Submission Received July 4, 2016 (Indigenous and Municipal Relations)

SITE ASSESSMENT

For Large Livestock Operation Proposals (300 Animal Units or more)

1.0 Purpose

The set up, or expansion, of a livestock operation that has 300 Animal Units or more is subject to <u>Part 7 of *The Planning Act*</u>. This includes consideration as a conditional use by the municipal council or planning district board. It also includes a review by the Technical Review Committee (TRC) appointed by the Minister of Local Government. The <u>Technical Review Committee Regulation</u> requires a site assessment to help the committee do its review and allow people who will be affected by the livestock operation to comment on the proposal.

2.0 Assistance

For assistance in completing the Site Assessment Form please refer to the following.

For links to resources, click on the highlighted underlined items.

For additional information on a particular item, please click on the (?) "Learn More" icon.

For definitions, click on the **Glossary of Terms**.

For help with mapping, contact your <u>Community and Regional Planning Regional</u> <u>Office</u>.

For additional help, contact the **Technical Review Coordination Unit**.

3.0 Description of Livestock Operation

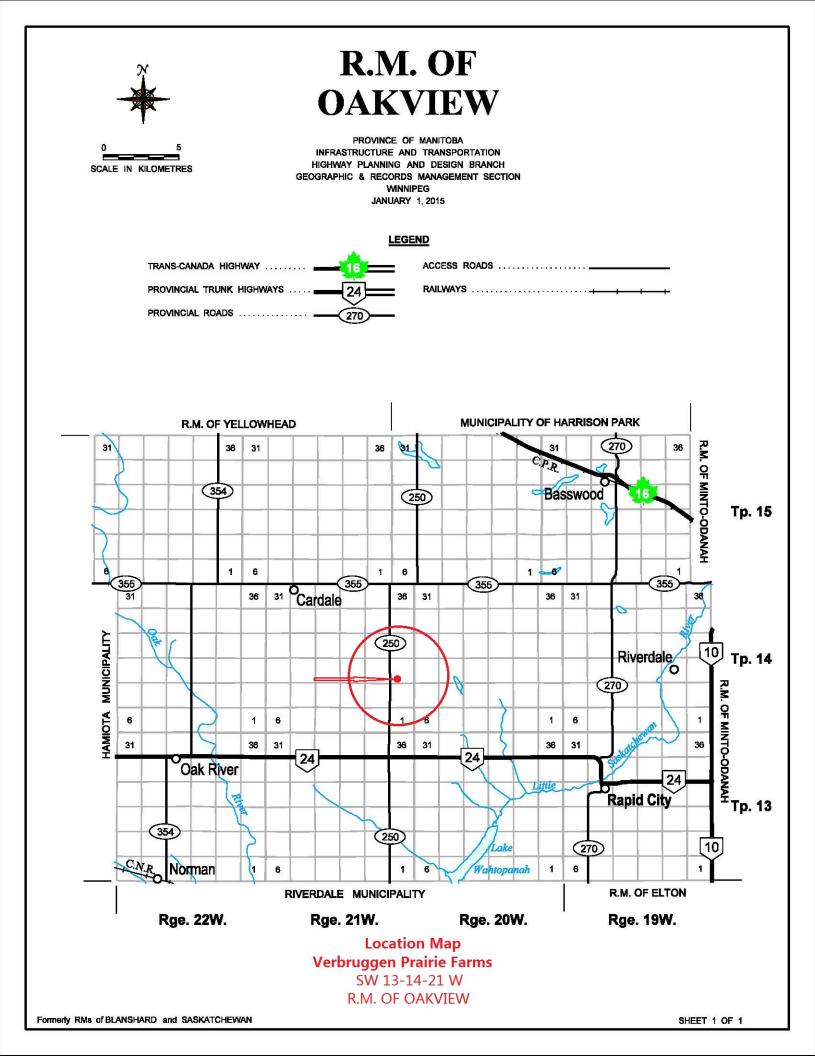
Operation legal name, if other than the owner's name:

Verbruggen Prairie Farms Ltd.

Operation location (project site): <u>SW 13-14-21 W</u>

Rural Municipality (RM) of Oakview

Legal description: section, township, range or river lot(s)


SW 13-14-21 W

Á Manitoba Premises Identification Number:Á

Municipal tax roll number(s): ____0053200.00

Show the location of the operation (project site) on a location map. (See <u>Location Map</u> for example).

X Location Map attached

4.0 Nature of Project **2**

New operation

Expansion of existing operation

State if any existing buildings will be replaced or demolished. If existing buildings will be reused or expanded, state how they will be reused or expanded.

5.0 Proposed Type and Size of Operation

State the proposed type and size of the operation. (See Animal Units Calculation Table.)

Type of operation	Existing number of	Total Animal Units
(Column B from Animal	animals	(Column F from Animal
Units Calculation Table)	(Column C from Animal Units Calculation Table)	Units Calculation Table)
hog grower/finisher		858

X Animal Units Calculation Table attached

6.0 Animal Confinement Facilities 7

Outdoor Confined Livestock Area

To ensure that it can be built in a way that the environment is protected, a permit is required for construction and expansion of <u>confined livestock areas</u> for operations with 300 Animal Units or more. Permits are required by the <u>Livestock Manure and Mortalities</u> <u>Management Regulation (MR 42/98)</u>, under *The Environment Act*.

Confined Livestock Area: 🗌 outdoor seasonal feeding area 🗌 feedlot 💢 not applicable

Indoor Barn/Animal Housing

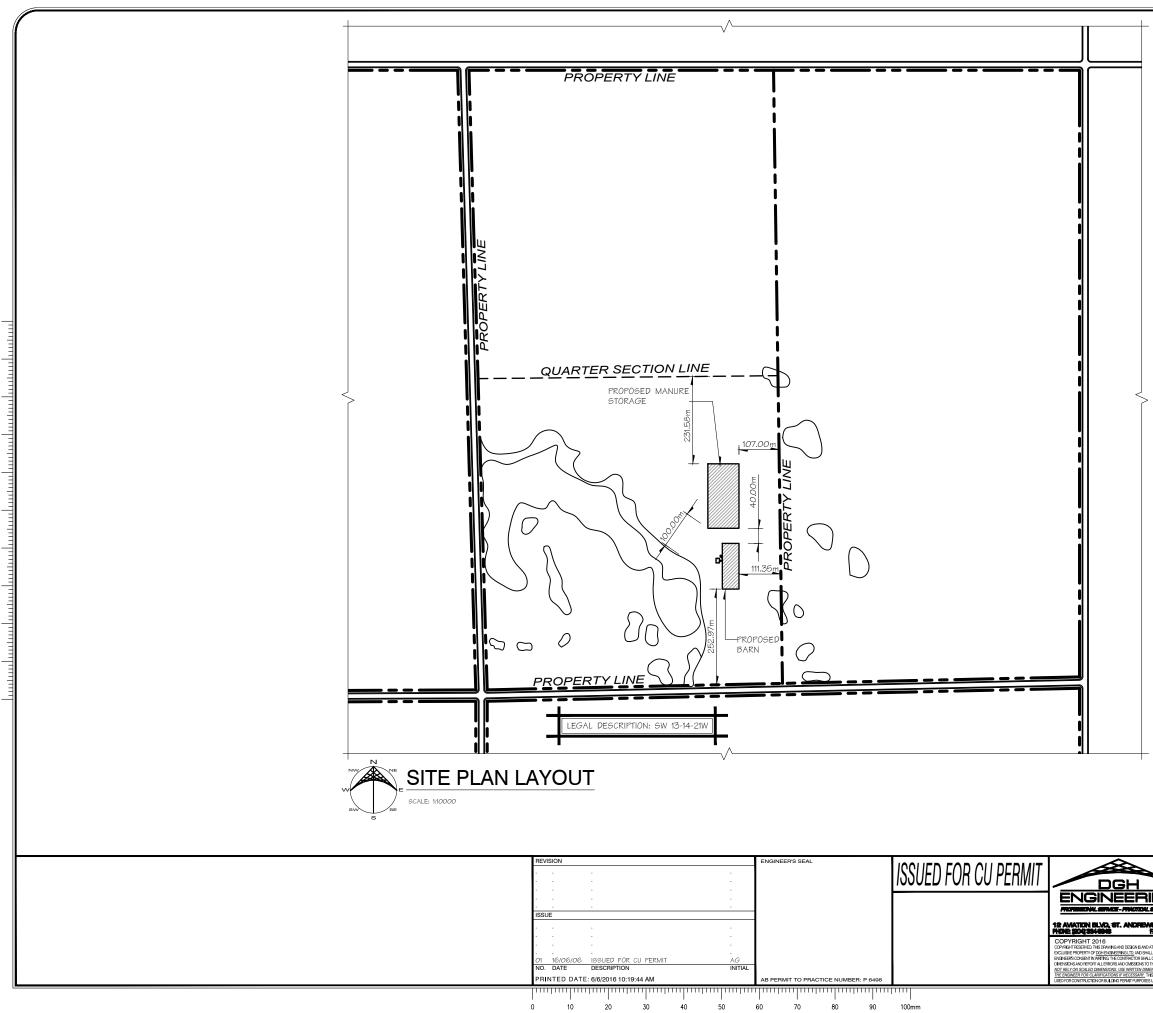
Indoor Animal Housing: X barn other (describe) _____ not applicable

Animal Units Calculation Table

Α	В	С	D	E	F	G
Animal Type	Type of Operation		Proposed Additional Number of Animals	Animal Units per Head	Total Animal Units	Annual Confinement Period (Days)
	Mature cows (lactating and dry) including associated livestoc	k		2	-	
	Mature cows (lactating and dry)			1.35	-	
	Heifers (0 to 3 months)			0.16	-	
Dairy ¹	Heifers (4 to 13 months)			0.41	-	
	Heifers (> 13 months)			0.87	-	
	Bulls			1.35	-	
	Veal calves			0.13	-	
	Beef cows including associated livestock			1.25	-	
Beef	Backgrounder			0.5	-	
Deel	Summer pasture / replacement heifers			0.625	-	
	Feeder cattle			0.769	-	
	Sows - farrow to finish (234-254 lbs)			1.25	-	
	Sows - farrow to weanling (up to 11 lbs)			0.25	-	
Pigs	Sows - farrow to nursery (51 lbs)			0.313	-	
Figs	Boars (artificial insemination units)			0.2	-	
	Weanlings, Nursery (11-51 lbs)			0.033		
	Growers / Finishers (51-249 lbs)		6,000	0.143	858.00	
	Broilers			0.005	-	
	Roasters			0.01	-	
Chickens	Layers			0.0083	-	
Chickens	Pullets			0.0033	-	
	Broiler breeder pullets			0.0033	-	
	Broiler breeder hens			0.01	-	
	Broilers			0.01	-	
Turkeys	Heavy Toms			0.02	-	
-	Heavy Hens			0.01	-	
Horses	Mares			1.333	-	
Sheep	Ewes			0.2	-	
Slieeh	Feeder lambs			0.063	-	
Other Livestock	Туре:				-	
Uner Liveslock	Туре:				-	
				Total AUs	858.00	

Footnotes:

¹ There are 2 methods for calculating animal units for dairy (Farm Practices Guidelines for Dairy Producers in Manitoba, 1995). You can enter the total number of mature cows in the milking herd under the "Mature cows (lactating and dry) including associated livestock" category and the animal units will be calculated by multiplying this number by 2. This calculation assumes 85 lactating, 15 dry, 12 heifers (0 to 3 months), 36 heifers (4 to 13 months) and 50 heifers (> 13 months) for an operation with 100 mature cows. "Associated livestock" includes all of the heifer calves and replacement heifers. Alternatively, you can enter animal numbers in the individual categories (mature cows, heifers (0 to 3 months), heifers (4 to 13 months) and heifers (> 13 months)) and they will be summed at the bottom of the table. Bulls and veal calves are always calculated separately.


For all other livestock or operation types please inquire with your

Manitoba Agriculture, Food and Rural Initiatives GO office to determine the animal units per head. <u>www.gov.mb.ca/agriculture/contact/agoffices.html</u>

A permit under the Livestock Manure and Mortalities Management Regulation is not required for an indoor housing area or barn unless there is a manure storage facility within the building (an under barn storage capable of storing manure for 30 days or more).

Show all existing, proposed buildings and additions to existing buildings on the project site plan. See <u>Project Site Plan example</u> and the Project <u>Site Plan Guide</u> for help creating your site plan.

X Project Site Plan attached

		UGGEN BOX 910 RIVERS, MB ROK 1X0	FARMS	PROJECT TITLE 6000 HEAD HOO FEEDER BARN PROJECT LOCATION SW 13-14-21W PROJECT NUMBER: 16-1-3345-003-23	
ND AT ALL TIMES REMAINS THE HALL NOT BE USED WITHOUT THE ALL CHECK AND VERIEY ALL	designed CL	drawn AG	COORDINATOR CL		21
TO THE ENGINEER IN WRITING. DO IMMENSIONS ONLY. CONTACT THS DRAWING SHALL NOT BE SES UNTL SEALED AND SIGNED.	date MAY/2 <i>0</i> 16	SCALE AS NOTED	X'REF PATH(S) PROJECTIONG		1 R00

7.0 Environmental Farm Planning

Environmental farm planning is a voluntary, confidential self-assessment process designed to help farm managers identify the environmental strengths and weaknesses of their operations.

Do you have an Environmental Farm Plan yes X	no
If so, is it current (completed within past 5 years) yes	no

8.0 Water

Project Sites Unsuitable for Development

To protect water quality, the <u>Nutrient Management Regulation</u> (MR 62/2008), under *The Water Protection Act*, prohibits the set up or expansion of nutrient generating facilities in Nutrient Management Zone 4 (Agriculture Capability Class 6, 7 and unimproved organic soils) and Nutrient Buffer Zones. Nutrient generating facilities include barns, confined livestock areas and manure storage facilities.

Nutrient Buffer Zone as defined in section 3(3) of the regulation includes areas of land along water bodies such as rivers, lakes, streams and drains.

The proposed indoor housing area, barn, confined livestock area and/or manure storage facility:

will \square will not X

be located within Nutrient Management Zone 4 (Class 6, 7 and unimproved organic soils) or any Nutrient Buffer Zone.

Determine the agriculture capability class(es) of the project site, and its limitations. This information is available from Manitoba Agriculture, Food and Rural Development (MAFRD) at 204-945-3869 in Winnipeg. Alternatively, use the following link: Land Based Calculator.

Water Source

To be sustainable, a livestock operation must have access to a sufficient quantity and quality of water for livestock.

Water source for operation:		
	pipeline (public)	water co-operative
	X proposed well	existing well
	river	lake
	dugout (dimensions	:x)

If using an existing well, provide a copy of the water well log and logs for other wells on the property. Logs can be obtained from Manitoba Conservation and Water Stewardship by calling (204) 945-7418 in Winnipeg; 1-800-214-6497 toll free.

Source Water Analysis Reports

<u>Annual livestock source water monitoring analysis reports</u> must be submitted to Manitoba Conservation and Water Stewardship for any operations of 300 Animal Units or more.

If an existing livestock operation of 300 Animal Units or more, have you submitted an annual source water monitoring report for the current calendar year? yes no

Will livestock have direct access to surface water (not including dugouts)? yes X no

If **yes**, identify: Name of the surface water feature:

List any steps that will be taken to prevent direct access of livestock to the water body.

Water Requirements

Protecting the interests of domestic users and the environment, in addition to existing licensees, is the intended purpose of the water rights licensing scheme.

In order to protect the sustainability of water sources, all operations using more than 25,000 litres (5,499 imperial gallons) per day must possess a Water Rights Licence required by the Water Rights Regulation (MR 126/87) under *The Water Rights Act*.

For more information on the Water Rights Licensing process, contact the Water Use Licensing Section at (204) 945-3983 in Winnipeg; 1-800-214-6497 toll free.

To calculate the total water use, go to the Water Requirement Calculation Table.

Maximum daily use: <u>19,800</u> X imperial gallons or litres Maximum annual use: <u>7,227,000</u> acre-feet or cubic decameters

X Water Requirement Calculation Table attached

Groundwater (Contamination Risk Protection)

Improper storage and handling of manure or mortalities increases the risk of contaminating groundwater. Beneficial management practices (BMP), mitigation measures and requirements for the permit process reduce this risk. Soil testing, manure management planning and proper engineering, along with construction and management of manure storage structures reduce the risk of contaminating groundwater.

