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S urfic ial g eolog y of th e Wood  Lake NTS  area (64H5), Manitoba Geosc ientific  Map MAP2014-2

QUATERNARY

Nong lac ial env ironm ents
ALLUVIAL DEPOS ITS : S orted sand, silt and clay w ith minor g rav el and org anic detritus; commonly stratified;
deposited along  and/or w ithin all modern riv ers and stream s.
Av Flood plain d eposits: sorted sand, silt, clay, minor g rav el and org anic detritus less than 1 m thick; forming  activ e floodplains close to

riv er and stream lev el.

Af Fluv ial fan: sorted sand, silt, clay, minor g rav el and org anic detritus, forming  a fan deposit w here a stream channel enters a larg er
w ater body.

Ap Flood plain d eposits: sorted sand, silt, clay, minor g rav el and org anic detritus g reater than 1 m thick; forming  activ e floodplains
close to riv er and stream lev el; includes terraces too small to show at this map scale.

At Fluv ial terraces: inactiv e terraces abov e modern floodplain; g reater than 2 m thick; consisting  of g rav el, sand, and ov erbank silt
and org anic detritus.

ORGANIC DEPOS ITS : undifferentiated peat and muck; 0.3 to g reater than 3 m thick; formed by the accumulation of
plant material in v arious stag es of decomposition; g enerally occurs as flat, w et terrain (sw amps and bog s) ov er poorly
drained substrates. F ibric fens are present along  some w ater channels. Permafrost is commonly present
underlying /w ithin org anic deposits. S mall, unmapped deposits commonly occur in most terrain units. Peat mantles
most g eolog ical units.
O v Veneer: thin accumulations of peat, 0.3 to less than 1 m thick, w hich drape the existing  topog raphy.

O b Blanket: continuous peat betw een 1 and 2 m thick, w hich drapes the existing  topog raphy. S ome polyg ons include hummocky
mounds and plateaus underlain by discontinuous permafrost.

O p Plain: flat to g ently undulating  plain of peat, g reater than 2 m thick, that contains numerous small thermokarst ponds and
depressions.

O 1 Wetland  - bog : flat to g ently undulating  plain of peat, g reater than 2 m thick, that contains hummocky mounds and plateaus
underlain by discontinuous permafrost. O1k includes thermokarst terrain related to melting  g round ice.

O 2 Wetland  - fen: flat to g ently undulating  plain of fibric v eg etation, often floating , that mask the underlying  topog raphy.

LACUS TRINE DEPOS ITS
L Und ifferentiated  d eposits: massiv e to stratified, sorted sand, silt, clay and minor org anic detritus deposited adjacent to and/or

w ithin modern ponds and lakes. T his unit is common along  the shores of Partridg e Breast Lake and the Churchill R iv er, w here
drainag e w as div erted aw ay ('Churchill R iv er Div ersion') in 1977.

Lv Lacustrine veneer:  thin accumulations of lacustrine sediments, 0.3 to less than 1 m thick, w hich drape the existing  topog raphy.

Prog lac ial and  g lac ial env ironm ents
GLACIOLACUS TRINE DEPOS ITS : massiv e to laminated (rhythmically bedded) silt, clay and sand, w ith areas of ice-
rafted stones, g ranules or w aterlain diamicton, deposited into littoral and deep-w ater env ironments of g lacial Lake
Ag assiz. T hese deposits are of v ariable thickness (0.2 to 3 m), and drape both till deposits and bedrock. Around som e
of the larg er lakes, the g laciolacustrine sediments hav e been remov ed from the shoreline by Holocene w av e-w ashing ,
and thickness increases inland.

GLACIOLACUS TRINE, ICE CONTACT: W eakly to noncalcareous, massiv e to w eakly stratified fine sand, silt and minor clay,
commonly contains ice-rafted stones and diamict beds (massiv e w ith 1-5% g ranules to small pebbles of carbonate and crystalline
rock). Deposited beneath and/or rew orked by ice near the marg in at the contact zone betw een the g lacier and Lake Ag assiz.
Includes areas of iceberg  scour and De Geer moraines.

GLIv Veneer: 0.2 to 1 m thick, imperfect to moderately drained, underlying  topog raphy is discernible.

GLIb Blanket: 1 to 3 m thick, imperfect to moderately drained, continuous cov er forming  flat to undulating  topog raphy that locally
obscures underlying  g eomorpholog y.

GLIu Und ulating : 0.2 to 3 m thick, imperfect to w ell drained, forms undulations and hummocks that rise up out of the surrounding  org anic
terrain. Can be ov erlain by a thin v eneer of sandy diamict w ith 20 to 30% clasts. Includes DeGeer moraines- minor moraines
formed due to subg lacial sediment adv ection to the ice marg in during  temporary halts in g rounding -line retreat.

