TOWN OF RUSSELL LAGOON SLUDGE CHARACTERIZATION

Project no: 141-25002-00 Date: December 16, 2014

WSP Canada Inc. 1600 Buffalo Place Winnipeg, MB R3T 6B8

Phone: +1.204.477.6650 Fax: +1.204.474.2864 www.wspgroup.com

SIGNATURES

PREPARED BY

& Rah-Baill

Justin Rak-Banville, M.Sc., P. Chem., C. Chem., EP Water Specialist

REVIEWED BY

Jason Bunn, P.Eng. Environmental Engineer

R. Webt

Ross Webster, P.Eng. Manager, Environmental Infrastructure

WSP

TABLE OF CONTENTS

1	PROJECT SUMMARY1
1.1	PROJECT SCOPE1
1.2	SLUDGE MOVEMENT TO THE LAGOON1
2	SLUDGE CHARACTERIZATION 2
2.1	METHOD
2.2	ESTIMATED SLUDGE QUANTITY
2.3	SLUDGE QUALITY
2.3.1	NUTRIENT CONSIDERATIONS
2.3.2	SALINITY CONSIDERATIONS
2.3.3	TRACE METALS CONSIDERATIONS7
2.4	SAMPLE COMPARISON
3	CONCLUSION11
3.1	MANAGEMENT OF NITROGEN AND PHOSPHORUS
3.2	SALINITY 11
3.3	TRACE METALS 12
3.4	DISPOSAL 12
3.5	FINDINGS SUMMARY 13
4	LIMITATIONS

TABLES

TABLE 1: ESTIMATED MOUND VOLUME	3
TABLE 2: SLUDGE CHARACTERIZATION WITH NITROGEN AND PHOSPHORUS PROFILING	4
TABLE 3: SAMPLE SALINITY RESULTS	6
TABLE 4: WTP AND LAGOON SAMPLE COMPARISON	8
TABLE 5: METAL CONCENTRATIONS AND THEIR CUMULATIVE LOADING CONCENTRATION	. 10
TABLE 6: BULK TRACE METAL MASSES CONTRIBUTED AT 80% OF THE MOUND BEING DEPOSITED TO THE WASTE DISPOSAL GROUND	12

APPENDICES

APPENDIX A - ANALYTICAL LAB RESULT

1 PROJECT SUMMARY

As part of the Town of Russell's (Town) water treatment plant (WTP) lime-softening process, the plant produces a waste stream containing a mixture of calcium carbonate and magnesium hydroxide. The waste stream, although mostly water and flocculated particles, encompasses these hydroxides in the form of a white precipitate (referred to as sludge).

The plant discharges to the Town's wastewater sewer system at a high frequency, which in turn transports a small amount of the sludge to the Town's wastewater treatment facility, "lagoon". Although the actual concentration of the precipitate (sludge) in each discharge remains very low, the cumulative effect of the lime softening process has led to a build-up of the WTP sludge within the primary cell of the Town's lagoon.

Historically, disposal has included excavation of the bulk material for transport and disposal as a cover material at the waste disposal ground, located approximately 3 kilometres away.

Manitoba Conservation and Water Stewardship (CWS) have raised concern regarding the Town's conventional disposal method to the local waste disposal ground. Of particular interest is to determine if the sludge has combined with the lagoon biosolids preventing its disposal.

CWS have requested that a consulting engineering firm evaluate the quality of the accumulated sludge in the lagoon and estimate its quantity.

1.1 **PROJECT SCOPE**

Based on recent discussions with the Town of Russell and with CWS the scope of this project included the following items:

- → Composite sampling of the water treatment plant sludge which mounds within the lagoon primary cell.
- → Characterization (physical, salinity, nutrient, and metals) of the composite sample by laboratory analysis to assess sludge quality.
- → Sampling of the water treatment plant waste product at the water treatment plant. This sampling will aid in the development of a characterization base line and provide further comparison of the sludge.

1.2 SLUDGE MOVEMENT TO THE LAGOON

In the lime-softening process occurring at the WTP, the pH of the water being treated is raised sufficiently to precipitate calcium carbonate and magnesium hydroxide. Typically, in small systems,

lime-softening is practiced by adding hydrated lime to the raw water to raise the pH to approximately 10 to 11, thereby precipitating calcium and magnesium as white coloured hydroxides (limestone and brucite).

The lime softening process takes place in a single reaction chamber, which discharges waste at a high flow every seven minutes to a nearby waste pit located within the WTP. The precipitates makeup a small percentage (by volume) of the total discharge waste product sludge, and slowly accumulates within the waste pit.

As the precipitate slowly builds up within the waste collection pit, the WTP operators will use treated water to clean the pit, effectively flushing additional accumulated precipitate into the wastewater sewer system. With WTP wastewater being discharged at seven minute intervals, small amounts of the lime softening precipitate enter the wastewater sewer system at a high frequency, with larger slugs occurring with the cleaning of the waste pit.

The existing wastewater treatment facility consists of a three-cell facultative stabilization pond, located approximately 600 metres from the west edge of the Community at the northeast corner of SE 04-21-28 WPM. The lagoon was originally built in 1956 and was expanded in 1968, 1985, and 2007. Wastewater is pumped from a main lift station located in the Town of Russell through a forcemain which discharges to the primary cell of the lagoon.

SLUDGE CHARACTERIZATION

It is anticipated that the sludge will be applied in a semi-dry state with continued dewatering as the material is deposited in its final location at the waste disposal ground. The Town reports that the material will be surface spread and incorporated into the existing waste disposal facility waste piles.

WSP completed a comprehensive sampling program on November 26, 2014 of the accumulated sludge mound located within the Town's lagoon primary cell. The Town had previously drained the cell in preparation of excavation, just prior to CWS intervention requesting a study of the mounded sludge; in turn facilitating sampling efforts.

2.1 METHOD

The Town of Russell arranged to have the necessary equipment (backhoe) and personnel available to break open the sludge mound at six locations within the primary cell. Two shovel samples were taken from each test pit at approximately 0.60 to 0.91 m below ground surface in order to collect representative samples of the material which would normally be removed. The Town's Public Works Foreman provided additional guidance demonstrating the depth and material intended to be removed.

One composite sample composed from the six pits advanced on site was assembled and submitted for analysis to ALS Laboratory Group (ALS), an accredited laboratory by the Canadian Association for

Laboratory Accreditation Inc. (CALA). The following analysis was completed to assess the sludge quality:

- Physical characteristics: moisture content, organic matter content, total carbon, mineral content and specific gravity.
- Detailed salinity (chloride, calcium, potassium, magnesium, sodium), sulfur, sodium absorption ratio (SAR), electrical conductivity (EC), and pH.
- Nutrient characteristics: nitrogen profile (total kjeldahl nitrogen, nitrate-nitrogen, ammoniumnitrogen), total and bi-carbonate phosphorus, potassium and sulfate-sulfur.
- Metals content (30 metals analyzed).

2.2 ESTIMATED SLUDGE QUANTITY

The primary cell has a total volume of 49,300 m³ or a storage volume of 24,650 m³, as only half of the total volume contributes to the hydraulic storage of the facility. The base of the cell has an area of approximately 28,993 m².

On November 26, 2014 the approximate radius of the mound from the center (outlet pipe) ranged from 25 to 28 metres with a 1.0 metre observable depth at the centre of the mound. The general shape was concentric, although not uniform. For comparison, historic aerial photography dated September 2012 provides an approximate radius from the centre of the mound of 32 to 45 metres.

Assuming a centre depth of 1.0 m, a conical frustum was used to estimate the volume present on November 26th. Should a more accurate volume calculation be required, it is recommended that the Town of Russell arrange to have the mound surveyed.

Date	Frustum Parameters	Min Radii	Max Radii
November-14			
	Estimated Top Frustum Radius	5	8
	Estimated Bottom Frustum Radius	25	28
	Height	1	1
	Conical Frustum Estimate (rounded to nearest 100th) (m ³)	800	1,100
	10% Factory of Safety (m ³)	80	110
	Estimated Mound Volume (m ³)	880	1,210

Table 1: Estimated mound volume.

Based on the November 2014 site visit, it is estimated that the volume of the mound ranges between 880 m³ and 1,210 m³. At a conservative estimate of 1,210 m³ and specific gravity of 2.14 (kg/L), the mass of the mound present is estimated at approximately 2,589 tonnes. It should be noted that the volume to be removed from the primary cell may not necessarily be reflected by this estimate, as removal is often based on a function of staff availability, ease of access, budgeted funds, timing, and other municipal public works planning considerations.

2.3 SLUDGE QUALITY

2.3.1 NUTRIENT CONSIDERATIONS

An evaluation of both the WTP precipitate waste collected from the WTP's waste pit, and a composite sample from the sludge mound in the lagoon is presented below. As previously noted, CWS is concerned with the disposal of the sludge at the waste disposal ground rather than the land application of biosolids.

To determine the appropriateness of disposal to the Town's waste disposal ground, it is important to characterize the differing components of the sludge. Of particular importance is the Nutrient Management Regulation 62/2008 (registered on March 18, 2008) focusing on nutrient and biosolids application on the basis of soil agricultural suitability, ie. land application considerations. The Regulation focuses on protecting water quality by encouraging responsible nutrient planning and by regulating the application to land of substances containing nitrogen or phosphorus.

Parameter	Description	WTP Sample	Primary Cell Sample	Unit
Physical Characteristics				
Reported Wet Volume (Table 1)	In-field	-	1,210	m ³
Specific Gravity	As Received	1.50	2.14	kg/L
Total Solids	As Received	33.4	53.5	%
Moisture	As Received	66.6	46.5	%
Dry tonnes biosolid available (wet volume x %solids)	Dried Basis	-	647	tonnes
Organic Matter	Dry Basis	3.3	7.5	%
рН	Paste	9.16	8.45	Unitless
Nitrogen Profiling				
Total Kjeldahl N	% Dried Basis	0.03	0.24	%
Total Kjeldahl N	Dried Basis	310	2,380	mg/kg
Total Kjeldahl N	Dried Basis	0.31	2.38	mg/Tonne
Ammonium - N	Dried Basis	<1.0	106.0	mg/kg
Ammonium - N	Dried Basis	<0.001	0.11	mg/Tonne
Available Nitrate-N	Dried Basis	<4.0	4.10	mg/kg
Available Nitrate-N	Dried Basis	<0.004	0.00	mg/Tonne
Organic N (TKN – Ammonium-N)	Dried Basis	310	2,274	mg/kg
Organic N	Dried Basis	0.31	2.27	mg/Tonne
Anticipated Volitization (% of initial ammonia lost; 0 to 5 days incorporation)			17%	
Available Organic N (10% of Organic N)	Dried Basis	0.03	0.23	mg/Tonne
Ammonium Nitrogen Available	Dried Basis	<0.001	0.09	mg/Tonne
Total available nitrogen (Year 1, Org.N+Amm.N.)	Dried Basis	0.03	0.23	kg/Tonne
Mineralization N (Year 1, 25%)	Dried Basis	0.08	0.57	kg/Tonne
Mineralization N (Year 2, 12%)	Dried Basis	0.04	0.27	kg/Tonne
Mineralization N (Year 3, 6%)	Dried Basis	0.02	0.14	kg/Tonne
Phosphorous Profiling				
Total Phosphorus (Acid digestion)	Dried Basis	72	857	mg/kg
Phosphorus	Dried Basis	0.07	0.86	kg/Tonne
P_2O_5 (molar equivalent)	Dried Basis	0.16	1.96	kg/Tonne
Total Available P_2O_5 (50% available of P_2O_5)	Dried Basis	0.08	0.98	kg/Tonne

Table 2: Sludge characterization with nitrogen and phosphorus profiling.