Water Requirement Calculation Table

Livestock	Number	IG/day per animal in winter	IG/day per animal in summer	IG/day (Imperial gallons per day)
Beef/Dairy/Bison *				
Feeder/heifer/steer (600 lb.)		5	9	-
Feeder (900 lb.)		7	12	-
Feeder (1250 lb.)		10	15	-
Cow/calf pair		12	15	-
Dry milking cow **		10	12	-
Lactating cow **		25	30	-
Bison		8	10	-
Horses				
Horses		8	11	-
Hogs				
Sow (Farrow/wean)		6	.5	-
Dry Sow/Boar		4	1	-
Feeder	6,000	3		18,000
Nursery (33 lb.)			2	-
Chickens				
Broilers		0.0)35	-
Roasters/Pullets		0.04		-
Layers		0.0)55	-
Breeders		0.	07	-
Turkeys				
Turkey Growers		0.	13	-
Turkey Heavies		0.	16	-
Sheep/Goats				
Sheep/Goats			2	
Ewes/Does			3	-
Lambs/Kids (90 lb.)		1	.6	-
		TOTAL	(IG/day)	18,000
	***	TOTAL with 10	% wash water	19,800

* For beet, dairy, bison and horse enterprises: Use summer numbers if appropriate for the operation. Otherwise base projections on winter values. Always use the greater of the two values.

** For intensive Dairy operations, please use the Dairy Barn Water Requirement Estimator found on separate sheet.

Enter this number on page 7 of Application Form.

*** 10% of the total is added to allow for wash water

Other consumption:

Normal household consumption: 60-75 IG/day per person or (272-340 I/day/person)

Unit Conversions							
Total per day	Total per year	Unit					
19,800	7,227,000	IG					
81,828	29,867,220	litres					
0.082	30	cubic decametres (dam ³)					

Enter this number on page 7 of Application Form.

Conversion Factor: 1 IGPM = 4.546 I/m

ÌÁ

Check off the mitigation measures used for the existing components of the operation that may pose a risk of contamination. Also check off any measures that may be used with the proposed components for this expansion, if applicable:

	Existing	Proposed
Manure is stored in a storage facility built by permit or registered by Manitoba Conservation and Water Stewardship Storage includes leachate collection Earthen storage has between 400 and 500 days storage Steel/concrete tank has between 250 and 500 days storage Manure storage facility meets required setbacks Field storage (solid manure) locations are changed annually Field storage meets required setbacks All application fields are soil tested annually for nitrate-N and Olsen phosphorus All manure is applied according to a manure management plan Licensed commercial manure applicator is used to apply manure Abandoned wells have been properly sealed		
Other:		

Building in Flood Areas

The Livestock Manure and Mortalities Management Regulation prohibits an operator from putting a manure storage facility within the boundaries of the 100-year flood plain elevation. Manure storage facilities that are constructed with protection for a flood-water level at least 0.6 meters higher than the 100-year flood water level are exempt.

The **Designated Flood Area Regulation** under *The Water Resources Administration Act* requires a Designated Flood Area Permit before a proposed structure (such as a barn) can be built within a Designated Flood Area.

The flood protection level for structures located within a Designated Flood Area is the site specific design flood level plus freeboard, as provided by the Hydraulic Forecasting Branch of Manitoba Infrastructure and Transportation. Contact the Hydrologic Forecasting Branch at (204) 945-2121 in Winnipeg; 1-800-214-6497 toll free.

The proposed site:

is 🗌 is not 🗙

located in a Designated Flood Area: <u>Red River Valley Designated Flood Area</u> or <u>Lower</u> <u>Red River Designated Flood Area</u>

Á

Note: At the time a permit is issued, verification is needed to ensure any proposed structure(s) are located within the 100-year flood plain elevation; or at an elevation set by Manitoba Infrastructure and Transportation.

Watershed Management Planning

Integrated watershed management planning is a co-operative effort by local residents, stakeholders and governments to create a long term plan to manage water and land-based activities for watersheds.

What are the names of the <u>watershed</u> and <u>sub-watershed</u> where the livestock operation and the fields identified for manure application are located?

Name of watershed(s): <u>Lower Little Saskatchewan River and Adjac</u>ent Area Name of sub-watershed(s):

Name of **Integrated Watershed Management Plan** for the proposed project site, if applicable: Little Saskatchewan

For more on Integrated Watershed Management Planning, call Watershed Planning and Programs at (204) 945-7408 in Winnipeg; 1-800-214-6497 toll free.

9.0 Manure

The Livestock Manure and Mortalities Management Regulation sets requirements for the use, management and storage of livestock manure in agricultural operations, to ensure it is handled in an environmentally sound manner. For more information on this, call Manitoba Conservation and Water Stewardship at (204) 619-2230 in Winnipeg.

Improper storage, handling and/or land application of manure can contaminate water and/or cause unacceptable odours for neighbours. The following is used to assess the manure management system.

Manure Type

The type of manure generated and used by the operation influences storage, handling and land application options available.

What type(s) of manure will be generat	ed?	
🗌 solid	semi-solid	🔀 liquid

Manure Volume or Weight

Manure production can be estimated using the Manure Production Calculator Table. The sizing of the manure storage is the responsibility of the operator and must be constructed in accordance with the <u>Livestock Manure and Mortalities Management Regulation</u>. Design and construction of a manure storage facility is dependent on the type of structure; earthen manure storage facilities must have between 400 and 500 days capacity, a steel or concrete storage tank must have between 250 and 500 days capacity. This ensures the facility has sufficient capacity eliminating the need for winter application.

What will be the total volume or weight of manure generated annually by the livestock operation? (See <u>Manure Production Calculator Table</u>.)

liquid volume: 600,000 cubic feet_{solid} weight:

X Manure Production Calculator Table attached

Manure Storage Type and Capacity

The type of storage system used will affect the capacity requirements for the manure storage facility or field storage area.

What type of **manure storage facility** will be used by the operation?

under-barn concrete	X <u>earthen manure storage</u>	concrete tank(s)
steel tank(s)	<u>field storage</u>	molehill

Provide the dimensions of the existing and/or proposed manure storage facilities, if applicable. (See <u>Existing and Proposed Manure Storage Facility Dimensions Table</u>.)

X Existing and Proposed Manure Storage Facility Dimensions Table attached

Odour Control Measures (project site)

Barns and manure storage facilities can be significant sources of livestock odours. The use of manure storage covers and shelterbelts can reduce this, particularly for neighbours in the vicinity of the operation.

What odour control measures are you planning to use?						
Manure storage cover:	yes	X no				
Type of cover:						
Shelterbelt planting: Y yes	no	existing shelterbelt				
Other measures (specify):						

Manure Treatment

Under *The Environment Act*, the director must not issue a permit for the modification, expansion, or construction of a manure storage facility accommodating an increase in the number of animal units for pigs, unless the manure is treated using anaerobic digestion or another environmentally sound treatment that is similar to or better than anaerobic digestion, according to Manitoba Conservation and Water Stewardship.

Does your proposal include anaerobic digestion or another environmentally sound treatment for manure?

X yes no not applicable

			Daily M	Ianure Production		Production Period ² (Days) (G)	Number of Animals ³ (Capacity) (H)	Total Manure Volume (ft ³) (FxGxH)	Total Manure Volume for Semi-Solid and Liquid Manure (Imp Gal)
Animal Type (A)	Animal Sub-type (B)	References (C)	Manure Type (D)	Default Manure Production (ft ³ /animal/day) (E)	Operation Manure Production ¹ (ft ³ /animal/day) (F)				
			Semi-Solid ⁵	3.5				-	0.0
	Free Stall		Solid	3.4				-	
5 ())) 4		Table C as 50	Liquid 5	3.5				-	0.0
Dairy (milking cows ⁴ and associated		Table 6, pg 59, FPGs for Dairy	Semi-Solid 5	3.6				-	0.0
livestock)	Tie Stall	1995	Solid	3.5				-	
investoory			Liquid 5	3.6				-	0.0
	Loose Housing		Solid	3.0				-	
	Milking Parlour Manure and Washwater		Liquid	0.5					
	Beef cows including associated livestock		Solid	1.2				-	
Beef	Backgrounder (200 day)	pg 117, FPGs for Hogs 1998	Solid	0.73				-	
Bool	Summer pasture / replacement heifers		Solid	0.85				-	
	Feeder cattle		Solid	1.1				-	
	Sows - farrow to finish (234 - 254 lbs)		Liquid	2.3				-	0.0
	Sows - farrow to wean (up to 11 lbs)	MAFRI website, FPGs for Pigs 2007	Liquid	0.8				-	0.0
Pigs	Sows - farrow to nursery (51 lbs)		Liquid	1				-	0.0
	Weanlings, Nursery (11 - 51 lbs)		Liquid	0.1				-	0.0
	Grower / Finisher (51 - 249 lbs)		Liquid	0.25	0.25	400.00	6,000	600,000.00	3,738,000.0
				Yearly Manure Production		Production Period Num ² (Days) (Total Manure	Total Manure Volume
Animal Type	Type of Operation		Default Manure Production (ft ³ /year/bird space)		Operation Manure Production ¹ (ft ³ /year/bird space)		Number of Birds [°] (Capacity)	Volume (ft ³) (F/365xGxH)	for Semi-Solid and Liquid Manure (Imp Gal)
	Broilers – floor 6			1.23				-	
	Broiler breeder hens ⁷]		2.3				-	
	Broiler breeder pullets 6			0.99				-	
	Roasters – floor 6			1.16				-	
Chickens	Layers – cage ⁸	Table 3, pg 85, FPGs for Poultry		2.33				-	0.0
GHICKEHS	Layers – floor 7	2000		1.68				-	
	Layers – solid pack ⁹	2000						-	
	Pullets – cage ⁸]		0.71				-	0.0
	Pullets – floor 6]		0.75				-	
	Pullets – solid pack ⁹							-	
	Broilers ⁶	Table 3, pg 85,		2.83				-	
Turkeys	Heavy toms ⁶	FPGs for Poultry		5.58				-	
	Heavy hens 6	2000		3.32				-	

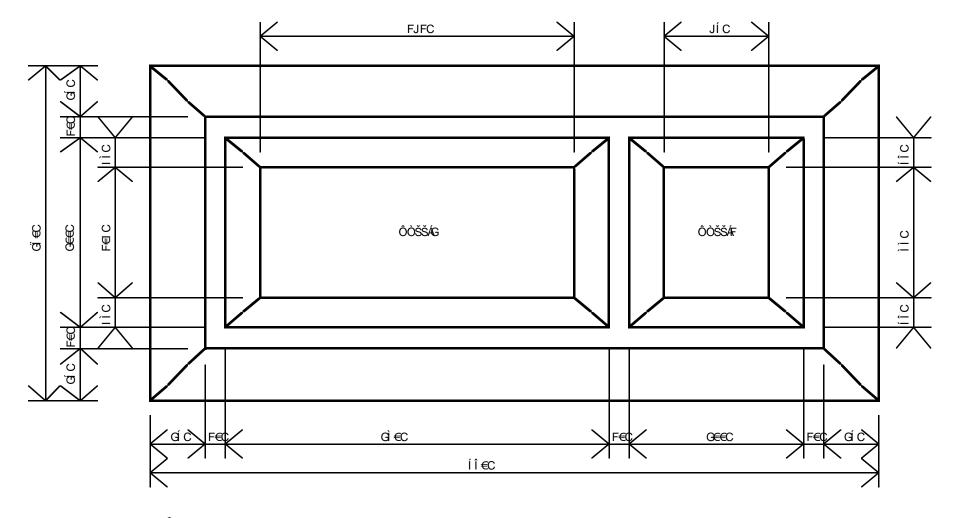
Sizing of a manure storage facility in accordance with all requirements of the Livestock Manure and Mortalities Management Regulation (M.R. 42/98) is the responsibility of the operator.

Instructions and footnotes:

¹ ENTER the manure production estimate for your operation. If no estimate is available, use the default value provided in colum E. References for default daily and yearly manure production are provided in column C.

² ENTER the number of days worth of manure that will be produced. For earthen manure storage facilities the minimum storage requirement is 400 days. For steel and concrete manure storage facilities the minimum storage requirement is 250 ³ ENTER the total number of animals or birds that the operation can hold (e.g. barn or feedlot capacity).

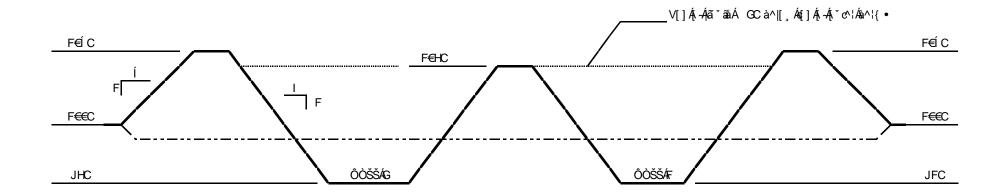
⁴ Milking cows includes all lactating and dry cows.


⁵ Default manure production estimates for semi-solid and liquid dairy manure include manure and washwater from the milking parlour.

⁶ 2 inches of wood shavings or 4 inches of straw placed on floor. Manure and litter removed from barn at 25% moisture content, with a density of 20 lb/ft³

⁷ One-third litter floor, two-thirds slatted floor. Manure and litter removed from barn at 40% moisture content, with a density of 25 lb/ft³

 $^{\rm 8}$ Manure removed from barn at 90% moisture content with a density of 59 $\rm lb/ft^3$


⁹ Poultry operations using litter (solid pack) must provide an estimate of yearly manure production

X^¦à¦`**^}Á72æ{• Î€€€Á@(*Á3jãr@:¦•Ái€ÍÁ\$aæî• ÙYÁFHËFIËGFÁY

ÞÈ/ÈJÈ

X^¦à¦`**^}Á⁄2æ{• Î∈∈€Á@;*Á∄jã@;\•Ái€ÍÁåæô• ÙYÁFHËFIËCFÁ∕

If yes, please describe In compliance with Pig Production Special Pilot Project requirement

Manure Application Method

The Livestock Manure and Mortalities Management Regulation requires the registration of annual manure management plans for new or expanding operations with 300 Animal Units or more.

Does the operation currently file an annual <u>Manure Management Plan</u> with Manitoba Conservation and Water Stewardship? (For operations with 300 Animal Units or more, only)

____ yes

no

Manure application methods and the season in which manure is applied affect odour, nutrient availability, crop response, land base requirements and the risk of water contamination.

Proposed application method:

broadcast b

 \Box broadcast and incorporation within 48 hours X injection

The <u>Livestock Manure and Mortalities Management Regulation</u> prohibits the application of manure from November 10 of one year to April 10 of the following year (winter application).

Time of year for application: X spring X summer X fall

The Livestock Manure and Mortalities Management Regulation puts restrictions on fall application of manure in the Red River Valley Special Management Area.

The proposed spread fields:

are \square are not |X|

in the Red River Valley Special Management Area.

Land Available for Manure Application

The land available for manure application includes all suitable land (owned, leased or under agreement) that is available to the operation for manure application.

Under the Livestock Manure and Mortalities Management Regulation and the <u>Nutrient</u> <u>Management Regulation</u>, application of nutrients is not permitted on Agriculture Capability Class 6, 7 and unimproved organic soils (Nutrient Management Zone 4) and within Nutrient Buffer Zones.

Areas of a field that are Class 6, 7, unimproved organic soils (Nutrient Management Zone 4) or areas within the nutrient buffer zones are considered unsuitable for manure application. In addition, fields with 60 parts per million (ppm) Olsen phosphorus (P) in the top six inches (15 centimetres) of soil cannot be included in the land base calculation.

Nutrients cannot be applied within the Nutrient Buffer Zones as outlined in the Nutrient Management Regulation (62/2008) and illustrated in the <u>Setback Requirements From</u> <u>Water Features Table</u>.

Has the setback area for all water features been observed and excluded from land base calculations for this operation?

X yes

no

Use the Manure Application Field Characteristics Table to determine the following:

Total suitable area available for manure	0454.0
application	2454.9

X Manure Application Field Characteristics Table attached

Copies of <u>soil test reports</u> that are no more than 12 months old must also be included with this submission.

X Soil test reports for the required area for manure application attached.

Land Required for Manure Application

Long term, land base requirements for manure application are calculated based on estimates of the quantity of nutrients (nitrogen and phosphorus) excreted by livestock and the removal of nutrients by the proposed crops.

Phosphorus

The quantity of phosphorus excreted by the livestock depends on the type, number and size of livestock, the quantity and availablility of phosphorus fed to the livestock and the amount retained by the livestock.

The removal of phosphorus by crops depends on the crops grown and the historical crop yield averages. (See the <u>Crop Rotation Table</u>).

The <u>Livestock Manure and Mortalities Management Regulation</u> requires that "sufficient land is available to the operator to implement an appropriate manure management plan" before Manitoba Conservation and Water Stewardship will issue a permit for a manure storage facility.

"Certain Areas" are defined by the Livestock Manure and Mortalities Management Regulation (M.R. 42/98) as areas where the amount of phosphorus in the manure produced annually by livestock in an area of not less than 93.24 km² is greater than two times the annual crop removal rate of P_2O_5 in that area. Currently the rural municipalities of Hanover and La Broquerie are considered to be "certain areas".

A livestock operation is considered to be located within a "*certain area*" if any part of the operation is located within the "*certain area*". This may include, but not limited to, barn(s), confined livestock area(s), field storage location(s), manure storage facility(ies), and/or spread filed(s).

