency (1-	2 business	days if rea	eived by 3pm)		i elA	. 2	
1865 4	love en St. Wea MR	RIT SPY	Select Distribution	с 🗹 🗉	MAIL 🛄 MAIL [FAX	E2		Same day or w	eekend en	nergency if	received by	10am con	tact ALS fr	or surchar		:
Phone:			misimiath	skasgroup .	- Inthana	Q Lasanapa	Speci	fy Date	Required for	or E2,E d	or P:						a
1204-	- 896-1209			elle kasa					તે નાંગ		⊂ An	alysis Rec	juest 🦯	4. F. A	144	. iui .	
Invoice To	Same as Report To TYes T	No		Invoice Di				Į	ndicate Filtered	d (F), Prese	erved (P) o	r Filtered and	Preserved	(F/P) below	₩		
	Copy of Invoice with Report	No.	Select Invoice Dis	tribution:	EMAIL MAI	L FAX	NN	*.	1 1 1	1 12.	a/			r= 1	JA		-
Company:			Email 1 or Fax					۵.	11 - 124			7			10 B	i tij	
Contact:			Email 2				15	-up	diana an	י ר י "	·	·	1 1	°DÇ≓€	• ; 1	· ·	6
	Project Information		Oi	I and Gas Require	d Fields (client us	;e)	1 🔿	. 1	: 25 		1		2.021	iare ti n°di≱ ⊲	n .		Number of Containers
ALS Quote #:	Q56271		Approver ID:	· · ·	Cost Center:		13	97		-	ļ		1 1		15		ntai
	6-0300-002		GL Account:		Routing Code:	·	12	12	• .	ŀ		′ [`		129 ;			ပို
PO/AFE:			Activity Code:		· · ·		ļμ	8t	(C.)		12		4 14 H	n <u>tr</u>			его
LSD:	· · · ·		Location:			•	1 🖈				1 4	* 01 ** **0: r	·n• :-	v			đ l
			f	Y Y			12				33 E	tre- iou	1.6	1			ź
ALS Lab Wo	rk Order # (lab use only)		ALS Contact:	Udy D	Sampler: PJ	-/Ln	KGS-KOUTU-D-FLIMIT-LUP	L L			· ·	يې اسدان ∼∼	r (
ALS Sample #	Sample Identification ar			Date	Time	Sample Type	13	し ビ				1 11	2				
(lab use only)	(This description will app	ear on the report)		(dd-mmm-yy)	(hh:mm)												+
	K13-123	121		11-May-17	10:33	GW	X	X									3
	Log - 12	316		\ '	11:30		X	4									3
	K09 - 12	212			13:35		X	X									3
	×11, 120				14.30	- 1	Ìx	X					++				3
	<u> </u>	1.5	<u></u>				17.				+-+		+	<u> </u>			3
	K11-120	<u> </u>			15:30	F	X	×,			\vdash			+			
	K11-100			<u> </u>	18:10		X	1							\square		3
	f					h		1			<u> </u>		+ +	-+	$\neg \uparrow$		1
	<u> </u>									+	┼╴┈┼		+	-+	-+		+
	·····				<u> </u>		+	<u> </u>			+		+			$\rightarrow \rightarrow \rightarrow$	-+
	l												<u> </u>		_+	$\rightarrow -$	
	l				L			ļ		<u> </u>							[!]
Drinkin	g Water (DW) Samples ¹ (client use)	Special	Instructions / Speci	ify Criteria to add on	report (client Use)		R. A	<u> </u>		MPLE C		ON AS REC		_	_	<u>AN 1919</u>	<u>ničena</u>
	n from a Regulated DW System?	· ·					Froze					SIF Observ		Yes	H	No	
Are samples taken	- /							acks na Initia	Yes 🔲	No		Custody se	al intact	Yes		No	
								ng Initia	ليا	CDATION	n 10		CININE OF	OLER TE	LIDERAT	IDEC NO	<u> </u>
Are samples for h	urnan drinking water use? es TVNo							NIT HAL C	DOLER TEMPI		່ ສະເຼຼ	<u>yeta da estas</u>	orinal CO	ULER IE	MPERAIL	INES U	<u></u>
i ve							_		4.20						<u></u>		
Released by:	SHIPMENT RELEASE (client use)	me: Receive		HIPMENT RECEP) Time:	Rece	sived by		FINAL'S	HIPME	NT RECEP		tuse oni Time:		<u> </u>	
D	- All Date:		David I.		Date: 5-12-17							Date			•		
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING INFO		WARTER S	WHI	TE LABORATORY		W - CLI	ENT CO	PY		-	<u> </u>	NA-FM-0326e v0	e Front#04 Janua	ary 2014		

