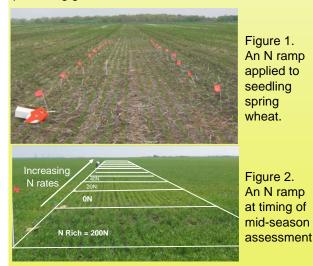
Nitrogen Rate Calibration Strip Validation in Manitoba

John Heard, MB Agriculture, Food and Rural Initiatives, Carman, MB John.Heard@gov.mb.ca


Background

Nitrogen Ramp Calibration Strips (NRCS)

- A method proposed by Oklahoma State University researchers¹ to assess nitrogen (N) supply from the soil through observations of N sufficiency of the growing crop.
- •It may be a suitable tool for crop advisors and extension agronomists in aiding growers to:
- 1. Determine replacement N value of manure or previous legume crops
- 2. Quantify in-season N losses due to excess rainfall
- 3. Assess suitability of new fertilizer management strategies, like zone fertilization or the Manitoba N rate calculator for cereals and canola.
- 5. Determine the amount of supplemental inseason N required to optimize yield for crops

Method

- Before or shortly following seeding select a nonfertilized, representative area of the field some 10' by 80-120' long (Figure 1).
- Individual 10' by 10' cells in the strip are hand fertilized with N rates increasing from 0 to a high, N Rich rate in "ramped up" increments of 10-30 lb N/ac
 Strips are visually inspected in mid-season to identify the N rate required for maximum biomass production and/or N sufficiency (Figure 2).
 N sufficiency is presumed to be at the lowest N rate producing growth/colour etc. similar to N Rich rate.

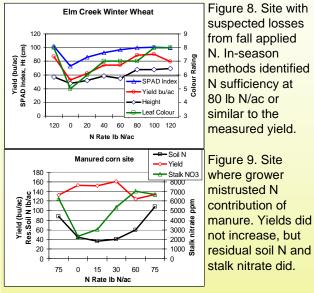
Assessments

•Strips may be assessed visually but usually N sufficiency determination is aided using one of a number of methods either in-season or at harvest.

Table 1. Potential criteria used to assess N sufficiency

Table 1. Toterillar chiera used to assess in sumclency	
Measurement*	N sufficiency
Biomass	Similar to N Rich
Plant height	Similar to N Rich
Plant N concentration %	Book values
SPAD Chlorophyll Index (Fig. 3)	95-100% of N Rich
Leaf colour (Fig. 4)	Similar to N Rich
Pre-sidedress soil nitrate test for	100 lb N/ac for corn
corn (Fig. 5)	(0-12" depth)
GreenSeeker NDVI (Fig. 6)	Similar to N Rich
Grain yield	Similar to N Rich
Post harvest residual nitrate-N	Not established
(lb N/ac 0-24")	
Corn stalk nitrate-N ppm (Fig. 7)	750-2000
Wheat grain protein content %	CWRS >13.5 %
	W wheat >11.5%

*References on diagnostic methods are available ².


Figures 3-7. Some of the methods used to assess N sufficiency referred to in Table 1 above.

Field validation

In 2008 we established 24 NRC Strips in crops of spring and winter wheat, barley, oats, canola and corn
Many were taken to harvest to evaluate the utility of the N sufficiency tools.

Findings

- 1.When N fertilizer is pre-weighed, labeled and bagged, it takes 15-20 minutes to measure, stake and apply N to each ramp strip.
- 2. The most promising in-season measurements in identifying N sufficiency were plant height, SPAD Index, leaf colour and NDVI³.
- 3.Figures 8-9 illustrate the yield and N sufficiency observations for N responsive and non-responsive (manured) NRCS sites.

- 4. NRC Strips were often useful in identifying and quantifying N supply of soil and needs of the crop
- 5. They are suitable for a number of extension and N sufficiency verification purposes.

6.Details on conducting NRC Strips are available².

Acknowledgements Agricultural Sustainability Initiative Tone Ag Consulting Crop Diagnostic School B. Irvine, AAFC AgVise Laboratories References References References

¹ Edmonds D.E., M.C. Daft, W.R. Raun, J.B. Solie, and R.K. Taylor. 2008. Determining Mid-Season Nitrogen Rates with Ramp Calibration Strip Technology. Better Crops with Plant Food. Vol. 92. 2008 No.1

http://www.ipni.net/ppiweb/bcrops.nsf/\$webindex/192E7FD695C7E135852573 E9005646F4/\$file/BC08-1p16.pdf

² Heard, J. 2009 Nitrogen Ramp Calibration Strips in Manitoba. MAFRI Crop Topics 2009. ttp://www.gov.mb.ca/agriculture/soilwater/nutrient/inm05s00.html ³Heard, J. 2009. Field Validation of Nitrogen Ramp Calibration Strips in Manitoba. MAFRI Agricultural Sustainability Initiative Report # 08-02-01