Á

MANURE APPLICATION FIELD CHARACTERISTICS TABLE

	Α	В	С	D	E	F	G	Н	I	J	К
Field	Legal Description	Rural Municipality	O/L/A	Total Acreage	Setbacks, including features	Net Acreage for Manure Application	Agriculture Capability Class and Subclass	Soil Nitrate (Ib/acre) 0-24 inches	Soil Phosphorus (ppm Olsen P) 0-6 inches	Development Plan Designation	Zoning
1	SW12-14-21w	Oakview	0	131.7	Surface water	128.5	2t	24	9	"Rural Policy Area" 3-2009	"AG" Agriculture General Zone 2012-4
2	SW1-14-21w	Oakview	0	132	Surface water, Order 2 Drain	128.9	3t	42	17	"Rural Policy Area" 3-2009	"AG" Agriculture General Zone 2012-4
3	NW1-14-21w	Oakview	0	139.4	Surface water	135	2t	12	6	"Rural Policy Area" 3-2009	"AG" Agriculture General Zone 2012-4
4	NE1-14-21w	Oakview	0	127.6	Surface water	124.2	2t, 5w	19	12	"Rural Policy Area" 3-2009	"AG" Agriculture General Zone 2012-4
5	NW13-14-21w	Oakview	0	159	Surface water	156.4	2t, 5w	38	26	"Rural Policy Area" 3-2009	"AG" Agriculture General Zone 2012-4
6	SW13-14-21w	Oakview	0	69.1	Surface water	65.6	5w,2t	38	26	"Rural Policy Area" 3-2009	"AG" Agriculture General Zone 2012-4
7	SW19-14-20w	Oakview	0	132.3	Surface water	127.5	3t	28	6	"Rural Policy Area" 3-2009	"AG" Agriculture General Zone 1195
8	NW19-14-20w	Oakview	0	132	Surface water	126	3t	26	9	"Rural Policy Area" 3-2009	"AG" Agriculture General Zone 1195
9	SW30-14-20w	Oakview	0	117.8	Surface water	111.3	3t	26	6	"Rural Policy Area" 3-2009	"AG" Agriculture General Zone 1195
10	SW1-15-21w	Oakview	0	107.4	Surface water	101.1	3t, 2t	34	7	"Rural Policy Area" 3-2009	"AG" Agriculture General Zone 2012-4
11	SW23-14-21w	Oakview	0	109.6	Surface water	103.6	5w,2t,4t	45	23	"Rural Policy Area" 3-2009	"AG" Agriculture General Zone 2012-4
12	NW23-14-21w	Oakview	0	134	Surface water	128.9	2t,5w,4t	40	15	"Rural Policy Area" 3-2009	"AG" Agriculture General Zone 2012-4
13	SW27-14-21w	Oakview	0	127.3	Surface water	119.7	3t,4t,	33	32	"Rural Policy Area" 3-2009	"AG" Agriculture General Zone 2012-4
14	SE27-14-21w	Oakview	0	103.9	Surface water	97.6	4t,3t	29	21	"Rural Policy Area" 3-2009	"AG" Agriculture General Zone 2012-4
15	NE22-14-21w	Oakview	0	114	Surface water	108.8	4t,5w,3t, 5	43	25	"Rural Policy Area" 3-2009	"AG" Agriculture General Zone 2012-4
16	NW22-14-21w	Oakview	0	111.3	Surface water	105.3	3t,4t	54	13	"Rural Policy Area" 3-2009	"AG" Agriculture General Zone 2012-4
17	SE22-14-21w	Oakview	0	75.4	Surface water	71.4	4t,5	114	26	"Rural Policy Area" 3-2009	"AG" Agriculture General Zone 2012-4

SÈ Ú|^æe^ āj, åã&æe^ c@ Z[}āj*Ô Ëae, æ), å ão à Ê Ëae, }`{ à^¦āj æååããaj} q[c@ :[}āj*-{¦^æ&@-a*|å

PÈ Ú¦[cãā^•[ā]c/•c|^•ĭ|o•]+]}ãtæc/ËÞā] |à Baok æcc@ €ËGI ā] & @å^] c@ÈÙ[ā]c/•c|^•ĭ|o•{či^•cà^}[{[[^ c@æ]} FG{[}c@ [|åæ)å {č•cà^ &[{]|^c/å à^ æ} æs&!^åãr^å •[ā]Er/•cā]* |æa[|æa[|`È

ÕÈÒ}ơ\: ơ@ æ# ¦&&`|ơ \^ &æ#; æätäãô & k|æ•• æ) å • `à&|æ• |æatä *• -{ | ơ@ æ&\^æt^ æcætaæk|^ -{ | { æ}`|^ &æt] |&&æata} }È

ÒÈÒ}ơ\+•^càæ&\• +{[{•` |~æ&^, æ^\ [| * |[` } |å, æ^\ ^aæ` |^• c@æ; |^å`&^ c@ |æ) å æçæ‡æà|^ { [{ aè] |&&æ#↓ } ae] |&ææti } Lā, &|´ å^ ãa^} ãa^} (a^ a^ aa] [-cî]^ [~c^aet |^ Q'ÈÈ (ÊU | å^\ H å|æ#JDÈ

ÖÈ Ó} c^¦ c@ dí æŧ æ&¦^æ* ^ { ¦ c@ j æł&^|È

ÔÈ Qlå&Bæet @. c@ |æ) å @æe à^^} •^& '\^å -{i { æ} '\^ æ] |&Bæet] }KU.U.} FÖ. Š^æ^ ĐOE.OE'\^^{ ^}c

ÓÈ Cá^}cā² coo Üĭ¦æ; Tĭ}a&aja a aãc aj @a&@coo]æ; &/a |[&æe*aÈ

MANURE APPLICATION FIELD CHARACTERISTICS TABLE

С

O/L/A

А

А

А

А

0

D

Total

Acreage

111.9

127

106.6

102.3

95

в

Rural

Municipality

Oakview

Oakview

Oakview

Oakview

Oakview

Α

Legal Description

SW24-14-21w

SE24-14-21w

SE23-14-21w

NE23-14-21w

SE1-15-21w

Field

18

19

20

21

22

OEÈÒ} c^¦ c@ |^* æ| å^• &¦ā] cā] } -{ | ^æ&@] æ| &^| [~|æ) å c@æc,ā| |^^&^ãç^ { æ) ` |^KÙ^ &ÊV,]ÊÜ*^ [| Üãc^¦ Š[cG3 &| ` åã *] æ| ã @DÈ

Е

Setbacks, including

Surface water

Surface water, Order 3

Drain

Surface water

Surface water

Surface water

features

F

Net Acreage for

Manure

Application

106

121.4

101.3

96.7

89.7

G

Agriculture Capability

Class and Subclass

2t

3t. 2t

4t. 2t

4t, 2t

3t

н

Soil Nitrate

(lb/acre)

0-24 inches

47

32

29

38

34

. Soil

Phosphorus

(ppm Olsen P)

0-6 inches

11

7

12

18

7

J

Development

Plan Designation

Policv

Policy

Policy

Policy

Policy

"Rural

"Rural

"Rural

"Rural

"Rural

Area" 3-2009

Area" 3-2009

Area" 3-2009

Area" 3-2009

Area" 3-2009

κ

Zonina

"AG" Agriculture

General Zone 2012-4

"AG" Agriculture

General Zone 2012-4

"AG" Agriculture

General Zone 2012-4

"AG" Agriculture

"AG" Agriculture

General Zone 2102-4

General Zone 2012-4

ola not i lo olgo i o
Manure Application:

Total Net Acreage for

2454.9

Report Number: C15272-10311 Account Number: 98019

To: REDFERN FARM SERVICES PO BOX 489 101 SECOND AVE RIVERS, MB R0K 1X0 Attn: CRAIG ALLISON 004 000 7400

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

C15272-10311

Field: BARN 1/2

For: VERBRUGGEN FARMS LTD. PO BOX 910

Departed Dates	Drinted Det				SO	IL TES	TRFP	ORT	Γ								Dema:1
Reported Date:	Printed Dat	te:2015-10-02						0111	•								Page:1
Sample Number	Legal Land Descpt:	Depth	Lab Number	Organic Matter	Phosphor Bicarb	us - P ppm Bray-P1	Potassi K ppr		lagnesium Mg ppm	Calcium Ca ppm	р рН	H Buffer	CEC meq/100g			Base Satu % Ca	irations %H%Na
9318-1	SE 22-14-21	6	59980	4.7	26 M	45 M	409 V		520 H	2810 M	7.2		20.5	5.1	21.1	68.6	4.5 0.7
9318-2	SE 22-14-21	24	59981	1.9			122 N	1	995 H	7200 H	8.3		44.7	0.7	18.5	80.5	0.5
Sample Number	Sulfur S ppm Ibs/ac	Nitrate Nitrog NO3-N ppm lbs/a		Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm	Copper Cu ppm	Boro B pp		ts Saturati		uminum Al ppm	n Saturation %Al	n K/Mg Ratio	9 ENR	Chloride Cl ppm	Sodium Na ppm
9318-1	14 VL 25		38							17 H		337	0.0 G	0.24	1 60		32 M
9318-2	14 VL 76	14 M	76											0.04	4 31		53 L
W VL = VE	ERY LOW, L = LOW, M	= MEDIUM, H =	= HIGH, ∖	/H = VER`		GOOD, MA = RTILITY G				E PHYTO-TO	XIC, T	= PHYT	O-TOXIC, S	T = SE	VERE	РНҮТО-Т	OXIC
Sample Number	Previous Crop	Intended Cro	ор	Yie	eld Goal T	Lime ons/Acre	N P	205	K2O	Mg Ca		s	Zn M	/In	Fe	Cu	В

* Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

* If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By:

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L.

Report Number: C15287-10208 Account Number: 98019

To: REDFERN FARM SERVICES PO BOX 489 101 SECOND AVE RIVERS, MB R0K 1X0 Attn: CRAIG ALLISON 204-328-7408 A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

For: VERBRUGGEN FARMS LTD. PO BOX 910

Field: CORRECTION LINE

Percent Base Satu % K % Mg % Ca % 1.7 23.5 69.8 4 0.7 27.7 71.5 Chloride Ratio	<u>6 н % </u> 1.5 0.4 0.5
L.7 23.5 69.8 4 D.7 27.7 71.5 K/Mg ENR CI	4.5 0.4 0.5
).7 27.7 71.5 Chloride Ratio ENR Cl	0.5
Ratio ENR CI	Sodium
ppin	Na ppn
0.07 68	22 L
0.03 30	33 L
	B
-	SEVERE PHYTO-T

* Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

* If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By: -

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L.

Report Number: C15266-10011 Account Number: 98019

To: REDFERN FARM SERVICES PO BOX 489 101 SECOND AVE RIVERS, MB R0K 1X0 Attn: CRAIG ALLISON 204-328-7408 A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

For: VERBRUGGEN FARMS LTD.

C15266-10011

Field: DB 22 NE

Reported Date:	Printed Date	e: 2015-09-25			SC	DIL TES	T REPO	DRT								I	Page:1
Sample Number	Legal Land Descpt:	Depth	Lab Number	Organic Matter	Phospho Bicarb	rus - P ppm Bray-P1	Potassiu K ppm		agnesium Ng ppm		alcium a ppm	pH pH Buffe	CEC er meq/100			Base Satu % Ca %	rations 5 H % Na
1 2	NE 22-14-21 NE 22-14-21	6 24	52245 52246	6.9 1.9	25 M	49 M	379 VI 137 M		550 H 170 VH			6.7 6.9 7.6	20.3 48.1	4.8 0.7		66.4 5 73.1	5.6 0.7 1.1
Sample Number	Sulfur S ppm Ibs/ac	Nitrate Nitro NO3-N ppm Ibs	/ac	Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm	Copper Cu ppm	Boror B ppn	n Sa	luble alts los/cm		Al ppi	1 %A	Rati	0	Chloride Cl ppm	Na ppm
1 2	15 VL 27 96 M 518	15 M 3 VL	27 16								21 H	306	0.00		1 82 3 31		31 M 121 H
W VL = VI	ERY LOW, L = LOW, M =	= MEDIUM, H	= HIGH, \	/H = VER			= MARGINAL UIDELINE			TE PH	ΙΥΤΟ-ΤΟΧΙΟ	C, T = PH	ΈΟ-ΤΟΧΙΟ	, ST = SI	VERE	PHYTO-T	OXIC
Sample Number	Previous Crop	Intended C	rop	Yie	eld Goal T	Lime ons/Acre	N P2	05	K2O	Mg	Са	S	Zn	Mn	Fe	Cu	В

* Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

* If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By:

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L.

Report Number: C15266-10009 Account Number: 98019

To: REDFERN FARM SERVICES PO BOX 489 101 SECOND AVE RIVERS, MB R0K 1X0 Attn: CRAIG ALLISON 204-328-7408 A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

For: VERBRUGGEN FARMS LTD.

C15266-10009

Field: DB 22 NW

Reported Date:	Printed Date	e:2015-09-25			SC	DIL TES	T REPO	RT								Page:1
Sample Number	Legal Land Descpt:	Depth	Lab Number	Organic Matter	Phospho Bicarb	rus - P ppm Bray-P1	Potassium K ppm	Magnesiur Mg ppm				CEC meq/100g			Base Sat % Ca	
1	NW 22-14-21	6	52241	4.7	13 M	26 M	350 VH	880 H	405		7.0	32.8	2.7		61.7	
2	NW 22-14-21	24	52242	2.1			156 M	1255 VH	526	0 M 6	3.0	37.4	1.1	28.0	70.4	C
Sample Number	Sulfur S ppm Ibs/ac	Nitrate Nitro NO3-N ppm Ibs	-	Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm		Soron S	luble alts nos/cm	70 F	Aluminu Al ppm	n Saturatio %Al	Rati	0	Chlorid Cl ppm	Na p
1 2	34 VL 61 27 VL 146	15 M 5 L	27 27							11 H	309	0.0 G		2 60 4 33		35 79
V VL = VE	ERY LOW, L = LOW, M = Previous Crop	Intended C					N P20	(lbs/ac)	Mg	Ca	S		Mn	Fe	Cu	
Number					1	UIS/ACIE										

* Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

* If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By:

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L.

Report Number: C15280-10106 Account Number: 98019

To: REDFERN FARM SERVICES PO BOX 489 101 SECOND AVE RIVERS, MB R0K 1X0 Attn: CRAIG ALLISON 204-328-7408

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

C15280-10106

Field: ENGLISH CENTER

For: VERBRUGGEN FARMS LTD. PO BOX 910

Reported Da	tte: Printed I	Date:2015-10-09			SC	OIL TES	T REPC	DRT					_			Page:1
Sample Number	Legal Land Descpt:	Depth N		Organic Matter	Phospho Bicarb	rus - P ppm Bray-P1	Potassiur K ppm	m Magnesium Mg ppm	Calcium Ca ppm	۲ pH	oH Buffer	CEC meq/100g			ase Satu % Ca	urations % H % Na
9575-1	NW 19-14-20	6 0)2485	5.7	9 VL	15 VL	169 M	445 H	2710 M	7.0		20.3	2.1	18.2	66.6 1	2.8 0.3
9575-2	NW 19-14-20	20 0	2486	2.5			82 L	585 M	5620 H	8.1		33.3	0.6	14.7	84.5	0.4
Sample Number	Sulfur S ppm Ibs/ac	Nitrate Nitroge NO3-N ppm Ibs/ac	7	Zinc n ppm	Manganese Mn ppm	lron Fe ppm	Copper Cu ppm	Boron Solu B ppm mmho	lts Satura		uminum Al ppm	n Saturation %Al	n K/Mg Ratio		Chloride Cl ppm	^e Sodium Na ppm
9575-1	12 VL 22	10 M 1	8						60	3	327	0.0 G	0.12	2 70		12 VL
9575-2	12 VL 50	2 VL	8										0.04	37		34 L
W VL	= VERY LOW, L = LOW,	M = MEDIUM, H = H	HIGH, VI	H = VER`	,	,	■ MARGINAL, UIDELINE		ГЕ РНҮТО-ТС	DXIC, T	= PHYT	O-TOXIC, ST	Γ = SE'	VEREI	РНҮТО-Т	FOXIC
Sample Number	Previous Crop	Intended Crop	o	Yie	eld Goal T	Lime ons/Acre	N P2C	D5 K2O	Mg Ca		s	Zn M	In	Fe	Cu	В

* Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

* If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By:

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L.