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

.

 Date:
 29-MAY-17

 PO No.:
 L1925270

 WO No.:
 L1925270

 Project Ref:
 16-0300-002

 Sample ID:
 SW44

 Sampled By:
 J1-MAY-17

 Lab Sample ID:
 L1925270-1

 Matrix:
 SW

PAGE 1 of 7

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Total Flo	odway						
	Bicarbonate (HCO3)	349		mg/L			16-MAY-17
	Carbonate (CO3)	4.44		mg/L			16-MAY-17
	Hydroxide (OH)	<0.34		mg/L			16-MAY-17
	*Nitrate and Nitrite as N	0.0116		mg/L	10		19-MAY-17
рН				_			
•	рН	8.34		pH units			12-MAY-17
Turbidity				·			
,	*Turbidity	9.30		NTU			12-MAY-17
Total Metals by	ICP-MS						
· · · · · · · · · · · · · · · · · · ·	Calcium (Ca)-Total	76.3		mg/L			15-MAY-17
	Magnesium (Mg)-Total	40.3		mg/L			15-MAY-17
	Potassium (K)-Total	3.95		mg/L			15-MAY-17
	Sodium (Na)-Total	22.1		mg/L		200	15-MAY-17
TDS calculated							
	TDS (Calculated)	408		mg/L		500	16-MAY-17
Sulfate in Water	by IC						
	Sulfate (SO4)	65.9		mg/L		500	13-MAY-17
Nitrite in Water	by IC (Low Level)						
	*Nitrite (as N)	<0.0010		mg/L	1		13-MAY-17
Nitrate in Water	by IC (Low Level)						
	*Nitrate (as N)	0.0116		mg/L	10		13-MAY-17
Ion Balance Cal	culation						
	Ion Balance	104		%			19-MAY-17
	Cation - Anion Balance	1.8		%			19-MAY-17
	Anion Sum	7.90		me/L			19-MAY-17
	Cation Sum	8.19		me/L			19-MAY-17
Hardness Calcu		0.57	1170				
	Hardness (as CaCO3)	357	HTC	mg/L		500	16-MAY-17
Conductivity							
	Conductivity	679		umhos/cm			12-MAY-17
Chloride in Wat	er by IC						
	Chloride (Cl)	23.5		mg/L		250	13-MAY-17
Alkalinity, Total	(as CaCO3)						
	Alkalinity, Total (as CaCO3)	293		mg/L			12-MAY-17
	Phosphorus (P)-Total	0.065		mg/L			16-MAY-17
	Ammonia, Total (as N)	<0.010		mg/L			12-MAY-17

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

KGS Group Consultants (Winnipeg) 865 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 ATTN: PAUL LINDELL
 Date:
 29-MAY-17

 PO No.:
 L

 WO No.:
 L1925270

 Project Ref:
 16-0300-002

 Sample ID:
 SW44

 Sampled By:
 J

 Date Collected:
 11-MAY-17

 Lab Sample ID:
 L1925270-1

 Matrix:
 SW

PAGE 2 of 7

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Escherichia Coli	12		MPN/100mL	0	(12-MAY-17
Total Coliforms	411		MPN/100mL	0		12-MAY-17
Total Kjeldahl Nitrogen	0.65		mg/L			26-MAY-17
Total Suspended Solids	9.0		mg/L			15-MAY-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 CDWQG for Nitrate+Nitrite-N is the limit for nitrate onli ⁺ Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa ⁻ A blank entry designates no known limit. A shaded value in the Results column exceeds CDWO Approved by Hua Wo Account Manager 	guidelines on cor ater Quality	ventional treatn	nent and slow sand	N.D. = less than de	tection limit. arth filtration ple	ase see

