Weed and Feed Bootcamp: Case Study Training for Retail Agronomists John Heard¹ and Tammy Jones², CCAs ¹Manitoba Agriculture and Resource Development, ²Corteva Agriscience

OBJECTIVE

- To aid ag retail employers in improving problem-solving skills of young staff and updating veteran staff in current weed management and soil fertility issues in Manitoba.
- Offered workshops at 9 retail sites to some 110 participants (attendance range 7-21)
- To solve 6 case study mysteries slotted for ¹/₂ hour each
- Using a proven but currently underutilized training technique

FORMAT

- 1. Assign case study for groups of 2-3 people to complete (Fig 1)
- Take up group recommendations and discuss
- Introduce, demonstrate decision aids 3.
- Present relevant research data and summarize (Fig 2)
- 5. Participant evaluations for feedback on information learned, useful tools and the workshop format

Fig 1. Group work on cases

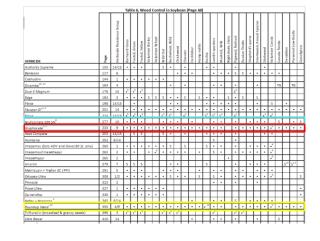
Fig 2. PowerPoint summary

Control options?

- and spray
- recommendation made 2. Weed "escapes" observed a couple weeks later

What went wrong?

SUMMARY


- Highly appreciated by agronomists
- Many suggested new case study scenarios
- Provided 3 CCA CEUs
- Investigating opportunities to continue delivery within COVID guidelines:
- Virtual, but live
- In person to small groups

Case 1: Weed scouting

1. ID the weed, crop 2. Consider competitiveness of crop: soybeans, 30" rows, 140,000 plants/ac

Points learned:

- 1. Features to ID different grasses
- 2. Attention to detail stage, morphology, more than colour
- 3. Seek all info from farmer regarding history, herbicide app Aids:
- 1. Weed seedling ID guides, herbicide selection tables

Points learned:

Case 2. Herbicide performance

Weed stage when scouted

Consider all escape factors – stage of growth, herbicide rate, water volumes, coverage, weather

2. Know crop and weed growth stages and rate of development

Aids:

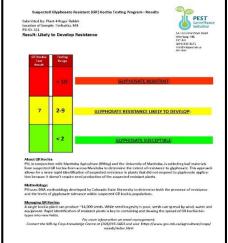
Points learned:

Aids:

Proper ID is critical

. How to confirm resistance

1. PMRA online label search



Case 3: Herbicide resistance in weeds

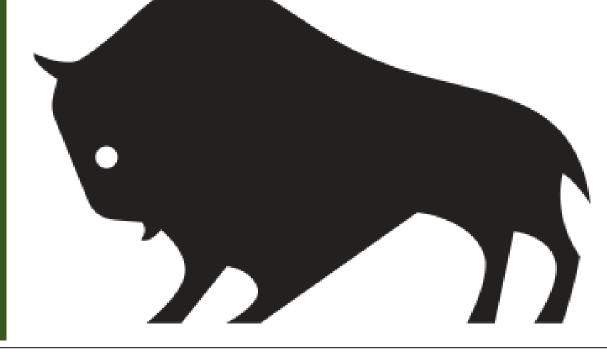
1. The post-spray scouting shows mix of dead, injured and healthy plants 2. How do you explain "escapes"?

Future management options?

3. More PRE herbicide use . Control steps beyond chemical – crop competition, surveillance, 1. PCR resistance testing

1. Declining soil test P levels 2. High P removal crops 3. Limited seed placed P safety Develop a P rebuilding plan.

Case 5: Increasing wheat protein


- 1. Good wheat yields but low protein
- 2. Risk lodging with high nitrogen (N)

Use 4R approach to increase protein

- .. Narrow disk seed opener and reduced crop stands
- 2. Seed and seedling toxicity from excessive seed placed fertilizer (N)

Use 4R approach to plan

Case 4: Managing soil phosphorus (P)

Points learned:

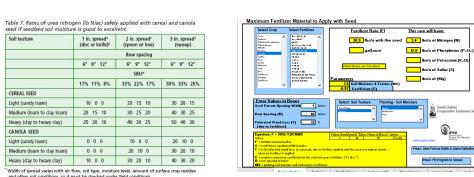
- 1. Consider long-term building approach through the rotation
- 2. Important conversation with grower on long-term objectives, rented vs owned land, equipment options, etc.

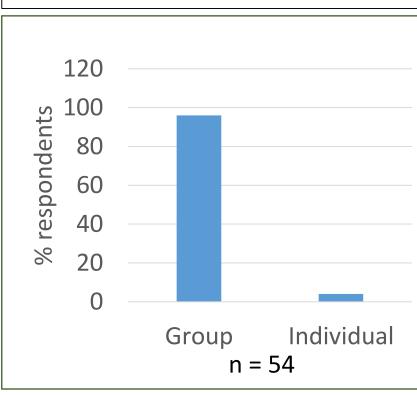
Aids:

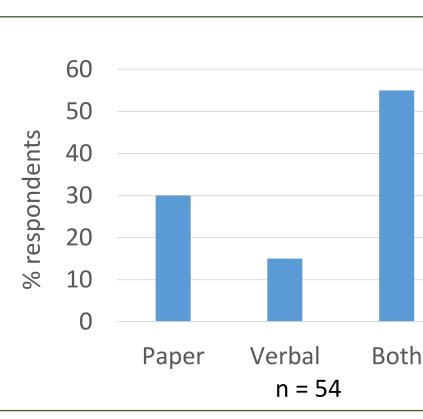
- 1. IPNI Crop Removal rates
- 2. MB Ag P balance calculator

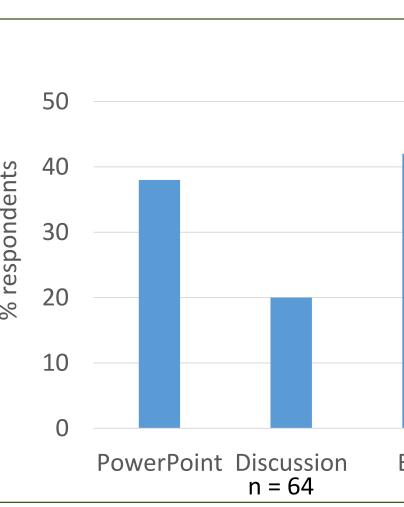
Phosphorus Balan	e Calculat	tion for a	Rotation	n (Version	4 - Octobe	er 1, 2014	
	Typical	Yield	Р	P Removed*		Annual	
Crop	Yield	Units	Applied	per unit	per acre	Balance	
		(lb P ₂ O ₅ /ac)					
HR Spring wheat	65	bu/ac	35	0.59	38	-3	
Winter wheat	90	bu/ac	35	0.51	46	-11	
Barley		bu/ac		0.42	0	0	
Oats		bu/ac		0.26	0	0	
Canola	50	bu/ac	20	1.04	52	-32	
Soybeans	40	bu/ac	10	0.84	34	-24	
Peas		bu/ac		0.69	0	0	
Flax		bu/ac		0.65	0	0	
Corn (grain)		bu/ac		0.44	0	0	
Other**				0.00	0	0	
Total for Rotation			100		170	-70	

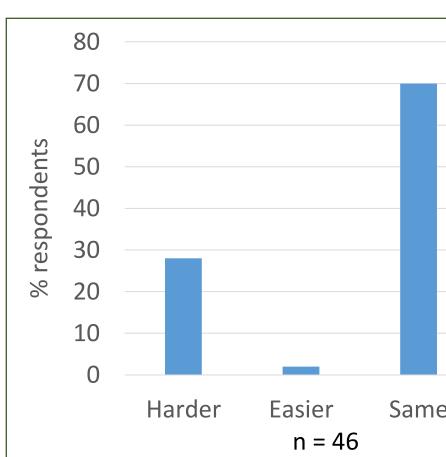
Points learned:


- 1. N sufficiency for yield thumbrule, >13.5% protein
- 2. RATE = N supply of 2.0 2.3 lb N/bu
- 3. SOURCE = controlled release N (ESN), but inconsistent results
- 4. TIMING = split N application, but risk if no rain, post anthesis N but leaf burn and inconsistent results


Case 6: Seedplaced fertilizer injury


Points learned:


- . Risks of narrow openers, wide row spacings
- 2. Greater toxicity with higher pH soils, sandy texture, dryness
- 3. Place higher rates elsewhere, consider safer fertilizer sources Aids:
- 1. Safe rate guidelines
- 2. SDSU/IPNI FertSeedDecisionAid



Group or Individual work? • Liked hearing different group perspectives • Good sharing • Encouraged teamwork • Mix of skills/experience Good for newer staff Case Study materials • Suggest bringing in a "stubborn farmer" to try to convince Discussion format • Discussion alone is not enough • Like supporting data, evidence brought with PowerPoint Both Level of Difficulty • Start with easy and increase level of difficulty • Good spread for the range of skills

• Very realistic cases