Report Number: C15280-10095 Account Number: 98019

To: REDFERN FARM SERVICES PO BOX 489 101 SECOND AVE RIVERS, MB R0K 1X0 Attn: CRAIG ALLISON 204-328-7408

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

C15280-10095

Field: ENGLISH NORTH

For: VERBRUGGEN FARMS LTD. PO BOX 910

Reported Date:	Printed Dat	e: 2015-10-09			SC	DIL TES	T REPO	DRT										Page:1
	T THICG Dut	0.2010 10 00						-										ugei
Sample Number	Legal Land Descpt:	Depth	Lab Number	Organic Matter	Phospho Bicarb	rus - P ppm Bray-P1	Potassiu K ppm		jnesium g ppm		lcium ppm	рН рН В		CEC meq/100g			ase Satu % Ca	rations %H%Na
9576-1	SW 30-14-20	6	02463	4.7	6 VL	9 V L	200 H	66	60 H	395	0 M 🗧	7.2		27.0	1.9	20.3	73.1 4	1.5 0.2
9576-2	SW 30-14-20	20	02464	2.2			69 L	94	10 H	568	0H 8	3.3		36.4	0.5	21.5	78.1	0.2
Sample Number	Sulfur S ppm lbs/ac	Nitrate Nitrog NO3-N ppm lbs/a	-	Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm	Copper Cu ppm	Boron B ppm	Solu Sal mmho	lts	Saturation %P		ninum ppm	Saturatior %AI	n K/Mg Ratio		Chloride Cl ppm	Sodium Na ppm
9576-1	8 VL 14	10 M	18								1 VL	1	93	0.0 G	0.09	9 60		13 VL
9576-2	7 VL 29	2 VL	8												0.02	2 34		15 VL
W VL = VI	ERY LOW, L = LOW, M	= MEDIUM, H =	HIGH, Y	VH = VER			= MARGINAL			LE bh	ΥΤΟ-ΤΟΧΙ	C, T =	РНҮТС	D-TOXIC, S	T = SE	VERE	РНҮТО-Т	OXIC
Sample Number	Previous Crop	Intended Cro	ор	Yie	eld Goal	Lime ons/Acre	N P2	05 K	20	Mg	Са	S		Zn N	In	Fe	Cu	В

* Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

* If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By:

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L.

Report Number: C15280-10094 Account Number: 98019

To: REDFERN FARM SERVICES PO BOX 489 101 SECOND AVE RIVERS, MB R0K 1X0 Attn: CRAIG ALLISON 204-328-7408 A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

For: VERBRUGGEN FARMS LTD. PO BOX 910

Field: ENGLISH SOUTH

ample lumber					30		T REPO	RI		_			_	_		Page:1
	Legal Land Descpt:	Depth	Lab Number	Organic Matter	Phospho Bicarb	rus - P ppm Bray-P1	Potassium K ppm	n Magnesium Mg ppm	n Calcium Ca ppm		pH Buffer	CEC meq/100g			ase Satu % Ca %	
9574-1	SW 19-14-20	6	02461	4.5	6 VL	9 V L	146 M	610 H	4170 H	7.3		26.3	1.4	19.3	79.2	0.3
9574-2	SW 19-14-20	20	02462	2.0			53 VL	765 M	7200 H	8.4		42.5	0.3	15.0	84.7	0.2
ample lumber	Sulfur S ppm Ibs/ac	Nitrate Nitro NO3-N ppm Ibs	-	Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm		Boron Sa	os/cm ^{%P}		luminum Al ppm	Saturatio %Al	n K/Mg Ratio		Chloride Cl ppm	Sodiur Na ppr
9574-1 9574-2	16 VL 29 11 VL 46	11 M 2 VL	20 8						1 \	/L	217	0.0 G		7 57 2 32		18 V 15 V
ample lumber	Previous Crop	Intended C	rop	Yie	eld Goal T	Lime ons/Acre	N P2O	5 K2O	Mg Ca		S	Zn I	Mn	Fe	Cu	В

* Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

* If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By: -

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L.

Report Number: C15280-10093 Account Number: 98019

To: REDFERN FARM SERVICES PO BOX 489 101 SECOND AVE RIVERS, MB R0K 1X0 Attn: CRAIG ALLISON 204-328-7408 A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

Field: HOME

For: VERBRUGGEN FARMS LTD. PO BOX 910

Reported Date:	Printed Da	ate:2015-10-09			SC	DIL TES	T REPO	DRT									Page:1
Sample Number	Legal Land Descpt:	Depth	Lab Number	Organic Matter	Phospho Bicarb	rus - P ppm Bray-P1	Potassiu K ppm	m Magnesiu Mg ppm		alcium a ppm	рН рН В		CEC meq/100g			Base Satu % Ca	
9569-1	W 13-14-21	6	02459	4.8	26 M	38 M	350 VH	635 H	37	60 H	7.5		25.0	3.6	21.1	75.1	0.4
9569-2	W 13-14-21	20	02460	2.0			76 L	1505 VH	1 72	00 M	8.6		48.9	0.4	25.7	73.7	0.6
Sample Number	Sulfur S ppm Ibs/ac	Nitrate Nitro NO3-N ppm Ibs	-	Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm	Copper Cu ppm	Boron B nnm	oluble Salts nhos/cn	Saturatio		ninum ppm	Saturation %AI	n K/Mg Ratio	9 ENR	Chloride Cl ppm	^e Sodiun Na ppn
9569-1	17 VL 31	14 M	25							21 H	2	38	0.0 G	0.17	7 61	ppm	25 L
9569-2	50 VL 210	3 VL	13											0.02	2 32		65 L
W VL = VE	ERY LOW, L = LOW, N	/I = MEDIUM, H	= HIGH,	VH = VER		GOOD, MA = RTILITY G			RATE PI	чүто-тох	(IC, T =	РНҮТС	D-TOXIC, S	T = SE	VERE	PHYTO-1	FOXIC
Sample Number	Previous Crop	Intended C	rop	Yie	eld Goal T	Lime ons/Acre	N P20	D5 K2O	Mg	Са	s		Zn M	<i>I</i> n	Fe	Cu	В

* Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

* If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By: -

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L.

Report Number: C15280-10105 Account Number: 98019

To: REDFERN FARM SERVICES PO BOX 489 101 SECOND AVE RIVERS, MB R0K 1X0 Attn: CRAIG ALLISON 204-328-7408 A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

C15280-10105

For: VERBRUGGEN FARMS LTD. PO BOX 910

INIS LTD.

Field: NE 1-14-21

Reported D	Date: Printed Date	e:2015-10-09		SC	DIL TES	T REPO	RT						Pa	age:1
Sample Number	Legal Land Descpt:	Depth La	ab Organio nber Matter	: Phospho Bicarb	orus - P ppm Bray-P1	Potassiun K ppm	n Magnesium Mg ppm	Calcium Ca ppm	pH pH Buffer	CEC meq/100g			ase Satura % Ca %	
9573-1	NE 1-14-21	6 024	483 6.4	12 L	19 L	239 H	610 VH	2630 M	6.7 6.9	20.1			65.5 5.	
9573-2	NE 1-14-21		484 2.5			94 M	960 VH	2880 M	7.5	22.7		35.3		0.5
Sample Number	Sulfur S ppm lbs/ac	Nitrate Nitrogen NO3-N ppm Ibs/ac	Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm		Boron Soli B ppm Sa mmho	lts Saturati ps/cm %P	on Aluminun Al ppm	n Saturatio %Al	n K/Mg Ratio	END	Chloride Cl ppm	Sodium Na ppm
9573-1 9573-2	21 VL 38 26 VL 125	5 L 9 2 VL 10						8 H	300	0.0 G	0.12 0.03			21 L 28 L
Sample	L = VERY LOW, L = LOW, M =	Intended Crop		SOIL FE	RTILITY G	UIDELINES	6 (lbs/ac)	Mg Ca	S		Vin	Fe	Cu	B
Number					ons/Acre	N 120			5	211 1	VIII	16	Cu	

* Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

* If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By: -

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L.

Report Number: C15280-10104 Account Number: 98019

To: REDFERN FARM SERVICES PO BOX 489 101 SECOND AVE RIVERS, MB R0K 1X0 Attn: CRAIG ALLISON 204 220 7400

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

Field: NW 1-14-21

For: VERBRUGGEN FARMS LTD. PO BOX 910

Reported Date	: Printed Da	te:2015-10-09			SC	DIL TES	T REPO	DRT									Page:1
Sample Number	Legal Land Descpt:	Depth	Lab Number	Organic Matter	Phospho Bicarb	rus - P ppm Bray-P1	Potassiu K ppm		gnesium Ig ppm		cium ppm	рН рН Ві	CE uffer meq/1	-		Base Satu % Ca	
9572-1 9572-2	NW 1-14-21 NW 1-14-21		02481 02482	4.3 2.0	6 VL	9 VL	166 M 67 L	4	75 H 00 H	3310 5660)H 7	7.2 3.2	22 34			75.3 82.5	4.5 0.3 0.2
Sample Number	Sulfur S ppm Ibs/ac	Nitrate Nitrog NO3-N ppm Ibs/a		Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm	Copper Cu ppm	Boron B ppm	Sai	lts	Saturatior %P		iinum Satu opm %	ration K/I AI Ra	Mg ENR	Chlorid Cl ppm	^e Sodium Na ppm
9572-1 9572-2	13 VL 23 12 VL 58	4 VL 1 VL	7 5								6 G	20	04 0.0)G 0. 0.0	11 55 03 32		13 VI 16 VI
W VL =	VERY LOW, L = LOW, M	= MEDIUM, H =	HIGH, \	/H = VER			= MARGINAL			LE bha	ТО-ТОХК	C, T = P	РНҮТО-ТО	(IC, ST = \$	SEVERE	PHYTO-	FOXIC
Sample Number	Previous Crop	Intended Cro	р	Yie	eld Goal T	Lime ons/Acre	N P2	O5 I	K2O	Mg	Са	S	Zn	Mn	Fe	Cu	В

* Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

* If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By:

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L.

Report Number: C15280-10096 Account Number: 98019

To: REDFERN FARM SERVICES PO BOX 489 101 SECOND AVE RIVERS, MB R0K 1X0 Attn: CRAIG ALLISON 204-328-7408 A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

For: VERBRUGGEN FARMS LTD. PO BOX 910

Field: WEST

Reported [Date: Printed D	ate:2015-10-09		SC	OIL TES	T REPO	RT						P	age:1
Sample Number	Legal Land Descpt:	Dentn	Lab Organio umber Matter	: Phospho Bicarb	orus - P ppm Bray-P1	Potassium K ppm	Magnesium Mg ppm	Calcium Ca ppm	pH pH Buffer	CEC meq/100g			ase Satura % Ca %	
9577-1 9577-2	S 27-14-21 S 27-14-21		2465 5.1 2466 2.2	21 M	26 L	331 VH 53 VL	550 H 865 H		7.3 8.5	22.8 43.4	3.7 0.3	20.1 16.6		0.5 0.4
Sample Number	Sulfur S ppm Ibs/ac	Nitrate Nitroge NO3-N ppm Ibs/ac	Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm		oron Solu ppm Sal mmho	ts Saturatio	n Aluminu Al ppm	m Saturation %Al	n K/Mg Ratio		Chloride Cl ppm	Sodium Na ppm
9577-1 9577-2	15 VL 27 26 VL 109		6 3					2 L	187	0.0 G		8 64 2 34		24 L 40 L
W V	/L = VERY LOW, L = LOW, 1	I = MEDIUM, H = H	1IGH, VH = VEF			MARGINAL, M		E PHYTO-TOX	C, T = PHY	TO-TOXIC, S	T = SE	VERE I	РНҮТО-ТС	OXIC
Sample Number	Previous Crop	Intended Crop	o Yi	eld Goal	Lime Fons/Acre	N P2O5	K2O	Mg Ca	S	Zn M	Mn	Fe	Cu	В

* Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

* If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By: -

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L.

Report Number: C15280-10097 Account Number: 98019

To: REDFERN FARM SERVICES PO BOX 489 101 SECOND AVE RIVERS, MB R0K 1X0 Attn: CRAIG ALLISON

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

C15280-10097

Field: WEST

For: VERBRUGGEN FARMS LTD. PO BOX 910

204	4-328-7408																	
Reported	Date: P	rinted Dat	te:2015-10-09			SC	DIL TES	TREP	ORT									Page:1
Sample Number	Legal Land I	Descpt:	Depth	Lab Number	Organic Matter	Phospho Bicarb	orus - P ppm Bray-P1	Potassi K ppn		agnesium Ng ppm	Calc Ca p	cium ppm	pH pH Buffer	CEC meq/100g			ase Satu % Ca	
9578-1	S 27-14-21	1	6	02467	7.1	32 M	57 G	414 V		195 H	3790		7.7	24.2	4.4	17.0	78.3	0.5
9578-2	S 27-14-21	1	20	02468	2.9			119 M	6	655 M	7200	VH 8	3.4	41.9	0.7	13.0	86.0	0.4
Sample Number	Sulfu S ppm I	ır bs/ac	Nitrate Nitro NO3-N ppm Ibs	0	Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm	Copper Cu ppm	Boror B ppm	5a	lts ^S	Saturatior %P	n Aluminum Al ppm	n Saturation %Al	n K/Mg Ratic		Chloride Cl ppm	Sodium Na ppm
9578-1	16 VL	29	9 L	16								5 M	138	0.0 G	0.26	i 84		27 L
9578-2	12 VL	50	4 VL	17											0.05	5 41		40 L
W	VL = VERY LOW, L =	LOW, M	= MEDIUM, H	= HIGH, V	VH = VER		= GOOD, MA = RTILITY G				TE PHY	ΤΟ-ΤΟΧΙ	C, T = PHYT	O-TOXIC, S	T = SE	VERE	РНҮТО-Т	OXIC
									•									
Sample Number	Previous Cro	ор	Intended C	rop	Yie	eld Goal	Lime Fons/Acre	N P2	205	K2O	Mg	Са	S	Zn M	<i>l</i> In	Fe	Cu	В

* Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

* If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By:

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L.

Report Number: C15294-10262 Account Number: 98019

To: REDFERN FARM SERVICES PO BOX 489 101 SECOND AVE RIVERS, MB R0K 1X0 Attn: CRAIG ALLISON 204-328-7408

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

C15294-10262

For: VERBRUGGEN FARMS LTD. PO BOX 910

Field: SW 1-14-21

Reported D	Date:	Printed Da	te:2015-10-23			SC	DIL TES	ST REPO	DRT									Page:1
Sample Number	Legal La	and Descpt:	Depth	Lab Number	Organic Matter	Phospho Bicarb	rus - P ppm Bray-P1	Potassiu K ppm		gnesium g ppm		cium ppm	pH pH Buffe	CEC r meq/100g			Base Satu % Ca	
10612-1	SW 1-	14-21	6	30376	10.3	17 M	24 M	290 H	107	70 H	7010	DH .	7.9	44.8	1.7	19.9	78.2	0.6
10612-2	SW 1-7	14-21	18	30377	2.5			87 L	154	40 VH	7200	MC	3.1	49.5	0.5	25.9	72.7	1.2
Sample Number	ppm	Sulfur S Ibs/ac	Nitrate Nitro NO3-N ppm Ibs	0	Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm	Copper Cu ppm	Boron B ppm	5a	lts	Saturation %P	n Aluminu Al ppm		n K/Mg Ratio		Chloride Cl ppm	^e Sodium Na ppm
10612-1		VH 252	17 M	31								2 L	37	0.0 G	0.0	9 112		57 L
10612-2	993	VH 3575	3 VL	11											0.02	2 37		140 H
W VI	L = VERY LOW,	L = LOW, M	= MEDIUM, H	= HIGH, `	VH = VER	,	,				LE bhj	TO-TOXI	C, T = PHY	TO-TOXIC, S	ST = SE	VERE	PHYTO-7	FOXIC
Sample	Proviou		Intended C			SOIL FE	RTILITY G			(20)	Ma	<u>(</u> 2	e	7n I	Mn	Fo	Cu	

Sample Number	Previous Crop	Intended Crop	Yield Goal	Lime Tons/Acre	Ν	P2O5	K2O	Mg	Са	S	Zn	Mn	Fe	Cu	В

* Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

* If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By:

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L.