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 29-MAY-17

 PO No.:
 L

 WO No.:
 L1925270

 Project Ref:
 16-0300-002

 Sample ID:
 SW59

 Sampled By:
 J

 Date Collected:
 11-MAY-17

 Lab Sample ID:
 L1925270-2

 Matrix:
 SW

PAGE 3 of 7

ROU1W Total Floodway Bicarbonat Carbonate				Measure	MAC	Objective	Analyzed
Carbonate	e (HCO3)	328		mg/L			16-MAY-17
	(CO3)	8.40		mg/L			16-MAY-17
Hydroxide	(OH)	<0.34		mg/L			16-MAY-17
*Nitrate and	Nitrite as N	<0.0051		mg/L	10		24-MAY-17
рН				_			
pH		8.45		pH units			12-MAY-17
Turbidity							
*Turbidity		12.0		NTU			12-MAY-17
Total Metals by ICP-MS							
Calcium (C	Ca)-Total	74.0		mg/L			15-MAY-17
	n (Mg)-Total	37.8		mg/L			15-MAY-17
Potassium	(K)-Total	3.65		mg/L			15-MAY-17
Sodium (N	a)-Total	20.7		mg/L		200	15-MAY-17
TDS calculated							
TDS (Calc	ulated)	387		mg/L		500	16-MAY-17
Sulfate in Water by IC							
Sulfate (So	D4)	59.1		mg/L		500	15-MAY-17
Nitrite in Water by IC (Low	Level)						
*Nitrite (as	N)	<0.0010	HTD	mg/L	1		15-MAY-17
Nitrate in Water by IC (Low	Level)						
*Nitrate (as	N)	<0.0050	HTD	mg/L	10		15-MAY-17
Ion Balance Calculation							
Ion Balanc	e	104		%			24-MAY-17
	nion Balance	2.0		%			24-MAY-17
Anion Sum		7.50		me/L			24-MAY-17
Cation Sur	n	7.80		me/L			24-MAY-17
Hardness Calculated		0.40					
	(as CaCO3)	340	HTC	mg/L		500	16-MAY-17
Conductivity							
Conductivi	ty	634		umhos/cm			12-MAY-17
Chloride in Water by IC							
Chloride (C	CI)	21.7		mg/L		250	15-MAY-17
Alkalinity, Total (as CaCO3)							
Alkalinity, CaCO3)	Total (as	283		mg/L			12-MAY-17
Phosphoru	is (P)-Total	0.077		mg/L			16-MAY-17
	Total (as N)	<0.010		mg/L			12-MAY-17

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

KGS Group Consultants (Winnipeg) 865 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 ATTN: PAUL LINDELL
 Date:
 29-MAY-17

 PO No.:
 L1925270

 WO No.:
 L1925270

 Project Ref:
 16-0300-002

 Sample ID:
 SW59

 Sampled By:
 Intervention

 Date Collected:
 11-MAY-17

 Lab Sample ID:
 L1925270-2

 Matrix:
 SW

PAGE 4 of 7

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Escherichia Coli	78		MPN/100mL	0	(12-MAY-17
Total Coliforms	1050		MPN/100mL	0		12-MAY-17
Total Kjeldahl Nitrogen	0.75		mg/L			26-MAY-17
Total Suspended Solids	9.0		mg/L			15-MAY-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQ Approved by <u>Mama</u> Hua Wo Account Manager	guidelines on cor ater Quality	ventional treatm	nent and slow sand			ase see