WSP

Available Phosphate (Olsen)	Dried Basis	<1.0	158.00	mg/kg
Phosphorus	Dried Basis	<1.0	0.16	kg/Tonne
P ₂ O ₅ equivalent	Dried Basis	<1.0	0.36	kg/Tonne
Total Available P2O5 (50% available)	Dried Basis	<1.0	0.18	kg/Tonne
Nutrient Ratio Confirmations				
Total Organic Carbon by Combustion	Dry Basis	10.7	12.4	%
C:N Ratio (Organic Carbon: Total Kjeldahl N)	Dry Basis	345	52	x:1
C:P Ratio (Organic Carbon: Total Phosphorus)	Dry Basis	1,486	145	x:1
N:P Ratio	Dry Basis	4.31	2.78	x:1

Nitrogen, present or added to the soil, is subject to several chemical changes that dictate the availability of nitrogen to plants and influence the potential movement of the final transformed product, nitrate (NO₃⁻), to water supplies. Although nitrogen can be added to soil in either organic or inorganic forms, plants can only utilize inorganic nitrogen (nitrate, NO₃⁻ or ammonium, NH₄⁺).

One form is not more important than the other and all sources of nitrogen can be converted to nitrate. Organic nitrogen is converted to inorganic nitrogen through the process of mineralization. With any potential land application of the sludge, only an initial portion of the total nitrogen would be available immediately. A portion of the total nitrogen present in the organic form will undergo mineralization, transforming it to inorganic nitrogen (specifically ammonium).

Table 2 applies an anticipated mineralization rate of 25% for year one, 12% for year two and 6% for year three, demonstrating the mineralization amount.

The carbon:nitrogen (C:N) ratio of organic matter, along with environmental conditions, can regulate microbial population growth. This ratio will effectively control the amount of inorganic nitrogen available for plant uptake, or other less desirable fates (leaching, denitrification).

Stable organic matter has a C:N ratio from approximately 10:1 to 12:1, while soil organisms have ratios from approximately 5:1 to 8:1. A C:N ratio of approximately 25:1 commonly indicates mineralization and immobilization are in balance; whereas greater ratios such as >30:1 indicate a rapid increase in microbial biomass and depletion of available nitrogen (immobilization) in soil. Both samples exceed a 30:1 ratio, inferring nitrogen immobilization; meaning the conversion of inorganic nitrogen to organic compounds is prevented (and thereby preventing plant accessible nitrogen).

Similar to nitrogen, organic phosphorus is converted to inorganic phosphate through the process of mineralization. The immobilization of inorganic phosphate, in contrast, is the reverse reaction of mineralization. During immobilization, microbial populations convert inorganic forms to organic phosphate, which are then incorporated into microbial biomass. Mineralization and immobilization of phosphorus occur simultaneously in the soil, with the C:P ratio determining whether there is net mineralization or net immobilization.

With a carbon:phosphorus (C:P) ratio of <200:1, net mineralization occurs indicating sufficient phosphorus present to promote plant and microbial growth. At ratios >300:1, net immobilization occurs and thus not enough phosphorus is present to sustain plant or microbial growth. Lab results (C:P ratio of 145:1) suggest that based upon the phosphorous concentration, <u>the sludge sample could support plant and microbial growth</u>, whereas the WTP sample could not.

When wastes have nitrogen:phosphorus (N:P) ratio's within a range of 0.5:1 to 1:1, and are being applied based upon pre-existing nitrogen conditions present in soil, over time phosphorus will tend to accumulate. Both the WTP and sludge samples have elevated N:P ratios and thus it is anticipated that phosphorus will not accumulate (agreeing with the high C:P ratio).

Organic matter content is an important measurement of the samples, as it generally consists of plant and animal residues at various stages of decomposition, cells and tissues of soil organisms, and substances synthesized by soil organisms. In essence, organic matter content is largely regarded as a critical component of soil function and soil quality. The Manitoba Agricultural Resources section evaluated natural soil organic matter content for the Russell area in 1997. Their survey concluded the Russell area had organic matter content between 6.8 to 8.4%. The sludge sample analyzed has organic matter content within this range and is consequently not anticipated to provide any net benefit to a land application disposal.

2.3.2 SALINITY CONSIDERATIONS

Soil salinity is a soil condition where water soluble salts in the soils can impede vegetative growth. The WTP sample had an electrical conductivity (EC) of 3.53 dS/m and the sludge sample had an EC of 5.5 dS/m. Manitoba Agriculture, Food and Rural Initiatives (MAFRI) consider an EC of 0 to 2 dS/m as "non-saline", where a EC of 2 to 4 dS/m is considered "slightly saline" with a "low hazard to crop growth". An EC between 4 and 8 dS/m is noted to be "moderately saline", having a "medium hazard to crop growth".

Addition consideration can also be given to the sodium absorption ratio (SAR). The SAR is the ratio of sodium to the beneficial soil structural cations, calcium and magnesium. When the SAR value exceeds 13, the soil is "sodic". If the SAR exceeds 13 and the EC is greater than 4, it is considered a "saline-sodic" soil.

Both the WTP sample and the sludge sample would therefore <u>be considered slightly to moderately</u> <u>saline with little to medium hazard to soils</u>. The SAR is considered low and does not pose a risk to the soil becoming sodic.

Parameter Name (Saturated Paste)	WTP	Lagoon Sample	Unit
Electrical Conductivity	3.53	5.5	dS/m
Sodium Absorption Ratio	1.02	0.83	
% Saturation	Oversaturated	45.9	mg/kg
Calcium (Wet)	242.00	<20	mg/kg
Chloride (Wet)	215.00	-	mg/kg
Magnesium (Wet)	188.00	940	mg/kg
Potassium (Wet)	5.80	22	mg/kg
Sodium (Wet)	71.00	118	mg/kg
Sulfate-SO4 (Wet)	1160.00	1700	mg/kg

Table 3: Sample salinity results.

2.3.3 TRACE METALS CONSIDERATIONS

In Manitoba, biosolids are typically applied to agricultural land with licensing under the Manitoba Environment Act that sets out conditions for application. Key conditions are the maximum application rate and the cumulative addition of specified metals to the land. Using land application standards, the suitability of disposal via land application can be considered.

Metals of principal concern to agriculture commonly include, arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc. The cumulative weight per hectare of each heavy metal in the soil is calculated by adding the amount of each metal in the samples at the guideline rate, to a previously established soil concentration.

Given that establishing pre-existing soil considerations of typical farmland in the area and at the waste disposal ground is beyond the scope of the project, mean metal farmland concentrations for the Town of Russell area were obtained from Haluschak and Mills¹. Using an application rate of 5.5 tonne per hectare, the mean concentration of the trace elements sampled remains below guidelines. Table 5 on the following page reports the trace element concentrations for the WTP and lagoon sludge sample.

2.4 SAMPLE COMPARISON

Biosolids are mainly a mix of water and organic materials that are a by-product of the sewage treatment processes. Most wastewater comes from household, kitchens, laundries and bathrooms, as such can be described as the following:

- Macronutrients, such as nitrogen, phosphorus, potassium and sulphur; and
- Micronutrients, such as copper, zinc, calcium, magnesium, iron, boron, molybdenum and manganese.

Biosolids may also contain traces of synthetic organic compounds and metals, including arsenic, cadmium, chromium, lead, mercury, nickel and selenium.

By summarizing the above constituents, an opinion of the integration of the sludge mound into the general lagoon biosolid content can be made. As previously mentioned, the Town's Public Works

¹ Haluschak, P., R. G. Eilers, G. F. Mills and S. Grift. 1998. Status of Selected Trace Elements in Agricultural Soils of Southern Manitoba. Technical Report 1998-6E Land Resource Unit, Brandon Research Centre, Research Branch, Agriculture and Agri-Food Canada.

Foreman provided additional guidance demonstrating the depth and material to be removed. Samples were mixed into a composite sample intended to remain representative of the sludge to be excavated.

			%		
	WTP	Lagoon	Difference	Detection Limit	Units
Macronutrients					
Nitrogen (TKN)	0.031	0.238	668%		%
Phosphorus	72	857	1090%		mg/kg
Potassium	-	150		100	mg/kg
Sulphur (Sat)	1750	1700	-3%		mg/kg
Micronutrients					
Copper	1.4	27.1	1836%		mg/kg
Zinc	-	29.4		5	mg/kg
Calcium	237,000	197,000	-17%		mg/kg
Magnesium	19,800	7,760	-61%		mg/kg
Iron	2,270	2,020	-11%		mg/kg
Boron (Hot Water)	1.73	8.73	405%		mg/kg
Molybdenum	-	-		<1.0	mg/kg
Manganese	261	215	-18%		mg/kg
Other					
Organic Matter	3.3	7.5	127%		%
Total Carbon (Combustion)	10.7	12.4	16%		%
Arsenic	17.2	8.05	-53%		mg/kg
Cadmium	-	0.11		0.1	mg/kg
Chromium	1.84	2.92	59%		mg/kg
Lead	-	2.6		1	mg/kg
Mercury	-	0.23		0.1	mg/kg
Nickel	2	1.7	-15%		mg/kg
Selenium	-	-		0.2	mg/kg

Table 4: WTP and lagoon sample comparison.

It is observable that constituents from both the macronutrients and micronutrient categories have increased when compared to the WTP sample. When considering substantial increases (>25% of the highest increase), items of notable mention are nitrogen (TKN), phosphorus, and copper.

As previously mentioned nitrogen and phosphorus are regulated nutrients and have been previously discussed.

Copper may occur in natural waters and wastewaters, as soluble copper salts or as copper compounds precipitated on suspended solids. The copper concentration may be significantly higher in the lagoon when compared to the WTP sample, in part due to copper's ability to integrate well within the wastewater constituents.

Calcium and magnesium, being the main metals produced in the WTP waste remain significantly high in concentration when compared to other constituents (several orders of magnitude). On a parts per million basis, <u>calcium and magnesium compose 97% of the all the metals analyzed</u>, for both the WTP and lagoon sample.