Report Number: C15280-10103 Account Number: 98019

To: REDFERN FARM SERVICES PO BOX 489 101 SECOND AVE RIVERS, MB R0K 1X0 Attn: CRAIG ALLISON 204-328-7408 A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

CON TECT DEDODT

C15280-10103

For: VERBRUGGEN FARMS LTD. PO BOX 910

Field: SW12-14-21

Printed Date	e:2015-10-09			SC	JIL TES	51 REPC									Page:1
Legal Land Descpt:	Depth	Lab Number	Organic Matter	Phospho Bicarb			m Magnesiur Mg ppm			pH pH Buffer	CEC meq/100g				
SW12-14-21 SW12-14-21	6 22	02479 02480	4.1 2.0	9 L	11 L				0 VH 🛛	8.3	34.1	3.0	9.9	87.0	0.2 0.1
Sulfur	Nitrate Nitro	ogen	Zinc	Manganese	Iron		Boron So								
ppm lbs/ac	ppm lbs	ac		Mn ppm	Fe ppm		B nnm 3		% P	AI ppm	%AI	Ratic)	ppm	Na ppm
									1 VL	47	0.0 G				15 VL 15 VL
												0.00			
RY LOW, L = LOW, M =	= MEDIUM, H	= HIGH, `	VH = VER	-	-	-		ATE PH'	ΥΤΟ-ΤΟΧΙ	C, T = PHYT	O-TOXIC, S	ST = SE	VERE	РНҮТО-Т	OXIC
Previous Crop	Intended C	rop	Yie	eld Goal T	Lime ons/Acre	N P20	D5 K2O	Mg	Са	S	Zn I	Vin	Fe	Cu	В
	Legal Land Descpt: SW12-14-21 SW12-14-21 Sulfur S ppm lbs/ac 33 VL 59 11 VL 53 RY LOW, L = LOW, M =	SW12-14-21 6 SW12-14-21 22 Sulfur Nitrate Nitro Sulfur No3-N ppm Ibs/ac ppm Ibs/ac 33 VL 33 VL 53 2 RY LOW, L = LOW, M = MEDIUM, H	Legal Land Descpt: Depth Number SW12-14-21 6 02479 SW12-14-21 22 02480 Sulfur Nitrate Nitrogen S NO3-N ppm Ibs/ac 33 VL 59 8 14 11 VL 53 2 VL 10	Legal Land Descpt: Depth Number Lab Number Matter Organic Matter SW12-14-21 6 02479 4.1 SW12-14-21 22 02480 2.0 Sulfur Nitrate Nitrogen NO3-N Zinc Zn ppm 33 VL 59 8 14 11 VL 53 2 VL 10	Legal Land Descpt: Depth Lab Organic Matter Phospho Bicarb SW12-14-21 6 02479 4.1 9 L SW12-14-21 22 02480 2.0 9 L Sulfur Nitrate Nitrogen NO3-N Zinc Zn ppm Manganese Mn ppm 33 VL<59	Legal Land Descpt: Depth Lab Number Organic Matter Phosphorus - P ppm Bicarb Bray-P1 SW12-14-21 6 02479 4.1 9 L 11 L SW12-14-21 22 02480 2.0 11 L Sulfur Nitrate Nitrogen NO3-N Zinc Manganese Iron ppm Ibs/ac ppm Ibs/ac Zinc Manganese Iron 33 VL<59	Legal Land Descpt: Depth Number Lab Number Organic Matter Phosphorus - P ppm Bicarb Potassiun Bray-P1 SW12-14-21 6 02479 4.1 9 L 11 L 399 VH SW12-14-21 22 02480 2.0 246 H Sulfur SW12-14-21 Nitrate Nitrogen NO3-N Zinc Zn ppm Manganese Mn ppm Iron Fe ppm Copper Cu ppm 33 VL 59 8 L 14 11 VL 53 2 VL 10 RY LOW, L = LOW, M = MEDIUM, H = HIGH, VH = VERY HIGH, G = GOOD, MA = MARGINAL, SOIL FERTILITY GUIDELINES SOIL FERTILITY GUIDELINES	Legal Land Descpt: Depth Number Lab Number Organic Matter Phosphorus - P ppm Bicarb Potassium Bray-P1 Magnesiun K ppm SW12-14-21 6 02479 4.1 9 L 11 L 399 VH 405 L SW12-14-21 22 02480 2.0 11 L 399 VH 405 L SW12-14-21 22 02480 2.0 246 H 985 H Sulfur Nitrate Nitrogen NO3-N Zinc Zn ppm Manganese Mn ppm Iron Fe ppm Copper Cu ppm Boron B ppm Sc mmi 33 VL 59 8 L 14 11 VL 53 2 VL 10 RY LOW, L = LOW, M = MEDIUM, H = HIGH, VH = VERY HIGH, G = GOOD, MA = MARGINAL, MT = MODER: SOIL FERTILITY GUIDELINES (Ibs/ac) Moden	Legal Land Descpt: Depth Number Lab Number Organic Matter Phosphorus - P ppm Bicarb Potassium Magnesium Ca Ca SW12-14-21 6 02479 4.1 9 L 11 L 399 VH 405 L 594 SW12-14-21 22 02480 2.0 11 L 399 VH 405 L 594 Sulfur Nitrate Nitrogen NO3-N Zinc Zn ppm Manganese Mn ppm Iron Copper Cu ppm Boron B ppm Soluble Salts mmhos/cm 33 VL 59 8 L 14 11 VL 53 2 VL 10 RY LOW, L = LOW, M = MEDIUM, H = HIGH, VH = VERY HIGH, G = GOOD, MA = MARGINAL, MT = MODERATE PH SOIL FERTILITY GUIDELINES (Ibs/ac) Magnesium Ca	Legal Land Descpt: Depth Number Lab Number Organic Matter Phosphorus - P ppm Bicarb Potassium Magnesium Calcium SW12-14-21 6 02479 4.1 9 L 11 L 399 VH 405 L 5940 VH 1 VL 1 VL<	Legal Land Descpt: Depth Number Lab Number Organic Matter Phosphorus - P ppm Bray-P1 Potassium Magnesium Calcium PH Buffer PH Buffer SW12-14-21 6 02479 4.1 9 L 11 L 399 VH 405 L 5940 VH 8.3 SW12-14-21 22 02480 2.0 246 H 985 H 7200 H 8.5 Sulfur Sinta View Nitrate Nitrogen NO3-N Zinc Zn ppm Manganese Iron Manganese Copper Soluble Cuppm Soluble Salts mmhos/cm Saturation Aluminum %P Al ppm 33 VL 59 8 L 14 1 VL 47 11 VL 53 2 VL 10 2010 FERTILITY GUIDELINES (Ibs/ac) 1 VL 47	Legal Land Descpt: Depth Number Lab Number Organic Matter Phosphorus - P ppm Bicarb Potassium Magnesium Calcium M ppm Ca ppm pH Buffer meq/100g SW12-14-21 6 02479 4.1 9 L 11 L 399 VH 405 L 5940 VH 8.3 34.1 SW12-14-21 22 02480 2.0 246 H 985 H 7200 H 8.5 44.8 Sulfur Syntax Nitrate Nitrogen N03-N Zinc Zin ppm Maganese Iron Min ppm Fe ppm Cu ppm Boron Soluble Salts mmhos/cm Soluble Salts Minos/cm Salts Minos/Ch Al ppm %Al 33 VL<59	Legal Land Descpt: Depth Number Lab Matter Organic Matter Phosphorus - P ppm Bicarb Potassium K ppm Mg ppm Ca ppm pH Buffer meq/100g % K CEC Permeq/100g % K SW12-14-21 6 02479 4.1 9 L 11 L 399 VH 405 L 5940 VH 8.3 34.1 3.0 SW12-14-21 22 02480 2.0 11 L 399 VH 405 L 5940 VH 8.5 44.8 1.4 Sulfur Sppm Ibs/ac Nitrate Nitrogen NO3-N Zinc Zinc Pipm Mn ppm Fe ppm Mn ppm Fe ppm Cu ppm B ppm Salts mmhos/cm Salts Salts mmhos/cm Salts MP AI ppm %AI Ratic 33 VL 59 8 L 14 1 1 1 1 1 1 47 0.0 G 0.30 11 VL 53 2 VL 10 1 1 1 1 1 1 1 1 1 1 0.06 0.30 11 VL 53 2 VL 10 1 1 0.00 0.08 Solid Ferrition Corporation of the product o	Legal Land Descpt: Depth Number Lab Matter Organic Bicarb Phosphorus - P ppm Bicarb Potassium Magnesium Calcium Mg ppm Ca ppm pH Depth Buffer meq/100g % K % Mg Percent E SW12-14-21 6 02479 4.1 9 L 11 L 399 VH 405 L 5940 VH 8.3 34.1 3.0 9.9 SW12-14-21 22 02480 2.0 246 H 985 H 7200 H 8.5 44.8 1.4 18.3 SW12-14-21 22 02480 2.0 246 H 985 H 7200 H 8.5 44.8 1.4 18.3 Sulfur Nitrate Nitrogen Zinc Manganese Iron Copper Boron Soluble Saturation Aluminum Saturation K/Mg Pam Ratio ENR 33 VL 59 8 1.4 1 VL 47 0.0 G 0.30 53 11 VL 53 2 VL 10 IVL 47 0.0 G 0.08 32	Legal Land Descpt: Depth Number Lab Number Organic Matter Phosphorus - P ppm Bicarb Bray-P1 Potassium K ppm Mg ppm Ca ppm pH Buffer meq/100g % K % Mg % Ca 9 Percent Base Satu % Ca 9 SW12-14-21 6 02479 4.1 9 L 11 L 399 VH 405 L 5940 VH 8.3 34.1 3.0 9.9 87.0 SW12-14-21 22 02480 2.0 11 L 399 VH 405 L 5940 VH 8.3 34.1 3.0 9.9 87.0 SW12-14-21 22 02480 2.0 2.0 246 H 985 H 7200 H 8.5 44.8 1.4 18.3 80.4 Sulfur Nitrate Nitrogen Zinc Zinc Manganese Iron Copper Boron Soluble Saturation Aluminum Saturation K/Mg Ratio FNR Chloride 33 VL 59 8 14 10 1 VL 47 0.0 G 0.30 53 11 VL 53 2 VL 10 1 VL 47 0.0 G 0.30 53

* Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

* If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By: -

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L.

Report Number: C15272-10312 Account Number: 98019

To: REDFERN FARM SERVICES PO BOX 489 101 SECOND AVE RIVERS, MB R0K 1X0 Attn: CRAIG ALLISON 204-328-7408

Reported Date:2015-10-02 Printed Date:2015-10-02

A & L Canada Laboratories Inc. 2136 Jetstream Road, London, Ontario, N5V 3P5 C15272-10312

Field: ESPEY'S

Page:1

Telephone: (519) 457-2575 Fax: (519) 457-2664

For: VERBRUGGEN FARMS LTD. PO BOX 910

SOIL TEST REPORT

Sample	Level Level Dress	Denth	Lab	Organic	Phospho	orus - P ppm	Potassiun	n Magnesiu	ım C	Calcium	p	Ы	CEC	Per	cent B	ase Satu	rations
lumber	Legal Land Descpt:	Depth	Number		Bicarb	Bray-P1	K ppm	Mg ppm		Ca ppm			meq/100g	% K	% Mg	% Ca	6Η %N
9320-1	NW 23-14-21	6	59982	5.2	15 M	24 M	251 H	585 H	49	10 H	8.0		30.1	2.1	16.2	81.5	0.4
9320-2	NW 23-14-21	24	59983	3.0			108 L	985 H	72	200 H	8.0		44.6	0.6	18.4	80.7	0.5
Sample Number	Sulfur S ppm lbs/ac	Nitrate Nitro NO3-N ppm Ibs	•	Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm		Boron Binnm	oluble Salts hhos/cr	~P	on Al	uminum Al ppm	Saturation %Al	n K/Mg Ratio	ENR	Chloride Cl ppm	Sodium Na ppm
9320-1	27 VL 49	10 M	18							2 L		142	0.0 G	0.13	65		30 L
9320-2	453 VH 2446	4 VL	22											0.03	42		49 L
V	VL = VERY LOW, L = LOW, M	= MEDIUM, H	= HIGH, \	VH = VER			MARGINAL,		RATE P	НҮТО-ТОХ	IC, T	= PHYT	O-TOXIC, S	T = SE\	/ERE I	РНҮТО-Т	OXIC

* Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

* If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By: -

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L.

Report Number: C15266-10008 Account Number: 98019

To: REDFERN FARM SERVICES PO BOX 489 101 SECOND AVE RIVERS, MB R0K 1X0 Attn: CRAIG ALLISON 204-328-7408 A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

For: VERBRUGGEN FARMS LTD.

C15266-10008

Field: WV 23 SW

Reported Date:	Printed Dat	e:2015-09-25			SC	DIL TES	T REPO	RT									Page:1
Sample Number	Legal Land Descpt:	Depth	Lab Number	Organic Matter	Phospho Bicarb	rus - P ppm Bray-P1	Potassium K ppm	Magnes Mg pp		Calcium Ca ppm	pH pH B	uffer r	CEC meq/100g			Base Satu % Ca	
1 2	SW 23-14-21 SW 23-14-21	6 24	52239 52240	6.1 2.4	20 M	31 M	517 VH 297 H	825 H 1205 V			7.5 8.1		29.6 36.1	4.5 2.1	23.2 27.8		0.9 0.9
Sample Number	Sulfur S ppm Ibs/ac	Nitrate Nitro NO3-N ppm Ibs	-	Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm		Soron Sinnm	Soluble Salts mhos/c	Saturation %P	n Alum Alı	ninum ppm	Saturatio %AI	n K/Mg Ratio	g ENR	Chloride Cl ppm	Sodiui Na ppi
1 2	127 VH 229 56 VL 302	13 M 4 VL	23 22							16 H	2	57	0.0 G		9 74 3 36		35 L 43 L
	ERY LOW, L = LOW, M	= MEDIUM, H	= HIGH, \	/H = VER	-	RTILITY G	= MARGINAL, M UIDELINES		ERATE F	PHYTO-TOXI	C, T = F	РНҮТС	D-TOXIC, S	T = SE	VERE	РНҮТО-Т	OXIC
Sample Number	Previous Crop	Intended C	rop	Yie	eld Goal T	Lime ons/Acre	N P2O	5 K2O	Mg	Ca	S		Zn M	Mn	Fe	Cu	В

* Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

* If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By:

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L.

Report Number: C16125-10072 Account Number: 98019

To: REDFERN FARM SERVICES

PO BOX 489

Attn: CRAIG ALLISON 204-328-7408

101 SECOND AVE

RIVERS, MB R0K 1X0

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

For: WIM VERBRUGGEN

C16125-10072

Field: NE 23-14-21

Reported Date:	Printed Date	:May 6, 2016			SC	DIL TES	T REPO	DRT								F	Page: 1 / 1
Sample Number	Legal Land Descpt:	Depth	Lab Number	Organic Matter	Phospho Bicarb	rus - P ppm Bray-P1	Potassiu K ppm		gnesium g ppm	Calci Ca pr		pH H Buffer	CEC meq/100g			Base Satu % Ca %	rations 6 H % Na
RL23NE-A RL23NE-B		6 24	15758 15759	5.6 2.5	18 L	24 L	284 VH 147 M		40 H 45 H	3500 N 3850 N		.1 .6	25.0 25.8	2.9	18.0	70.0 8 74.5	
Sample Number	Sulfur S ppm lbs/ac	Nitrate Nitro NO3-N ppm lbs/	/ac	Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm	Copper Cu ppm	Boron B ppm	Solul Salt mmhos	s/cm	70 F	Ai ppm	Saturatio %Al	Ratic)	Chloride Cl ppm	Na ppm
RL23NE-A RL23NE-B	13 VL 23 12 VL 65	9 L 4 VL	16 22								13 H	223	0.0 G	0.16 0.06	69 37		14 VL 18 VL
W VL = VE	RY LOW, L = LOW, M =	MEDIUM, H	= HIGH, \	/H = VER			= MARGINAL, UIDELINE			E PHYT	O-TOXIC	5, T = PHYT	O-TOXIC, S	T = SE	VERE	PHYTO-T	OXIC
Sample Number	Previous Crop	Intended Cr	rop	Yie	eld Goal T	Lime ons/Acre	N P2	D5 M	(20	Mg	Са	S	Zn M	<i>l</i> In	Fe	Cu	В

* Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

* If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By:

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L.

Report Number: C16125-10071 Account Number: 98019

To: REDFERN FARM SERVICES

PO BOX 489

Attn: CRAIG ALLISON

101 SECOND AVE

RIVERS, MB R0K 1X0

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

For: WIM VERBRUGGEN

C16125-10071

Field: SE 23-14-21

204-328-7	408															
Reported Date:	Printed Dat	e: May 6, 2016		SC	DIL TES	T REP	ORT									Page: 1 / 1
Sample Number	Legal Land Descpt:	Depth Lab Numb	er Matter	Bicarb	rus - P ppm Bray-P1		า	lagnesium Mg ppm	Ca pp	m pł	pH H Buffer		% K	% Mg		6Н %Na
RL23SE-A RL23SE-B		6 1575 24 1575		12 L	18 VL	132 M 79 L		325 M 700 M	3430 ⊢ 6910 V			20.2 40.6		13.4 14.4		0.4 0.2
Sample Number	Sulfur S ppm Ibs/ac	Nitrate Nitrogen NO3-N ppm Ibs/ac	Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm	Copper Cu ppm	Boro B pp			turation %P	Aluminum Al ppm	Saturatic %Al	on K/Mg Ratio	ENR	Chloride Cl ppm	Sodium Na ppm
RL23SE-A RL23SE-B	8 VL 14 14 VL 76	7 L 13 3 VL 16								1 VL	377	0.0 G		3 57 3 35		17 L 18 VL
W VL = VI	ERY LOW, L = LOW, M :	= MEDIUM, H = HIGH	, VH = VEF		GOOD, MA : RTILITY G				TE PHYTO	D-TOXIC,	T = PHYT	D-TOXIC, S	ST = SE	VERE	PHYTO-T	DXIC
Sample Number	Previous Crop	Intended Crop	Yi	eld Goal T	Lime ons/Acre	N P2	205	K2O	Mg	Ca	S	Zn	Mn	Fe	Cu	В

* Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

* If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By:

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L.