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

 Date:
 29-MAY-17

 PO No.:
 L

 WO No.:
 L1925270

 Project Ref:
 16-0300-002

 Sample ID:
 SW100

 Sampled By:
 J

 Date Collected:
 11-MAY-17

 Lab Sample ID:
 L1925270-3

 Matrix:
 SW

PAGE 5 of 7

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Total F	Floodway						
	Bicarbonate (HCO3)	328		mg/L			16-MAY-17
	Carbonate (CO3)	8.52		mg/L			16-MAY-17
	Hydroxide (OH)	<0.34		mg/L			16-MAY-17
	*Nitrate and Nitrite as N	<0.0051		mg/L	10		24-MAY-17
рН							
	рН	8.45		pH units			12-MAY-17
Turbidity							
	*Turbidity	11.6		NTU			12-MAY-17
Total Metals	by ICP-MS						
	Calcium (Ca)-Total	75.2		mg/L			15-MAY-17
	Magnesium (Mg)-Total	38.1		mg/L			15-MAY-17
	Potassium (K)-Total	3.77		mg/L			15-MAY-17
	Sodium (Na)-Total	21.0		mg/L		200	15-MAY-17
TDS calculate	ed						
	TDS (Calculated)	389		mg/L		500	16-MAY-17
Sulfate in Wa	ater by IC						
	Sulfate (SO4)	59.2		mg/L		500	15-MAY-17
Nitrite in Wat	er by IC (Low Level)						
	*Nitrite (as N)	<0.0010	HTD	mg/L	1		15-MAY-17
Nitrate in Wa	ter by IC (Low Level)						
	*Nitrate (as N)	<0.0050	HTD	mg/L	10		15-MAY-17
Ion Balance (Calculation						
	Ion Balance	105		%			24-MAY-17
	Cation - Anion Balance	2.6		%			24-MAY-17
	Anion Sum	7.50		me/L			24-MAY-17
	Cation Sum	7.90		me/L			24-MAY-17
Hardness Ca		345	нтс			500	16-MAY-17
	Hardness (as CaCO3)	345	пс	mg/L		500	10-IVIA 1-17
Conductivity		000		. ,			
	Conductivity	632		umhos/cm			12-MAY-17
Chloride in W	-						
	Chloride (Cl)	21.7		mg/L		250	15-MAY-17
Alkalinity, To	otal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	283		mg/L			12-MAY-17
	Phosphorus (P)-Total	0.077		mg/L			16-MAY-17
	Ammonia, Total (as N)	<0.010		mg/L			12-MAY-17

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

KGS Group Consultants (Winnipeg) 865 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 ATTN: PAUL LINDELL
 Date:
 29-MAY-17

 PO No.:
 L

 WO No.:
 L1925270

 Project Ref:
 16-0300-002

 Sample ID:
 SW100

 Sampled By:
 J

 Date Collected:
 11-MAY-17

 Lab Sample ID:
 L1925270-3

 Matrix:
 SW

PAGE 6 of 7

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Escherichia Coli	73		MPN/100mL	0		12-MAY-17
Total Coliforms	1200		MPN/100mL	0	1	12-MAY-17
Total Kjeldahl Nitrogen	0.78		mg/L			26-MAY-17
Total Suspended Solids	10.0		mg/L			15-MAY-17
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa • A blank entry designates no known limit. • A shaded value in the Results column exceeds CDWC Approved by	 If present as N guidelines on cor ater Quality 	itrate then the li ventional treatm	ent and slow sand	N.D. = less than de t or diatomaceous e	tection limit. arth filtration plea	ase see

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Sample Parameter Qualifier key listed:

