GS-28 PHYTOREMEDIATION AND PHYTOMINING IN MANITOBA: PRELIMINARY OBSERVATIONS FROM AN ORIENTATION SURVEY AT THE CENTRAL MANITOBA (AU) MINESITE (NTS 52L/13)

by S. Renault¹, E. Sailerova² and M.A.F. Fedikow

Renault, S., Sailerova, E. and Fedikow, M.A.F. 2000: Phytoremediation and phytomining in Manitoba: preliminary observations from an orientation survey at the Central Manitoba (Au) minesite (NTS 52L/13); *in* Report of Activities 2000, Manitoba Industry, Trade and Mines, Manitoba Geological Survey, p. 179-188.

SUMMARY

A new project to establish the trace-element content of abandoned minesite tailings and determine the potential for phytoremediation of these sites and production of bio-ores, through the identification of hyperaccumulator plant species, has been initiated at the Central Manitoba (Au) minesite in southeastern Manitoba (Fig. GS-28-1). The first phase of this project has established the trace-element characteristics of tailings at the minesite through multi-element analysis of samples collected from three 1 m deep, hand-augered profiles. Results indicate that a partial extraction at pH 2–3 liberates a wide range of base and precious metals from the tailings at the minesite, and that these metals provide the focus for the future development of a bio-ore. Ten plant species

¹ Department of Botany, University of Manitoba, Winnipeg, Manitoba

were planted on three experimental sites on mine tailings. The survival rate and amount of extracted base and precious metals should

indicate plant species suitable for phytoremediation and phyto-extraction.

INTRODUCTION

Mining and mineral-processing activities contribute significant quantities of heavy metals to the environment and affect surrounding land, air and water quality. These effects cannot be reversed by nature and require aggressive application of planned restoration programs.

Metal mines throughout Manitoba and Canada contain variable amounts of sulphide minerals, either in the ore or in the surrounding host rocks. Leaching of heavy metals from tailings results from oxidation of pyrite under moist conditions. This oxidation leads to a decrease in pH, which increases the solubility of most heavy metals. Metal mobilization

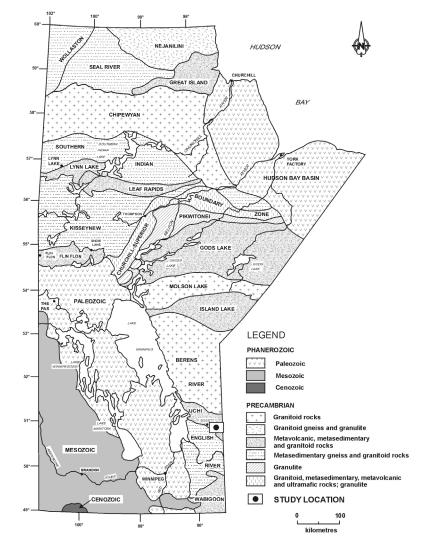


Figure GS-28-1: Location of the phytoremediation and phytomining study area, Central Manitoba gold mine, Bissett area, southeastern Manitoba.

² Radiation Safety, Health Sciences Centre, Winnipeg, Manitoba

from tailings can often be traced into watersheds downstream from active minesites.

Among the most promising and common approaches to preventing acid generation is to physically stabilize the waste by covering the acidproducing material with water. This forms an anaerobic environment, where sulphide minerals remain stable and dissolved metal concentrations are low. However, more than half of the existing tailings sites in Canada have been found to be unsuitable for water barriers (Ripley et al., 1996).

Pyrite oxidation can also be controlled by covering the surface tailings with soil and then usually revegetating the site. Establishment of a self-sustaining mat of vegetation is usually an important element in a rehabilitation program for waste-disposal areas. Vegetation stabilizes the soil, prevents new acid-generating material from being exposed, and decreases the amount of water available for deep percolation through transpirational water movement. Vegetation is established by controlling pH near the surface with addition of lime or limestone and by adding fertilizers where necessary. Plant species are usually selected from well adapted species generally growing in the region (Bradshaw, 1952). Nevertheless, revegetation alone does not stop acid drainage and does not remove heavy metals from the contaminated site.

Tailings are not the only cause of land contamination by heavy metals. Additional contamination is contributed by airborne pollutants, which are produced during mining and milling operations. Airborne pollutants are the major source of soil contamination in areas surrounding the mining operations. The distance from a source at which metals affect plants and soil has been documented. In Flin Flon, manganese was detectable for approximately 250 km from a base-metal smelter, and copper for up to 60 km. Affected soil cannot be used for agricultural purposes because of the high metal content, and other uses of these lands are also limited. The Subcommittee on Environmental Quality Criteria for Contaminated Sites of the Canadian Council of Ministers of the Environment has developed a set of interim criteria as part of the National Contaminated Sites Remediation Program. In some jurisdictions, these guidelines are being applied as limits for permitting purposes. Today's practices involve the expensive removal of contaminated soil (excavation; Giasson and Jaouich, 1998).

Phytoremediation of metals is being developed as a potential costeffective remediation solution for thousands of sites contaminated by heavy metals in the United States and abroad (Salt et al., 1995, 1998; Cunningham et al., 1995; Comis, 1996). Plants, called hyperaccumulators, capable of accumulating 0.5 to 1% of their dry weight in metals have been identified. These include *Alyssum bertolonii* (1% or 10 000 mg/kg Ni) and *Brassica juncea* (Au). Anderson et al. (1999) provided a list of other hyperaccumulators.

Two basic strategies for phyto-extraction can be applied. The first of these is continuous phyto-extraction, which requires hyperaccumulators with high biomass production and the ability to grow in dense stands. Continuous phyto-extraction is also useful at sites where metals are already mobilized by low pH of the underlying soil, provided that the metals to be extracted are pH sensitive or contain high concentrations of metals in water-soluble form. The second approach is induced phytoextraction (Blaylock et al., 1997). At the end of the plant-growth phase, the appropriate chelate, such as ethylene diamine tetra-acetic acid (EDTA), is applied to the area and plants are harvested within several days or a week. Chelate-assisted transport of metals to plant shoots appears to occur in the xylem via the transpiration stream. The metal appears to move to the shoots as a metal-chelate complex.

The technique of phytomining (Nicks and Chambers, 1998) involves growing a crop of a metal-hyperaccumulating plant species, harvesting the biomass, and burning it to produce a bio-ore. Up to 57 mg/kg Au (dry mass) can be accumulated by Indian mustard (*Brassica juncea*; Anderson et al., 1998) using induced hyperaccumulation by ammonium thiocyanate, which is biodegraded to ammonia, bicarbonate and sulphate.

Phytomining technology offers the possibility of exploiting ores or 180

mineralized soils that are uneconomic by conventional mining methods. Bio-ores are virtually sulphur free, and their smelting requires less energy than sulphide ores. The metal content of a bio-ore is usually much greater than that of a conventional ore and therefore requires less storage space, despite lower density. Moreover, phytomining is an environmentally responsible approach to site remediation.

OBJECTIVES

The long-term goal of this study is to determine the optimal field conditions and define limiting factors for phytoremediation of sites contaminated with heavy metals. This field and laboratory study will guide the selection of suitable plant species for environmental conditions found in the boreal-forest region. The suitability of selected species for phytomining of base metals and gold will be tested in terms of the quality and costs of bio-ore production and economic effectiveness.

The initial experimental sites will be evaluated in terms of the degree and type of contamination, soil quality (including an estimation of soil pH and soil-layer thickness on revegetated areas), presence of other plant species, and soil drainage (Sailerova, in press). Furthermore, experimental sites must be evaluated for conditions that will enable the selected plant species to reach maximum biomass. Different plant species have different saturation irradiation levels and different requirements in terms of soil quality, mineral nutrition and water supply.

SIGNIFICANCE OF THE WORK

Soil contamination by heavy metals and metal leakage from sulphide tailings represent a significant and widely recognized ecological hazard. Phytoremediation offers the possibility of an ecologically acceptable and cost-effective solution. Phytomining, as a new technique for extracting metals from low–grade ore or sulphide tailings, is a promising new technique currently being developed for commercialization in the United States. Field experiments in phytomining in Manitoba could provide valuable information regarding the potential of this method to remediate sites contaminated with heavy metals.