Report Number: C16125-10074 Account Number: 98019

To: REDFERN FARM SERVICES

PO BOX 489

Attn: CRAIG ALLISON 204-328-7408

101 SECOND AVE

RIVERS, MB R0K 1X0

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

For: WIM VERBRUGGEN

C16125-10074

Field: SE 24-14-21

Reported Date:	Printed Da	te: May 6, 2016		SC	DIL TES	T REP	ORT							F	Page: 1 / 1
Sample Number RL24SE-A RL24SE-B	Legal Land Descpt:	Depth Lab Numbe 6 15762 24 15763	4.4	Phospho Bicarb 7 VL	rus - P ppm Bray-P1 10 VL	Potassi K ppn 136 M 62 L	n M I 70		Calcium Ca ppm 3920 H 6670 H	pH Buffer 7.6 8.3	CEC meq/100g 25.8 41.5	<u>% к</u> 1.4		76.1	rations <u>6 H % Na</u> 0.2 0.2
Sample Number RL24SE-A RL24SE-B	Sulfur S ppm Ibs/ac 11 VL 20 17 VL 92	Nitrate Nitrogen NO3-N ppm Ibs/ac 9 L 16 3 VL 16	Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm	Copper Cu ppm	Boron B ppm	Solul Salt mmhos	s Satur s/cm	ation Aluminum P Alppm VL 171	Saturatio %Al 0.0 G	0.06	ENR 5 56 2 33	Chloride Cl ppm	Sodium Na ppm 14 VL 21 VL
Sample	'ERY LOW, L = LOW, M Previous Crop	= MEDIUM, H = HIGH, Intended Crop		SOIL FE	RTILITY G	UIDELINE	ES (Ibs/	ac)	E PHYTO-T					PHYTO-TO	DXIC
Number		Intended Crop	TIE	nd Goal T	ons/Acre	N P.	205 r	20	Mg C	a o	20		ге	Cu	B

* Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

* If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By: -

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L.

Report Number: C16125-10073 Account Number: 98019

To: REDFERN FARM SERVICES

PO BOX 489

Attn: CRAIG ALLISON 204-328-7408

101 SECOND AVE

RIVERS, MB R0K 1X0

A & L Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

For: WIM VERBRUGGEN

C16125-10073

Field: SW 24-14-21

SOIL TEST REPORT Page: 1 / 1 **Reported Date:** Printed Date: May 6, 2016 Sample Lab Organic Phosphorus - P ppm Potassium Magnesium Calcium pН CEC Percent Base Saturations Legal Land Descpt: Depth Number Number Matter Bicarb Bray-P1 K ppm Mg ppm Ca ppm pH Buffer meq/100g % K % Mg % Ca % H % Na RL24SW-A 6 15760 5.0 11 L 16 VL 210 H 660 H 3310 M 7.2 23.7 2.3 23.2 69.8 4.5 0.2 RL24SW-B 24 15761 2.1 100 L 965 H 5020 H 8.0 33.4 0.8 24.1 75.2 0.2 Saturation Aluminum Saturation K/Mg ENR Sulfur Nitrate Nitrogen Soluble Chloride Sodium Sample Zinc Manganese Iron Boron Copper NO3-N CI S Salts Number Zn ppm Mn ppm Fe ppm Cu ppm B ppm %P Al ppm %AI Ratio Na ppm lbs/ac ppm lbs/ac mmhos/cm ppm mag RL24SW-A 5 M 433 12 VL VL 20 11 M 20 0.0 G 0.10 63 11 RL24SW-B 27 12 VL 65 5 L 0.03 33 17 VL VL = VERY LOW, L = LOW, M = MEDIUM, H = HIGH, VH = VERY HIGH, G = GOOD, MA = MARGINAL, MT = MODERATE PHYTO-TOXIC, T = PHYTO-TOXIC, ST = SEVERE PHYTO-TOXIC W SOIL FERTILITY GUIDELINES (lbs/ac) Lime Sample **Previous Crop** Intended Crop Yield Goal Ν P205 K20 Mg Ca S Zn Mn Fe Cu в Number Tons/Acre

* Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

* If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By:

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L.

In "certain areas" it is Manitoba Conservation and Water Stewardship policy to consider a manure storage facility permit if the operation shows it has access to sufficient suitable land to apply manure at a rate equivalent to one times the crop removal rate of phosphorus.

Is the livestock operation located in "certain areas"? X no

yes

In areas which are not considered to be "*certain areas*", Manitoba Conservation and Water Stewardship may issue a manure storage facility permit, if the operation shows it has access to sufficient suitable land to apply manure at a rate equivalent to two times the crop removal rate of phosphorus.

For more information on obtaining a manure storage facility permit, please contact Manitoba Conservation and Water Stewardship, Environmental Approvals branch at (204) 945-5081.

Use the **Land Base Calculator** to calculate the minimum area required for manure application.

Total minimum area required for manure application at two times crop removal, for operations outside of Hanover and La Broquerie	1,302
Total minimum area required for manure application at one times crop removal, for operations within Hanover and La Broquerie AND For the long-term sustainability of operations outside of Hanover and La Broquerie	2,232

For more information on completing land base calculations, call Manitoba Agriculture, Food and Rural Initiatives (MAFRI) at (204) 945-3869 in Winnipeg.

X Land Base Calculator attached

Land Base Requirement Summary

By comparing the land **available** for manure application with the land **required** for manure application, state whether sufficient suitable land for manure application:

has not been identified

has been identified for two times the crop removal rate of phosphorus (for operations outside of the RMs of Hanover or La Broquerie)

 \fbox has been identified for one time the crop removal rate of phosphorus (for 'Rki "

"""""Rtqf wevkqp"Ur gekcn'Rkqv'Rtqlgev)

Pig/Operation Type	Storage Type	Volatilization	Animal Numbers	Weight In	Weight Out	Average Animal Wt	Days on Feed per Cycle	Number of Cycles for the Place per Year	Feed Consumed Per Pig Per Day	Protein	N Excreted Per Herd Adjusted for Storage N	Phosphorus Content of Feed (DM)	P2O5 Excreted Per Herd Per Year
			(Places)	(lb)	(lb)	(lb)	(days)	(days)	(kg/day)	%	(lb/yr/herd)	%	(lb/yr/herd)
Gestating Sow	Liquid Uncovered Earthen	30%		447	630	539	121	3	2.3	14%	0	0.53%	0
Nursing Sow	Liquid Uncovered Earthen	30%		539	539	539	21	15.2	6.5	20%	0	0.63%	0
Nursing Litter	Liquid Uncovered Earthen	30%		3.1	13.6	8	21	15.2	0	n/a	0	n/a	0
Live Cull Sow	Liquid Uncovered Earthen	30%		630	630	630	14	26.1	2.3	14%	0	0.46%	0
Bred Gilt	Liquid Uncovered Earthen	30%		340	447	394	121	3	2.3	14%	0	0.53%	0
Gilts (Purchased)	Liquid Uncovered Earthen	30%		290	340	315	28	13.0	3.2	16%	0	0.46%	0
Boars (Purchased)	Liquid Uncovered Earthen	30%		270	660	465	365	1	2.5	14%	0	0.46%	0
Weanlings	Liquid Uncovered Earthen	30%		13.6	61.6	38	52	6.9	0.7	20%	0	0.64%	0
Growers/Finishers	Liquid Uncovered Earthen	30%	6000	61.6	280	171	112	3	2.8	16%	155456	0.46%	76806
Sows, farrow to 6.2 kg	Liquid Uncovered Earthen	30%		n/a	n/a	n/a	365	1	n/a	n/a	0	n/a	0
Sows, farrow to 28 kg	Liquid Uncovered Earthen	30%		n/a	n/a	n/a	365	1	n/a	n/a	0	n/a	0
Sows, farrow to finish	Liquid Uncovered Earthen	30%		n/a	n/a	n/a	365	1	n/a	n/a	0	n/a	0

Last Revised April 13, 2016

	Rem	oval	Uptake					Rem	oval	Uptake
Crop	P2O5	Ν	Ν	Units	Yield	Units	Acreage	P2O5	Ν	Ν
								(lb)	(lb)	(lb)
Alfalfa	13.8	58	58	lb/ton		ton/ac		-	-	-
Barley Grain	0.42	0.97	1.39	lb/bu	67.6	bu/ac	264	7495	17311	24806
Barley Silage	11.8	34.4	34.4	lb/ton		ton/ac		-	-	-
Canola	1.04	1.93	3.19	lb/bu	37.42	bu/ac	1010	39306	72943	120563
Corn Grain	0.44	0.97	1.53	lb/bu		bu/ac		-	-	-
Corn Silage	12.7	31.2	31.2	lb/ton		tons/ac		-	-	-
Dry Edible Beans	1.39	4.17		lb/cwt		cwt/ac		-	-	-
Fababeans	1.79	5.02	8.4	lb/cwt		cwt/ac		-	-	-
Flax	0.65	2.13	2.88	lb/bu		bu/ac		-	-	-
Grass Hay	10	34.2	34.2	lb/ton		tons/ac		-	-	-
Lentils	1.03	3.39	5.08	lb/cwt		cwt/ac		-	-	-
Oats	0.26	0.62	1.07	lb/bu		bu/ac		-	-	-
Pasture (grazed)	10	34.2	34.2	lb/ton	0.5	ton/ac		-	-	-
Peas	0.69	2.34	3.06	lb/bu		bu/ac		-	-	-
Potatoes	0.09	0.32	0.57	lb/cwt		cwt/ac		-	-	-
Rye	0.45	1.06	1.67	lb/bu		bu/ac		-	-	-
Soybeans	0.84	3.87	5.2	lb/bu	34.6	bu/ac	170.9	4967	22884	30748
Sunflower	1.1	2.8		lb/cwt		cwt/ac		-	-	-
Wheat - Spring	0.59	1.5	2.11	lb/bu	54.86	bu/ac	1010	32691	83113	116912
Wheat - Winter	0.51	1.04	1.35	lb/bu		bu/ac		-	-	-
						Sub Total	2454.9	84460	196251	293030
			Estimated	d Average R	emoval/Up	take (lb/ac)		34.4	79.9	119.4
					Addi	tional Acres				
				Crop Plann	ed on Addi	tional Acres				
					Тс	tal Acreage	2454.9			
Note:	Additional	acres inclu	de acres fo	r which crop	removal o	r soil data is	limited or u	navailable.		

Last revised August 20, 2014

Species	Animal Category/Operation type	N	P2O5
		(lb/year)	(lb/year)
Pigs	Gestating Sow	0	0
	Nursing Sow	0	0
	Nursing Litter	0	0
	Live Cull Sows	0	0
	Bred Gilts	0	0
	Gilts	0	0
	Boars	0	0
	Weanlings	0	0
	Growers/finishers	155456	76806
	Sows, farrow to 5 kg	0	0
	Sows, farrow to 23 kg	0	0
	Sows, farrow to finish	0	0
Beef	Mature Cows (>2 years old)	0	0
	Bred Heifer (14 mo - 2 years)	0	0
	Replacement Heifers (7 mo-14 mo)	0	0
	Unweaned Calves (0-7 mo)	0	0
	Bulls	0	0
	Mature Cows and Bred Heifers, plus associated livestock	0	0
	Feedlot Cattle - long keep	0	0
	Feedlot Cattle - short keep	0	0
	Backgrounders - pasture	0	0
	Backgrounders - confined	0	0
Dairy	Lactating cow	0	0
•	Dry cow	0	0
	Calf, 0-3 months	0	0
	Calf, 4-13 months	0	0
	Replacements, >13 months	0	0
	Mature Cows, plus assoc livestock	0	0
Sheep	Ewes	0	0
	Replacement Ewes	0	0
	Rams	0	0
	Lambs	0	0
	Ewes, plus assoc livestock	0	0
	Feeder	0	0
Chickens	Broilers	0	0
entercents	Broiler Breeder Pullets	0	0
	Broiler Breeder Hens	0	0
Layers	Layer Pullets	0	0
,	Layer Hens	0	0
	Breeder Pullets	0	0
	Breeder Hens	0	0
Turkeys	Broiler Hens (0-9 wks)	0	0
. unicys	Hens (0-11 wks)	0	0
	Heavy Hens (0-14 wks)	0	0
	Light Toms (0-12 wks)	0	0
	Toms (0-13 wks)	0	0
	Heavy Toms (0-15 wks)	0	0
	Breeding Hen Growers (0-30 wks)	0	0
	- · ·		
	Breeding Hens (30-60 wks) Broading Tom Grower (0, 18 wks)	0	0
	Breeding Tom Grower (0-18 wks)	0	0
	Breeding Tom Grower (0-30 wks)	0	0
	Breeding Tom (30-60 wks)	0	0
	Total	155456	76806

Note:

Be sure all livestock species on your farm are represented in this table, not just the livestock in the proposed expansion.

Nutrients Excreted	lbs
Nitrogen	155456
P2O5	76806
Crop Nutrient Use	lb/ac
Nitrogen Uptake	119.4
P2O5 Removal	34.4
Land Base Requirements	acres
Acres for Nitrogen Uptake	1302
Acres for 2 x P2O5 Removal	1116
Acres for 1 x P2O5 Removal	2232

Wim Verbruggen Crop Insurance Records

Bushels

not seeded

Canola

Year Acres

RSW

Yield

Year	Acres	Yield	not seeded	Bushels
2015	130	45		5850
2013	130	48		6240
2011	120	28	10	3360
2015	140	45		6300
2013	140	48		6720
2011	140	28		3920
2015	50	45		2250
2013	150	48		7200
2011	140	28	10	3920
2015	140	45		6300
2013	140	48		6720
2011	130	28	10	3640
2014	145	39	5	5655
2012	150	37		5550
2014	95	39	5	3705
2012	100	37		3700
2014	130	34		4420
2012	130	41		5330
2014	130	34	5	4420
2013	135	41		5535
2014	65	34		2210
2012	65	41		2665
2011	65	30		1950
2014	130	36	20	4680
2014	120	36	10	4320
2015	65	44		2860
2015	80	44		3520
2013	145	37		5365
2011	100	30	30	3000
2015	150	44		6600
2013	150	37		5550
2011	120	30	30	3600
2015	110	45		4950
2013	110	36		3960
2015	110	45		4950
2013	110	36		3960
	4260		135	164875

Total Acres

Weighted Yield

4395

37.51

2015	100	66	0	6600
2015	145	66		9570
2014	125	55	5	6875
2014	125	55	5	6875
2014	145	55	5	7975
2013	150	67		10050
2013	100	67		6700
2015	130	66		8580
2011	130	38		4940
2015	85	66		5610
2011	125	38	10	4750
2015	65	66		4290
2013	65	54		3510
2015	150	66		9900
2015	130	66		8580
2014	135	57	10	7695
2012	140	55		7700
2014	140	57	10	7980
2012	150	55		8250
	2335		45	136430.0

Total Acres	2380
Weighted Yield	57.32

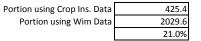
Barley

Year	Acres	Yield	not seeded	Bushels
2015	30	64	0	1920.0
2015	125	64		8000.0
2011	140	76	10	10640.0
2015	100	51		5100.0
2011	90	76	5	6840.0
2014	105	77	5	8085.0
2014	105	77	5	8085.0
	695		25	48670.0

Total Acres	720
Weighted Yield	67.60

	Feed Wheat				
Year	Acres		Yield	not seeded	Bushels
2012	P	130	49		6370.0
2014	Ļ	130	64	10	8320.0
2012	P	70	49		3430.0
2012	P	50	49		2450.0
2012	P	100	49		4900.0
2014	ļ	135	64	5	8640.0
2015	5	150	51		7650.0
2013		130	72		9360.0
2013		135	72		9720.0
	-	1030		15	60840.0
			Total Acres	1045	
			Weighted Yield	58.22	J

		Soybeans						
Year		Acres		Yield		not seeded	Weighted Yld	
	2015		100		34			34
								34


ww

Year		Acres	Yield	not seeded	Bushels	_
	2012	70	44	0	3080	
	2012	140	44	0	6160	
		210		0	9240	

Total Acres	210
Weighted Yield	44.00

	Crop Ins.	Crop Ins.	Weighted Yield for wheat and
	Soil Zone B, Risk Area 6	Wim's Records	canola considering agreement land
Canola	37.1	37.51	37.42
Wheat	45.6	57.32	54.86
Barley	64.3	67.6	
Soybean	34.6	34	

Based on the fact the Wim only has one year of crop insurance data soybeans the Crop Insuance area data has been used for the area.