GLIst S tream lined : g reater than 2 m thick, g laciolacustrine littoral sand and silt draped by a thin v eneer of clast-rich sandy diamict;
moulded beneath the g lacier into linear ridg es and/or furrow s parallel to ice flow (drumlinoid ridg es).

GLACIOLACUS TRINE, LITTORAL: Glacial sediments rew orked by w av e action; forms moderately w ell sorted isolated or a series
of ridg es, 1 to 3 m in heig ht, including  beaches, bars and spits; blankets of sand g rading  basin-w ard into silt and clay, commonly
less than 1 m thick.

GLr Rid g ed  sed im ents: 0.5 to 2 m thick, moderate to w ell-drained sandy beach ridg e.

sGLv Veneer: 0.2 to 1 m thick, moderate to imperfectly drained blankets of fine sand and silty sand; underlying  topog raphy is discernible.

GLACIOLACUS TRINE, DEEP WATER: calcareous to noncalcareous, massiv e to rhythmically bedded, w ell sorted, moderately
dense, milk-chocolate brow n clay and rarer silt; g laciolacustrine clay w as observ ed underlying  a v eneer of till north of Clee Lake
and just east of M ajury Lake (N T S  64H12N )

GLv Veneer: 0.2 to 1 m thick, imperfect to poorly drained, underlying  topog raphy is discernible.

GLb Blanket: 1 to 3 m thick, imperfect to v ery poorly drained, continuous cov er forming  flat to undulating  topog raphy that locally
obscures underlying  g eomorpholog y. T ypically mantled by peat of v ariable thickness.

GLACIOFLUVIAL DEPOS ITS : orang e to tan, moderately to poorly-sorted, silt, sand, g rav el and diamicton deposited
behind, at or in front of the ice marg in by flow ing  g lacial meltw ater. W here the suffix 'x' has been added to the terrain-
unit label (i.e., GF rx), it indicates the sediments hav e had sig nificant surface rew orking  by g lacial Lake Ag assiz.

GF v Veneer: discontinuous sand and g rav el cov er, less than 1-2 m thick; underlying  topog raphy is discernible.

GF b Blanket: continuous sand cov er g reater than 2 m thick; forming  flat to undulating  topog raphy that locally obscures underlying  units
and associated g eomorphic patterns; typically formed by redistribution of g laciofluv ial sands in a shallow w ater env ironment.

GF h Ice c ontact sed im ents: undifferentiated deposits; poorly sorted sand and g rav el w ith minor diamicton, deposited by g lacial
meltw ater in direct contact w ith the g lacier, 1 to g reater than 10 m thick; forming  g ently undulating  to hummocky topog raphy related
to melting  of underlying  ice. F eatures include kettles, kames and ridg es.

GF r Eskers, esker system s and  c rev asse fills: massiv e to stratified sand, and minor g rav el, deposited by meltw ater flow w ithin tunnels
beneath or w ithin the g lacier; present as 1 to 20 m hig h ridg es; some esker ridg es are below the g laciolacustrine limit and exhibit
subdued heig hts w ith some w av e-w ashed re-distribution of sand adjacent to the ridg es. Crev asse fills occur as 3 to 5 m hig h sand,
g rav el and diamict ridg es that form a reticulate pattern; deposited near the ice marg in in fractures w ithin a thinning  ice mass.

GF d Ice c ontact d elta: w ell to moderately stratified sand and g rav el deltaic deposit, formed w here a meltw ater channel entered a g lacial
lake during  reg ression and low ering  of lake lev els; surface is kettled and landform has a steep front.

GLACIAL DEPOS ITS : unsorted to poorly sorted diamictons (till) deposited in subg lacial env ironments. T here is a w ide
rang e in the composition of the till, w ith sig nificant v ariable proportions of eastern- and/or northeastern-sourced
(Paleozoic and Proterozoic), 'locally'-sourced (g reenstone belt), reg ional (g ranitoids) and northern-sourced (Dubaw nt
S uperg roup) clast concentrations.

T T he dominant till is a Keew atin-Hudsonian calcareous to hig hly calcareous hybrid till, w ith silty sand to clayey silt matrix, w hich
contains 5-50 ct. % (av erag e 26 ct. %) Paleozoic carbonate-bearing  clasts mixed w ith Proterozoic, Precambrian and Archean
clasts (g ranitoid, g neissic and g reenstone rocks); the matrix is calcareous (1.5-42 wt. % total carbonate and 1.7-17.6 w t. % CaO );
this till w as deposited by ice flow ing  w est from the Quebec-Labrador ice sector of the Laurentide Ice S heet, and later v ariably
rew orked by ice flow ing  southw est and south from the Keew atin sector, or an ice saddle ov erlying  southeastern Hudson Bay;
w here the suffix ôxö has been added to the terrain label (e.g ., T v x, T bx, T stx, T ux), it indicates that the sediments hav e had
sig nificant surface rew orking  by lacustrine or fluv ial w aters.

T 2 KEEWATIN-DOMINANT TILL: w eakly to noncalcareous till, w ith silty sand to clayey silt matrix, that contains 0-5% (av erag e
1.1%). Paleozoic carbonate-bearing  clasts, mixed w ith Precambrian and Archean clasts (g ranitoids, g neisses, g reenstone rocks);
the matrix may contain up to 8% total carbonate and 4.5 ppm CaO . T his till is predom inately sourced from ice flow ing  south and
southw est from the Keew atin ice sector of the Laurentide Ice S heet.

T v Till veneer: discontinuous till cov er 0.2-1 m thick; underlying  topog raphy is discernible. W here not otherw ise noted, bedrock is
assumed to be the underlying  material.

T b Till blanket: continuous till cov er g reater than 1 m thick; forming  flat to undulating  topog raphy that locally obscures underlying  units
and associated g eomorphic patterns; occasional thinner patches of till may occur.

T h Hum m oc ky till: till g reater than 2 m thick w ith hummocky topog raphy (2-5 m sw ales), either moulded beneath the g lacier or as a
result of suprag lacial meltout (ablation) tills deposited by melting  of stag nant ice; loose, texturally v ariable sandy to g rav elly matrix,
some sorting ; ang ular to subang ular clasts.

T u Und ulating  till: till g reater than 2 m thick, moulded beneath the g lacier into undulating  topog raphy (0.1-2 m sw ales).

T st S tream lined  till: g reater than 2 m thick, subg lacial till moulded beneath the g lacier into linear ridg es and/or furrow s parallel to ice
flow; drumlins, drumlinoid ridg es, fluting s. R idg es are typically 0.1-0.5 km long  and 0.5-10 m hig h.

PRE-QUATERNARY
R Precam brian roc ks: metasedimentary, metav olcanic rocks and associated intrusiv e rocks; may  be ov erlain by a thin,

discontinuous v eneer of till and or g laciolacustrine clay in upland areas.

N O T ES
T his leg end is common to M AP2014-1, -2, -3 and -4. N ot all units and symbols show n in the leg end w ill appear on this map.
In areas w here the surficial cov er forms a complex pattern, the area is coloured according  to the dominant unit and labelled in descending  order of
cov er (e.g .,  R /T v ). W here underlying  stratig raphic units are know n, areas are coloured according  to the ov erlying  unit and labelled in the
follow ing  manner:
GLv  means g laciolacustrine v eneer ov erlies streamlined till.
 T st
M ultiple modifiers may be combined to clarify the detailed g eolog y (e.g . T bx, T 2ux)
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Fig ure 2: Compiled and interpreted ice-flow  phases in the study area. T he summary of ice-flow indicators (inset, upper-left)
     prov ides a depiction of possible dispersal fan orientations for the area that may be encountered during  drift exploration. 
     Backg round imag e w as g enerated using  a S huttle R adar T opog raphy M ission dig ital elev ation model (U nited S tates 
     Geolog ical S urv ey, 2002).

Fig ure 1: T he study area contains a portion of the Quinn Lake g lacial terrain zone (GT Z) and just to the w est of study area is the
    T rout Lake GT Z. T he Quinn Lake GT Z is classified as a deg lacial-type GT Z, formed during  a late deg lacial surg e of an ice
    stream into g lacial Lake Ag assiz. T he T rout Lake GT Z w as inv estig ated during  fieldw ork completed by Kaszycki (1989). T he
    boundaries are closely tied to the edg es of a flow set of southeast-trending , curv ilinear, streamlined landforms. U nlike the Quinn
    Lake GT Z, the eskers and meltw ater channels w ithin the T rout Lake GT Z clearly crosscut the streamlined-landform flow set,
    meaning  that it is a palimpsest- or relict-type GT Z (T rommelen et al., 2012).
    Interpreted till types in the study area are based on the proportion of carbonate clasts in the till matrix. Keew atin-dominant till
    refers to till w ith <5 ct. % carbonate clasts that w ere mainly emplaced by a young er south-southw est–flow ing  ice-flow phase
    w ith near-complete dilution/ov erprinting  of calcareous detritus. Keew atin-Hudsonian hybrid till contains 5–50 ct. % carbonate
    clasts, and a spatially v ariable mixture of far-trav elled calcareous detritus, w hich has been diluted by comminution, combined 
    w ith incorporation of Precam brian shield clasts sourced from the east, northeast and north. Abbrev iation: GL, g laciolacustrine.
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DES CRIPTIVE NOTES
S urfic ial g eolog y of th e Gauer Lake–Wish art Lake area (NTS  64H4, 5, 12, 13)
Meth od s
T he surficial g eolog y of the Gauer Lake–W ishart Lake area w as interpreted from 1:60 000 scale black and w hite
airphotos obtained from N atural R esources Canada. Aspects of the reg ional surficial g eolog y w ere also g leaned
from S huttle R adar T opog raphy M ission imag ery (30 and 90 m resolution; U nited S tates Geolog ical S urv ey, 2002)
and S PO T  orthoimag es (Geobase®, 2012). F ield studies w ere conducted by helicopter in July 2013. T his project
includes data from 244 field sites, from w hich 155 till samples w ere analyzed for g eochem ical and clast
composition (T rommelen, 2015). T his new mapping  builds on prev ious 1:250 000 scale surficial mapping
completed in the 1980s (Klassen and N etterv ille, 1980, 1985).
Ph ysiog raph y
T he study area is mantled by g lacial and postg lacial sediments. Elev ation v aries mainly from 240 to 360 m abov e
sea lev el (asl) and local relief is up to 30 m. T he drift cov er is g enerally thick, thoug h bedrock outcrops along  the
shores of most major lakes in the reg ion. T he area is part of the extensiv e discontinuous permafrost zone (S laden,
2011), and permafrost w as encountered beneath org anic deposits at most sites. In 1977, M anitoba Hydro
completed construction of a div ersion that saw w ater from the Churchill R iv er system enter the Burntw ood and
N elson riv er systems. As a result, w ater lev els w ere low ered along  the Churchill R iv er and w ithin Partridg e Breast
and M issinipi lakes.
Quaternary h istory
T he study area w as repeatedly g laciated by the Laurentide Ice S heet (LIS ) during  the Quaternary. In the Late
W isconsinan, the reg ion w as affected by ice flow ing  southw ard from the Keew atin ice div ide (Klassen, 1986;
Dredg e and Cow an, 1989) and w estw ard from the Quebec–Labrador sector (Hudsonian ice, Dredg e and N ixon,
1992; Dredg e et al., 2007). T he nature of interaction betw een ice from Keew atin and from Hudson Bay is
uncertain, but a thick ice ridg e (ice saddle) w as likely present ov er southern Hudson Bay late in deg laciation (Dyke
and Prest, 1987; T horleifson et al., 1993; T rommelen et al., 2012).
Circa 8.214C ka, the study area w as inundated by g lacial Lake Ag assiz (Klassen, 1983; T horleifson, 1996).
R adiocarbon dates are rare in northern M anitoba, but it is thoug ht that this inundation w as short-liv ed and absent
by ca. 7.714C ka (T horleifson, 1996; T eller and Lev ering ton, 2004). T he northern half of the study area is
dominated by a lobate streamlined-landform fan (Quinn Lake ice stream; Dredg e et al., 1986; Dredg e and N ixon,
1992), w hich w as thoug ht to hav e been formed during  a surg e or readv ance into g lacial Lake Ag assiz. T hese
streamlined landforms also outline the deg lacial-type Quinn Lake g lacial terrain zone (F ig ure 1; T rommelen et al.,
2012).
Ice-flow h istory
T he study area contains ev idence of at least six different ice-flow phases (F ig ure 2). Early, w ell-preserv ed
southeastw ard (phase I; betw een 120 and 160°), w estw ard (phase II; betw een 260 and 280°) and southw estw ard-
trending  (phase III; betw een 230 and 240°) ice-flow indicators are present. T hese ice-flow phases are rare but
reg ionally extensiv e (Dredg e et al., 1986; Dredg e and N ixon, 1992; Kaszycki et al., 2008), and correlate to the pre-
Late W isconsinan transport of calcareous detritus to the area (Dredg e, 1988). R are but w idespread striations and
sev eral roches moutonnées then document southw ard ice flow (phase IV; betw een 180 and 194°). T his w as
follow ed by strong , fairly erosiv e, south-southw estw ard ice flow (phase V; betw een 203 and 212°). During
deg laciation, ice flow ed to the southw est (phase VI; betw een 220 and 230°) and south and southeast (phase VI;
~196°, 160°, 120°) during  the Quinn Lake readv ance. Drumlinoid ridg e formation in the northern half of the area
occurred during  the Quinn Lake phase VI, w hereas streamlined landforms in the southern half of the area are
presum ed to correlate w ith phase V.
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