GEOLOGICAL SETTING OF THE CENTRAL MANITOBA (AU) DEPOSIT

Tailings associated with the Central Manitoba gold deposit were selected for initial phytoremediation and phytomining studies. The deposit occurs within the Archean Rice Lake greenstone belt, in the Uchi Subprovince of the Superior Province in southeastern Manitoba (Fig. GS-28-1). The belt is flanked to the north by the North Caribou Terrane (Marr, 1971; Weber, 1971; Poulsen et al., 1996) and, to the south, is transitional with the English River gneissic belt (McRitchie and Weber, 1971; Weber, 1971; Poulsen et al., 1996). The Rice Lake belt is fault bounded on the north by the Wanipigow Fault and on the south by the Manigotagan Fault.

Host rocks to the deposit belong to the Bidou Lake subgroup (Poulsen et al., 1996) and comprise arkose, tuff and chert of the Dove Lake Formation. These sedimentary rocks have been intruded by gabbro sills. Gold-bearing quartz veins at the deposit are situated within en échelon shear zones at or close to the contact between the Dove Lake sedimentary rocks and an east-southeast-trending gabbro sill (Stockwell and Lord, 1939). Five veins contributed the bulk of production at the deposit. These were the Kitchener, Eclipse, No.1 Branch, Tene 6 and Hope veins. The quartz veins were mineralized with chalcopyrite, pyrite, pyrrhotite and free gold. Between 1928 and 1938, a total of 347 801 t of ore was milled and 4287 kg of gold produced.

GEOCHEMICAL CHARACTERIZATION OF TAILINGS

Geochemical analyses of 20 tailings samples collected from three hand-augered profiles, each approximately 1 m in depth, are presented in Tables GS-28-1, -2 and -3. The data in Tables GS-28-1 and -2 are total

Table GS-28-1: Instrumental neutron activation analysis (INAA) of tailings samples (-60 mesh) from three 1 m deep, hand-augered profiles. Negative values indicate less than the lower limit of determination.

(p)		Ag	As	Ba	Ŗ	ca	ပိ	ບັ	cs	Бе	Ħ	Hg	<u>-</u>	Мо	Na	ï	Rb	Sb	Sc
+	l) (qdd)	(mdd)	(mdd)	(mdd)	(mqq)	(%)	(mqq)	(mqq)	(mqq)	(%)	(mdd)	(mdd)) (qdd)	(mdd)	(%)	(mdd)	(mdd)	(mdd)	(mqq)
	3430	ې.	19	220	,	-0.5	7	100	-0.5	5.49	1.5	~	μ	Ϋ́	0.58	-100	-20	6.0	12.2
-	1210	-2	16	180	<u>,</u>	0.8	47	49	-0.5	3.6	1.7	<u>,</u>	γ	γ	0.74	-100	-20	0.6	ω
SITE 1: 30-45 cm 7	795	ς.	10	230	-	0.6	25	59	-0.5	3.47	1.8	7	μ	μ	0.75	-100	-20	0.4	8.8
SITE 1: 45-60 cm 10	1040	ې	7	170	7	0.9	34	32	-0.5	3.63	1.2	7	Ϋ́	ι'n	0.46	-100	-20	0.3	8.2
SITE 1: 60-75 cm 3	352	-2	4	120	-	-0.5	19	37	-0.5	3.11	-	7	Ϋ́	μ	0.41	105	-20	0.4	7.9
SITE 1: 75-90 cm 7	727	ςı	9	260	-	1.2	28	47	-0.5	3.33	1.5	7	ပု	ς	0.56	-100	-20	0.4	9.1
SITE 1: 90-105 cm 7	780	-2	9	300	7	-	25	14	-0.5	2.57	2	7	γ	ς	0.43	-100	22	0.3	3.7
SITE 2: 0-15 cm 22	2290	ς	1	130	-	1.1	ω	75	-0.5	3.82	-	-	γ	γ	0.57	-100	-20	0.3	9.1
SITE 2: 15-30 cm 15	1530	ې	1	150	-	0.8	16	110	-0.5	4.66	0.7	4	Ϋ́	μ	0.51	-100	-20	0.4	12.3
SITE 2: 30-45 cm 14	1490	ې	7	-100	7	-0.5	22	84	-0.5	4.08	-	n	ς	ې	0.5	-100	-20	0.3	11.1
SITE 2: 45-60 cm 18	1810	ې	10	-100	-	0.5	45	66	-0.5	4.32	0.7	2	Ϋ́	ι'n	0.39	-100	-20	-0.2	13.1
SITE 2: 60-75 cm 26	2640	μ	ი	-100	-	0.9	76	06	-0.5	4.04	0.9	7	ပု	ч	0.5	-100	-20	0.4	10.2
SITE 2: 75-90 cm 23	2390	ς	14	220	-	1.5	83	85	-0.5	3.88	1.4	<u>-</u>	ې	ςı	0.63	-100	-20	0.4	9.5
SITE 2: 90-105 cm 11	1110	ι'n	20	220	-	1.2	54	42	-0.5	3.4	2.8	7	ц	ц	0.99	-100	-20	0.4	6.8
SITE 3: 0-15 cm 4	428	ц	9	190	-	1.6	32	66	-0.5	4.06	<u>1</u> .8	-	γ	ςı	0.43	-100	32	0.3	10.6
SITE 3: 15-30 cm 5	569	μ	-2	190	-	1.2	36	210	-0.5	4.92	0.5	7	ч	ч	0.27	-100	-20	0.3	15.4
SITE 3: 30-45 cm 2	265	μ	4	-100	<u>,</u>	1.5	29	178	1.5	4.35	-0.5	7	ې	-2	0.21	-100	21	0.6	12.8
SITE 3: 45-60 cm 3	378	ς	с	-100	<u>,</u>	0.7	29	194	-0.5	4.58	-0.5	7	-2	-5	0.21	-100	-20	0.6	12.7
SITE 3: 60-75 cm 5	578	ς	4	-100	<u>,</u>	1.3	31	260	-0.5	4.98	0.5	7	-2	-2	0.25	-100	-20	0.4	15.6
SITE 3: 75-90 cm 9	958	ς	5	-100	<u>,</u>	0.7	35	137	-0.5	4.79	0.7	7	ς	Ϋ́	0.48	-100	-20	0.3	14.5

(ppm) (%) (ppm) (ppm)	Sample ID	Se	s	Та	Ч	5	×	Zn	La	ဗီ	PN	Sm	Еu	Tb	γb	Lu	Mass
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(mqq)	(%)	(mqq)	(mdd)	(mqq)	(mqq)	(mqq)	(mdd)	(mqq)	(mdd)	(mdd)	(mdd)	(mqq)	(mqq)	(mqq)	(6)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SITE 1: 0-15 cm	9	-0.05	5	0.5	-0.5	9	40	1.5	4	Ϋ́	0.5	0.2	-0.5	0.8	0.11	1.485
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SITE 1: 15-30 cm	ო	-0.05	7	1.1	-0.5	4	217	5.1	1	5	1.3	0.3	-0.5	0.8	0.13	1.803
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SITE 1: 30-45 cm	-3	-0.05	-	1.4	-0.5	4	110	3.7	8	-5	1.1	0.2	-0.5	0.9	0.14	1.484
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SITE 1: 45-60 cm	ကု	-0.05	7	0.8	-0.5	4	187	3.5	ω	ς	-	0.2	-0.5	0.8	0.12	1.597
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SITE 1: 60-75 cm	ကု	-0.05	7	0.6	-0.5	ကု	85	2.3	4	γ	0.7	0.2	-0.5	0.6	0.09	1.676
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	SITE 1: 75-90 cm	4	-0.05	5	0.9	-0.5	4	128	3.3	8	-5	-	0.2	-0.5	0.8	0.14	1.435
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SITE 1: 90-105 cm	-3	-0.05	-	1	-0.5	5	79	5	11	5	1.2	0.2	-0.5	0.8	0.14	1.453
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SITE 2: 0-15 cm	9	-0.05	7	0.5	-0.5	5	65	1.5	4	Ϋ́	0.5	-0.1	-0.5	0.7	0.11	1.604
5 -0.05 -1 0.5 -0.5 4 69 5 -0.05 -1 -0.5 -0.5 3 103 3 6 -0.05 -1 0.6 -0.5 5 253 4 6 -0.05 -1 0.9 -0.5 5 253 4 -3 -0.05 -1 1.8 -0.5 6 234 1 -3 -0.05 -1 1.8 -0.5 6 234 1 3 -0.05 -1 1.8 -0.5 6 234 1 3 -0.05 -1 1.8 -0.5 3 156 1 5 -0.05 -1 -0.5 3 156 1 1 1 6 -0.05 -1 -0.5 3 156 1	SITE 2: 15-30 cm	5	-0.05	7	-0.5	-0.5	4	62	1.5	e	ې	0.5	0.2	-0.5	0.6	0.09	1.657
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SITE 2: 30-45 cm	5	-0.05	5	0.5	-0.5	4	69	1.2	з	-5	0.5	0.1	-0.5	0.6	0.1	1.57
6 -0.05 -1 0.6 -0.5 5 253 4 -0.05 -1 0.9 -0.5 4 259 -3 -0.05 -1 1.8 -0.5 6 234 3 -0.05 -1 1.8 -0.5 6 234 3 -0.05 -1 1.8 -0.5 6 234 3 -0.05 -1 1.8 -0.5 6 234 5 -0.05 -1 1.6 -0.5 3 156 -3 -0.05 -1 -0.5 -0.5 3 75 -3 -0.05 -1 -0.5 -0.5 3 103	SITE 2: 45-60 cm	5	-0.05	7	-0.5	-0.5	з	103	1.6	4	-5	0.9	0.1	-0.5	0.8	0.12	1.605
4 -0.05 -1 0.9 -0.5 4 259 -3 -0.05 -1 1.8 -0.5 6 234 3 -0.05 -1 1.8 -0.5 6 234 5 -0.05 -1 1.8 -0.5 7 17 3 -0.05 -1 1.6 7 7 16 5 -0.05 -1 -0.5 3 156 16 -3 -0.05 -1 -0.5 -0.5 3 75 -3 -0.05 -1 -0.5 -0.5 3 103	SITE 2: 60-75 cm	9	-0.05	5	0.6	-0.5	5	253	4.4	8	-5	1.1	0.2	-0.5	Ļ	0.15	1.577
-3 -0.05 -1 1.8 -0.5 6 234 3 -0.05 -1 1 -0.5 6 234 5 -0.05 -1 1 -0.5 3 156 -3 -0.05 -1 -0.5 -0.5 3 156 -3 -0.05 -1 -0.5 -0.5 3 75 -3 -0.05 -1 -0.5 -0.5 3 166	SITE 2: 75-90 cm	4	-0.05	7	0.9	-0.5	4	259	4.8	6	-2	1.1	0.4	-0.5	0.9	0.15	1.362
3 -0.05 -1 1 -0.5 4 117 5 -0.05 -1 -0.5 -0.5 3 156 -3 -0.05 -1 -0.5 -0.5 3 75 -3 -0.05 -1 -0.5 -0.5 3 75 -3 -0.05 -1 -0.5 -0.5 3 75	SITE 2: 90-105 cm	ဗု	-0.05	7	1.8	-0.5	9	234	7.5	15	7	1.7	0.5	-0.5	1.1	0.16	1.573
3 -0.05 -1 1 -0.5 4 117 5 -0.05 -1 -0.5 -0.5 3 156 -3 -0.05 -1 -0.5 -0.5 3 75 -3 -0.05 -1 -0.5 -0.5 3 76 -3 -0.05 -1 -0.5 -0.5 3 103																	
5 -0.05 -1 -0.5 -0.5 3 156 -3 -0.05 -1 -0.5 -0.5 3 75 -3 -0.05 -1 -0.5 -0.5 3 75	SITE 3: 0-15 cm	e	-0.05	7	-	-0.5	4	117	3.9	6	-5	1.1	0.3	-0.5	0.9	0.14	1.833
-3 -0.05 -1 -0.5 -0.5 3 75 -3 -0.05 -1 -0.5 -0.5 3 103	SITE 3: 15-30 cm	5	-0.05	-	-0.5	-0.5	3	156	1.6	5	-5	0.6	-0.1	-0.5	0.6	0.1	1.427
-3 -0.05 -1 -0.5 -0.5 3 103	SITE 3: 30-45 cm	ဂု	-0.05	7	-0.5	-0.5	З	75	0.9	ကု	-5	0.4	-0.1	-0.5	0.5	0.07	1.372
	SITE 3: 45-60 cm	-3	-0.05	5	-0.5	-0.5	3	103	0.9	-3	-5	0.4	-0.1	-0.5	0.5	0.07	1.734
4 -0.05 -1 -0.5 -0.5 3 141	SITE 3: 60-75 cm	4	-0.05	-	-0.5	-0.5	3	141	0.9	<u>ب</u>	-5	0.4	-0.1	-0.5	0.5	0.08	1.346
SITE 3: 75-90 cm 6 -0.05 -1 -0.5 -0.5 3 133 1.4	SITE 3: 75-90 cm	9	-0.05	7	-0.5	-0.5	с	133	1.4	ကု	ς	0.6	0.2	-0.5	0.7	0.11	1.532

Table GS-28-2: Geochemical analysis of tailings samples (-60 mesh) collected from three 1 m deep, hand-augered profiles. Analysis by ICP-MS following a lithium metaborate/tetraborate fusion. All values in ppm. Negative values indicate less than the lower limit of determination.

Ba	155	199	177	150	120	198	243		126	106	106	91	127	149	247	215	111	69	64	89	121		ကု	482	479*	7	7	113	114*	2300	2240	656	680	145	150*	772	750	449	450	562	560*	7	1.5
s	-0.5	-0.5	-0.5	-0.5	-0.5	0.5	-0.5		-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5		-0.5	8.5	8.6*	-0.5	0.005	-0.5	(0.34)	5.0	5.2	2.2	2.3	179	180*	З	3.0	ო	e	1.5	1.54*	-0.5	0.06
sb	-0.5	0.5	-0.5	-0.5	-0.5	-0.5	-0.5	1	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5		-0.5	0.9	0.96*	0.6	0.58	0.9	.96*	45.9	49		1.3	-0.5		122	122	7	0.31	1.4	1.66*	0.8	0.63
sn	-	-	7	-	7	7	<u>-</u>		7	-	7	-	7	7	7	7	-	7	-	7	-		7	3	3.6	-	0.65	-		2	1.7	7	3	70	70*	53	54	∞	(6.5)	7	6.8	-	0.3
<u>_</u>	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2		-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2		-0.2	-0.2	(0.18)	-0.2		-0.2		-0.2	(0.252)	-0.2		0.6	0.60	0.8	0.8	-0.4		-0.2	(0.12)	-0.2	0.2
Ag	6.0	3.4	4.0	3.9	2.8	3.3	3.2	1	4.7	5.8	5.2	5.9	5.1	4.8	5.1	3.8	4.3	4.2	5.0	4.7	4.8		-0.5	-0.5	0.08	-0.5	(0.036)	-0.5					2.7	-0.5		31	31	<u>,</u>	(1.5)	-0.5	•0.079	-0.5	
Ø	-2	-2	-2	-2	-2	-2	5		9	-2	4	-2	-2	4	-2	-2	-2	7	-2	-2	-2		-2	-2	1.6			-2	I I			-2	(<2)	-2	1.2	18	18		-		5.2	⁵	0.7
qN	2	2	2	2	2	2	7		2	1	2	-	2	2	с	2	-	7	-	,	-		,	14	12	-	0.6	2	e	6	11	∞	8	270	270*	-2	(0.8)	164	148	247	268*	-	0.1*
Zr	51	20	67	48	38	59	72		46	30	32	26	43	56	101	65	24	13	10	13	26		Ϋ́	115	126*	14	16	37	41*	244	269	162	178	815	800*	30	(38)	302	320	1210	1210*	ς	-
~	9	8	6	7	9	∞	7	1	9	7	9	9	10	ი		6	9	5	5	5	9		,	28	28*	16	16*	18	18*	17	17	30	30	47	48*	33	32	723	718*	45	46*	7	ۍ ه
ي ا	16	23	24	15	12	18	17		18	13	12	12	19	25	37	21	10	ω	9	7	11		-2	138	146*	107	108*	138	145*	152	160	246	240	4	5*	287	275	308	302*	695	700*	5	ო
Rb	18	20	19	16	12	19	19		16	13	12	11	15	16	23	22	17	10	6	15	14		-2	153	149*	-2	0.25*	в	(4.5)	74	78.0	76	78	2170	2200*	1	(14)	218	206*	112	118*	-2	0.4
As	6	10	11	-5	-2	2	10	I	ςı	-5	-	6	-5	9	ი	-2	-5	-5	-5	-2	-5		ς	11	9.2	-5	(0.4)	ς	(0.2)	24	25	26	27	3	3	443	427	20	19	ς	4.6	-2	1.5
eg	5	-	.	-	-	-	-		-	-	<u>,</u>	-	<u>-</u>	-	<u>,</u>	-	-	<u>-</u>	-	-	-		<u>-</u>	2		2	1.5	-	(1.3)	1		-		3	3.2	e		-2	1.4	2	(1.4)	23	24
Ga	ø	6	6	7	9	œ	7	1	7	7	9	9	7	ω	10	6	7	5	5	9	7		<u>-</u>	22	20.4*	16	16	15	15	37	37	15		97	95*	16	14	27	27*	36	36*	-	0.7
Zn	153	82	183	155	82	114	71		-30	43	44	87	178	211	186	111	93	68	70	78	94		-30			76	71*	60	66*	563	530	138	152	1300	300*	792	760	265	244*	248	235*	-30	20*
cr	834	3640	5740	3990	3470	3800	3770		1710	2890	2370	10500		5860		4510	3490	3150	3830	3510	440		-10				يد			68		31		-10		1120			17	-10	_	13	
z	-20	30												73			56						-20	44	53*	163	166*	262	247*	-20	21	45	47	-20	35*	44		-40	11	-20	(3)	-20	22.5
e S	9	25	37	31	17	26	2		ω	15	7	35	32	72	51	31	34	26	24	28	30				*		_	55			8.6			25			8.2	7	8.8	-	0.9	_	
																																						0	-		_	_	
້ວ	2					32			34		72		69		29	79		142			114		-20					9 275		34) 82		-			(11)			T.	4
>	68	46	47	40	42	46	23		58	76	64	64	51	49	37	59	75		58				Ϋ́	132	140*	310	313*	139	148	49	52	75	82	130	135	89	80	49	50	ပု	(8.7)	Ϋ́	2
Sample ID	SITE 1: 0-15 cm	SITE 1: 15-30 cm	SITE 1: 30-45 cm	SITE 1: 45-60 cm	SITE 1: 60-75 cm	SITE 1: 75-90 cm	SITE 1: 90-105 cm		SITE 2: 0-15 cm	SITE 2: 15-30 cm	SITE 2: 30-45 cm	SITE 2: 45-60 cm	SITE 2: 60-75 cm	SITE 2: 75-90 cm	SITE 2: 90-105 cm	SITE 3: 0-15 cm	SITE 3: 15-30 cm	SITE 3: 30-45 cm	SITE 3: 45-60 cm	SITE 3: 60-75 cm	SITE 3: 75-90 cm	Standards	Blank	Standard MAG1	Certified MAG1	Standard BIR1	Certified BIR1	Standard DNC1	Certified DNC1	Standard GXR-2	Certified GXR-2	Standard LKSD-3	Certified LKSD-3	Standard MICA-Fe	Certified Mica Fe	Standard GXR1	Certified GXR1	Standard SY3	Certified SY3	Standard STM-1	Certified STM-1	Standard IFG-1	Certified IFG-1

vsis of tailings samples (-60 mesh) collected from three 1 m deep, hand-augered profiles. Analysis by ICP-MS	orate fusion. All values in ppm. Negative values indicate less than the lower limit of determination. (continued)
Table GS-28-2: Geochemical analysis of tailings sample	following a lithium metaborate/tetraborate fusion. All value

Ce Br Nd Sm
3.1 0.42 1.6
7.5 0.89 3.9 1.0
9.3 1.11 5.0 1.1
6.7 0.80 3.6 0.9 4 r 0.6
0.0
9.3 1.10 4.6
3.3 0.44 1.8 0.4
3.2 0.44 1.9 0.5
2.9 0.41 1.8 0.5 <u> </u>
3.8 0.53 2.7 0.8
4.0 8.2 1.02 4.5 1.1 0.31
14.9 1.80 7.8
8.1 1.03 4.4 1.0
3.2 0.46 2.0 0.6
1.9 0.29 1.3
1.9 0.29 1.3 0.4
2.0 0.28 1.3 0.4
1.3 3.0 0.39 1.9 0.5 0.13
-0.1 -0.1 -0.05 -0.1 -0.05
89.4 9.84 38.1 7.3
88* 9.3 38* 7.5*
2.1 0.40 2.5 1.1
* 1.95* 0.38* 2.5* 1.1*
10.1 1.04 4.7 1.4
10.6 1.3 4.9* 1.38*
48.4 4.87 18.3 3.4
51.4 (19) 3.5
40:0 91.0 11.2 43.2 /./ 1.51
30 44 6.0 710 78 6 170 32 0
420* 40° 40° 40° 40° 40° 40° 40° 40° 40° 40°
17 2.2 9.6
17 (18) 2.7
2220 223 671 110
)* 2230* 223* 670 109
256 20.9 76.3 11.7
259* 19* 79* 12.6*
4.8 0.52 2.1 0.5
0.2 0.4*

*Recommended value. () Information value. All other values are proposed.

Analysis by ICP-MS following an ammonium iodide extraction. Negative values indicate less than the lower limit of determination. Table GS-28-3: Geochemical analysis of tailings samples (-60 mesh) collected from three 1 m deep, hand-augered profiles.

Ru	~	<u>-</u>	Ţ	7	7	<u>,</u>	T.	-	Ţ	Ţ	<u>-</u>	7	ī	с	Ţ	<u>,</u>	2	Ţ	~	<u>-</u>	⊐a		-0.1	0.2	0.3	-0.1	-0.1	-0.1	10
οM	~	25	51	32	22	29	24	9	6	2	<u>ග</u>	57	73	103	26	22	17	16	6	9	Ŧ	-	3.6	5.7	5.0	5.1	4.8	8.3	69
qN	5	5	7	-	5	-	-	2	-	<u>-</u>	-	-	2	5	-	<u>-</u>	7	<u>-</u>	<u>-</u>	-	Lu		0.5	8.9	9.4	4.1	4.8	6.0	
z	131	104	107	132	136	243	220	130	110	98	66	180	172	416	226	92	39	47	63	87	γb		3.3	55.4	53.4	19.0	23.5	30.1	10 5
~	34	677	662	200	220	303	220	133	311	176	335	2082	1090	810	291	424	351	294	343	307	۳		1.1	7.9	8.6	2.7	3.4	3.9	27
ي ا	346		1465 6									2026 2		2255 8			1835 3	1389 2	1538 3	-	ш		4.9	68.3	63.3	20.2	22.6	32.1	23 G
_		681		. 1178	1779	2233	. 1837	3 904	9 919		741		1963			2057				1729	ዓ		1.6	25.5	22.7	6.9	7.6	10.9	68
Rb) 27	3 17	19	4	8	11	14	133	189	110	8 67	64	48	3 22	32	102	13	16	22	3 47	Dy		10.0	133.2	112.8	34.4	37.8	55.6	45 O
ğ	6349	6598	6528	7387	7388	7293	7707	8066	7977	7580	6188	8639	7988	8553	7902	8425	8189	7137	7499	7518	Ъ		-	27.3	21.6	6.0	6.6	10.2	τ τ
Še	25	45	47	37	39	62	54	33	58	73	92	97	68	44	83	121	20	67	78	63	Gd		17.8	141.3	109.2	31.9	33.1	55.7	50 2
As	40	127	474	171	165	257	188	60	107	140	140	186	148	125	208	98	55	62	57	65	Eu	\rightarrow			-	7.5 3	7.7 3	13.9 5	13.2
ő	2	Ω	4	ო	9	2	-	~	e	ო	ი	ရ	10	15	4	ო	2	ო	ю	4	Sm	-	19.5	7		29.7 7	30.6 7	55.3 1	510
g	12	2	19	9	£	22	31	13	17	5	19	40	33	45	15	7	ი	ი	10	13	S	-		-					
Zn	126	6479	34229	24420	5850	8323	4260	1775	4914	4011	3681	35676	39056	32696	5703	4877	4052	3627	4051	3544	PN		109.7	666.0	453.5	126.6	135.8	246.7	738 8
cu	65055	1691987	1589745	704168	735417	561936	149146	358362	767980	475237	666666	587436	328337	262740	724289	700695	613241	647383	626482	323513	Pr		25.9		107.4	28.8	29.5	52.9	200
iz	100	2072 16	3373 15	1695 7	882 7	1811 5	799 1	1044 3	3404 7		3337 9	6502 5	7625 3	3336 2	1565 7	1499 7	1155 6	1003 6	1600 6	1113 3	မီ		200.2	1180.8	857.4	236.1	238.7	445.7	481.8
_																					La		79.7	599.4	471.7	117.7	120.2	214.2	23.7 R
ပိ	69	5529	10392	4647	729	1796	390	1026	6717	7087	5194	15623	17540	7183	1661	1714	741	688	1127	1081	Ba		-	168 5	280 4	271 1	218 1	296 2	-
Mn	643	50541	113460	58022	33047	50233	66712	12194	48501	55017	31700	257171	185847	154497	64393	61800	47503	36456	38533	44879									
>	102			38	42	79	78	174		276	\vdash	401	288	164 、		180	155			210	e Cs		5 2.1	1.7	5 1.2	5 0.6	2 0.4	9 0.8	+
*	939	460	276	244	195	516	570			369 2				950 、	 264	157 '	126 、	154 、	171 2	257 2	o Te	+	9 15	4 90	5 295				+
_															 					_	Sb	_	2.9	5.4	8.5	4.6		29.3	-
°c*	-100	-100	-100	-100	-100	-100	-100	116	206	228	621	147	107	108	-100	143	119	-100	103	-100	Sn	-	7 13	7 12	5 22	18	3 28	5 44	+
<u>*</u>	48384	46760	42286	46835	47159	47853	49338	53883	52059	50391	45438	50442	52355	48230	43766	44070	42244	40126	41281	40266	<u>م</u>	-	2.7	7 5.7	_	_		9 12.5	+
Be*	4	4		4	42	42		-2			24	2	4	4		2	42		-2		ខ		2 7.0	129.7	2 339.3	3 262.5	329.1	2 311.9	-
	9	396	32	41	15	13	7	122	314	204	32	43	2082	86	 4	-2	с С	273	9	10	Ag		492.2	276.7	133.2	107.6	128.6	152.2	157.4
								-												_	Pd		-	-	2	ო	2	ო	ر .
eD	SITE 1: 0-15 cm	SITE 1: 15-30 cm	SITE 1: 30-45cm	SITE 1: 45-60 cm	SITE 1: 60-75 cm	SITE 1: 75-90 cm	SITE 1: 90-105 cm	SITE 2: 0-15 cm	SITE 2: 15-30 cm	SITE 2: 30-45 cm	SITE 2: 45-60 cm	SITE 2: 60-75 cm	SITE 2: 75-90 cm	SITE 2: 90-105 cm	SITE 3: 0-15 cm	SITE 3: 15-30 cm	SITE 3: 30-45 cm	SITE 3: 45-60 cm	SITE 3: 60-75 cm	3: 75-90 cm	Q		15 cm	-30 cm	-45cm	-60 cm	-75 cm	-90 cm	SITE 1. 00 105 cm
Sample ID	-E 1: 0	E 1: 15	E 1: 30	E 1: 45	E 1: 6(E 1: 75	± 1: 90	ΓE 2: 0	E 2: 15	E 2: 3(E 2: 46	E 2: 6(E 2: 75	5 2: 90	TE 3: 0	E 3: 15	E 3: 3(E 3: 45	E 3: 6(E 3: 75	Sample ID		SITE 1: 0-15 cm	SITE 1: 15-30 cm	SITE 1: 30-45cm	SITE 1: 45-60 cm	SITE 1: 60-75 cm	SITE 1: 75-90 cm	1.00
	SIT	SIT	SIT	SIT	SIT	SIT	SITE	SIT	SIT	SIT	SIT	SIT	SIT	SITE	SIT	SIT	SIT	SIT	SIT	SITE	S		SITE	SITE	SITE	SITE	SITE	SITE	L L U

Values of 999999 indicate greater than the upper limit of detection.

8.1 -0.1 3.6 -0.1

5.6 8.5 6.9

 5.0
 29.5
 5

 6.7
 44.4
 8

 5.3
 36.1
 6

30.3 45.8 35.4

10.9 15.6 12.6 10.5 12.3 11.3

53.6 71.2

10.6 12.3

53.9 57.3

13.5 16.7

54.0 52.5 40.8

229.1 199.2 153.7 131.3

49.9 40.9 28.8

313.2 230.0

110.2

517 387 230

2.3 1.9

167 71 6

10.4

44

137.7 228.0 11.8

40 19

10.7

181.8 386.3

7 7

157.1 479.6

<u>-</u> <u>,</u>

SITE 3: 0-15 cm

613

9.3

409.0

203.8 149.2

58.3

9.9

45.9 38.9

14.4

8.2

35.7 42.2 51.3

28.4

188.9 224.3 304.9

--

1. 4

31.6 4.2 31.0 5.8 2.1 -0.1

3.3

1.7

1.7 11.1

15.7

8.2 5.3

45.0 27.5 67.2 38.3

9.1 6.6

238.8 185.3 215.5

-0.1

. 9

 208.1
 26.7
 178.7
 29.7
 8.4
 0.5

 104.0
 12.7
 88.0
 14.9
 6.8
 0.2

71.7 10.2 83.1 12.9 3.0 0.1

24.2 13.1 7.4

132.7 372.7 191.6 184.3

26.6

44.3 130.5

202.8 274.4 151.7

798.6 129.9 678.5

307.8 42.7

49.7

13.2 8.3

33.1

6.8

33.3 67.0

290.0

60.9

477.6

176.9 121.9 229.7 1044.4 758.9

29.5 26.2 10.8

130 727

43.1

332.8

132.9

7 З

9.7

42

3.0 7.4 9.0

7 2

5.7

295.1 62.9

~

 339.7
 208.4
 23.7

 374.6
 156.2
 30.5

7 7

~

SITE 2: 15-30 cm

SITE 2: 0-15 cm

153.4 111.5 7.5

1919.0

157.0

7 7

SITE 2: 30-45 cm SITE 2: 45-60 cm SITE 2: 60-75 cm SITE 2: 75-90 cm SITE 2: 90-105 cm

66.6 43.9

15.2 10.8

73.5 37.9

69.2 37.5

 36.6
 4.5
 28.8
 4.4
 3.2

 22.5
 2.8
 19.4
 3.0
 2.8

0.3

95.9 11.8 80.0 13.9 14.3

33.8

46.7 219.3 39.2

198.1

158.2

737.4 897.8

1882.0 221.7

842.3

436

2.7

211

38.3

3.0

150.4 1282.1

3.0 4.7

155.9 940.8

e

327.7

79.3 44.2

1099.0

236.4 1472.4 169.8

2005.7

239 274

5.1 4.5

39 32

288 416 313

18.8

39.7 39.3

27 20 53 53

2.5 -0.1 3.6 -0.1

6.6 6.1

37.5 4.9 34.9 34.5 4.0 31.8

59.9 55.3 49.2

9.7 10.2

45.3 50.4

13.7

13.4 11.5

148.2 197.4

29.1 39.7

105.9

217 273 517

96 199

21.4

32

20.0

-0. 2.6 5.3

14.1 10.5

> 13.1 10.3 6.5

213.8 259.7 234.8 197.6

SITE 3: 15-30 cm SITE 3: 30-45 cm SITE 3: 45-60 cm SITE 3: 60-75 cm SITE 3: 75-90 cm

236.5 297.7

<u>,</u>

139.7 91.3

*Element determined semiquantitatively.

184

Table GS-28-3: Geochemical analysis of tailings samples (-60 mesh) collected from three 1 m deep, hand-augered profiles. Analysis by ICP-MS following an ammonium iodide extraction. Negative values indicate less than the lower limit of determination. (continued)

Sample ID	W	Re	Os	Pt	Au	S.Q.Hg	TI	Pb	Bi	Th	U
		-				enquing					-
SITE 1: 0-15 cm	3	-0.01	-1	-1	157.77	854	1.9	123	10018	8.8	1.8
SITE 1: 15-30 cm	7	0.07	-1	-1	129.79	328	-0.1	1808	6155	30.4	11.4
SITE 1: 30-45cm	10	0.03	-1	-1	175.99	319	3.4	1823	10612	16.0	9.5
SITE 1: 45-60 cm	9	0.04	-1	-1	125.37	128	-0.1	689	6718	11.0	7.0
SITE 1: 60-75 cm	8	0.10	-1	-1	48.96	101	-0.1	789	10690	10.1	6.4
SITE 1: 75-90 cm	21	0.34	-1	-1	43.42	107	3.7	2689	13731	28.4	9.5
SITE 1: 90-105 cm	100	0.19	-1	-1	22.69	66	6.6	4584	20620	37.1	5.3
SITE 2: 0-15 cm	6	0.14	-1	-1	163.27	702	-0.1	49	11129	9.1	2.0
SITE 2: 15-30 cm	12	0.31	-1	-1	196.75	1612	-0.1	232	22920	53.8	3.9
SITE 2: 30-45 cm	11	0.49	-1	-1	95.09	1100	-0.1	328	30381	31.3	4.3
SITE 2: 45-60 cm	17	0.49	-1	-1	35.04	216	-0.1	18972	28175	13.6	86.7
SITE 2: 60-75 cm	24	0.76	-1	-1	1.67	203	-0.1	8266	17087	18.8	23.4
SITE 2: 75-90 cm	16	0.65	-1	-1	2.60	225	-0.1	8151	9929	20.6	17.2
SITE 2: 90-105 cm	18	0.41	-1	-1	3.78	292	-0.1	13811	4502	51.2	11.0
SITE 3: 0-15 cm	26	0.06	-1	-1	48.08	351	-0.1	6878	9932	20.6	10.4
SITE 3: 15-30 cm	21	0.03	-1	-1	78.52	213	-0.1	3253	10202	5.9	14.6
SITE 3: 30-45 cm	8	0.02	-1	-1	40.65	139	-0.1	2904	12313	2.0	12.9
SITE 3: 45-60 cm	9	0.17	-1	-1	22.43	90	-0.1	2659	17144	2.1	11.8
SITE 3: 60-75 cm	8	0.25	-1	-1	6.07	131	-0.1	7068	14671	2.9	14.0
SITE 3: 75-90 cm	14	0.26	-1	-1	11.81	170	0.6	3153	9844	7.3	9.8

*Element determined semiguantitatively.

Values of 999999 indicate greater than the upper limit of detection.

analyses based on instrumental neutron activation analysis (INAA) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. Data in Table GS-28-3 were determined by ICP-MS following an ammonium iodide partial extraction and are therefore partial analyses. This analytical approach was undertaken to simulate a soil–plant root micro-environment with a pH of between 2 and 3. In this way, an initial estimate of bio-available metal could be obtained.

RESULTS

The INAA total data from Tables GS-28-1 and -2 indicate the relative base- and precious-metal enrichment in tailings at the minesite. In particular, Au is elevated in the upper 15 cm of the tailings profile at site 1 (3450 ppb), is consistently enriched throughout the profile at site 2 (1110–2640 ppb), and is somewhat lower but elevated at site 3 (265–958 ppb). Exceptional concentrations of Cu are documented from all three sites (834–5740 ppm at site 1, 1710–10 500 ppm at site 2 and 3150–4510 ppm at site 3; Table GS-28-2). Additional enrichments of Ag (up to 6 ppm) and Bi (up to 127 ppm) are documented at site 1. Arsenic is low (<2–20 ppm) at all three sites (Table GS-28-1).

The relative enrichment of base and precious metals is observed throughout the profiles, although the highest single-sample responses tend to be situated in the upper 15–30 cm. Despite some upward movement of metal-enriched waters through evapotranspiration or fluctuation of groundwater levels near surface, metal enrichment may be critical, since root access of hyperaccumulator species will likely not exceed 0.5–1.0 m. Interestingly, previous studies reported in the literature (Robinson et al., 1999) demonstrate that multiple crops of nickel-hyperaccumulator species could be removed from nickeliferous soils before any reduction of nickel could be documented in the soil. This probably argues for movement of metal from the base to the top of the nickelenriched soil profile.

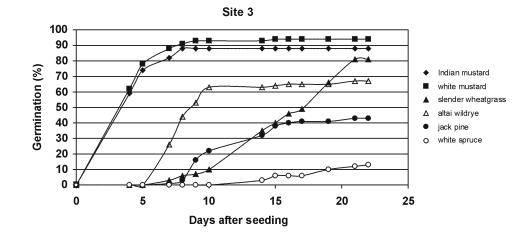
Simulation of a plant root-soil micro-environment (pH of 2–3) for this orientation survey was necessary because not all metal present in the substrate will likely be available for uptake by plants (bio-available). The differences in bio-availability in the tailings may be explained, in part, by the mineralogy and forms of the metals present. These differences probably account for some of the variations in the concentrations of metals extracted from the samples using total versus partial techniques (cf. Tables GS-28-1, -2 and -3). Neutron activation and ICP-MS analysis based on lithium metaborate/tetraborate fusion of the samples will reflect total amounts of metals regardless of mineralogy, whereas ammonium iodide extraction will liberate metals at pH 2–3. The ICP-MS analyses following ammonium iodide extraction (Table GS-28-3) indicate the numerous base and precious metals that are being liberated from the three tailings profiles at the Central Manitoba site. These include significant quantities of Cu, Zn, Ni, Co, Mo, Cd, In, Sb, Hg, Pb, Bi and, in particular, Au and Ag. The metals defined as bio-available by the ammonium iodide extraction would be the focus of phytoremediation and the production of a bio-ore in the next phase of this study. Bioavailability of gold and base metals can be substantially increased by application of thiocyanate (Anderson et al., 1999) and chelating agents (Blaylock et al., 1997), respectively.

Field Study: Plant Species

Seedlings of native plant species of the boreal forest were selected for study. In July 2000, the following species were planted on three different sites at the Central Manitoba tailings site: dogwood (*Cornus stolonifera*), yellow willow (*Salix lutea*), white spruce (*Picea glauca*), jack pine (*Pinus banksiana*), tamarack (*Larix laricina*) and bog birch (*Betula glandulosa*). Half of the plants were fertilized with 10-30-15-04 (nitrogen-phosphate-potash-sulphur) at a rate of 500 kg/ha. Seeds of the following species were also planted: *Cornus stolonifera*, Indian mustard (*Brassica juncea*), slender wheatgrass (*Agropyron trachycaulum*) and altai wildrye (*Elymus angustus*). In the fall, the seedlings will be evaluated for survival and degree of injury. Selected organs of some woody seedlings will be harvested for metal-content measurements and the remainder will be left on site for further survival studies. The remainder of the live herbaceous seedlings will be treated with thiocyanate and harvested to evaluate their base-metal and gold content.

Greenhouse Study: Germination Rates

Seeds of Brassica juncea, Sinapis alba (white mustard), Agropyron trachycaulum, Elymus angustus, Pinus banksiana and Picea glauca were planted in trays on tailings collected from the top 15 cm of the three selected sites. The trays were sprayed with distilled water regularly to keep moisture level relatively constant. Germination rates were recorded regularly. Red-osier dogwood seedlings were planted in two-litre pots containing tailings collected from the top 15 cm of the three selected sites. The pots were placed in trays so that the plants could be bottom watered to avoid leaching. Four replicates per site were used for the studies.


Preliminary results show that seeds were able to germinate in tailings collected from sites 1 and 3 (Fig. GS-28-2). Indian mustard, white mustard and altai wildrye had a relatively high germination rate when planted on tailings from sites 1 and 3, both of which have high gold and copper concentrations. Relatively few altai wildrye seeds were able to germinate on tailings collected from site 2. These preliminary results suggest that some of the selected plant species can tolerate the high level of metals in this environment (Fig. GS-28-3 and -4).


FUTURE WORK

Future work will focus on the determination of metal content in the plants and the facilitation of metal uptake through plant and substrate remedial treatment. Additional plant species will be tested for their ability to acquire and store base and precious metals in this environment. Further experiments with *Brassica juncea*, the most promising plant species for gold phytomining, should establish the most effective experimental and field conditions for maximizing gold uptake in a bio-ore based on this species. The economics of commercial production of bio-ores will be determined.

REFERENCES

- Anderson, C.W.N., Brooks, R.R., Chiarucci, A., LaCoste, C.J., Leblanc, M., Robinson, B.H., Simcock, R. and Stewart, R.B. 1999: Phytomining for nickel, thallium and gold; Journal of Geochemical Exploration, v. 67, p. 407–415.
- Anderson, C.W.N., Brooks, R.R., Stewart, R.B. and Simcock, R. 1998: Harvesting a crop of gold in plants; Nature, v. 395, p. 55–56.
- Blaylock, M.J., Salt, D.E., Dushenkov, S., Zakhartova, O., Gussman, C., Kapulnik, Y., Ensley, B.D. and Raskin, I. 1997: Enhanced accumulation of Pb in India mustard by soil-applied chelating agents; Environmental Science and Technology, v. 31, p. 860–865.
- Bradshaw, A.D. 1952: Population of *Agrostis tenuis* resistant to lead and zinc poisoning; Nature, v. 169, p. 1068.
- Comis, D. 1996: Green remediation: using plants to clean the soil; Journal of Soil and Water Conservation, v. 51, no. 3, p. 184–192.
- Cunningham, C.D., Berti, W.R and Huang, J.W. 1995: Phytoremediation of contaminated soils; Trends in Biotechnology, v. 13, p. 393–397.
- Dickinson, N.M., Turner, A.P. and Lepp, N.W. 1991: How do trees and other long-lived plants survive in polluted environments?; Functional Ecology, v. 5, p. 5–11.
- Fedikow, M.A.F. 1987: Results of a vegetation geochemical survey near Bissett, southeastern Manitoba; Manitoba Energy and Mines, Geological Services, Open File Report OF86-3, 116 p.

Figure GS-28-2: Germination profiles for sites 1 and 3, Central Manitoba (Au) minesite. 186

Table GS-28-3: Geochemical analysis of tailings samples (-60 mesh) collected from three 1 m deep, hand-augered profiles. Analysis by ICP-MS following an ammonium iodide extraction. Negative values indicate less than the lower limit of determination. (continued)

Sample ID	W	Re	Os	Pt	Au	S.Q.Hg	TI	Pb	Bi	Th	U
						enquing					-
SITE 1: 0-15 cm	3	-0.01	-1	-1	157.77	854	1.9	123	10018	8.8	1.8
SITE 1: 15-30 cm	7	0.07	-1	-1	129.79	328	-0.1	1808	6155	30.4	11.4
SITE 1: 30-45cm	10	0.03	-1	-1	175.99	319	3.4	1823	10612	16.0	9.5
SITE 1: 45-60 cm	9	0.04	-1	-1	125.37	128	-0.1	689	6718	11.0	7.0
SITE 1: 60-75 cm	8	0.10	-1	-1	48.96	101	-0.1	789	10690	10.1	6.4
SITE 1: 75-90 cm	21	0.34	-1	-1	43.42	107	3.7	2689	13731	28.4	9.5
SITE 1: 90-105 cm	100	0.19	-1	-1	22.69	66	6.6	4584	20620	37.1	5.3
SITE 2: 0-15 cm	6	0.14	-1	-1	163.27	702	-0.1	49	11129	9.1	2.0
SITE 2: 15-30 cm	12	0.31	-1	-1	196.75	1612	-0.1	232	22920	53.8	3.9
SITE 2: 30-45 cm	11	0.49	-1	-1	95.09	1100	-0.1	328	30381	31.3	4.3
SITE 2: 45-60 cm	17	0.49	-1	-1	35.04	216	-0.1	18972	28175	13.6	86.7
SITE 2: 60-75 cm	24	0.76	-1	-1	1.67	203	-0.1	8266	17087	18.8	23.4
SITE 2: 75-90 cm	16	0.65	-1	-1	2.60	225	-0.1	8151	9929	20.6	17.2
SITE 2: 90-105 cm	18	0.41	-1	-1	3.78	292	-0.1	13811	4502	51.2	11.0
SITE 3: 0-15 cm	26	0.06	-1	-1	48.08	351	-0.1	6878	9932	20.6	10.4
SITE 3: 15-30 cm	21	0.03	-1	-1	78.52	213	-0.1	3253	10202	5.9	14.6
SITE 3: 30-45 cm	8	0.02	-1	-1	40.65	139	-0.1	2904	12313	2.0	12.9
SITE 3: 45-60 cm	9	0.17	-1	-1	22.43	90	-0.1	2659	17144	2.1	11.8
SITE 3: 60-75 cm	8	0.25	-1	-1	6.07	131	-0.1	7068	14671	2.9	14.0
SITE 3: 75-90 cm	14	0.26	-1	-1	11.81	170	0.6	3153	9844	7.3	9.8

*Element determined semiguantitatively.

Values of 999999 indicate greater than the upper limit of detection.

analyses based on instrumental neutron activation analysis (INAA) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. Data in Table GS-28-3 were determined by ICP-MS following an ammonium iodide partial extraction and are therefore partial analyses. This analytical approach was undertaken to simulate a soil–plant root micro-environment with a pH of between 2 and 3. In this way, an initial estimate of bio-available metal could be obtained.

RESULTS

The INAA total data from Tables GS-28-1 and -2 indicate the relative base- and precious-metal enrichment in tailings at the minesite. In particular, Au is elevated in the upper 15 cm of the tailings profile at site 1 (3450 ppb), is consistently enriched throughout the profile at site 2 (1110–2640 ppb), and is somewhat lower but elevated at site 3 (265–958 ppb). Exceptional concentrations of Cu are documented from all three sites (834–5740 ppm at site 1, 1710–10 500 ppm at site 2 and 3150–4510 ppm at site 3; Table GS-28-2). Additional enrichments of Ag (up to 6 ppm) and Bi (up to 127 ppm) are documented at site 1. Arsenic is low (<2–20 ppm) at all three sites (Table GS-28-1).

The relative enrichment of base and precious metals is observed throughout the profiles, although the highest single-sample responses tend to be situated in the upper 15–30 cm. Despite some upward movement of metal-enriched waters through evapotranspiration or fluctuation of groundwater levels near surface, metal enrichment may be critical, since root access of hyperaccumulator species will likely not exceed 0.5–1.0 m. Interestingly, previous studies reported in the literature (Robinson et al., 1999) demonstrate that multiple crops of nickel-hyperaccumulator species could be removed from nickeliferous soils before any reduction of nickel could be documented in the soil. This probably argues for movement of metal from the base to the top of the nickelenriched soil profile.

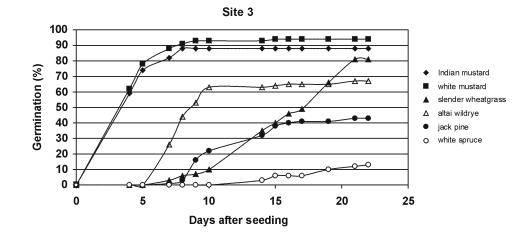
Simulation of a plant root-soil micro-environment (pH of 2–3) for this orientation survey was necessary because not all metal present in the substrate will likely be available for uptake by plants (bio-available). The differences in bio-availability in the tailings may be explained, in part, by the mineralogy and forms of the metals present. These differences probably account for some of the variations in the concentrations of metals extracted from the samples using total versus partial techniques (cf. Tables GS-28-1, -2 and -3). Neutron activation and ICP-MS analysis based on lithium metaborate/tetraborate fusion of the samples will reflect total amounts of metals regardless of mineralogy, whereas ammonium iodide extraction will liberate metals at pH 2–3. The ICP-MS analyses following ammonium iodide extraction (Table GS-28-3) indicate the numerous base and precious metals that are being liberated from the three tailings profiles at the Central Manitoba site. These include significant quantities of Cu, Zn, Ni, Co, Mo, Cd, In, Sb, Hg, Pb, Bi and, in particular, Au and Ag. The metals defined as bio-available by the ammonium iodide extraction would be the focus of phytoremediation and the production of a bio-ore in the next phase of this study. Bioavailability of gold and base metals can be substantially increased by application of thiocyanate (Anderson et al., 1999) and chelating agents (Blaylock et al., 1997), respectively.

Field Study: Plant Species

Seedlings of native plant species of the boreal forest were selected for study. In July 2000, the following species were planted on three different sites at the Central Manitoba tailings site: dogwood (*Cornus stolonifera*), yellow willow (*Salix lutea*), white spruce (*Picea glauca*), jack pine (*Pinus banksiana*), tamarack (*Larix laricina*) and bog birch (*Betula glandulosa*). Half of the plants were fertilized with 10-30-15-04 (nitrogen-phosphate-potash-sulphur) at a rate of 500 kg/ha. Seeds of the following species were also planted: *Cornus stolonifera*, Indian mustard (*Brassica juncea*), slender wheatgrass (*Agropyron trachycaulum*) and altai wildrye (*Elymus angustus*). In the fall, the seedlings will be evaluated for survival and degree of injury. Selected organs of some woody seedlings will be harvested for metal-content measurements and the remainder will be left on site for further survival studies. The remainder of the live herbaceous seedlings will be treated with thiocyanate and harvested to evaluate their base-metal and gold content.

Greenhouse Study: Germination Rates

Seeds of Brassica juncea, Sinapis alba (white mustard), Agropyron trachycaulum, Elymus angustus, Pinus banksiana and Picea glauca were planted in trays on tailings collected from the top 15 cm of the three selected sites. The trays were sprayed with distilled water regularly to keep moisture level relatively constant. Germination rates were recorded regularly. Red-osier dogwood seedlings were planted in two-litre pots containing tailings collected from the top 15 cm of the three selected sites. The pots were placed in trays so that the plants could be bottom watered to avoid leaching. Four replicates per site were used for the studies.


Preliminary results show that seeds were able to germinate in tailings collected from sites 1 and 3 (Fig. GS-28-2). Indian mustard, white mustard and altai wildrye had a relatively high germination rate when planted on tailings from sites 1 and 3, both of which have high gold and copper concentrations. Relatively few altai wildrye seeds were able to germinate on tailings collected from site 2. These preliminary results suggest that some of the selected plant species can tolerate the high level of metals in this environment (Fig. GS-28-3 and -4).


FUTURE WORK

Future work will focus on the determination of metal content in the plants and the facilitation of metal uptake through plant and substrate remedial treatment. Additional plant species will be tested for their ability to acquire and store base and precious metals in this environment. Further experiments with *Brassica juncea*, the most promising plant species for gold phytomining, should establish the most effective experimental and field conditions for maximizing gold uptake in a bio-ore based on this species. The economics of commercial production of bio-ores will be determined.

REFERENCES

- Anderson, C.W.N., Brooks, R.R., Chiarucci, A., LaCoste, C.J., Leblanc, M., Robinson, B.H., Simcock, R. and Stewart, R.B. 1999: Phytomining for nickel, thallium and gold; Journal of Geochemical Exploration, v. 67, p. 407–415.
- Anderson, C.W.N., Brooks, R.R., Stewart, R.B. and Simcock, R. 1998: Harvesting a crop of gold in plants; Nature, v. 395, p. 55–56.
- Blaylock, M.J., Salt, D.E., Dushenkov, S., Zakhartova, O., Gussman, C., Kapulnik, Y., Ensley, B.D. and Raskin, I. 1997: Enhanced accumulation of Pb in India mustard by soil-applied chelating agents; Environmental Science and Technology, v. 31, p. 860–865.
- Bradshaw, A.D. 1952: Population of *Agrostis tenuis* resistant to lead and zinc poisoning; Nature, v. 169, p. 1068.
- Comis, D. 1996: Green remediation: using plants to clean the soil; Journal of Soil and Water Conservation, v. 51, no. 3, p. 184–192.
- Cunningham, C.D., Berti, W.R and Huang, J.W. 1995: Phytoremediation of contaminated soils; Trends in Biotechnology, v. 13, p. 393–397.
- Dickinson, N.M., Turner, A.P. and Lepp, N.W. 1991: How do trees and other long-lived plants survive in polluted environments?; Functional Ecology, v. 5, p. 5–11.
- Fedikow, M.A.F. 1987: Results of a vegetation geochemical survey near Bissett, southeastern Manitoba; Manitoba Energy and Mines, Geological Services, Open File Report OF86-3, 116 p.

Figure GS-28-2: Germination profiles for sites 1 and 3, Central Manitoba (Au) minesite. 186

Figure GS-28-3: Seedlings of various species planted in July 2000 at site 2, Central Manitoba (Au) minesite.

Figure GS-28-4: Red-osier dogwood seedlings growing at the University of Manitoba greenhouse in tailings from the Central Manitoba (Au) minesite.

DEPOSIT

Tailings associated with the Central Manitoba gold deposit were selected for initial phytoremediation and phytomining studies. The deposit occurs within the Archean Rice Lake greenstone belt, in the Uchi Subprovince of the Superior Province in southeastern Manitoba (Fig. GS-28-1). The belt is flanked to the north by the North Caribou Terrane (Marr, 1971; Weber, 1971; Poulsen et al., 1996) and, to the south, is transitional with the English River gneissic belt (McRitchie and Weber, 1971; Weber, 1971; Poulsen et al., 1996). The Rice Lake belt is fault bounded on the north by the Wanipigow Fault and on the south by the Manigotagan Fault.

Host rocks to the deposit belong to the Bidou Lake subgroup (Poulsen et al., 1996) and comprise arkose, tuff and chert of the Dove Lake Formation. These sedimentary rocks have been intruded by gabbro sills. Gold-bearing quartz veins at the deposit are situated within en échelon shear zones at or close to the contact between the Dove Lake sedimentary rocks and an east-southeast-trending gabbro sill (Stockwell and Lord, 1939). Five veins contributed the bulk of production at the deposit. These were the Kitchener, Eclipse, No.1 Branch, Tene 6 and Hope veins. The quartz veins were mineralized with chalcopyrite, pyrite, pyrrhotite and free gold. Between 1928 and 1938, a total of 347 801 t of ore was milled and 4287 kg of gold produced.

GEOCHEMICAL CHARACTERIZATION OF TAILINGS

Geochemical analyses of 20 tailings samples collected from three hand-augered profiles, each approximately 1 m in depth, are presented in Tables GS-28-1, -2 and -3. The data in Tables GS-28-1 and -2 are total analyses based on instrumental neutron activation analysis (INAA) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. Data in Table GS-28-3 were determined by ICP-MS following an ammonium iodide partial extraction and are therefore partial analyses. This analytical approach was undertaken to simulate a soil–plant root micro-environment with a pH of between 2 and 3. In this way, an initial estimate of bio-available metal could be obtained.

RESULTS

The INAA total data from Tables GS-28-1 and -2 indicate the relative base- and precious-metal enrichment in tailings at the minesite. In particular, Au is elevated in the upper 15 cm of the tailings profile at site 1 (3450 ppb), is consistently enriched throughout the profile at site 2 (1110–2640 ppb), and is somewhat lower but elevated at site 3 (265–958 ppb). Exceptional concentrations of Cu are documented from all three sites (834–5740 ppm at site 1, 1710–10 500 ppm at site 2 and 3150–4510 ppm at site 3; Table GS-28-2). Additional enrichments of Ag (up to 6 ppm) and Bi (up to 127 ppm) are documented at site 1. Arsenic is low (<2–20 ppm) at all three sites (Table GS-28-1).

The relative enrichment of base and precious metals is observed throughout the profiles, although the highest single-sample responses tend to be situated in the upper 15–30 cm. Despite some upward movement of metal-enriched waters through evapotranspiration or fluctuation of groundwater levels near surface, metal enrichment may be critical, since root access of hyperaccumulator species will likely not exceed

0.5–1.0 m. Interestingly, previous studies reported in the literature (Robinson et al., 1999) demonstrate that multiple crops of nickel-hyperaccumulator species could be removed from nickeliferous soils before any reduction of nickel could be documented in the soil. This probably argues for movement of metal from the base to the top of the nickelenriched soil profile.

Simulation of a plant root-soil micro-environment (pH of 2–3) for this orientation survey was necessary because not all metal present in the substrate will likely be available for uptake by plants (bio-available). The differences in bio-availability in the tailings may be explained, in part, by the mineralogy and forms of the metals present. These differences probably account for some of the variations in the concentrations of metals extracted from the samples using total versus partial tech-