Benchmarks for Better Farm Management

Web address: http://www.mmpp.com/mmpp.nsf/mmpp_browser_fertilizer.html

MMPP Fertilizer Data Browser - (Query Help)

		Save Raw Dat	a New Searc
rds from the MAS	C database,	summarized	
4,729 acres			
34.6 Bushels /	acre (0.942	tonnes / acre)	
cre (actual produc	et):		
4.7 lbs / acre	(0.002 tonn	es / acre)	
29.1 lbs / acre	(0.013 ton	nes / acre)	
2.8 lbs / acre	(0.001 tonn	es / acre)	
6.3 lbs / acre	(0.003 tonn	les / acre)	
	4,729 acres 34.6 Bushels / cre (actual produc 4.7 lbs / acre 29.1 lbs / acre 2.8 lbs / acre	 4,729 acres 34.6 Bushels / acre (0.942 cre (actual product): 4.7 lbs / acre (0.002 tonn 29.1 lbs / acre (0.013 ton 2.8 lbs / acre (0.001 tonn 	34.6 Bushels / acre (0.942 tonnes / acre) cre (actual product): 4.7 lbs / acre (0.002 tonnes / acre) 29.1 lbs / acre (0.013 tonnes / acre) 2.8 lbs / acre (0.001 tonnes / acre)

CANADA - MANITOBA

Agrilnsurance

Ag. Contract Name

13 603027 VERBRUGGEN FARMS LTD

TANIJARY 22. 2016			
	TANTIADV	22	2016

			A C R	YLD./A	CRE				
CROP	VARIETY	DATE SEEDED	E	FLD.	AREA AVG.	FE N	<u>ERTILI</u> P	ZER K	S
NW 19-14-20 W B06 2015 RED SPRING WHEAT	CARDALE	05/MAY	100	6.6	48	9.0	40		10
BARLEY	CHAMPION	27/MAY	30	64	73	80	30		10
SW 19-14-20 W B06 2015 RED SPRING WHEAT	CARDALE	04/MAY	145	66	48	90	40		10
SW 30-14-20 W B06 2015 BARLEY	CHAMPION	27/May	125	6.4	73.	80	30		10
NE 01-14-21 W B06 2015 ARGENTINE CANOLA 2014 RED SPRING WHEAT TOO WET TO SEED	1012 RR <nexera> CARDALE</nexera>	03/JUN 25/MAY	130 125 5	45 55	44 45	100 75	40 30		25. 10
2013 ARGENTINE CANOLA 2012 FEED WHEAT 2011 ARGENTINE CANOLA TOO WET TO SEED	VT 500 G <proven> 9 WFT 409 5440 <invigor> PHS0</invigor></proven>	23/MAY 30/APR 26/MAY	130 130 120 10	48 49 28	46 55 27	160 70 110	30 25 30		25 10 20
NW 01-14-21 W B06 2015 ARGENTINE CANOLA 2014 FEED WHEAT	1012 RR <nexera> PASTEUR</nexera>	02/JUN 18/MAY	140 130	45 64	44 53	100	40		25
TOO WET TO SEED 2013 ARGENTINE CANOLA 2012 FEED WHEAT WINTER WHEAT 2011 ARGENTINE CANOLA	VT 500 G <proven> 9 WFT 409 NO VAR 5440 <invigor> PHS0</invigor></proven>	22/MAY 28/APR 12/SEP 25/MAY	10 140 70 70 140	4.8 49 44 28	46 55 59 27	160 70 70 110	30 25 20 30		25 10 8 20
SW 01-14-21 W B06 2015 ARGENTINE CANOLA	1012 RR <nexera></nexera>	02/JUN	50	45	44	100	40		25
SOYBEANS 2014 RED SPRING WHEAT TOO WET TO SEED 2013 ARGENTINE CANOLA	PEKKO R2 <brett youn<br="">CARDALE VT 500 G <proven> 9</proven></brett>	25/MAY 24/MAY 22/MAY	100 145 5 150	34 55 48	38 45 46	5 75 160	15 30 30		5 10 25
2012 FEED WHEAT FEED WHEAT 2011 ARGENTINE CANOLA TOO WET TO SEED	WFT 409 PASTEUR 5440 <invigor> PHS0</invigor>	27/APR 26/APR 25/MAY	50 100 140 10	49 49 49 28	55 55 27	70 70 110	25 25 30		25 10 10 20
SW 12-14-21 W B06 2015 ARGENTINE CANOLA 2014 FEED WHEAT	1012 RR «NEXERA» PASTEUR	02/JUN 17/MAY	140 135	4.5 64		100	40		25
TOO WET TO SEED 2013 ARGENTINE CANOLA 2012 WINTER WHEAT 2011 ARGENTINE CANOLA TOO WET TO SEED	VT 300 G <proven> 9 NO VAR 5440 <invigor> PHS0</invigor></proven>	21/MAY 11/SEP 24/MAY	5 140 130 10	48 44 28	46 59 27	160 70 110	30 20 30		25 8 20
NW 13-14-21 W CO6 2015 FEED WHEAT 2014 ARGENTINE CANOLA TOO WHT TO SEED	PASTEUR VT 500 G <proven> [9]</proven>	29/APR 29/MAY	150 145	51 39	59 	85	30		
2013 RED SPRING WHEAT 2012 ARGENTINE CANOLA 2011 BARLEY TOO WET TO SEED	5602HR 1012 RR <nexera> CONLON</nexera>	17/MAY 19/MAY 17/MAY	150 150 140 10	67 37 76	66 33 32	90 130 50	15 30 15		10 15 10
SW 13-14-21 W CO6 2015 FEED WHEAT 2014 ARGENTINE CANOLA TOO WET TO SEED	PASTEUR VT 500 G <proven> 9</proven>	30/APR 29/MAY	100 95 5	51 39	59 37	85	30		25
2013 RED SPRING WHEAT 2012 ARGENTINE CANOLA 2011 BARLEY TOO WHT TO SEED	5602HR 1012 RR <nexera> CONLON</nexera>	18/MAY 20/MAY 18/MAY	100 100 90 5	67 37 76	66 33 32	90 130 50	15 30 15		10 15 10
NE 22-14-21 W B06 2015 RED SPRING WHEAT 2014 ARGENTINE CANOLA Yields are in imperial units (bushels,	CARDALE L154 <invigor></invigor>	01/MAY 03/JUN	130 130	66 34	48 36	80 80	30 20		10 25

Yields are in imperial units (bushels, pounds, cwt or tons).

The yields shown are based on information received to date and are subject to change. HPVR062A

PAGE: 1

CANADA - MANITOBA

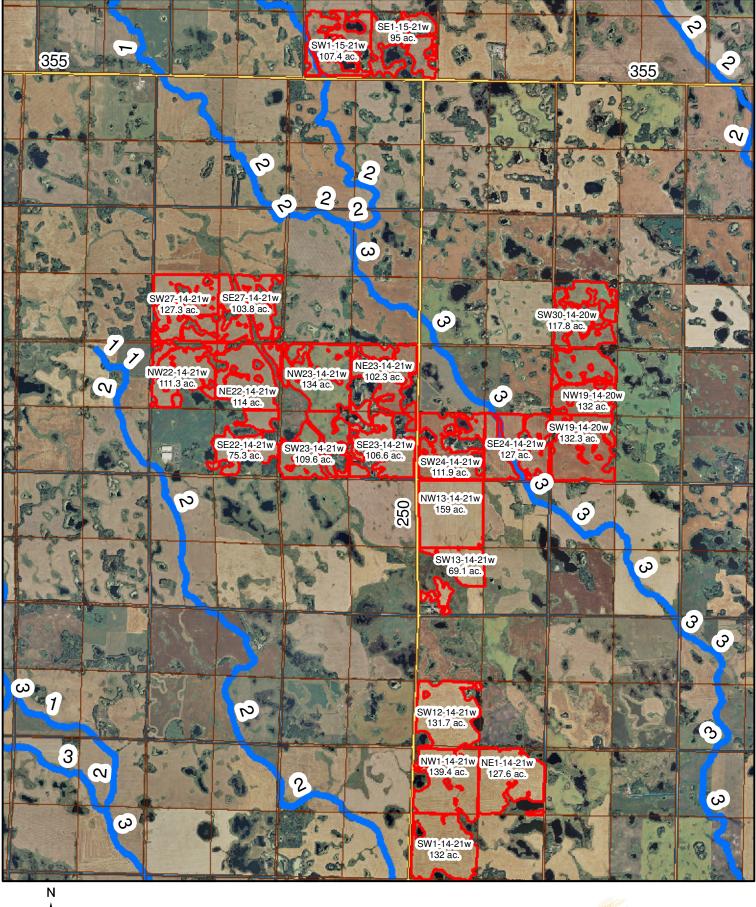
Agrilnsurance

PAGE: Crop Management History

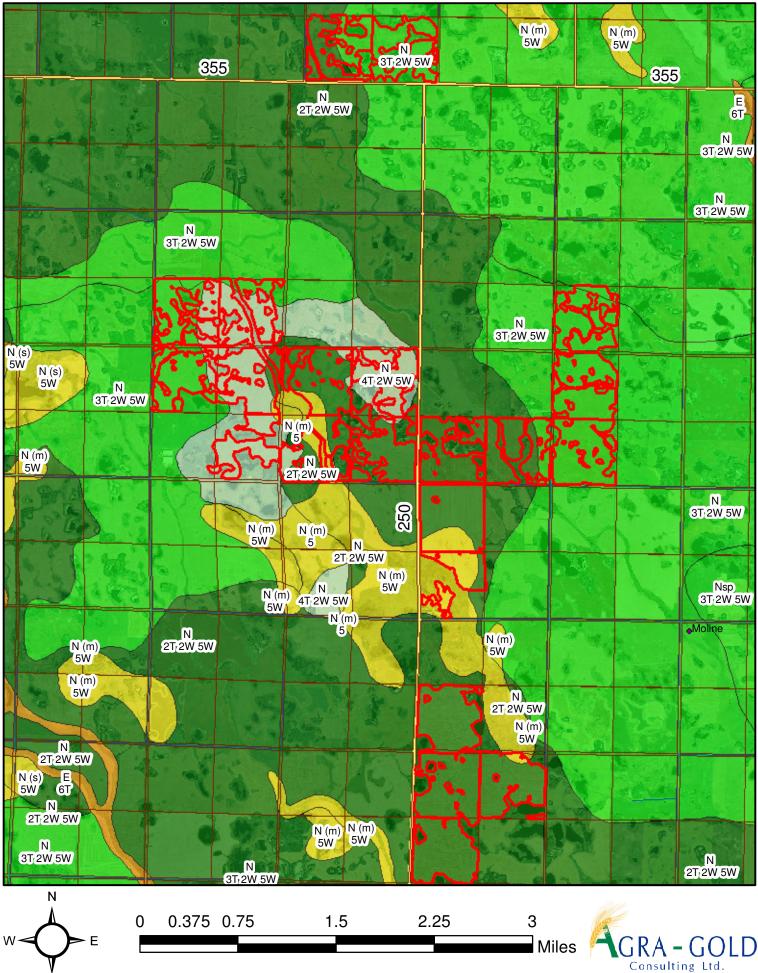
Ag. Contract Name

13 603027 VERBRUGGEN FARMS LTD

JANUARY 22, 2016


T2 002051 A	ERBRUGGEN FARMS LIT		Δ	ſ			511101	ARI	,
			A C R	YLD./A	CRE	1			
0.0.0.0		DATE	E	FLD.	AREA		RTIL		
CROP	VARIETY	SEEDED	S	FLD.	AVG.	N	P	K	S
NE 22-14-21 W B06 2013 FEED WHEAT	PASTEUR	15/MAY	130		79	100	15	1. 1.	1
2013 ARGENTINE CANOLA	VT 500 G <proven> 9</proven>	22/MAY	130	41	33	130	40		1
2011 RED SPRING WHEAT	5602HR	19/MAY	130	38	40	60	15	·	1
NW 22-14-21 W B06	2								
2015 RED SPRING WHEAT 2014 ARGENTINE CANOLA	CARDALE L154 <invigor></invigor>	01/MAY	85 130	6.6 34	48	80	30		1
TOO WET TO SEED		07/JUN	130	34	36	80	20		2
2013 FEED WHEAT	PASTEUR	16/MAY	135	7.2	79	100			1
2012 ARGENTINE CANOLA 2011. RED SPRING WHEAT	VT 500 G <proven> 9 5602HR</proven>	25/MAY 20/MAY	135	41 3.8	33	130 60	40 15		1
TOO WET TO SEED			10		4.9		**		·····
SE 22-14-21 W B06									
2015 RED SPRING WHEAT	CARDALE	02/MAY	6.5		48		30		10
2014 ARGENTINE CANOLA 2013 RED SPRING WHEAT	L154 <invigor> CARBERRY</invigor>	02/JUN 15/MAY	65 65	34 54	36 67	80 100	20 15		21 10
2013 ARGENTINE CANOLA	VT 500 G <proven> 9</proven>		65	41	33	130	40		1
2011 ARGENTINE CANOLA	1012 RR <nexera></nexera>	09/JUN	65	30	27	150	40	10	25
NW 23-14-21 W B06									
2015 RED SPRING WHEAT	CARDALE	06/MAY	150	6.6	48	90	40		1(
2014 ARGENTINE CANOLA TOO WET TO SEED	D3153 <dupont></dupont>	04/JUN	130 20	36	36	90	40		25
SW 23-14-21 W B06				2					
2015 RED SPRING WHEAT	CARDALE	03/MAY	130	6.6	48	90	40		1
2014 ARGENTINE CANOLA TOO WET TO SEED	D3153 <dupont></dupont>	04/JUN	120 10	36	36	90	40		25
SE 27-14-21 W B06									
2015 ARGENTINE CANOLA ARGENTINE CANOLA	1990 <canterra> VT 500 G <proven> 9</proven></canterra>	24/MAY 26/MAY	6.5 80	4.4 4.4	44 44	80 80	30 30		20 20
2014 RED SPRING WHEAT	CARDALE	28/MAY	135	57	45	70	15		10
TOO WET TO SEED 2013 ARGENTINE CANOLA	1012 RR <nexera></nexera>	27/MAY	10 145	3.7	46	100	15		21
2012 RED SPRING WHEAT	5603 HR	17/MAY	140	55	51	70			1(
2011 ARGENTINE CANOLA TOO WET TO SEED	8440 <invigor> PHS0</invigor>	0.8/JUN	100 30		27	150	40	10.	21
SW 27-14-21 W B06 2015 ARGENTINE CANOLA	1990 <canterra></canterra>	23/MAY	150	44	44	80	30	2	20
2014 RED SPRING WHEAT	CARDALE	28/MAY	140		45	70	15		10
TOO WET TO SEED 2013 ARGENTINE CANOLA	1012 RR <nexera></nexera>	27/MAY	150	27	A C	100	1 5		25
2013 ARGENIINE CANOLA 2012 RED SPRING WHEAT	5603 HR	16/MAY	150 150	37 55	46 51	100	15 15		25 10
2011 ARGENTINE CANOLA TOO WET TO SEED	8440 <invigor> PHS0</invigor>	08/JUN	120 30	30	27	150	40	10	25
				1. N					_
SE 01-15-21 W B06 2015 ARGENTINE CANCLA	1012 RR <nexera></nexera>	22/MAY	110	4.5		100			21
2014 BARLEY	NEWDALE	01/JUN	105	77	57	70	25		1(
TOO WET TO SEED		0 1 /rea	5						
2013 ARGENTINE CANOLA	73-75 RR <dekalb></dekalb>	24/MAY	110	36	46	120	30		23
W 01-15-21 W B06	1010	21 /27237	110	4 5	**	100	10		
015 ARGENTINE CANOLA 014 BARLEY	1012 RR <nexera> NEWDALE</nexera>	21/MAY 01/JUN	110 105	45 77	44 57	100	40		2! 1(
TOO WET TO SEED 2013 ARGENTINE CANOLA	73-75 RR <dekalb></dekalb>	24/MAY	5 110	36	46	120	30		25
			. * · · ·						
							100	2	
							17		
Yields are in imperial units (bush	als pounds owt or tops)	and the second second							

Yields are in imperial units (bushels, pounds, cwt or tons).


The yields shown are based on information received to date and are subject to change.

2

Verbruggen Drains Map

Wim Verbruggen Ag. Capability Map

S

Wim Verruggen Crop Rotation and Acre Calculation

			Rotation					Crop Insurance		Ag Capability		
FieldName	Size	Outside Perimeter	Perimeter Setback	GPS Ac	Canola	wheat		Soybeans	Zone	Best Soil		Acres
SW12-14-21w	131.7	14211.0	3.2	128.5	42.8	42.8	42.8	,	b	2t		
SW1-14-21w	132.0	13489.6	3.0	128.9	43.0	43.0	43.0		b	2t		
NW1-14-21w	139.4	19264.6	4.4	135.0	45.0	45.0		45.0	b	2t		
NE1-14-21w	127.6	15443.1	3.5	124.2	41.4	41.4		41.4	b	2t	5w	6.5
NW13-14-21w	159.0	11441.0	2.6	156.4	78.2	78.2			b	2t	5w	35
SW13-14-21w	69.1	15521.2	3.5	65.6	32.8	32.8			b	3t	5w	54
SW19-14-20w	132.3	21256.9	4.8	127.5	42.5	42.5		42.5	b	3t		
NW19-14-20w	132.0	26574.1	6.0	126.0	42.0	42.0		42.0	b	3t		
SW30-14-20w	117.8	28883.5	6.5	111.3	37.1	37.1	37.1		b	3t		
SW1-15-21w	107.4	28191.2	6.4	101.1	33.7	33.7	33.7		b	3t		
SW23-14-21w	109.6	26361.0	6.0	103.6	34.5	34.5	34.5		b	4t	5w	46
NW23-14-21w	134.0	22408.8	5.1	128.9	43.0	43.0	43.0		b	2t	5w	23
SW27-14-21w	127.3	33715.1	7.6	119.7	59.9	59.9			b	4t		
SE27-14-21w	103.9	27801.5	6.3	97.6	48.8	48.8			b	4t		
NE22-14-21w	114.0	22897.8	5.2	108.8	54.4	54.4			b	4t	5w	3
NW22-14-21w	111.3	26261.7	5.9	105.3	52.7	52.7			b	3t	4t	
SE22-14-21w	75.4	17389.6	3.9	71.4	35.7	35.7			b	4t	5	1
SE1-15-21w	95.0	23314.1	5.3	89.7	29.9	29.9	29.9		b	3t		
SE23-14-21w	106.6	23536.2	5.3	101.3	50.6	50.6			b	4t		
NE23-14-21w	102.3	25066.6	5.7	96.7	48.3	48.3			b	4t		
SW24-14-21w	111.9	26240.4	5.9	106.0	53.0	53.0			b	2t		
SE24-14-21w	127.0	24467.4	5.5	121.4	60.7	60.7			b	3t		
	2566.5		111.6	2454.9	1010.0	1010.0	264.0	170.9	2454.9			168.5

* Note: In calculating the available acres for spreading, the total perimeter of each spread field was measured and then a 3 meter setback from this perimeter was calculated.