Qualifier	Description
HTD	Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time.
HTC	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).
	MAC Health Related Criteria Limits
Nitrate/Nitrite-N* Lead*	Criteria limit is 10 mg/L (1.0 mg/L if present as all Nitrite-N). High concentrations may contribute to blue baby syndrome in infants. A cumulative body poison, uncommon in naturally occurring hard waters.
Fluoride*	Present in fluoridated water supplies at 0.8 mg/L to reduce dental caries. Elevated levels causes fluorosis (mottling of teeth).
Total Coliforms* E. Coli*	Criteria is 0 CFU/100mL. Adverse health effects. Criteria is 0 CFU/100 mL. Certain E. Coli bacteria can be life threatening.
*Health Canada	Canadian Drinking Water Quality Guidelines (MAC limit)
Aesthetic Obje	ctive Concentration Levels
Alkalinity	Acid neutralizing capacity. Usually a measure of carbonate and bicarbonates and calculated and reported as calcium carbonate.
Balance	Quality control parameter ratioing cations to anions
Bicarbonate	See Alkalinity. Report as the anion HCO3-1
Carbonate	See Alkalinity. Reported at the anion CO3-2
Calcium	See Hardness. Common major cation of water chemistry.
Chloride	Common major anion of water chemistry.
Conductance	Physical test measuring water salinity (dissolved ions or solids)
Hardness	Classical measure or capacity of water to precipitate soap (chiefly calcium and magnesium ions). Causes scaling tendency in water if carbonates/bicarbonates are present (if >200 mg/L). For drinking water purposes waters with results <200 mg/L are considered acceptable, results >200 mg/L are considered poor but can be tolerated. Results >500 mg/L are unacceptable.
Hydroxide	See alkalinity
Magnesium	See hardness. Common major cation of water chemistry. Elevated levels (>125 mg/L) may exert a cathartic or diuretic action.
рН	Measure of water acidity/alkalinity. Normal range is 7.0-8.5.
Potassium	Common major cation of water chemistry.
Sodium	Common major cation of water chemistry. Measure of salinity (saltiness). The aesthetic objective (not related to health) for sodium in drinking water is 200 mg/L. However, where sodium concentration of the drinking water exceeds 20 mg/L, it is recommended that any person on a sodium restricted diet consult with his/her physician or Medical Officer of Health concerning the use of that water.
Sulphate	Common major anion of water chemistry. Elevated levels may exert a cathartic or diuretic action.
Total Dissolved	
Iron	Causes staining to laundry and porcelain and astringent taste. Oxidizes to red-brown precipitate on exposure to air.
Manganese Heterotrophic	Elevated levels may cause staining of laundry and porcelain.
Plate Count	Criteria is 500 cfu/mL Measure of heterotrophic bacteria present.

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there. mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder:	L192527	′ 0	Report Date: 29-	MAY-17	Pa	ige 1 of 6
Client:	865 Waverly Stre Winnipeg MB R3							
Contact:	PAUL LINDELL							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-TITR-WP	Water							
	3723163							
WG2528203-1 Alkalinity, Tota		L1925270-1 293	292		mg/L	0.4	20	12-MAY-17
WG2528203-9 Alkalinity, Tota			102.0		%		85-115	12-MAY-17
WG2528203-6 Alkalinity, Tota			<1.0		mg/L		1	12-MAY-17
CL-IC-N-WP	Water		-		3		·	12 100 11 11
	water 3727082							
WG2528207-2 Chloride (Cl)			99.6		%		90-110	13-MAY-17
WG2528207-1 Chloride (Cl)	МВ		<0.50		mg/L		0.5	13-MAY-17
Batch R	3727602							
WG2528682-3 Chloride (Cl)	DUP	L1925270-2 21.7	21.7		mg/L	0.1	20	15-MAY-17
WG2528682-2 Chloride (Cl)	LCS		100.5		%		90-110	15-MAY-17
WG2528682-1 Chloride (Cl)	МВ		<0.50		mg/L		0.5	15-MAY-17
WG2528682-4 Chloride (Cl)	MS	L1925270-2	92.9		%		75-125	15-MAY-17
EC-QT97-ENDPT	-WP Water							
	3720583							
WG2527180-2 Escherichia C		L1925270-1 12	10		MPN/100mL	22	65	12-MAY-17
WG2527180-1 Escherichia C	MB oli		<1		MPN/100mL		1	12-MAY-17
EC-WP	Water							
Batch R	3723163							
WG2528203-1 Conductivity	0 DUP	L1925270-1 679	674		umhos/cm	0.7	10	12-MAY-17
WG2528203-8 Conductivity	LCS		100.4		%		90-110	12-MAY-17
WG2528203-6 Conductivity	МВ		<1.0		umhos/cm		1	12-MAY-17
MET-T-MS-WP	Water							
	walei							

		Workorder:	L192527	0 Re	eport Date:	29-MAY-17	Pa	ige 2 of 6
ſest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WP	Water							
Batch R372476	64							
WG2528458-2 LCS Calcium (Ca)-Total	i		105.0		%		80-120	15-MAY-17
Magnesium (Mg)-Tota	al		100.7		%		80-120	15-MAY-17
Potassium (K)-Total			108.0		%		80-120	15-MAY-17
Sodium (Na)-Total			104.1		%		80-120	15-MAY-17
WG2528458-1 MB Calcium (Ca)-Total			<0.20		mg/L		0.2	15-MAY-17
Magnesium (Mg)-Tota	al		<0.050		mg/L		0.05	15-MAY-17
Potassium (K)-Total			<0.10		mg/L		0.1	15-MAY-17
Sodium (Na)-Total			<0.050		mg/L		0.05	15-MAY-17
NH3-COL-WP	Water				-			
Batch R372072	24							
WG2527165-6 LCS Ammonia, Total (as N			100.5		%		85-115	12-MAY-17
WG2527165-5 MB Ammonia, Total (as N)		<0.010		mg/L		0.01	12-MAY-17
NO2-L-IC-N-WP	Water							
Batch R372708	2							
WG2528207-2 LCS Nitrite (as N)	i		99.3		%		90-110	13-MAY-17
WG2528207-1 MB Nitrite (as N)			<0.0010		mg/L		0.001	13-MAY-17
Batch R372760	2							
WG2528682-3 DUF Nitrite (as N)	•	L1925270-2 <0.0010	<0.0010	RPD-NA	mg/L	N/A	20	15-MAY-17
WG2528682-2 LCS Nitrite (as N)	i		99.7		%		90-110	15-MAY-17
WG2528682-1 MB Nitrite (as N)			<0.0010		mg/L		0.001	15-MAY-17
WG2528682-4 MS Nitrite (as N)		L1925270-2	92.2		%		75-125	15-MAY-17
NO3-L-IC-N-WP	Water							
Batch R372708 WG2528207-2 LCS			100.0		97		00.440	
Nitrate (as N) WG2528207-1 MB			100.2		% ma/l		90-110	13-MAY-17
Nitrate (as N)			<0.0050		mg/L		0.005	13-MAY-17

		Workorder:	L192527	- 0 Re	port Date: 29	9-MAY-17	Pa	ge 3 of 6
ſest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO3-L-IC-N-WP	Water							
Batch R3727602								
WG2528682-3 DUP Nitrate (as N)		L1925270-2 <0.0050	<0.0050	RPD-NA	mg/L	N/A	20	15-MAY-17
WG2528682-2 LCS Nitrate (as N)			101.1		%		90-110	15-MAY-17
WG2528682-1 MB Nitrate (as N)			<0.0050		mg/L		0.005	15-MAY-17
WG2528682-4 MS Nitrate (as N)		L1925270-2	93.9		%		75-125	15-MAY-17
P-T-COL-WP	Water							
Batch R3725270								
WG2527421-2 LCS Phosphorus (P)-Total			100.0		%		80-120	16-MAY-17
WG2527421-1 MB Phosphorus (P)-Total			<0.010		mg/L		0.01	16-MAY-17
PH-WP	Water							
Batch R3723163								
WG2528203-10 DUP рН		L1925270-1 8.34	8.34	J	pH units	0.00	0.2	12-MAY-17
WG2528203-7 LCS рН			7.39		pH units		7.3-7.5	12-MAY-17
SO4-IC-N-WP	Water							
Batch R3727082								
WG2528207-2 LCS Sulfate (SO4)			100.5		%		90-110	13-MAY-17
WG2528207-1 MB Sulfate (SO4)			<0.30		mg/L		0.3	13-MAY-17
Batch R3727602								
WG2528682-3 DUP Sulfate (SO4)		L1925270-2 59.1	59.1		mg/L	0.0	20	15-MAY-17
WG2528682-2 LCS Sulfate (SO4)			100.8		%		90-110	15-MAY-17
WG2528682-1 MB Sulfate (SO4)			<0.30		mg/L		0.3	15-MAY-17
WG2528682-4 MS Sulfate (SO4)		L1925270-2	90.3		%		75-125	15-MAY-17
SOLIDS-TOTSUS-WP	Water		-					

		Workorder:	L192527	0	Report Date: 29-I	MAY-17	Pa	Page 4 of 6				
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed				
SOLIDS-TOTSUS-WP	Water											
Batch R3724485 WG2528165-6 LCS Total Suspended Solids			96.7		%		85-115	15-MAY-17				
WG2528165-5 MB Total Suspended Solids			<5.0		mg/L		5	15-MAY-17				
TC-QT97-ENDPT-WP	Water											
Batch R3720566 WG2527186-2 DUP Total Coliforms		L1925270-1 411	308		MPN/100mL	29	65	12-MAY-17				
WG2527186-1 MB Total Coliforms			<1		MPN/100mL		1	12-MAY-17				
TKN-WT	Water											
Batch R3732321 WG2535166-2 LCS												
Total Kjeldahl Nitrogen			99.4		%		75-125	26-MAY-17				
WG2535166-1 MB Total Kjeldahl Nitrogen			<0.15		mg/L		0.15	26-MAY-17				
TURBIDITY-WP	Water											
Batch R3725707												
WG2527406-8 LCS Turbidity			99.5		%		85-115	12-MAY-17				
WG2527406-7 MB Turbidity			<0.10		NTU		0.1	12-MAY-17				

Workorder: L1925270

Report Date: 29-MAY-17

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L1925270

Report Date: 29-MAY-17

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рН							
	1	11-MAY-17 12:20	12-MAY-17 12:00	0.25	24	hours	EHTR-FM
	2	11-MAY-17 16:00	12-MAY-17 12:00	0.25	20	hours	EHTR-FM
	3	11-MAY-17 18:00	12-MAY-17 12:00	0.25	18	hours	EHTR-FM
Anions and Nutrients							
Nitrate in Water by IC (Low	/ Level)						
	2	11-MAY-17 16:00	15-MAY-17 12:00	3	4	days	EHT
	3	11-MAY-17 18:00	15-MAY-17 12:00	3	4	days	EHT
Nitrite in Water by IC (Low	Level)						
	2	11-MAY-17 16:00	15-MAY-17 12:00	3	4	days	EHT
	3	11-MAY-17 18:00	15-MAY-17 12:00	3	4	days	EHT

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1925270 were received on 12-MAY-17 08:00.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Report To	C Environmental www.alsglobal.com	hain of Custody (COC) Request Forr Canada Toll Free: 1 800	n l		925270-CC	DFC							Page	4 - 5 	of	<u> </u>	9
	<u> </u>		-		1	1		mulie /C							Sie for all t	esis)	
Company:	CA Group	·						R Regular (Standard TAT if received by 3pm)									
Contact: Fall Lindell								P Priority (2-4 business days if received by 3pm)									
	$\left(\right) \left(\right) $		Criteria on Report - provide details balow if box checked Select Distribution:					E Emergency (1-2 business days if received by 3pm) *** E2 Same day or weekend emergency if received by 10am - contact ALS for surcharge.									
DES Ma	verlay st. Weg NB R3T	SP9 Select Distribut			FAX	-					y if receiv	ved by 10	Jam – cont	act ALS for	surcharge	a.	-
Filone.	/ 0	Emails prima	thekasgrou	p.com	1		y Date H		ed for E2,	· · · · ·							
		For the have	metgsyn ip		10 - ggg roup.	<u> </u>			··				<u> </u>				
Invoice To	Same as Report To FYes FNo		Invoice Di	Istribution	+ -		Inc	dicate Fil	tered (F), F	reserved (I	P) or Filter	red and P	reserved ((F/P) below			
	Copy of Invoice with Report TYes TNo	Select Invoice	Distribution:	EMAIL MAJ	IL 💭 FAX				<u>ו</u> -				3 41	51 M			
Company:		Email 1 or Fa	x		· ·	4			e 44 1 i i	11.4	•		1.044		71		1
Contact:		Email 2				417		- di [,	. art he		3				e 1		_
	Project Information		Oil and Gas Require	d Fields (client u	se)	1 1	`	0	·	3	', i	~		. ** (A 			Number of Containers
ALS Quote #	567-21	Approver ID:	······································	Cost Center:		† , ≓å		- 51		N L	- 5			្រា	I		Ital
	0300-002	GL Account:		Routing Code:				1	3	S a	5			1 : 0			ð
PO/AFE:	0300-0004	Activity Code:					8	5	17.	215.5	ไ เมื		3. 4	())) ())		ē
						- 3	3	Lد	.~ <u>`</u>	5 4	4			·C** - K	0.40		be
LSD:		Location:				- 21	1		Col	71 2	- n -	+ -	0.10		- at		Ī
ALS Lab Work Order # (lab use only)		ALS Contact	ALS Contact: Sampler:			GS-Roulu	-col		\sim	- 201	6	5	* 1b				
ALS Sample # (lab use only)	Sample Identification and/or (This description will appear o		Date (dd-mmm-yy)	Time (bb:mm)	Sample Type	X	J.	Z	±	7 20							
<u>"na na seu na m</u>						_		×				÷ 	╋╼╾╋				+
	SW44		11-1x ary -11	12:20	SW	X	Ă+		<u>X X</u>	<u> X</u>	×					_	کہ ا
	SU59)-Ming-17		SW	X		X	XX	× ×	X						5
	56100	- ,	H=May-17	18:00	SW	X	×	×	<u> ×</u> ×	<u>ξ</u> κ	×	<u> </u>	+	\rightarrow	_	_	<u> </u>
																	<u> </u>
					+	-						\vdash	+	-+	+	_	—
			·			╋──┤						+	++	-+	+	+	+
	-											<u> </u>	+	·			
<u>⊦</u> —†				+	+	┼┈╍┨		-+			+	+	++	-+	+	\rightarrow	1
J					·	+	+	-+			<u> </u>	+	┼──┼		<u> </u>		-
1	· · · · · · · · · · · · · · · · · · ·																
Drinking	Water (DW) Samples ¹ (client use)	Special Instructions / S	pecify Criteria to add or	n report (client Use)			740 - 13 1			CONDI				lab use o	_	<u></u>	1000
Are samples taken from a Regulated DW System?		· · · · · · · · · · · · · · · · · · ·				Frozen SIF Observations Yes No											
						Ice pa				•	Custo	ody seal	l intact	Yes		No	
							g Initiate										
Are samples for human drinking water use?							TIAL COO		MPERATU	RES °C	jedz se		FINAL CO	OLER TEM	PERATUR	(ES ℃	
TYes TNo						1		-38	. "C								
	SHIPMEN RELEASE (client use)		AL SHIPMENT RECEP	TION (lab use only	() ess stratic track	1477.18		_		E SHIPM	ENT RE	CEPT	ION (iab	use only	<u>)</u>	· · · ·	
Released by	Date: Time:	00 Privid 1.		Date: 5-12 - A	Time: Wan		ved by:				_	Date:		Time:	<u> </u>		; <u></u>
REFER TO BACK P	AGE FOR ALS LOCATIONS AND SAMPLING INFORMAT		WHI	ITE - LABORATORY		W CLIE	NT COP	Y	_			NA	A-FM-D326e v99	Front/04 January :	2014		

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

-