Given the mound's general opaque appearance, remaining high concentrations of calcium and magnesium, and pH, WSP is of the opinion that no significant mixing has occurred. <u>The bulk of the material remains characteristic of the WTP waste.</u>

	WTP Sample		WTP Sample		Sludg	e Sample	Existi Conce	umed ng Soil ntration g/kg)	based	ng Rate on 5.5 ha (dry)	Me Conce by Av Existi	ulative etal ntration verage ng Soil ntration	Manitoba Maximum Ioading kilograms per hectare* (kg/ha)
	mg/kg	kg/Tonne	mg/kg	kg/Tonne	Min.	Max	WTP (kg/ha)	Sludge Sample (kg/ha)	WTP (kg/ha)	Sludge Sample (kg/ha)			
Arsenic	17.2	0.01720	8.05	0.00805	4	8	0.095	0.044	0.34	0.29	21.6		
Barium	14.3	0.01430	32.7	0.0327		-	0.079	0.180	-	-			
Beryllium	<0.50	<0.0005	<0.50	<0.0005		-	-	-	-	-			
Cadmium	<0.1	<0.0001	0.11	0.00011	<0.2		-	0.001	-	-	2.5		
Chromium	1.84	0.00184	2.92	0.00292	31	65	0.010	0.016	2.00	2.00	115.2		
Cobalt	<1.0	<0.001	<1.0	<0.001	13	22	-	-	-	-			
Copper	1.4	0.00140	27.1	0.0271	19	35	0.008	0.149	1.13	1.27	113.4		
Lead	<1.0	<0.001	2.6	0.0026	9	15	-	0.014	-	0.51	126		
Mercury	<0.005	<0.000005	0.23	0.00023	31	90	-	0.001	-	2.51	11.9		
Molybdenum	<1.0	<0.0001	<1.0	<0.001	3	4	-	-	-	-			
Nickel	2	0.00200	1.7	0.0017	22	40	0.011	0.009	1.29	1.29			
Selenium	<0.20	<0.0002	<0.20	<0.0002	0	1	-	-	-	-			
Silver	<0.20	<0.0002	0.73	0.00073		0	-	0.004	-	0.01			
Thallium	<0.10	<0.0001	<0.10	<0.001		-	-	-	-	-			
Zinc	<5.0	<0.005	29.4	0.0294	66	110	-	0.162	-	3.80	360		

Table 5: Metal concentrations and their cumulative loading concentration.

*Where calculated values shall be based on a soil bulk density of 1,200 kilograms per cubic metre and a soil depth of 15 centimetres. Analysis for heavy metals carried out in accordance with specific methods (for biosolids and soil analyses).

WSP

3 CONCLUSION

3.1 MANAGEMENT OF NITROGEN AND PHOSPHORUS

Of major concern associated with its removal and disposal is nutrient leaching and run-off. Specifically, the leaching and/or surface runoff of nitrogen and phosphorus into the ground or surface water is a concern if disposal exceeds natural removal rates and natural soil attenuation. This can be mitigated if the sludge is encapsulated in clay pits at the waste disposal ground, thereby preventing leeching and run-off. If applied to farmland in a typical land application, these concerns are not alleviated.

Typically, for biosolid land applications, the amount of plant available nitrogen added to the land from the sludge should not exceed 100 kg per hectare during any year. Plant available nitrogen is defined as the amount of nitrogen which is readily available to plants by uptake through the roots and is determined by adding 20% of the organic nitrogen (as nitrogen), 100% of the ammonium (as nitrogen), and 100% of the nitrate (as nitrogen). The lagoon sample has a plant available nitrogen of 0.564 mg/tonne.

Using this guideline as a comparison basis with a land application rate of 5.5 tonne per hectare, the plant available nitrogen is calculated as 3.1×10^{-6} kg/hectare, and does not exceed plant available nitrogen guidelines. For additional context, if 80% of the estimated dry mass (being approximately 518 tonnes) is excavated; the plant available nitrogen would be approximately 292 mg, far less than the 100 kg per hectare allowance.

CWS also provides soil nitrate-nitrogen thresholds for all soil classifications (N1 to N3). The residual soil nitrate-nitrogen limits within the top 60 cm of soil ranges from 157.1 kg/ha for N1, 101 kg/ha N2, and 33.6 kg/ha for N3 zones. Using the same land application rate as above or excavation volume, the nitrate-nitrogen threshold is not triggered for any of the soil classification zones.

At a total phosphorus concentration of 857 mg/kg, the sludge cannot be placed in a nutrient management area zoned N1, N2, or N3; with the N3 zone having an upper application threshold of 180 ppm at 15 cm depth.

3.2 SALINITY

Using Manitoba's Soil Fertility Guide, both the WTP sample and the sludge sample would be considered "<u>slightly to moderately saline</u>" with "little to medium hazard" to soils. As such, the sludge poses a slight environmental risk for soil salinization, as soil EC, soluble ions, and SAR increase directly with land application. The risk of soil salinization, where previously not occurring, would be minimized if disposed to the waste disposal ground as opposed to a traditional land application.

3.3 TRACE METALS

The loading rates for heavy metals in the sludge from the lagoon were determined based on the theoretical maximum application of 5.5 dry tonnes per hectare. These calculated heavy metal loading rates remain below the cumulative weight criteria as set by Manitoba Agriculture. If 80% of the estimated dry mass is deposited, the following estimates the bulk trace metal concentrations.

Table 6: Bulk trace metal masses contributed at 80% of the mound being deposited to the waste disposal ground.

	80% Dry Mass Deposited in a Single Hectare – Sludge (kg/1 ha)	Manitoba Maximum loading kilograms per hectare* (kg/ha)
		-
Arsenic	4.17	21.6
Barium	16.93	-
Beryllium		-
Cadmium	0.06	2.5
Chromium	1.51	115.2
Cobalt		-
Copper	14.03	113.4
Lead	1.35	126
Mercury	0.12	11.9
Molybdenum		-
Nickel	0.88	-
Selenium		-
Silver	0.38	-
Thallium		-
Zinc	15.23	360

*Where calculated values shall be based on a soil bulk density of 1,200 kilograms per cubic metre and a soil depth of 15 centimetres. Analysis for heavy metals carried out in accordance with specific methods (for biosolids and soil analyses).

3.4 DISPOSAL

In order to prevent potential for order nuisances and to reduce vector related problems, the sludge should be buried and capped at the waste disposal ground.

Pre-existing buffer zones associated with the waste disposal ground have a well-established setback distance from residential areas, residences, groundwater wells, and surface water drainage systems. In addition, the waste disposal ground has been designed to minimize surface runoff, thereby facilitating burying into winter soil.

Given the phosphorus concentrations observed, land application at a 5.5 tonne per hectare rate would not satisfy Manitoba regulations; thereby limiting land application at this rate and concentration.

As the sludge presents an elevated pH (the material was originally generated as calcium or magnesium hydroxide), the material should be buried into existing soil so as to ensure that it does not remain uncovered (ie. wind moving potentially caustic particulate into the air may pose a hazard).

WSP

With nutrient conditions limiting land application, metal loadings remaining well below fertilizer application, and considering the pre-established buffer zones associated with the waste disposal ground, burying at the waste disposal ground is considered the recommended suitable disposal option.

3.5 **FINDINGS SUMMARY**

- As part of the lime-softening process occurring at the WTP, a small amount of precipitated calcium hydroxide and magnesium as a high frequency waste product is collected by the sewer system.
- The waste, due to long-term operation, has accumulated in the primary cell of the lagoon as sludge. Assuming a centre depth of 1.0 m, a conical frustum was used to estimate a volume between 880 to 1,210 m³.
- Using an anticipated nitrogen mineralization rate of 25% for year one, 12% for year two and 6% for year three, plant available nitrogen within the sludge mound ranges from 0.57 to 0.02 kg/tonne.
- Within the mound sludge, the C:N ratio indicates little conversion of inorganic nitrogen to organic compounds, and thereby prevents nitrogen being accessible to plants.
- Within the mound sludge, the C:P ratio indicates mineralization of phosphorous, making phosphorus accessible to plants for growth.
- The organic matter content of the sludge remains within background levels and is anticipated to provide little benefit the soil via land application.
- Using Manitoba's Soil Fertility Guide, the sludge sample is considered "slightly to moderately saline" with "little to medium hazard" to soils.
- On a parts per million basis, calcium and magnesium compose 97% of the all the metals analyzed in the sludge.

If applied to farmland in a typical land application, the high phosphorus concentration remains a concern, there remains potential for nutrient leeching and run-off, and the sludge is not anticipated to benefit the land.

As such, it is recommended that the sludge be encapsulated in clay pits with clay covers at the waste disposal ground, thereby limiting potential for nutrient leeching and run-off.

4 LIMITATIONS

The findings and recommendations provided in this report were prepared by WSP (the Consultant) in accordance with generally accepted professional engineering principles and practices. The information contained in this report represents the professional opinion of the Consultant and their best judgment under the natural limitations imposed by the Scope of Work.

This report is limited in scope to only those items that are specifically referenced in this report. There may be existing conditions that were not recorded in this report. Such conditions were not apparent to the Consultant due to the limitations imposed by the scope of work. The Consultant, therefore, accepts no liability for any costs incurred by the Client for subsequent discovery, manifestation or rectification of such conditions.

This report is intended solely for the Client named as a general indication of the visible or reported condition of the items addressed in the report at the time of the assessment. The material in this report reflects the Consultant's best judgment in light of the information available to it at the time of preparation.

This report and the information and data contained herein are to be treated as confidential and may be used only by the Client and its officers and employees in relation to the specific project that it was prepared for. Any use a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. The Consultant accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The report has been written to be read in its entirety, do not use any part of this report as a separate entity.

All files, notes, source data, test results and master files are retained by WSP and remain the property of the Consultant.

Appendix A

ANALYTICAL LAB RESULT

WSP Canada Inc. ATTN: JUSTIN RAK-BANVILLE 1600 Buffalo Place Winnipeg MB R3T 6B8 Date Received:27-NOV-14Report Date:09-DEC-14 15:56 (MT)Version:FINAL

Client Phone: 204-477-6650

Certificate of Analysis

Lab Work Order #: L1551947

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED RUSSELL LAGOON SLUDGE TESTING

Reddell

Craig Riddell Account Manager [This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1551947-1 WTP SAMPLE							
Sampled By: JRB on 27-NOV-14 @ 10:00							
Matrix: OTHER							
Miscellaneous Parameters							
Boron (B), Hot Water Ext.	1.73	DLM	0.40	mg/kg	04-DEC-14	04-DEC-14	R3115323
Available Phosphate-P	<1.0		1.0	mg/kg	05-DEC-14	05-DEC-14	R3116046
Available Potassium	22		20	mg/kg	04-DEC-14	04-DEC-14	R3115132
Available Sulfate-S	703	DLM	6.0	mg/kg	04-DEC-14	04-DEC-14	R3115310
Mercury (Hg)	<0.0050		0.0050	mg/kg	03-DEC-14	04-DEC-14	R3115147
% Moisture	66.6		0.0000	%	03-DEC-14	03-DEC-14	R3113039
% Saturation	Oversat		1.0	%	03-DEC-14	00 DEC 14 04-DEC-14	R3115354
Special Request	See Attached		1.0	/0	05 020 14	09-DEC-14	R3117309
Specific Gravity			0.010	ka/l		09-DEC-14 08-DEC-14	R3116802
Total Carbon by Combustion	1.50			kg/L %	05-DEC-14	05-DEC-14 05-DEC-14	
	10.7		0.1				R3116576
Total Kjeldahl Nitrogen	0.031		0.020	%	01-DEC-14	03-DEC-14	R3114563
Organic Matter by LOI at 375 deg C. Organic Matter	3.3		1.0	%	03-DEC-14	04-DEC-14	R3114978
Loss on Ignition @ 375 C	3.8		1.0 1.0	%	03-DEC-14 03-DEC-14	04-DEC-14 04-DEC-14	R3114978 R3114978
Detailed Salinity in dry-weight mg/kg	0.0		1.0	70	50 DE0-14		10114010
Chloride (Cl)	644		20	mg/kg dwt		05-DEC-14	
Calcium (Ca)	724		20	mg/kg dwt		05-DEC-14	
Magnesium (Mg)	562		20	mg/kg dwt		05-DEC-14	
Potassium (K)	18		10	mg/kg dwt		05-DEC-14	
Sodium (Na)	212		40	mg/kg dwt		05-DEC-14	
Sulfur (as SO4)	3480		50	mg/kg dwt		05-DEC-14	
Detailed Salinity in wet-weight mg/kg							
Chloride (Cl)	215		6.7	mg/kg wwt		05-DEC-14	
Calcium (Ca)	242		6.7	mg/kg wwt		05-DEC-14	
Magnesium (Mg)	188		6.7	mg/kg wwt		05-DEC-14	
Potassium (K)	5.8		3.3	mg/kg wwt		05-DEC-14	
Sodium (Na)	71		13	mg/kg wwt		05-DEC-14	
Sulfur (as SO4)	1160		17	mg/kg wwt		05-DEC-14	
Metals in Soil by CRC ICPMS Aluminum (Al)	3920		50	mg/kg	03-DEC-14	04-DEC-14	R3115353
Antimony (Sb)	<0.10		0.10	mg/kg	03-DEC-14 03-DEC-14	04-DEC-14 04-DEC-14	R3115353
Arsenic (As)	17.2		0.10	mg/kg	03-DEC-14 03-DEC-14	04-DEC-14 04-DEC-14	R3115353
Barium (Ba)	14.3		1.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Beryllium (Be)	<0.50		0.50	mg/kg	03-DEC-14	04-DEC-14	R3115353
Bismuth (Bi)	<0.20		0.20	mg/kg	03-DEC-14	04-DEC-14	R3115353
Cadmium (Cd)	<0.10		0.10	mg/kg	03-DEC-14	04-DEC-14	R3115353
Calcium (Ca)	237000	DLA	500	mg/kg	03-DEC-14	04-DEC-14	R3115353
Chromium (Cr)	1.84		0.50	mg/kg	03-DEC-14	04-DEC-14	R3115353
Cobalt (Co)	<1.0		1.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Copper (Cu)	1.4		1.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Iron (Fe)	2270		50	mg/kg	03-DEC-14	04-DEC-14	R3115353
Lead (Pb)	<1.0		1.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Lithium (Li)	4.8		2.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Magnesium (Mg)	19800		100	mg/kg	03-DEC-14	04-DEC-14	R3115353
Manganese (Mn)	261		1.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Molybdenum (Mo)	<1.0		1.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Nickel (Ni)	2.0		1.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Phosphorus (P)	72		50	mg/kg	03-DEC-14	04-DEC-14	R3115353
Potassium (K)	<100		100	mg/kg	03-DEC-14	04-DEC-14	R3115353
Selenium (Se)	<0.20		0.20	mg/kg	03-DEC-14	04-DEC-14	R3115353
Silver (Ag)	<0.20		0.20	mg/kg	03-DEC-14	04-DEC-14	R3115353

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1551947-1 WTP SAMPLE							
Sampled By: JRB on 27-NOV-14 @ 10:00							
Matrix: OTHER							
Metals in Soil by CRC ICPMS Sodium (Na)	580		100	mg/kg	03-DEC-14	04-DEC-14	R3115353
Strontium (Sr)	322		1.0	mg/kg	03-DEC-14 03-DEC-14	04-DEC-14 04-DEC-14	R3115353
Thallium (TI)	<0.10		0.10	mg/kg	03-DEC-14 03-DEC-14	04-DEC-14 04-DEC-14	R3115353
Tin (Sn)	<2.0		2.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Titanium (Ti)	37.5		5.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Uranium (U)	2.35		0.10	mg/kg	03-DEC-14	04-DEC-14	R3115353
Vanadium (V)	<1.0		1.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Zinc (Zn)	<5.0		5.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Available Ammonia-N & Nitrate-N (2N KCI)	40.0		0.0			0.220	
Available Ammonium-N							
Available Ammonium-N	<1.0		1.0	mg/kg	04-DEC-14	04-DEC-14	R3115813
Available Nitrate-N (2N KCI)			-				
Available Nitrate-N	<4.0	DLM	4.0	mg/kg	04-DEC-14	04-DEC-14	R3116064
Detailed Salinity -over sat'd waste							
Chloride (Cl)							
Chloride (Cl)	323	DLA	10	mg/L	04-DEC-14	04-DEC-14	R3115033
SAR and Cations (over sat'd)							
Calcium (Ca)	363	DLA	10	mg/L	04-DEC-14	04-DEC-14	R3115016
Potassium (K)	8.8	DLA	5.0	mg/L	04-DEC-14	04-DEC-14	R3115016
Magnesium (Mg)	282	DLA	10	mg/L	04-DEC-14	04-DEC-14	R3115016
Sodium (Na)	106	DLA	20	mg/L	04-DEC-14	04-DEC-14	R3115016
Sulfur (as SO4)	1750	DLA	25	mg/L	04-DEC-14	04-DEC-14	R3115016
SAR	1.02		0.10	SAR	04-DEC-14	04-DEC-14	R3115016
pH and Conductivity							
pH	9.16		0.10	pН	03-DEC-14	04-DEC-14	R3115354
Conductivity (EC)	3.53		0.010	dS m-1	03-DEC-14	04-DEC-14	R3115354
L1551947-2 LAGOON SAMPLE							
Sampled By: JRB on 27-NOV-14 @ 11:30							
Matrix: WASTE							
Miscellaneous Parameters							
Boron (B), Hot Water Ext.	8.73	DLM	0.20	mg/kg	04-DEC-14	04-DEC-14	R3115323
Available Phosphate-P	158		1.0	mg/kg	05-DEC-14	05-DEC-14	R3116046
Available Potassium	84		20	mg/kg	04-DEC-14	04-DEC-14	R3115132
Available Sulfate-S	377	DLM	6.0	mg/kg	04-DEC-14	04-DEC-14	R3115310
Chloride (Cl)	134	DLA	20	mg/L	04-DEC-14	04-DEC-14	R3115033
Mercury (Hg)	0.23	DLA	0.10	mg/kg	03-DEC-14	04-DEC-14	R3115147
% Moisture	46.5		0.10	%	03-DEC-14	03-DEC-14	R3113039
Special Request	See Attached		0.10	70	00 020 14	09-DEC-14	R3117309
Specific Gravity			0.010	ka/l		09-DEC-14 08-DEC-14	
	2.14		0.010	kg/L			R3116802
Total Carbon by Combustion	12.4		0.1	%	05-DEC-14	05-DEC-14	R3116576
Total Kjeldahl Nitrogen	0.238		0.020	%	01-DEC-14	03-DEC-14	R3114563
Organic Matter by LOI at 375 deg C. Organic Matter	7.5		1.0	%	03-DEC-14	04-DEC-14	R3114978
Loss on Ignition @ 375 C	9.2		1.0 1.0	%	03-DEC-14 03-DEC-14	04-DEC-14 04-DEC-14	R3114978 R3114978
Metals in Soil by CRC ICPMS	5.2		1.0	70			1131149/0
Aluminum (Al)	1580		50	mg/kg	03-DEC-14	04-DEC-14	R3115353
Antimony (Sb)	<0.10		0.10	mg/kg	03-DEC-14	04-DEC-14 04-DEC-14	R3115353
Arsenic (As)	8.05		0.10	mg/kg	03-DEC-14	04-DEC-14 04-DEC-14	R3115353
Barium (Ba)	32.7		1.0	mg/kg	03-DEC-14	04-DEC-14 04-DEC-14	R3115353
Ballulu (Bal)	J JZ.1		1.0	mg/ng			1 110 1 10000

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1551947-2 LAGOON SAMPLE							
Sampled By: JRB on 27-NOV-14 @ 11:30							
1 ,							
Metals in Soil by CRC ICPMS Bismuth (Bi)	0.87		0.00	malka	03-DEC-14	04-DEC-14	D2115252
Cadmium (Cd)			0.20	mg/kg			R3115353
Calcium (Ca)	0.11 197000	DLA	0.10 500	mg/kg	03-DEC-14 03-DEC-14	04-DEC-14 04-DEC-14	R3115353
Chromium (Cr)	2.92	DLA		mg/kg	03-DEC-14 03-DEC-14	04-DEC-14 04-DEC-14	R3115353
Cobalt (Co)			0.50	mg/kg	03-DEC-14 03-DEC-14	04-DEC-14 04-DEC-14	R3115353
Copper (Cu)	<1.0		1.0	mg/kg			R3115353
Iron (Fe)	27.1		1.0	mg/kg	03-DEC-14 03-DEC-14	04-DEC-14 04-DEC-14	R3115353
Lead (Pb)	2020		50	mg/kg			R3115353
	2.6		1.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Lithium (Li)	4.0		2.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Magnesium (Mg)	7760		100	mg/kg	03-DEC-14	04-DEC-14	R3115353
Manganese (Mn)	215		1.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Molybdenum (Mo)	<1.0		1.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Nickel (Ni)	1.7		1.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Phosphorus (P)	857		50	mg/kg	03-DEC-14	04-DEC-14	R3115353
Potassium (K)	150		100	mg/kg	03-DEC-14	04-DEC-14	R3115353
Selenium (Se)	<0.20		0.20	mg/kg	03-DEC-14	04-DEC-14	R3115353
Silver (Ag)	0.73		0.20	mg/kg	03-DEC-14	04-DEC-14	R3115353
Sodium (Na)	520		100	mg/kg	03-DEC-14	04-DEC-14	R3115353
Strontium (Sr)	260		1.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Thallium (TI)	<0.10		0.10	mg/kg	03-DEC-14	04-DEC-14	R3115353
Tin (Sn)	2.8		2.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Titanium (Ti)	24.0		5.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Uranium (U)	1.94		0.10	mg/kg	03-DEC-14	04-DEC-14	R3115353
Vanadium (V)	1.5		1.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Zinc (Zn)	29.4		5.0	mg/kg	03-DEC-14	04-DEC-14	R3115353
Available Ammonia-N & Nitrate-N (2N KCI)							
Available Ammonium-N							
Available Ammonium-N	106		1.0	mg/kg	04-DEC-14	04-DEC-14	R3115813
Available Nitrate-N (2N KCI)							_
Available Nitrate-N	4.1	DLM	4.0	mg/kg	04-DEC-14	04-DEC-14	R3116064
Detailed Salinity							
Detail Salinity in mg/kg							
Chloride (Cl)	61.6	DLA	9.2	mg/kg		05-DEC-14	
Calcium (Ca)	<9.2	DLA	9.2	mg/kg		05-DEC-14	
Magnesium (Mg)	431	DLA	9.2	mg/kg		05-DEC-14	
Potassium (K)	10.1	DLA	4.6	mg/kg		05-DEC-14	
Sodium (Na)	54	DLA	18	mg/kg		05-DEC-14	
Sulfur (as SO4)	778	DLA	23	mg/kg		05-DEC-14	
SAR, Cations and SO4 in saturated soil			_				
Calcium (Ca)	<20	DLA	20	mg/L	04-DEC-14	04-DEC-14	R3115016
Potassium (K)	22	DLA	10	mg/L	04-DEC-14	04-DEC-14	R3115016
Magnesium (Mg)	940	DLA	20	mg/L	04-DEC-14	04-DEC-14	R3115016
Sodium (Na)	118	DLA	40	mg/L	04-DEC-14	04-DEC-14	R3115016
SAR	0.83	SAR:M	0.10	SAR	04-DEC-14	04-DEC-14	R3115016
Sulfur (as SO4)	1700	DLA	50	mg/L	04-DEC-14	04-DEC-14	R3115016
Theoretical Gypsum Requirement							
TGR(brine)	<0.10		0.10	t/ha		05-DEC-14	
TGR(sodic)	<0.10		0.10	t/ha		05-DEC-14	
pH and EC (Saturated Paste)							
% Saturation	45.9		1.0	%	03-DEC-14	04-DEC-14	R3115354
pH in Saturated Paste	8.45		0.10	pН	03-DEC-14	04-DEC-14	R3115354
Conductivity Sat. Paste	5.53		0.10	dS m-1	03-DEC-14	04-DEC-14	R3115354
	0.00	1		1			

Sample Details	/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1551947-2 Sampled By: Matrix:	LAGOON SAMPLE JRB on 27-NOV-14 @ 11:30 WASTE							

Reference Information

Qualifier	Description									
DLA	Detection Limit adj	Detection Limit adjusted for required dilution								
DLM	Detection Limit Ad	Detection Limit Adjusted due to sample matrix effects.								
SAR:M	Reported SAR rep	resents a maximum value. Actual SAR wou	Id be lower if all cations were detectable.							
Fest Method R	eferences:									
ALS Test Code	Matrix	Test Description	Method Reference**							
B-HOTW-SK	Soil	Available Boron, Hot Water	SSSA (1996) P. 610-611							
Hot water is use	d to extract the plant-	available and potentially plant-available bore	on from soil. Boron in the extract is determined by ICP-OES.							
C-TOT-LECO-S	K Soil	Total Carbon by combustion method	SSSA (1996) P. 973-974							
The sample is ig	nited in a combustion	n analyzer where carbon in the reduced CO2	2 gas is determined using a thermal conductivity detector.							
CL-COL-SK	Waste	Chloride (Cl)	APHA 4110B							
CL-PASTE-COL	-SK Soil	Chloride (CI) (Saturated Paste)	CSSS(1993) 18.2.2/APHA 4500-CL E							
Chloride in a sat	urated soil extract is	determined colorimetrically by auto-analyze	r.							
HG-200.2-CVAF	-SK Soil	Mercury on Soil by CVAFS	EPA 200.2/EPA 245.7							
		n soil is digested with concentrated nitric an ur atomic fluorescence spectrophotometer.	d hydrochloric acids for 2 hours in an open vessel digestor at 95 degrees.							
K-AVAIL-SK	Soil	Available Potassium	Comm. Soil Sci. Plant, 25 (5&6)							
Plant available p	otassium is extracted	from the soil using Modified Kelowna solu	tion. Potassium in the soil extract is determined by flame emission at 770 nn							
MET-200.2-CCN	/IS-SK Soil	Metals in Soil by CRC ICPMS	EPA 200.2/6020A							
June 2009, and p grinder. A repres	procedures adapted f sentative portion is di	from EPA Method 200.2. The sample is dri gested with concentrated nitric and hydroch	ng Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, 26 ied at 40 C, then ground to < 2 mm particle size using a stainless steel flail loric acids for 2 hours in an open vessel digestor at 95 degrees. Instrumenta ass spectrometry (modifed from EPA Method 6020A).							
MOIST-SK	Soil	Moisture Content	ASTM D2216-80							
The weighed por calculated.	rtion of soil is placed	in a 105°C oven overnight. The dried soil is	s allowed to cooled to room temperature, weighed and the % moisture is							

N-TOTKJ-COL-SK Total Kjeldahl Nitrogen CSSS (1993) 22.2.3 Soil

The soil is digested with sulfuric acid in the presence of CuSO4 and K2SO4 catalysts. Ammonia in the soil extract is determined colrimetrically at 660 nm.

NH4-AVAIL-SK Soil Available Ammonium-N

Ammonium (NH4-N) is extracted from the soil using 2 N KCI. Ammonium in the extract is mixed with hypochlorite and salicylate to form indophenol blue, which is determined colorimetrically by auto analysis at 660 nm.

CSSS(1993) 4.2/COMM SOIL SCI 19(6)

CSSS (1993) 4.2, 4.3

NO3-AVAIL-KCL-SK Available Nitrate-N (2N KCI) Soil

Available Nitrate and Nitrite are extracted from the soil using a 2N KCI solution. Nitrate is quantitatively reduced to nitrite by passage of the sample through a copperized cadmium column. The nitrite (reduced nitrate plus original nitrite) is then determined by diazotizing with sulfanilamide followed by coupling with N-(1-naphthyl) ethylenediamine dihydrochloride. The resulting water soluble dye has a magenta color which is measured at colorimetrically at 520nm.

Reference:

Carter, Martin. Soil Sampling and Methods of Analysis. Can. Soc. Soil Sci.(1993) methods 4.2, 4.3

OM-LOI-SK	Soil	Organic Matter by LOI at 375 deg C.	CSSS (1978) p. 160	
The dry-ash method involve	es the remova	al of organic matter by combustion at 375 degrees	C for a minimum of 16 hours.	Samples are dried prior to
combustion.				

Reference: McKeague, J.A. Soil Sampling and Methods of Analysis. Can. Soc. Soil Sci.(1978) method 4.23

PH/EC-SK	Waste	pH and Conductivity	APHA 4500-H,2510
PO4-AVAIL-OLSEN-SK	Soil	Available Phosphate-P by Olsen	CSSS (1993) 7.2,7.3.1

Reference Information

Test Method References: Method Reference** ALS Test Code Matrix **Test Description** Plant available phosphorus is extracted from the sample with sodium bicarbonate. PO4-P in the filtered extract is determined colorimetrically at 880 nm. SAL-D50-DRYCALC-SK Waste Detailed Salinity in dry-weight mg/kg Calculation Conversion of Saturation Extract soluble ions from units of mg/L to dry-weight mg/kg. For over-saturated wastes: mg/kg dwt = mg/L * % Moisture / (100% - % Moisture) For under-saturated wastes: mg/kg dwt = mg/L * (% Saturation / 100%) SAL-D50-WETCALC-SK Waste Detailed Salinity in wet-weight mg/kg Calculation Conversion of Saturation Extract soluble ions from units of mg/L to wet-weight mg/kg. For over-saturated wastes: mg/kg wwt = mg/L * % Moisture / 100% For under-saturated wastes: mg/kg wwt = mg/L * (% Saturation / 100%) * (100% - % Moisture) / 100% SAL-MG/KG-CALC-SK Soil Detail Salinity in mg/kg Manual Calculation SALINITY-INTCHECK-SK Soil CSSS 18.4-Calculation SAR-CALC-SK Waste SAR and Cations (over sat'd) APHA 3120B SAR-CALC-SO4-SK Soil SAR. Cations and SO4 in saturated soil **APHA 3120B** Ca, Mg, Na, K and SO4 in a saturated soil extract are determined by ICP-OES. SAT-PCNT-SK Saturated Paste CSSS (1993) 18.2.2 Soil SAT/PH/EC-SK Soil pH and EC (Saturated Paste) CSSS 18.2.2/CSSC 3.14/CSSS 18.3.1 pH of a saturated soil paste is measured using a pH meter. After equilibration, an extract is obtained by vacuum filtration with conductivity of the extract measured by a conductivity meter. Available Sulfate-S SO4-AVAIL-SK Soil REC METH SOIL ANAL - AB. AG(1988) Plant available sulfur in the soil is extracted with a weak calcium chloride solution. Total S in the extract is then determined by ICP-OES. SPECGRAV-ED Soil Specific Gravity CSSS-Gravimetric A portion of air-dried sample is weighed in a container that is calibrated for volume. Specific Gravity is reported as the mass of sample per mass of an equal volume of pure water, where the density of pure water is taken to be 1.00 g/mL. SPECIAL REQUEST-SK Misc. Special Request Sask Lab SEE SUBLET LAB RESULTS TGR2-CALC-SK Soil Theoretical Gypsum Requirement J. Ashworth et al (1999) Theoretical Gypsum Requirement is an estimate of the gypsum amendment required to remediate brine-contaminated or sodic soils, and is provided in units of tonnes per hectare (t/ha) for a treatment depth of 15cm. TGR(brine), intended for brine-contaminated soils, is calculated using Method A from "A Comparison of Methods for Gypsum Requirement of Brine-Contaminated Soils", by J. Ashworth (Cdn J. of Soil Science, 1999), available at www.alsglobal.com. TGR(sodic), intended for naturally sodic soils, uses the Oster and Frenkel method (Method B) from the same paper. Reported TGR values are capped at 50 t/ha, considered the maximum practical gypsum amendment. To convert TGR from t/ha to tons/acre, multiply by 0.446. To determine a TGR value for an alternate treatment depth, multiply by [desired treatment depth (cm) / 15 cm].

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
ED	ALS ENVIRONMENTAL - EDMONTON, ALBERTA, CANADA
Chain of Custody Numbers:	

Reference Information

Test Method References:

	ALS Test Code	Matrix	Test Description	Method Reference**
--	---------------	--------	------------------	--------------------

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

				•	•					
		Workorder:	L155194	7	Report Date: 09	-DEC-14		Page 1 of 9		
Client:	WSP Canada Inc. 1600 Buffalo Place Winnipeg MB R3T 6B8									
Contact:	JUSTIN RAK-BANVILLE									
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
B-HOTW-SK	Soil									
Batch WG2007522- Boron (B), H	R3115323 2 IRM lot Water Ext.	SAL814	102.6		%		70-130	04-DEC-14		
WG2007522- Boron (B), H	1 MB lot Water Ext.		<0.20		mg/kg		0.2	04-DEC-14		
C-TOT-LECO-S	K Soil									
WG2005887-	R3116576 1 DUP n by Combustion	L1551947-1 10.7	10.4		%	2.7	20	05-DEC-14		
WG2005887- Total Carbor	2 IRM n by Combustion	08-109_SOIL	98.3		%		80-120	05-DEC-14		
WG2005887- Total Carbor	3 MB n by Combustion		<0.1		%		0.1	05-DEC-14		
CL-PASTE-COL										
Batch WG2006213- Chloride (Cl)		SAL814	93.1		%		70-130	04-DEC-14		
WG2006213- Chloride (Cl)			<5.0		mg/L		5	04-DEC-14		
HG-200.2-CVAF	-SK Soil									
	R3115147									
WG2006305- Mercury (Hg		TILL-1	105.0		%		70-130	04-DEC-14		
WG2006305- Mercury (Hg	-	L1552939-10 0.0097	0.0099		mg/kg	2.2	40	04-DEC-14		
WG2006305- Mercury (Hg)	ALS MET IRM1	94.3		%		70-130	04-DEC-14		
WG2006305- Mercury (Hg			<0.0050		mg/kg		0.005	04-DEC-14		
K-AVAIL-SK	Soil									
Batch WG2006229-	R3115132 1 DUP	L1551947-1								
Available Po		22	20		mg/kg	10	30	04-DEC-14		
WG2006229- Available Po	otassium	FARM2005	106.5		%		70-130	04-DEC-14		
WG2006229- Available Po			<20		mg/kg		20	04-DEC-14		

MET-200.2-CCMS-SK Soil

Workorder: L1551947

Report Date: 09-DEC-14

Page 2 of 9

Client: WSP Canada Inc. 1600 Buffalo Place Winnipeg MB R3T 6B8 Contact: JUSTIN RAK-BANVILLE

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
IET-200.2-CCMS-SK	Soil							
Batch R3115353								
WG2006305-2 DUP		L1552939-10						
Aluminum (Al)		33200	34100		mg/kg	2.9	30	04-DEC-14
Antimony (Sb)		<0.10	<0.10	RPD-NA	mg/kg	N/A	30	04-DEC-14
Arsenic (As)		4.58	4.71		mg/kg	2.8	30	04-DEC-14
Barium (Ba)		291	297		mg/kg	2.0	30	04-DEC-14
Beryllium (Be)		1.59	1.62		mg/kg	1.3	30	04-DEC-14
Bismuth (Bi)		0.50	0.50		mg/kg	0.5	30	04-DEC-14
Cadmium (Cd)		0.16	0.16		mg/kg	4.2	30	04-DEC-14
Calcium (Ca)		4880	4710		mg/kg	3.5	30	04-DEC-14
Chromium (Cr)		74.1	74.8		mg/kg	1.0	30	04-DEC-14
Cobalt (Co)		107	109		mg/kg	2.4	30	04-DEC-14
Copper (Cu)		795	811		mg/kg	1.9	30	04-DEC-14
Iron (Fe)		43600	43100		mg/kg	1.2	30	04-DEC-14
Lead (Pb)		14.1	14.1		mg/kg	0.2	40	04-DEC-14
Lithium (Li)		54.9	55.3		mg/kg	0.7	30	04-DEC-14
Magnesium (Mg)		15700	15300		mg/kg	2.7	30	04-DEC-14
Manganese (Mn)		690	695		mg/kg	0.7	30	04-DEC-14
Molybdenum (Mo)		<1.0	<1.0	RPD-NA	mg/kg	N/A	30	04-DEC-14
Nickel (Ni)		2600	2740		mg/kg	5.1	30	04-DEC-14
Phosphorus (P)		586	582		mg/kg	0.7	30	04-DEC-14
Potassium (K)		7860	7800		mg/kg	0.8	30	04-DEC-14
Selenium (Se)		0.40	0.34		mg/kg	18	30	04-DEC-14
Silver (Ag)		0.25	0.24		mg/kg	3.4	30	04-DEC-14
Sodium (Na)		740	730		mg/kg	1.1	30	04-DEC-14
Strontium (Sr)		55.4	55.2		mg/kg	0.5	30	04-DEC-14
Thallium (TI)		0.52	0.52		mg/kg	1.5	30	04-DEC-14
Tin (Sn)		3.4	2.2	J	mg/kg	1.1	4	04-DEC-14
Titanium (Ti)		1810	1880		mg/kg	3.3	30	04-DEC-14
Uranium (U)		5.65	5.85		mg/kg	3.5	30	04-DEC-14
Vanadium (V)		81.4	81.8		mg/kg	0.6	30	04-DEC-14
Zinc (Zn)		108	108		mg/kg	0.4	30	04-DEC-14
WG2006305-4 IRM		ALS MET IRI						
Aluminum (Al)			99.6		%		70-130	04-DEC-14
Antimony (Sb)			97.9		%		70-130	04-DEC-14

Workorder: L1551947

Report Date: 09-DEC-14

Page 3 of 9

Client: WSP Canada Inc. 1600 Buffalo Place Winnipeg MB R3T 6B8 Contact: JUSTIN RAK-BANVILLE

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-SK	Soil							
Batch R3115353								
WG2006305-4 IRM		ALS MET IRM			0/			
Arsenic (As)			111.2		%		70-130	04-DEC-14
Barium (Ba)			93.6		%		70-130	04-DEC-14
Beryllium (Be)			107.3		%		70-130	04-DEC-14
Cadmium (Cd)			100.5		%		70-130	04-DEC-14
Calcium (Ca)			97.9		%		70-130	04-DEC-14
Chromium (Cr)			103.4		%		70-130	04-DEC-14
Cobalt (Co)			106.2		%		70-130	04-DEC-14
Copper (Cu)			103.2		%		70-130	04-DEC-14
Iron (Fe)			105.3		%		70-130	04-DEC-14
Lead (Pb)			103.6		%		70-130	04-DEC-14
Lithium (Li)			100.2		%		70-130	04-DEC-14
Magnesium (Mg)			99.2		%		70-130	04-DEC-14
Manganese (Mn)			103.3		%		70-130	04-DEC-14
Molybdenum (Mo)			93.4		%		70-130	04-DEC-14
Nickel (Ni)			105.0		%		70-130	04-DEC-14
Phosphorus (P)			100.5		%		70-130	04-DEC-14
Potassium (K)			106.9		%		70-130	04-DEC-14
Selenium (Se)			108.3		%		70-130	04-DEC-14
Silver (Ag)			110.3		%		70-130	04-DEC-14
Sodium (Na)			180		mg/kg		70-270	04-DEC-14
Strontium (Sr)			94.8		%		70-130	04-DEC-14
Thallium (TI)			103.7		%		70-130	04-DEC-14
Tin (Sn)			104.2		%		70-130	04-DEC-14
Titanium (Ti)			103.8		%		70-130	04-DEC-14
Uranium (U)			106.4		%		70-130	04-DEC-14
Vanadium (V)			107.2		%		70-130	04-DEC-14
Zinc (Zn)			107.4		%		70-130	04-DEC-14
WG2006305-1 MB								
Aluminum (Al)			<50		mg/kg		50	04-DEC-14
Antimony (Sb)			<0.10		mg/kg		0.1	04-DEC-14
Arsenic (As)			<0.10		mg/kg		0.1	04-DEC-14
Barium (Ba)			<1.0		mg/kg		1	04-DEC-14
Beryllium (Be)			<0.50		mg/kg		0.5	04-DEC-14
Bismuth (Bi)			<0.20		mg/kg		0.2	04-DEC-14

Test

WSP Canada Inc.

Quality Control Report

Report Date: 09-DEC-14

Page 4 of 9

Workorder: L1551947

Client: 1600 Buffalo Place Winnipeg MB R3T 6B8 JUSTIN RAK-BANVILLE Contact: Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-200.2-CCMS-SK Soil R3115353 Batch WG2006305-1 MB Cadmium (Cd) < 0.10 0.1 mg/kg 04-DEC-14 Calcium (Ca) <100 mg/kg 100 04-DEC-14 Chromium (Cr) < 0.50 mg/kg 0.5 04-DEC-14 Cobalt (Co) <1.0 mg/kg 1 04-DEC-14 Copper (Cu) mg/kg 1 <1.0 04-DEC-14 Iron (Fe) <50 mg/kg 50 04-DEC-14 Lead (Pb) 1 mg/kg <1.0 04-DEC-14 Lithium (Li) <2.0 mg/kg 2 04-DEC-14 Magnesium (Mg) <100 mg/kg 100 04-DEC-14 Manganese (Mn) <1.0 mg/kg 1 04-DEC-14 Molybdenum (Mo) <1.0 mg/kg 1 04-DEC-14 Nickel (Ni) <1.0 mg/kg 1 04-DEC-14 Phosphorus (P) 50 <50 mg/kg 04-DEC-14 Potassium (K) <100 mg/kg 100 04-DEC-14 Selenium (Se) <0.20 mg/kg 0.2 04-DEC-14 Silver (Ag) <0.20 mg/kg 0.2 04-DEC-14 Sodium (Na) mg/kg 100 <100 04-DEC-14 Strontium (Sr) <1.0 mg/kg 1 04-DEC-14 Thallium (TI) < 0.10 mg/kg 0.1 04-DEC-14 Tin (Sn) <2.0 2 mg/kg 04-DEC-14 Titanium (Ti) <5.0 5 mg/kg 04-DEC-14 Uranium (U) < 0.10 mg/kg 0.1 04-DEC-14 Vanadium (V) <1.0 mg/kg 1 04-DEC-14 Zinc (Zn) <5.0 5 mg/kg 04-DEC-14 MOIST-SK Soil R3113039 Batch WG2006232-1 L1551947-2 DUP % Moisture 46.5 44.8 % 3.6 20 03-DEC-14 N-TOTKJ-COL-SK Soil R3114563 Batch WG2005877-1 DUP Total Kjeldahl Nitrogen N/A 0.031 % 0.0 20 03-DEC-14 08-109_SOIL WG2005877-2 IRM

					-	-			
			Workorder:	L155194	7 R	Report Date: 0	9-DEC-14		Page 5 of 9
Client:	WSP Can 1600 Buffa Winnipeg								
Contact:	JUSTIN F	RAK-BANVILLE							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
N-TOTKJ-COL-S	к	Soil							
Batch F WG2005877-2 Total Kjeldahl			08-109_SOIL	81.2		%		80-120	03-DEC-14
WG2005877-3 Total Kjeldahl				<0.020		%		0.02	03-DEC-14
WG2005877-4 Total Kjeldahl				<0.020		%			03-DEC-14
NH4-AVAIL-SK		Soil							
Batch F	R3115813								
WG2006237-3 Available Am			SAL814	111.3		%		70-130	04-DEC-14
WG2006237-2 Available Am				<1.0		mg/kg		1	04-DEC-14
NO3-AVAIL-KCL	-SK	Soil							
Batch F WG2006240-3 Available Nitra			SAL814	106.7		%		70-130	04-DEC-14
WG2006240-2 Available Nitra				<2.0		mg/kg		2	04-DEC-14
OM-LOI-SK		Soil							
Batch F	R3114978								
WG2007406-1 Organic Matte	DUP		L1551947-2	7.0		%	0.0		
Loss on Igniti		c	7.5 9.2	7.2 8.9		%	3.6 3.7	20 25	04-DEC-14 04-DEC-14
WG2007406-3		0	5.2 FARM2009	0.5		70	5.7	25	04-DEC-14
Organic Matte				4.8		%		3-5	04-DEC-14
Loss on Igniti	on @ 375 (С		5.8		%		4.2-6.2	04-DEC-14
WG2007406-2 Organic Matte				<1.0		%		1	04-DEC-14
Loss on Igniti	on @ 375 (С		<1.0		%		1	04-DEC-14
PO4-AVAIL-OLS	EN-SK	Soil							
	R3116046								
WG2006248-1 Available Pho			L1551947-1 <1.0	<1.0	RPD-NA	mg/kg	N/A	30	05-DEC-14
WG2006248-3 Available Pho			FARM2005	82.9		%		70-130	05-DEC-14
WG2006248-2 Available Pho				<1.0		mg/kg		1	05-DEC-14

Report Date: 09-DEC-14

Page 6 of 9

Workorder: L1551947

		wontorder.	L10010-	Ŧ/	Report Date. 03	-DLC-14		Fage 0 01	9
	falo Place MB R3T 6B8								
Contact: JUSTIN	RAK-BANVILLE								
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
SAR-CALC-SO4-SK	Soil								
Batch R3115016 WG2006213-3 IRM Calcium (Ca)		SAL814	106.0		%		70-130	04-DEC-14	
Potassium (K)			98.2		%		70-130	04-DEC-14 04-DEC-14	
Magnesium (Mg)			111.4		%		70-130	04-DEC-14	
Sodium (Na)			99.9		%		70-130	04-DEC-14	
Sulfur (as SO4)			112.0		%		70-130	04-DEC-14	
WG2006213-2 MB Calcium (Ca)			<2.0		mg/L		2	04-DEC-14	
Potassium (K)			<1.0		mg/L		1	04-DEC-14	
Magnesium (Mg)			<2.0		mg/L		2	04-DEC-14	
Sodium (Na)			<4.0		mg/L		4	04-DEC-14	
Sulfur (as SO4)			<5.0		mg/L		5	04-DEC-14	
SAT-PCNT-SK	Soil								
Batch R3115354									
WG2006213-3 IRM % Saturation		SAL814	45.2		%		37-47	04-DEC-14	
SAT/PH/EC-SK	Soil								
Batch R3115354 WG2006213-3 IRM % Saturation		SAL814	45.2		%		37-47	04-DEC-14	
pH in Saturated Paste			7.81		pH		7.4-8	04-DEC-14	
Conductivity Sat. Paste			103.1		%		80-120	04-DEC-14	
WG2006213-2 MB Conductivity Sat. Paste			<0.10		dS m-1		0.1	04-DEC-14	
SO4-AVAIL-SK	Soil						-	UT DEO TT	
Batch R3115310									
WG2006246-3 IRM Available Sulfate-S		SAL814	99.5		%		70-130	04-DEC-14	
WG2006246-2 MB Available Sulfate-S			<3.0		mg/kg		3	04-DEC-14	
SPECGRAV-ED	Soil								
Batch R3116802 WG2010183-1 DUP		L1551947-2							

 WG2010183-1
 DUP
 L1551947-2

 Specific Gravity
 2.14
 1.90
 kg/L
 12
 13
 08-DEC-14

					,				
			Workorder:	L1551947	7	Report Date: 09-	DEC-14		Page 7 of 9
Client:		alo Place MB R3T 6B8							
Contact:	JUSTINI	RAK-BANVILLE							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CL-COL-SK		Waste							
Batch	R3115033								
WG2006213-2 Chloride (Cl)				<1.0		mg/L		1	04-DEC-14
PH/EC-SK		Waste							
Batch	R3115354								
WG2006213-2 Conductivity				<0.010		dS m-1		0.01	04-DEC-14
SAR-CALC-SK		Waste							
Batch	R3115016								
WG2006213-3 Sulfur (as SC			SAL814	112.0		%		70-130	04-DEC-14
WG2006213-2									
Calcium (Ca)				<2.0		mg/L		2	04-DEC-14
Potassium (k	()			<1.0		mg/L		1	04-DEC-14
Magnesium ((Mg)			<2.0		mg/L		2	04-DEC-14
Sodium (Na)				<4.0		mg/L		4	04-DEC-14
Sulfur (as SC	04)			<5.0		mg/L		5	04-DEC-14

Client:	WSP Canada Inc.
	1600 Buffalo Place
	Winnipeg MB R3T 6B8
Contact:	JUSTIN RAK-BANVILLE

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate
Sample F	arameter Qualifier Definitions:
Qualifi	er Description
DLA	Detection Limit adjusted for required dilution

J	Duplicate results and limits are expressed in terms of absolute difference.

RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.
--------	---

Workorder: L1551947

Report Date: 09-DEC-14

Client:	WSP Canada Inc.
	1600 Buffalo Place
	Winnipeg MB R3T 6B8
Contact:	JUSTIN RAK-BANVILLE

Page 9 of 9

Hold Time Exceedances:

ALS Product Description	Sample	Compling Data	Data Dragonad	Rec. HT	Actual HT	Units	Overliffer
ALS FIGURE Description	ID	Sampling Date	Date Processed	кес. пт	ACLUAITI	Units	Qualifier
Leachable Metals							
Available Boron, Hot Water							
	1	27-NOV-14 10:00	04-DEC-14	5	7	days	EHT
	2	27-NOV-14 11:30	04-DEC-14	5	7	days	EHT

Legend & Qualifier Definitions:

EHTR-FM:	Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR:	Exceeded ALS recommended hold time prior to sample receipt.
EHTL:	Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT:	Exceeded ALS recommended hold time prior to analysis.
Rec. HT:	ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L1551947 were received on 27-NOV-14 13:00.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Work Order	Sample	Client ID	Analyte	Result (Dry)	Result (Wet)	Qualifier	Units	LOR (dry)
L1551947		WTP SAMPLE	Conductivity (EC)		3.53		dS m-1	0.010
L1551947	L1551947-1	WTP SAMPLE	Loss on Ignition @ 375 C	3.8	70.4		%	1.0
L1551947	L1551947-1	WTP SAMPLE	% Moisture		66.6		%	0.10
L1551947	L1551947-1	WTP SAMPLE	Organic Matter	3.3	1.1		%	1.0
L1551947	L1551947-1	WTP SAMPLE	рН	9.16	9.16		рН	0.10
L1551947	L1551947-1	WTP SAMPLE	Total Kjeldahl Nitrogen	0.031	0.010		%	0.020
L1551947	L1551947-1	WTP SAMPLE	Total Carbon by Combustion	10.7	3.6		%	0.1
L1551947	L1551947-1	WTP SAMPLE	Available Ammonium-N	<1.0	<0.3		mg/kg	1.0
L1551947	L1551947-1	WTP SAMPLE	Available Nitrate-N	<4.0	<1	DLM	mg/kg	4.0
L1551947	L1551947-1	WTP SAMPLE	Available Phosphate-P	<1.0	<0.3		mg/kg	1.0
L1551947	L1551947-1	WTP SAMPLE	Available Potassium	22	7.3		mg/kg	20
L1551947	L1551947-1	WTP SAMPLE	Available Sulfate-S	703	235	DLM	mg/kg	6.0
L1551947	L1551947-1	WTP SAMPLE	SAR	1.02	1.02		SAR	0.10
L1551947	L1551947-1	WTP SAMPLE	Calcium (Ca)	724	242		mg/kg	20
L1551947	L1551947-1	WTP SAMPLE	Chloride (Cl)	644	215		mg/kg	20
L1551947	L1551947-1	WTP SAMPLE	Magnesium (Mg)	562	188		mg/kg	20
L1551947	L1551947-1	WTP SAMPLE	Potassium (K)	18	6.0		mg/kg	10
L1551947	L1551947-1	WTP SAMPLE	% Saturation	Oversat	Oversat		%	1.0
L1551947	L1551947-1	WTP SAMPLE	Sodium (Na)	212	71		mg/kg	40
L1551947	L1551947-1	WTP SAMPLE	Sulfur (as SO4)	3480	1160		mg/kg	50
L1551947	L1551947-1	WTP SAMPLE	Aluminum (Al)	3920	1309		mg/kg	50
L1551947	L1551947-1	WTP SAMPLE	Antimony (Sb)	<0.10	<0.03		mg/kg	0.10
L1551947	L1551947-1	WTP SAMPLE	Arsenic (As)	17.2	5.7		mg/kg	0.10
L1551947	L1551947-1	WTP SAMPLE	Barium (Ba)	14.3	4.8		mg/kg	1.0
L1551947	L1551947-1	WTP SAMPLE	Beryllium (Be)	<0.50	<0.2		mg/kg	0.50
L1551947	L1551947-1	WTP SAMPLE	Bismuth (Bi)	<0.20	<0.07		mg/kg	0.20
L1551947	L1551947-1	WTP SAMPLE	Cadmium (Cd)	<0.10	<0.03		mg/kg	0.10
L1551947	L1551947-1	WTP SAMPLE	Calcium (Ca)	237000	79158	DLA	mg/kg	500
L1551947	L1551947-1	WTP SAMPLE	Chromium (Cr)	1.84	0.61		mg/kg	0.50
L1551947	L1551947-1	WTP SAMPLE	Cobalt (Co)	<1.0	<0.3		mg/kg	1.0
L1551947	L1551947-1	WTP SAMPLE	Copper (Cu)	1.4	0.47		mg/kg	1.0
L1551947	L1551947-1	WTP SAMPLE	Iron (Fe)	2270	758		mg/kg	50
L1551947	L1551947-1	WTP SAMPLE	Lead (Pb)	<1.0	<0.3		mg/kg	1.0

L1551947	L1551947-1	WTP SAMPLE	Lithium (Li)	4.8	2		mg/kg	2.0
L1551947	L1551947-1	WTP SAMPLE	Magnesium (Mg)	19800	6613		mg/kg	100
L1551947	L1551947-1	WTP SAMPLE	Manganese (Mn)	261	87		mg/kg	1.0
L1551947	L1551947-1	WTP SAMPLE	Mercury (Hg)	<0.0050	<0.002		mg/kg	0.0050
L1551947	L1551947-1	WTP SAMPLE	Molybdenum (Mo)	<1.0	<0.3		mg/kg	1.0
L1551947	L1551947-1	WTP SAMPLE	Nickel (Ni)	2.0	0.7		mg/kg	1.0
L1551947	L1551947-1	WTP SAMPLE	Phosphorus (P)	72	24		mg/kg	50
L1551947	L1551947-1	WTP SAMPLE	Potassium (K)	<100	<30		mg/kg	100
L1551947	L1551947-1	WTP SAMPLE	Selenium (Se)	<0.20	<0.07		mg/kg	0.20
L1551947	L1551947-1	WTP SAMPLE	Silver (Ag)	<0.20	<0.07		mg/kg	0.20
L1551947	L1551947-1	WTP SAMPLE	Sodium (Na)	580	194		mg/kg	100
L1551947	L1551947-1	WTP SAMPLE	Strontium (Sr)	322	108		mg/kg	1.0
L1551947	L1551947-1	WTP SAMPLE	Thallium (Tl)	<0.10	<0.03		mg/kg	0.10
L1551947	L1551947-1	WTP SAMPLE	Tin (Sn)	<2.0	<0.7		mg/kg	2.0
L1551947	L1551947-1	WTP SAMPLE	Titanium (Ti)	37.5	13		mg/kg	5.0
L1551947	L1551947-1	WTP SAMPLE	Uranium (U)	2.35	1		mg/kg	0.10
L1551947	L1551947-1	WTP SAMPLE	Vanadium (V)	<1.0	<0.3		mg/kg	1.0
L1551947	L1551947-1	WTP SAMPLE	Zinc (Zn)	<5.0	<2.0		mg/kg	5.0
L1551947	L1551947-1	WTP SAMPLE	Boron (B), Hot Water Ext.	1.73	0.6	DLM	mg/kg	0.40
L1551947	L1551947-2	LAGOON SAMPLE	Loss on Ignition @ 375 C	9.2	55.7		%	1.0
L1551947	L1551947-2	LAGOON SAMPLE	% Moisture		46.5		%	0.10
L1551947	L1551947-2	LAGOON SAMPLE	Organic Matter	7.5	4.0		%	1.0
L1551947	L1551947-2	LAGOON SAMPLE	Total Kjeldahl Nitrogen	0.238	0.13		%	0.020
L1551947	L1551947-2	LAGOON SAMPLE	Total Carbon by Combustion	12.4	6.6		%	0.1
L1551947	L1551947-2	LAGOON SAMPLE	Available Ammonium-N	106	56.7		mg/kg	1.0
L1551947	L1551947-2	LAGOON SAMPLE	Available Nitrate-N	4.1	2.2	DLM	mg/kg	4.0
L1551947	L1551947-2	LAGOON SAMPLE	Available Phosphate-P	158	84.5		mg/kg	1.0
L1551947	L1551947-2	LAGOON SAMPLE	Available Potassium	84	44.9		mg/kg	20
L1551947	L1551947-2	LAGOON SAMPLE	Available Sulfate-S	377	202	DLM	mg/kg	6.0
L1551947	L1551947-2	LAGOON SAMPLE	SAR	0.83	0.83	SAR:M	SAR	0.10
L1551947	L1551947-2	LAGOON SAMPLE	Calcium (Ca)	<9.2	<5	DLA	mg/kg	9.2
L1551947	L1551947-2	LAGOON SAMPLE	Chloride (Cl)	61.6	33.0	DLA	mg/kg	9.2
L1551947	L1551947-2	LAGOON SAMPLE	Conductivity Sat. Paste		5.53		dS m-1	0.10
L1551947	L1551947-2	LAGOON SAMPLE	Magnesium (Mg)	431	230.6	DLA	mg/kg	9.2

L1551947	L1551947-2	LAGOON SAMPLE pH in Saturated Paste	8.45	8.45		рН	0.10
L1551947	L1551947-2	LAGOON SAMPLE Potassium (K)	10.1	5.4	DLA	mg/kg	4.6
L1551947	L1551947-2	LAGOON SAMPLE % Saturation	45.9			%	1.0
L1551947	L1551947-2	LAGOON SAMPLE Sodium (Na)	54	28.9	DLA	mg/kg	18
L1551947	L1551947-2	LAGOON SAMPLE Sulfur (as SO4)	778	416.2	DLA	mg/kg	23
L1551947	L1551947-2	LAGOON SAMPLE TGR(sodic)	<0.10	<0.05		t/ha	0.10
L1551947	L1551947-2	LAGOON SAMPLE TGR(brine)	<0.10	<0.05		t/ha	0.10
L1551947	L1551947-2	LAGOON SAMPLE Aluminum (Al)	1580	845.3		mg/kg	50
L1551947	L1551947-2	LAGOON SAMPLE Antimony (Sb)	<0.10	<0.05		mg/kg	0.10
L1551947	L1551947-2	LAGOON SAMPLE Arsenic (As)	8.05	4.3		mg/kg	0.10
L1551947	L1551947-2	LAGOON SAMPLE Barium (Ba)	32.7	17.5		mg/kg	1.0
L1551947	L1551947-2	LAGOON SAMPLE Beryllium (Be)	<0.50	<0.3		mg/kg	0.50
L1551947	L1551947-2	LAGOON SAMPLE Bismuth (Bi)	0.87	0.5		mg/kg	0.20
L1551947	L1551947-2	LAGOON SAMPLE Cadmium (Cd)	0.11	0.1		mg/kg	0.10
L1551947	L1551947-2	LAGOON SAMPLE Calcium (Ca)	197000	105395.0	DLA	mg/kg	500
L1551947	L1551947-2	LAGOON SAMPLE Chromium (Cr)	2.92	1.6		mg/kg	0.50
L1551947	L1551947-2	LAGOON SAMPLE Cobalt (Co)	<1.0	<0.5		mg/kg	1.0
L1551947	L1551947-2	LAGOON SAMPLE Copper (Cu)	27.1	14.5		mg/kg	1.0
L1551947	L1551947-2	LAGOON SAMPLE Iron (Fe)	2020	1080.7		mg/kg	50
L1551947	L1551947-2	LAGOON SAMPLE Lead (Pb)	2.6	1.4		mg/kg	1.0
L1551947	L1551947-2	LAGOON SAMPLE Lithium (Li)	4.0	2.1		mg/kg	2.0
L1551947	L1551947-2	LAGOON SAMPLE Magnesium (Mg)	7760	4151.6		mg/kg	100
L1551947	L1551947-2	LAGOON SAMPLE Manganese (Mn)	215	115.0		mg/kg	1.0
L1551947	L1551947-2	LAGOON SAMPLE Mercury (Hg)	0.23	0.1	DLA	mg/kg	0.10
L1551947	L1551947-2	LAGOON SAMPLE Molybdenum (Mo)	<1.0	<0.5		mg/kg	1.0
L1551947	L1551947-2	LAGOON SAMPLE Nickel (Ni)	1.7	0.9		mg/kg	1.0
L1551947	L1551947-2	LAGOON SAMPLE Phosphorus (P)	857	458.5		mg/kg	50
L1551947	L1551947-2	LAGOON SAMPLE Potassium (K)	150	80.3		mg/kg	100
L1551947	L1551947-2	LAGOON SAMPLE Selenium (Se)	<0.20	<0.1		mg/kg	0.20
L1551947	L1551947-2	LAGOON SAMPLE Silver (Ag)	0.73	0.4		mg/kg	0.20
L1551947	L1551947-2	LAGOON SAMPLE Sodium (Na)	520	278.2		mg/kg	100
L1551947	L1551947-2	LAGOON SAMPLE Strontium (Sr)	260	139.1		mg/kg	1.0
L1551947	L1551947-2	LAGOON SAMPLE Thallium (TI)	<0.10	<0.05		mg/kg	0.10
L1551947	L1551947-2	LAGOON SAMPLE Tin (Sn)	2.8	1.5		mg/kg	2.0

L1551947	L1551947-2	LAGOON SAMPLE Titanium (Ti)	24.0	12.8		mg/kg	5.0
L1551947	L1551947-2	LAGOON SAMPLE Uranium (U)	1.94	1.0		mg/kg	0.10
L1551947	L1551947-2	LAGOON SAMPLE Vanadium (V)	1.5	0.8		mg/kg	1.0
L1551947	L1551947-2	LAGOON SAMPLE Zinc (Zn)	29.4	15.7		mg/kg	5.0
L1551947	L1551947-2	LAGOON SAMPLE Boron (B), Hot Water Ext.	8.73	4.7	DLM	mg/kg	0.20

DLM Detection Limit Adjusted due to sample matrix effects.

DLA Detection Limit adjusted for required dilution

SAR:M Reported SAR represents a maximum value. Actual SAR would be lower if all cations were detectable.

COC # ____

ALS Environmental

Page ____of ____

			Report re	ormat / Distribu	ition		Serv	ice Req	<u>ueste</u> d	(Rush	for rou	itine ana	ilysis sul	pject to	availab	lity)	
	WSP Standard Other						🔘 R	Regular (Standard Turnaround Times - Business Days)									
Contact: JUS	JUSTIN RAK-BANVILLE			Excel	Digital	Fax	O Priority (2-4 Business Days) - 50% Surcharge - Contact ALS to Confirm TAT										
Address: 160	1600 BUFFALO PLACE			JUSTIN RAKE	BANVILLE@WS	PGROUP.COM								n TAT			
WI	NNIPEG, MANITOBA R3T 6	88	Email 2:				O Si	ime Day o	r Weeker	nd Erner	rgency -	Contact	ALS to Co	onfirm T	AT		
Phone: 204	4-477-6650 x374 Fax:		Email 3:	;			Analysis Request										
Invoice To Sa	me as Report ? 🗹 Yes	No No	Client / P	roject Informat	ion		Plea	ase indic	ate be	low Fil	ltered,	Prese	ved or	both (f	F, P, F.	/P)	
Hardcopy of Invo	ice with Report? Ves	No No	Job #:	Russell Lagoor	n Sludge Testing	3											
Company:			PO / AFE	:													
Contact:			LSD:				1										
Address:									1							20	
Phone:	Fax:		Quote #:	Q48093	•	· · ·	1									1 1 1 1 1 1	
Lab Work	Order#		ALS Contact:	Bouchard	Sampler:	JRB	Quote									r of Containers	
** Sample 1: # ****	•	dentification ill appear on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	See Qi									Number	
	P Sample	· · · /		27-Nov-14	10:00am	Other	X									1	
	gon Sample			27-Nov-14	11:30am	Waste	x		+							3	
									+							+	
																+	
											ŀ						
			-														
			•								:						
and a state of the second s									<u> </u>								
				-													
	Special Instructions / Regu	lations with water or land	d use (CCN	E-Freshwater	Aquatic Life/BC	C CSR - Commerce	cial/Al	3 Tier 1	- Natu	ral, et	c) / Ha	azardo	us Deta	nils			