Long-Term Environmental Sustainability

The Government of Manitoba has included phosphorus as a nutrient by which applications of manure, synthetic fertilizer and municipal waste sludge to agricultural lands may be limited.

Over the short-term for fields with low phosphorus, regulations allow manure to be applied to meet the nitrogen requirements of the crop. This often results in overapplication of phosphorus and a build-up of phosphorus in soils. When soil test phosphorus levels reach 60 ppm Olsen P, manure application rates must consider how much phosphorus will be removed in the harvested portion of the crop. At 60 to 119 ppm Olsen P, the amount of phosphorus that can be applied cannot exceed twice (two times) what the crop can remove in order to slow the build-up of soil phosphorus. Once soil test phosphorus levels reach 120 ppm Olsen P, applications of phosphorus are restricted to no more than what the crop can remove (one times) in order to stop further soil test phosphorus build-up. At 180 ppm Olsen P, no additional phosphorus may be applied.

It should be noted that soil-test phosphorus levels of 60 ppm Olsen P or greater are agronomically very high and at these levels most crops will not benefit from additional phosphorus beyond starter phosphorus. As phosphorus levels build up in soils, the concentration of phosphorus in runoff increases.

Therefore, to remain environmentally sustainable over a long-term planning horizon of 25 years or more, phosphorus applications from applied manure and other nutrient sources such as commercial fertilizers must be balanced with crop removal to avoid further build-up in soils. Consequently, sufficient land must be available in relatively close proximity to the operation to balance phosphorus applications with crop phosphorus removals (one times) so that manure treatment and export of phosphorus from the region is not required.

 \boxed{X} I acknowledge that up to <u>2232</u> acres/hectares (one times crop removal from table above) may be required for the long term environmental sustainability of the operation.

10.0 Mortalities (Dead Animal) Disposal

The Livestock Manure and Mortalities Management Regulation sets requirements for the use, management and storage of livestock mortalities in agricultural operations. It helps ensure livestock mortalities are handled in an environmentally sound manner. Winter application of composted mortalities is prohibited.

Type of disposal:

rendering
composting
incineration (in approved incinerator only)

Mass Mortalities

A plan for <u>mass mortalities</u> is in place.

What steps will be taken in the case of mass mortalities?

MB Sustainable Development will be contacted to provide direction with respect to clean up activities and appropriate disposal land fill site. Incineration is a consideration subject to an approval from MB Sustainable Development.

11.0 Project Site Description: Land Use Planning Considerations

For assistance contact your Community and Regional Planning Regional Office.

Development Plan and Zoning Bylaw

The Planning District or Municipal Development Plan and Zoning By-law adopted under <u>*The Planning Act*</u>, set policy and regulations for the use and development of land. A proposed livestock operation must comply with the requirements of this bylaw. In the absence of a By-law, the <u>Provincial Planning Regulation</u> under <u>*The Planning Act*</u> applies.

Development Plan

Every Development Plan must contain a livestock operation policy (LOP) that identifies areas where new or expanded livestock operations may be allowed. It must also set general standards for the location and setback of livestock operations. Identifying the Development Plan's land use designation and policies (for the planning district or municipality that affect the site) will help confirm the project site's compliance. The Development Plan designations for the spread fields (if something other than agricultural) will indicate the potential loss of the fields in the future due to possible development.

Name of Planning District	Mid-West
Development Plan by-law number	No. 3-2009
Land use designation of project site	Rural Policy Area
Livestock operation policies – quote supportive policy numbers	Section 3.3.3
Other Development Plan policies – quote supportive policy numbers	
Non-supportive Development Plan policies	N/A

 \mathbf{X} The Development Plan livestock operation policies support the size and location of the proposed operation.

 \mathbf{X} The Development Plan designations support the long term use of the proposed spread fields.

Zoning By-law

Identifying the zoning for the project site, the proposed spread fields and the related zoning provisions, helps determine the project's compliance and the minimum separation distances needed between the operation and property boundaries and other natural features and land uses. The zoning bylaw contains specific regulations that govern location and setback of livestock operations.

What are the minimum project site requirements stated in the Zoning By-law?

	Project site dimensions	Minimum zoning bylaw site requirements
Minimum site area	320 acres	80 acres
Minimum site width	2,716 feet	1,000 feet
Minimum front yard	830 feet	125 feet
Minimum side and rear yard	side 350 feet; rear 3,415 fee	et 25 feet

If any project (front, side or rear) yard site dimensions are less than the Zoning By-law minimum, a Variation Order from the Municipality will be required.

Separation Distances (Zoning Bylaw or Provincial Planning Regulation)

Using the proposed size of the operation (see <u>Animal Units Calculation Table</u>) and the type of animal housing and manure storage facility, complete the following table.

Indicate the distance from:

- a. earthen manure storage facility or b. feedlot and
- c. animal confinement facility or d. <u>non-earthen</u> manure storage facility...

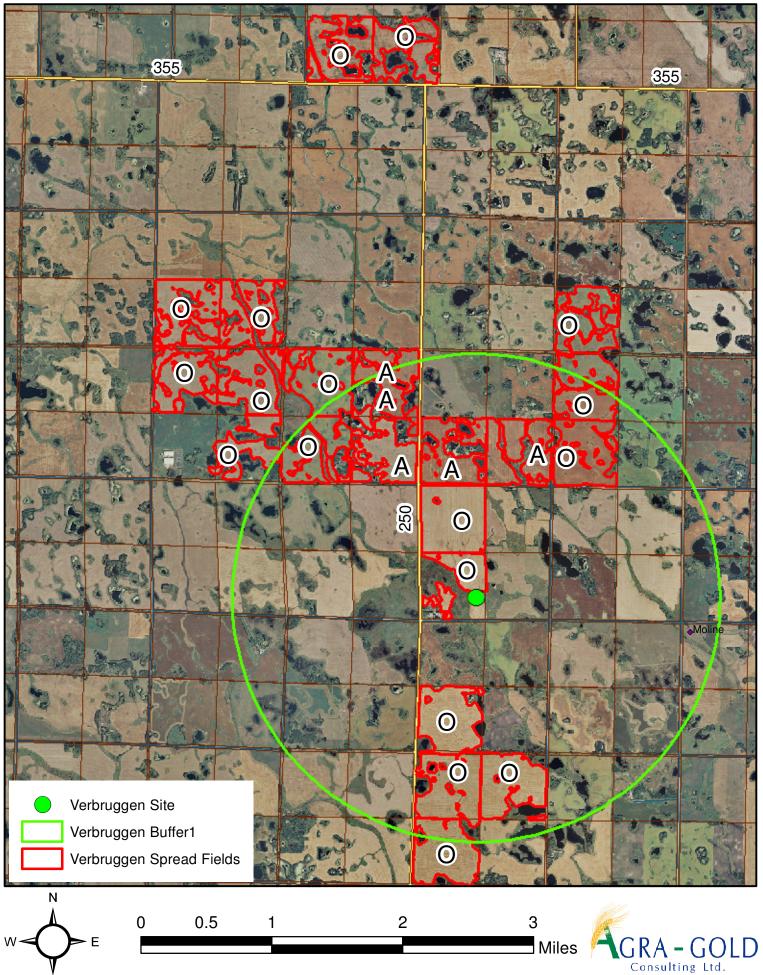
to the following land use features (if applicable)	Indicate r separation required i zoning byl Provincial Regulation (Check ap box(es)	n distance n the aw or I Planning n	If land use feature is less than the minimum separation distance				
	X a. □ b.	□ c. □ d.	Provide actual distance	Provide location or name of feature (e.g. Red River)			
Residence/ dwelling	750 m		938 m	NE 13-14-21 W			
Designated area (non- agricultural)	2,400 m		8,300 m	Cardale to northwest			
Surface water	100 m		115 m	pond to northeast			
Surface watercourse	100 m		100 m	drain to west			
Crown land			more than 1 mile				
Wildlife Management Area			more than 1 mile				
Livestock operation			more than 1 mile	SW 24-14-21 W NE 24-14-21 W			
Other significant features/land uses							

If Crown Lands are located within one mile, provide coding. Information can be obtained from the Interdepartmental Operations Crown Lands Plans through the <u>Manitoba</u> <u>Legislative Library</u> or contact Manitoba Conservation and Water Stewardship at (204) 619-2230.

If undesignated Crown Lands will be used for manure spreading purposes, including the laying of pipe or clearing activity, and use will require a Crown Lands General Permit disposition for the use and access of the subject Crown Lands Parcel(s).

In cases where minimum separation distances are not stated in the Zoning By-law or Development Plan, the minimum separation distances in the <u>Provincial Planning</u> <u>Regulation</u> apply.

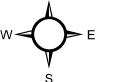
Note: If any separation distance is less than the zoning by-law minimum, a Variation Order will be required from the Municipality.


Feature	Structure	Minimum setback distance required	Provide actual distance (m)	Provide location or name of feature (e.g. Red River)
	Manure storage facility	100 m	100 m	drain to west
Surface watercourse,	Field storage	100 m	N/A	
sinkhole, spring, or well	Composing site	100 m	N/A	
	Confined livestock area	100 m	N/A	
	Manure storage facility	100 m	107 m	to east
Property Line	Composing site	100 m	N/A	
	Confined livestock area	100 m	N/A	

Setback Distances (Livestock Manure and Mortalities Management Regulation) Using the following table to indicate the distance from:

If any setback distances have not been met, please provide explanation below:

Show: a) location of the project site, location and ownership of spread fields and b) land uses and significant features including dwellings (i) within a 1 mile radius of the project site and (ii) within and adjacent to each spread field on a Land Use & Spread Field Map. (See Land Use & Spread Field Map Example).


Verbruggen Land Use & Spread Field Map

S

Wim Verbruggen Spread Acres

0

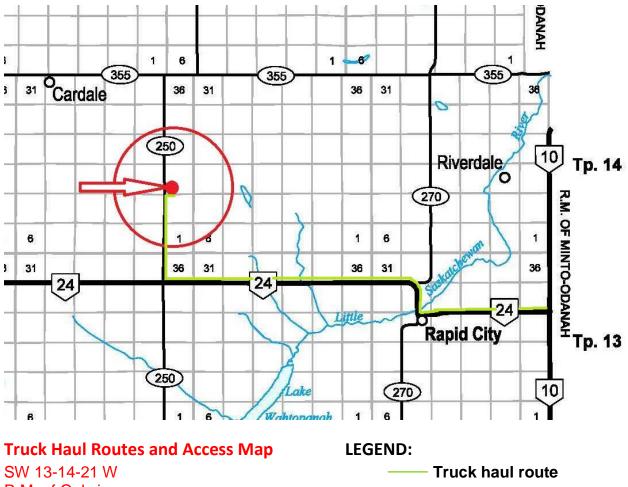
12.0 Truck Haul Routes and Access Points ?

One consideration with new or expanding livestock operations is the potential impact on existing public roads (municipal and provincial), access and the need for improvements or mitigation. Complete the following table.

	Estimated Average Number of times per day accessing		Access from PTH/PR onto site will mainly require a Left or Right Hand Turn Please check one				Access onto PTH/PR from site will mainly require a Left or Right Hand Turn Please check one			
Vehicle Type	Provincial Trunk Highway	Trunk Road		incial Highway TH)		ial Road PR)	Hig	ial Trunk hway 'TH)	-	ncial Road (PR)
	(PTH)	(PR)	LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT	LEFT	RIGHT
Truck				Х		Х	Х		Х	
Tractor Trailer										
Other – Specify										

Identify what roads and access points will be used for the proposed operation? (See Truck Haul Routes and Access Points Map for an example).

For help with mapping, contact your **Community and Regional Planning Regional** Office.


X Truck Haul Routes and Access Points Map attached

13.0 Conservation Data Centre Report

A Conservation Data Centre Report must be requested and the response attached to this site assessment. The request may be submitted electronically at: www.gov.mb.ca/conservation/cdc

Were rare species identified in the Conservation Data Centre Report?

	Yes
Х	No

R.M. of Oakview

Chunhe Liu

From: Sent: To: Subject: Friesen, Chris (CWS) <Chris.Friesen@gov.mb.ca> March-24-16 2:29 PM Chunhe Liu Verbruggen Prairie Farms 6000 feeder barn

Charles

Thank you for your information request. I completed a search of the Manitoba Conservation Data Centre's rare species database and found no occurrences at this time for your area of interest.

The information provided in this letter is based on existing data known to the Manitoba Conservation Data Centre at the time of the request. These data are dependent on the research and observations of CDC staff and others who have shared their data, and reflect our current state of knowledge. An absence of data in any particular geographic area does not necessarily mean that species or ecological communities of concern are not present; in many areas, comprehensive surveys have never been completed. Therefore, this information should be regarded neither as a final statement on the occurrence of any species of concern, nor as a substitute for on-site surveys for species as part of environmental assessments.

Because the Manitoba CDC's Biotics database is continually updated and because information requests are evaluated by type of action, any given response is only appropriate for its respective request. Please contact the Manitoba CDC for an update on this natural heritage information if more than six months pass before it is utilized.

Third party requests for products wholly or partially derived from Biotics must be approved by the Manitoba CDC before information is released. Once approved, the primary user will identify the Manitoba CDC as data contributors on any map or publication using Biotics data, as follows as: Data developed by the Manitoba Conservation Data Centre; Wildlife Branch, Manitoba Conservation and Water Stewardship.

This letter is for information purposes only - it does not constitute consent or approval of the proposed project or activity, nor does it negate the need for any permits or approvals required by the Province of Manitoba.

We would be interested in receiving a copy of the results of any field surveys that you may undertake, to update our database with the most current knowledge of the area.

If you have any questions or require further information please contact me directly at (204) 945-7747.

Chris Friesen Coordinator Manitoba Conservation Data Centre 204-945-7747 <u>chris.friesen@gov.mb.ca</u> http://www.gov.mb.ca/conservation/cdc/

-----Original Message-----From: Sent: March-17-16 12:07 PM To: Friesen, Chris (CWS) Subject: WWW Form Submission Below is the result of your feedback form. It was submitted by WWW Information Request () on Thursday, March 17, 2016 at 12:07:08

DocumentID: Manitoba_Conservation

Project Title: Verbruggen Prairie Farms 6000 feeder barn

Date Needed: 2016/04/01

Name: Charles Liu

Company/Organization: DGH Engineering Ltd.

Address: 12 Aviation Blvd.

City: St. Andrews

Province/State: Manitoba

Phone: 204-334-8846 ext. 214

Fax: 204-334-6965

```
Email: cliu@dghengineering.com
```

Project Description: a new proposed hog operation. the information is require by Livestock Technical Review Committee

Information Requested: A Conservation Data Centre Report

Format Requested: e-mail

Location: SW 13-14-21 W

action: Submit

14.0 Supporting Documents

Check off the supporting documents included in this submission:

- X Contact Information and Privacy and Publication Notice
- X Location Map (shows proposed project within rural municipality)
- X Animal Units Calculation Table
- X Water Requirement Calculation Table
- X Manure Production Calculator Table
- X Existing and Proposed Manure Storage Facility Dimensions Tables (if applicable)
- X Manure Application Field Characteristics Table
- X Crop Rotation Table
- X Recent manure application field soil sample results (Nitrate- N lb/ac at 0-6 and 6-24 inch depths, Phosphorus ppm at 0-6 inch depth)
- X Land Base Calculator
- X Project Site Plan (proposed operation showing current and proposed structures)
- X Land Use and Spread Field Map (location and ownership of operation, spread fields, location and distance to non-agricultural uses, development plan designation, zoning for project site and spread fields)
- X Truck Haul Routes and Access Points Map (with routes and access points on municipal/provincial roads and/or provincial trunk highways)
- X Response from the Conservation Data Centre
- Other, please specify:

15.0 Declaration

I do hereby verify that the information contained in the Site Assessment and all required Supporting Documents is accurate and complete to my knowledge
Date: June 1, 2016
Signature: