

R.M. OF **HANOVER**

PROVINCE OF MANITOBA INFRASTRUCTURE HIGHWAY PLANNING AND DESIGN BRANCH GEOGRAPHIC & RECORDS MANAGEMENT SECTION WINNIPEG JANUARY 2015

LEGEND

SHEET 1 of 1

BURNBRAE FARMS LTD.
LAYER BARN SE 5-6-5E

BUILDING AREA
N/A

CRAWN BY

SITE PLAN

| DRAWN BY | R. FLORES | SOUTH-MAN ENGINEERING

DATE DRAWIN
APRIL 2017

THIS DRAWING IS THE PROPERTY OF SOUTH-MAN ENGINEERING, WINNIPEG, MANITOBA, CANADA.

SP-1

SHEET NUMBER

LEGEND:

LO - LIVESTOCK OPERATIONS

R - RESIDENCE

----- - 3km NOTIFICATION AREA

FOR THE PUBLIC CONDITIONAL USE HEARING

PROJECT NAME BURNBRAE FARMS LTD. LAYER BARN SE 5-6-5E	BUILDING AREA N/A
SHEET TITLE LAND USE & SPREAD FIELD MAP	R. FLORES SOUTH-MAN ENGINEERING

DATE DRAWN
APRIL 2017

THIS DRAWING IS THE PROPERTY OF SOUTH-MAN ENGINEERING, WINNIPEG, MANITOBA, CANADA.

THIS DRAWING IS THE PROPERTY OF SOUTH-MAN ENGINEERING, WINNIPEG, MANITOBA, CANADA.

L0 - LIVESTOCK OPERATIONS

- SPREAD FIELDS (AGREEMENT)

- RESIDENCE

- 3km NOTIFICATION AREA

FOR THE PUBLIC CONDITIONAL USE HEARING

PROJECT NAME	BUILDING AREA
BURNBRAE FARMS LTD. LAYER BARN SE 5-6-5E	N/A
SHEET TITLE	DRAWN BY


LAND USE & SPREAD FIELD MAP

R. FLORES SOUTH-MAN ENGINEERING

SHEET NUMBER

SP-2B

DATE DRAWN DRAWING SCALE APRIL 2017 N.T.S. THIS DRAWING IS THE PROPERTY OF SOUTH-MAN ENGINEERING, WINNIPEG, MANITOBA, CANADA.

PROJECT NAME BURNBRAE FARMS LTD. LAYER BARN SE 5-6-5E	BUILDING AREA N/A	
SHEET TITLE TRUCK HAUL ROUTE	R. FLORES SOUTH-MAN ENG	INEERING
DATE DRAWN APRIL 2017	DRAWING SCALE N.T.S.	SP-3

THIS DRAWING IS THE PROPERTY OF SOUTH-MAN ENGINEERING, WINNIPEG, MANITOBA, CANADA.

Animal Units Calculator

			Current	Operation	Proposed	Operation
Α	В	С	D	E	F	G
Operation Type	Animal Categories	Animal Units per Head	Current Number of Animals ¹	Current Animal Units	Proposed Number of Animals ²	Proposed Number of Animal Units
	Mature cows (lactating and dry) including associated livestock	2		-		-
	Mature cows (lactating and dry)	1.35		-	-	-
	Heifers (0 to 3 months)	0.16		-		-
Dairy ³	Heifers (4 to 13 months)	0.41		-		-
•	Heifers (> 13 months)	0.87		-		-
	Bulls	1.35		-	-	-
	Veal calves	0.13		-		-
	Beef cows including associated livestock	1.25		-		-
Beef	Backgrounder	0.5		-		-
Deer	Summer pasture / replacement heifers	0.625		-		-
	Feeder cattle	0.769		-		-
	Sows - farrow to finish (234-254 lbs)	1.25		-		-
	Sows - farrow to weanling (up to 11 lbs)	0.25		-		-
. .	Sows - farrow to nursery (51 lbs)	0.313		-		-
Pigs	Boars (artificial insemination units)	0.2		-		-
	Weanlings, Nursery (11-51 lbs)	0.033		-		
	Growers / Finishers (51-249 lbs)	0.143		-		
	Broilers	0.005		-		
	Roasters	0.01		-		-
	Layers	0.0083	81,984	680	90,000	747
Chickens	Pullets	0.0033		-	37,500	124
	Broiler breeder pullets	0.0033		-		-
	Broiler breeder hens	0.01		-		-
	Broilers	0.01		-		
Turkeys	Heavy Toms	0.02		-		-
	Heavy Hens	0.01		-		-
Horses	Mares	1.333		-		-
Ob	Ewes	0.2		-		-
Sheep	Feeder lambs	0.063		-		-
04 1: 4 1	Type:			-		-
Other Livestock	Type:			-		-
			Total Current:	680	Total Proposed:	871

Footnotes

For all other livestock or operation types please inquire with the Manitoba Agriculture Contacts

¹ Enter the current number of animals on the farm based on the operation's capacity (animal places) or previous Conditional Use Approval.

 $^{^{\}rm 2}$ Enter the total number of animals associated with the operation post construction or expansion.

³ There are 2 methods for calculating animal units for dairy (Farm Practices Guidelines for Dairy Producers in Manitoba, 1995). You can enter the total number of mature cows in the milking herd under the "Mature cows (lactating and dry) including associated livestock" category and the animal units will be calculated by multiplying this number by 2. This calculation assumes 85 lactating, 15 dry, 12 heifers (0 to 3 months), 36 heifers (4 to 13 months) and 50 heifers (> 13 months) for an operation with 100 mature cows. "Associated livestock" includes all of the heifer calves and replacement heifers. Alternatively, you can enter animal numbers in the individual categories (mature cows, heifers (0 to 3 months), heifers (4 to 13 months) and heifers (> 13 months)) and they will be summed at the bottom of the table. Bulls and veal calves are always calculated separately.

Desalegn Edossa <desalegn.southmaneng@gmail.com>

Burnbrae Farms

1 message

Friesen, Chris (SD) Chris.Friesen@gov.mb.ca Thu, Apr 6, 2017 at 11:26 AM To: "desalegn.southmaneng@gmail.com" desalegn.southmaneng@gmail.com

Desalegn

Thank you for your information request. I completed a search of the Manitoba Conservation Data Centre's rare species database and found no occurrences at this time for your area of interest.

The information provided in this letter is based on existing data known to the Manitoba Conservation Data Centre at the time of the request. These data are dependent on the research and observations of CDC staff and others who have shared their data, and reflect our current state of knowledge. An absence of data in any particular geographic area does not necessarily mean that species or ecological communities of concern are not present; in many areas, comprehensive surveys have never been completed. Therefore, this information should be regarded neither as a final statement on the occurrence of any species of concern, nor as a substitute for on-site surveys for species as part of environmental assessments.

Because the Manitoba CDC's Biotics database is continually updated and because information requests are evaluated by type of action, any given response is only appropriate for its respective request. Please contact the Manitoba CDC for an update on this natural heritage information if more than six months pass before it is utilized.

Third party requests for products wholly or partially derived from Biotics must be approved by the Manitoba CDC before information is released. Once approved, the primary user will identify the Manitoba CDC as data contributors on any map or publication using Biotics data, as follows as: Data developed by the Manitoba Conservation Data Centre; Wildlife & Fisheries Branch, Manitoba Sustainable Development.

This letter is for information purposes only - it does not constitute consent or

approval of the proposed project or activity, nor does it negate the need for any permits or approvals required by the Province of Manitoba.

We would be interested in receiving a copy of the results of any field surveys that you may undertake, to update our database with the most current knowledge of the area.

If you have any questions or require further information please contact me directly at (204) 945-7747.

Chris Friesen
Coordinator
Manitoba Conservation Data Centre
204-945-7747
chris.friesen@gov.mb.ca
http://www.manitoba.ca/conservation/cdc/

----Original Message-----

From:

Sent: March-31-17 12:54 PM

To: Friesen, Chris (SD)

Subject: WWW Form Submission

Below is the result of your feedback form. It was submitted by WWW Information Request () on Friday, March 31, 2017 at 12:53:48

DocumentID: Manitoba_Conservation

Project Title: Burnbrae Farms

Date Needed: 2017/03/31

Name: Desalegn Edossa

Company/Organization: Soth-Man Engineering

Address: 15-1599 Dugald Rd

City: Winnipeg

Province/State: Manitoba

Phone: 15-1599 Dugald Rd

Email: desalegn.southmaneng@gmail.com

Project Description: The information will be used to determine the impacts on species by a proposed livestock operation. It is proposed to expand chicken production from the current capacity of 73,000 layer hens to 90,000 layer hens and 37,500 pullets.

Information Requested: Would like to know if there is any species at risk or endangered in region that may be impacted by this livestock operation.

Format Requested: Microsoft Word Document as email attachment.

Location: SE 5-6-5E in the RM of Hanover.

action: Submit

CROP ROTATION TABLE

Α	В	С	D	E
Expected Crops in the Rotation	Acreage	Historical Yield	Units	Source of Yield Information
Total Net Acreage for Manure Application				

- A. List all of the crop(s) to be grown in the rotation on the acreage that will receive manure.
- B. Indicate the average acreage for each crop over the rotation. For example, if there are 720 suitable acres available for manure and approximately 40 these acres will be used to grow canola, enter 288. The total of column B should add up to Total Net Acreage for Manure Application provided in the Manure Application Field Characteristic Table.
- C. Enter the historical yield average for each crop. Long-term yield averages can be determined using MASC data (http://www.masc.mb.ca/masc.nsf/index.html?OpenPage) or on-farm yield records. If on-farm yield records are used, please provide copies.
- D. Enter the units for the yields provided (e.g. bu/acre, tons/acre).E. Enter the source of the historical yield average provided.

Pig/Operation Type	Storage Type	Volatilization	Animal Numbers (Places)	Weight In (Ib)
Gestating Sow	Liquid Uncovered Earthen	30%		447
Nursing Sow	Liquid Uncovered Earthen	30%		539
Nursing Litter	Liquid Uncovered Earthen	30%		3.1
Live Cull Sow	Liquid Uncovered Earthen	30%		630
Bred Gilt	Liquid Uncovered Earthen	30%		340
Gilts (Purchased)	Liquid Uncovered Earthen	30%		290
Boars (Purchased)	Liquid Uncovered Earthen	30%		270
Weanlings	Liquid Uncovered Earthen	30%		13.6
Growers/Finishers	Liquid Uncovered Earthen	30%		61.6
Sows, farrow to 6.2 kg	Liquid Uncovered Earthen	30%		n/a
Sows, farrow to 28 kg	Liquid Uncovered Earthen	30%		n/a
Sows, farrow to finish	Liquid Uncovered Earthen	30%		n/a

Last Revised April 13, 2016

Weight Out	Average Animal Wt	Days on Feed per Cycle	Number of Cycles for the Place per Year	Feed Consumed Per Pig Per Day	Protein	N Excreted Per Herd Adjusted for Storage N	Phosphorus Content of Feed (DM)	P2O5 Excreted Per Herd Per Year
(lb)	(lb)	(days)	(days)	(kg/day)	%	(lb/yr/herd)	%	(lb/yr/herd)
630	539	121	3	2.3	14%	0	0.53%	0
539	539	21	15.2	6.5	20%	0	0.63%	0
13.6	8	21	15.2	0	n/a	0	n/a	0
630	630	14	26.1	2.3	14%	0	0.46%	0
447	394	121	3	2.3	14%	0	0.53%	0
340	315	28	13.0	3.2	16%	0	0.46%	0
660	465	365	1	2.5	14%	0	0.46%	0
61.6	38	52	6.9	0.7	20%	0	0.64%	0
280	171	112	3	2.8	16%	0	0.46%	0
n/a	n/a	365	1	n/a	n/a	0	n/a	0
n/a	n/a	365	1	n/a	n/a	0	n/a	0
n/a	n/a	365	1	n/a	n/a	0	n/a	0

Species	Туре	Storage Type	Volatilization	Animal Numbers	Weight In (lb)
Cow Calf	Mature Cows (>2 years old)	Field Storage	40%	0	1375
Cow Calf	Bred Heifer (14 mo - 2 years)	Field Storage	40%	0	926
Cow Calf	Replacement Heifers (7 mo-14 mo)	Field Storage	40%	0	581
Cow Calf	Unweaned Calves (0-7 mo)	Field Storage	40%	0	86
Cow Calf	Bulls	Field Storage	40%	0	2100
Cow Calf	Mature Cows and Bred Heifers, plus associated livestock	Field Storage	40%	0	n/a
Feeder	Feedlot Cattle - long keep	Field Storage	40%	0	581
Feeder	Feedlot Cattle - short keep	Field Storage	40%	0	975
Feeder	Backgrounders - pasture	Field Storage	40%	0	793
Feeder	Backgrounders - confined	Field Storage	40%	0	500

Last Revised January 21, 2015

Weight Out (lb)	Average Animal Wt (lb)		Cycles per Year	Rate of Gain (lb/day)	Days Place is Occupied per Year (days)	N Excreted Per Herd Adjusted for Storage N Loss (lb N/yr/herd)	P2O5 Excreted Per Herd Per Year (Ib P2O5/year)
1375	1375	365	1.0		365	0.0	0.0
1238	1082	280	1.0	1.42	280	0.0	0.0
926	754	225	1.0	1.53	225	0.0	0.0
581	334	210	1.0	2.35	210	0.0	0.0
2200	2150	365	1.0		365	0.0	0.0
n/a	n/a	n/a	n/a	n/a	n/a	0.0	0.0
1300	941	240	1.0	2.99	240	0.0	0.0
1300	1138	116	1.0	2.80	116	0.0	0.0
975	884	105	1.0	1.73	105	0.0	0.0
793	647	180	1.0	1.62	180	0.0	0.0

Туре	Storage Type	Volatilization	Animal Numbers
Lactating Cows	Liquid Uncovered Earthen	30%	0
Dry Cows	Liquid Uncovered Earthen	30%	0
Calves, 0-3 months	Liquid Uncovered Earthen	30%	0
Calves, 4-13 months	Liquid Uncovered Earthen	30%	0
Replacements, >13 months	Liquid Uncovered Earthen	30%	0
Mature Cows, plus associated livestock	Liquid Uncovered Earthen	30%	0

Last revised August 20, 2014

Weight In	Weight Out	Average Animal Wt	Days on Feed per Cycle (days)	Number of Cycles per Year	N Excreted Per Herd Adjusted for Storage N Loss (lb/yr/herd)	P2O5 Excreted per Herd Per Year (lb/yr/herd)
1400	1440	1420	365	1	0	0
1440	1440	1440	365	1	0	0
90	275	183	365	1	0	0
275	810	543	365	1	0	0
810	1250	1030	365	1	0	0
n/a	n/a	n/a	n/a	n/a	0	0

Sheep/Operation Type	Storage Type	Volatilization	Animal Numbers	Weight In
Ewes	Field Storage	40%	0	120
Replacement Ewes	Field Storage	40%	0	45
Rams	Field Storage	40%	0	100
Lambs	Field Storage	40%	0	8
Ewes, plus assoc livestock	Field Storage	40%	0	n/a
Feeder	Field Storage	40%	0	45

Weight Out	Ave Weight	Days on Feed	Cycles per Year	N Excreted per Flock adjusted for Loss lb/flock/yr	P2O5 Excreted Per Flock lb/flock/yr
170	145	365	1	0	0
80	63	210	1	0	0
200	150	365	1	0	0
45	27	70	1.4	0	0
n/a	n/a	n/a	n/a	0	0
100	73	365	1	0	0

Species / Commodity	Type of Operation	Storage Type	Volatilization	Bird Places	Weight In	Weight Out	Average Weight	Days on Feed	Cycles per Year	N Excreted Adjusted for N Loss Ib/flock/yr	P2O5 Excreted lb/flock/yr
Chickens	Broilers	Field Storage	40%	0	0.05	4.36	2.20	33	7.4	0	0
Chickens	Broiler Breeder Pullets	Field Storage	40%	0	0.05	4.40	2.23	140	2	0	0
Chickens	Broiler Breeder Hens	Field Storage	40%	0	4.40	8.67	6.53	273	1	0	0
Eggs	Layer Pullets	Solid Stock Pile	40%	37500	0.05	3.04	1.54	133	2	10158	11631
Eggs	Layer Hens	Solid Stock Pile	40%	90000	3.03	3.74	3.38	355	1	73800	84501
Eggs	Breeder Pullets	Liquid Covered	10%	0	0.05	3.04	1.54	133	2	0	0
Eggs	Breeder Hens	Liquid Covered	10%	0	3.03	3.74	3.38	351	1	0	0
Turkey	Broiler Hens (0-9 wks)	Field Storage	40%	0	0.06	12.39	6.22	63	4	0	0
Turkey	Hens (0-11 wks)	Field Storage	40%	0	0.06	16.46	8.26	77	3.5	0	0
Turkey	Heavy Hens (0-14 wks)	Field Storage	40%	0	0.06	21.19	10.62	98	3	0	0
Turkey	Light Toms (0-12 wks)	Field Storage	40%	0	0.06	21.19	10.62	84	3	0	0
Turkey	Toms (0-13 wks)	Field Storage	40%	0	0.06	26.84	13.45	91	3	0	0
Turkey	Heavy Toms (0-15 wks)	Field Storage	40%	0	0.06	30.29	15.18	105	2.5	0	0
Turkey	Breeding Hen Growers (0-30 wks)	Field Storage	40%	0	0.06	26.95	13.51	210	1	0	0
Turkey	Breeding Hens (30-60 wks)	Field Storage	40%	0	26.95	24.95	25.95	210	1	0	0
Turkey	Breeding Tom Grower (0-18 wks)	Field Storage	40%	0	0.06	33.92	16.99	126	2	0	0
Turkey	Breeding Tom Grower (0-30 wks)	Field Storage	40%	0	0.06	50.89	25.47	210	1	0	0
Turkey	Breeding Tom (30-60 wks)	Field Storage	40%	0	50.89	61.86	56.38	210	1	0	0

	Rem	oval	Uptake					Rem	noval	Uptake
Crop	P2O5	N	N	Units	Yield	Units	Acreage	P2O5	N	N
								(lb)	(lb)	(lb)
Alfalfa	13.8	58	58	lb/ton		ton/ac		-	-	-
Barley Grain	0.42	0.97	1.39	lb/bu		bu/ac		-	-	-
Barley Silage	11.8	34.4	34.4	lb/ton		ton/ac		-	-	-
Canola	1.04	1.93	3.19	lb/bu	41	bu/ac	245	10447	19387	32044
Corn Grain	0.44	0.97	1.53	lb/bu		bu/ac		-	-	-
Corn Silage	12.7	31.2	31.2	lb/ton		tons/ac		-	-	-
Dry Edible Beans	1.39	4.17		lb/cwt		cwt/ac		-	-	-
Fababeans	1.79	5.02	8.4	lb/cwt		cwt/ac		-	-	-
Flax	0.65	2.13	2.88	lb/bu		bu/ac		-	-	-
Grass Hay	10	34.2	34.2	lb/ton		tons/ac		-	-	-
Lentils	1.03	3.39	5.08	lb/cwt		cwt/ac		-	-	-
Oats	0.26	0.62	1.07	lb/bu		bu/ac		-	-	-
Pasture (grazed)	10	34.2	34.2	lb/ton	0.5	ton/ac		-	-	-
Peas	0.69	2.34	3.06	lb/bu		bu/ac		-	-	-
Potatoes	0.09	0.32	0.57	lb/cwt		cwt/ac		-	-	-
Rye	0.45	1.06	1.67	lb/bu		bu/ac		-	-	-
Soybeans	0.84	3.87	5.2	lb/bu	40.9	bu/ac	900	30920	142455	191412
Sunflower	1.1	2.8		lb/cwt		cwt/ac		-	-	-
Wheat - Spring	0.59	1.5	2.11	lb/bu	59.3	bu/ac	220	7697	19569	27527
Wheat - Winter	0.51	1.04	1.35	lb/bu		bu/ac		-	-	-
						Sub Total	1365	49064	181411	250983
			Estimate	d Average R	emoval/Up	otake (lb/ac)		35.9	132.9	183.9
						itional Acres				
					1365					
Note:	Additional acres include acres for which crop removal or soil data is limited or unavailable.									

Last revised August 20, 2014

Species	Animal Category/Operation type	N	P2O5
		(lb/year)	(lb/year)
Pigs	Gestating Sow	0	0
	Nursing Sow	0	0
	Nursing Litter	0	0
	Live Cull Sows	0	0
	Bred Gilts	0	0
	Gilts	0	0
	Boars	0	0
	Weanlings	0	0
	Growers/finishers	0	0
	Sows, farrow to 5 kg	0	0
	Sows, farrow to 23 kg	0	0
	Sows, farrow to finish	0	0
Beef	Mature Cows (>2 years old)	0	0
	Bred Heifer (14 mo - 2 years)	0	0
	Replacement Heifers (7 mo-14 mo)	0	0
	Unweaned Calves (0-7 mo)	0	0
	Bulls	0	0
	Mature Cows and Bred Heifers, plus associated livestock	0	0
	Feedlot Cattle - long keep	0	0
	Feedlot Cattle - short keep	0	0
	Backgrounders - pasture	0	0
	Backgrounders - confined	0	0
Dairy	Lactating cow	0	0
	Dry cow	0	0
	Calf, 0-3 months	0	0
	Calf, 4-13 months	0	0
	Replacements, >13 months	0	0
	Mature Cows, plus assoc livestock	0	0
Sheep	Ewes	0	0
	Replacement Ewes	0	0
	Rams	0	0
	Lambs	0	0
	Ewes, plus assoc livestock	0	0
	Feeder	0	0
Chickens	Broilers	0	0
	Broiler Breeder Pullets	0	0
	Broiler Breeder Hens	0	0
Layers	Layer Pullets	10158	11631
	Layer Hens	73800	84501
	Breeder Pullets	0	0
	Breeder Hens	0	0
Turkeys	Broiler Hens (0-9 wks)	0	0
	Hens (0-11 wks)	0	0
	Heavy Hens (0-14 wks)	0	0
	Light Toms (0-12 wks)	0	0
	Toms (0-13 wks)	0	0
	Heavy Toms (0-15 wks)	0	0
	Breeding Hen Growers (0-30 wks)	0	0
	Breeding Hens (30-60 wks)	0	0
	Breeding Tom Grower (0-18 wks)	0	0
	Breeding Tom Grower (0-30 wks)	0	0
	Breeding Tom (30-60 wks)	0	0
	Total	83959	96133

Note: Be sure all livestock species on your farm are represented in this table, not just the livestock in the proposed expansion.

Nutrients Excreted	lbs
Nitrogen	83959
P2O5	96133
Crop Nutrient Use	lb/ac
Nitrogen Uptake	183.9
P2O5 Removal	35.9
Land Base Requirements	acres
Acres for Nitrogen Uptake	457
Acres for 2 x P2O5 Removal	1337
Acres for 1 x P2O5 Removal	2674

MANURE SPREADING AGREEMENT

This Agreement dated the 29 day of Work War , 2016.

BETWEEN:

APEX FARMS LTD. (hereinafter called "Apex")

- and -

BURNBRAE FARMS LIMITED (hereinafter called "Burnbrae")

WHEREAS Apex is the registered owner and/or tenant of significant areas of agricultural farm land in or around Niverville, Manitoba (the "Lands");

AND WHEREAS Burnbrae conducts chicken farming operations in or around Kleefeld, Manitoba, which operations produce manure and Burnbrae requires land to spread that manure;

AND WHEREAS Apex has agreed to haul Burnbrae's chicken manure and to spread it on the Lands pursuant to the provisions of this Agreement.

NOW THEREFORE in consideration of the payments to be made and the obligations to be performed by the parties as set out below, the parties hereby agree as follows:

- This Agreement shall be for a term of five (5) years, with the said term commencing on September 1, 2016 and terminating five (5) years after that date, unless terminated earlier by either party on the provision of written notice to the other party of its intention to terminate this Agreement. Such notice shall be given at least one (1) year prior to the termination date, which shall be set forth in the notice.
- For the term of this Agreement, Burnbrae will supply all chicken manure (the "Manure") to Apex which is produced by Burnbrae's chicken egg laying operation at Kleefeld, Manitoba. Apex shall pick up and haul away all of the Manure on Burnbrae's premises a minimum of two times per calendar year. In the spring all

the manure should be removed by June and in the fall of the year all the manure should be removed by November. Apex is required to give Burnbrae advance notice of their intention to remove manure from Burnbrae's facility. Apex will be responsible to handle Burnbrae's manure in a responsible, lawful manner.

- 3. Apex shall be responsible for picking up, loading, transporting and applying the Manure to the Lands from Burnbrae's chicken operation located in Kleefeld, Manitoba in accordance with all legal requirements in respect of such transportation and application. Provided that Apex so complies with all such legal requirements of the Regulation or otherwise, and provided that it is responsible for the Manure once the Manure is hauled away from Burnbrae's facility, Apex may use whatever portion of the Lands it deems appropriate for application of the Manure.
- 4. It shall be Burnbrae's responsibility to file their required manure management plans with the Province of Manitoba, or any department thereof, including any revisions, amendments, re-filings. All of the costs relating to manure testing shall be borne solely by Burnbrae.

It shall be APEX's responsibility to file their required manure management plans with the Province of Manitoba, or any department thereof, including any revisions, amendments, re-filings as it pertains to "The manure". Apex shall be solely responsible for the cost of soil testing on the Lands in any calendar year during the term of this Agreement. Apex shall cooperate as reasonably requested by Burnbrae in the preparation and filing of any such plans, reports, tests. etc.

- 5. Apex shall be responsible for the cost of picking up, loading, transporting and applying the Manure to the Lands from Burnbrae's chicken operation located in Kleefeld, Manitoba. Apex will pay Burnbrae \$3 per tonne for "The Manure" removed from Burnbrae's manure facility. This will be due the month following removal.
- This Agreement shall be interpreted in accordance with the Laws of the Province
 of Manitoba and the Laws of Canada applicable therein and shall be treated in all
 respects as a Manitoba contract.
- 7. Any notice required or permitted to be given hereunder shall be in writing and shall be effectively given if:
 - (a) delivered personally;
 - (b) sent by pre-paid regular mail; or

(c) faxed,

and addressed as follows:

if to Apex:

Box 280, Niverville, Manitoba, ROA 1E0

Fax number: 204.388.4414

if to Burnbrae:

500 Pandora Avenue West, Winnipeg, Manitoba R2C 1N1

Attention: Dennis Hiebert

Any notice so given shall be deemed conclusively to have been given and received when so personally delivered or faxed, or on the third day following the sending thereof by regular mail. The parties may change their particulars of their address for notice by notice to the other in the manner aforesaid.

- 8. Neither this Agreement nor any rights hereunder shall be in any way assignable by any of the parties either directly or indirectly to any person, firm, or corporation without the prior written consent of the other party, but otherwise this Agreement shall ensure to the benefit of the parties hereto and their respective successors and assigns. Notwithstanding the foregoing and, notwithstanding anything to the contrary contained in this Agreement, the parties hereto acknowledge that Apex may employ such agents, businesses, employees, servants, independent contractors, or other entities it deems appropriate for the pickup, transportation, and application of Manure pursuant to this Agreement.
- Nothing in this Agreement shall be construed in a manner such that Burnbrae has any easement, interest in, or right-of-way over or upon any of the Lands owned or occupied by Apex.
- 10. The parties acknowledge that Apex may direct, in its sole discretion, where the Manure shall be incorporated into the soil upon the Lands, and it is further acknowledged that Apex shall have the right to incorporate into the soil of the Lands only so much Manure as Apex reasonably believes can be properly used upon the Lands, provided that Apex shall be responsible for all Manure which it picks up and hauls away and provided that Apex shall be responsible for the condition of its Lands.
- 11. Nothing in this Agreement shall be construed in a manner such that Apex has any easement, lease, interest in, or right-of-way over or upon any of Burnbrae's lands on which the chicken egg laying operation is located. Burnbrae agrees that, as often as it becomes necessary for Apex or their agents, servants,

11/47/10

U4 - 4 - 1 1 11

employees, or independent contractors, to enter upon Burnbrae's property located at Kleefeld, Manitoba, for the purposes herein before mentioned, such access shall be gained in an expeditious and reasonable manner, and will be performed without undo interference with the reasonable occupation, use and possession of Burnbrae.

- Burnbrae shall indemnify and save harmless Apex from and against any and all 12. liability to, and actions and proceedings by, any person brought or taken by any reason of any loss or damage, or alleged loss or damage, caused or claimed to have been caused, or arising out of or claim to arise out of, (i) Burnbrae, including its agents, servants or employees, gaining access to the Lands; and (ii) any breach by Burnbrae of any law, regulation, policy or other applicable government requirement in regards to Burnbrae's obligations in this Agreement . Likewise, Apex shall indemnify and save harmless Burnbrae against and from any and all liability to, and actions and proceedings by, and person brought or taken by reason of any loss or damage, or alleged loss or damage, caused or claimed to have been caused, or arising out of or claimed to arise out of, (i) Apex, including its agents, servants or employees, gaining access to Burnbrae's property located in Kleefeld, Manitoba; and (ii) any breach by Apex of any law, regulation, policy or other applicable government requirement in regards to Apex's obligations in this Agreement...
- 13. The invalidity of any provision of this Agreement or any covenant herein contained on the part of either party shall not affect the validity of any other provision or covenant hereof or herein contained.
- 14. This Agreement may be executed in one or more counterparts (either originally or by facsimile), each of which once executed shall constitute an original and all of which taken together shall constitute one and the same document.

IN WITNESS WHEREOF the parties have executed this Agreement as of the date first above written.

APEX FARMS LTD.

Company of the Compan

John Wiebe, President

Per:

Dustin VVICDO,

BURNBRAE FARMS LIMITED

-5-

John Heuthorst, Director of Poultry Operations

MANURE APPLICATION FIELD CHARACTERISTICS TABLE

	Α	В	С	D	E	F	G	Н	I	J
Field	Legal Description	Rural Municipality	O/C/L/ A	Total Acreage	Setbacks, including features	Net Acreage for Manure Application	Agriculture Capability Class and Subclass	Soil Phosphorus (ppm Olsen P) 0-6 inches	Development Plan Designation	Zoning
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										

Enter the legal description for each parcel of la	and that will receive manure: So	c Two	Rae or River I	ot (including paris

Total Net Acreage for Manure Application:

А.	AEnter the legal description for each parcel of land that will receive manure. Sec, Twp, kge of kiver Lot (incidence)	uding pansh).
B.	BIdentify the Rural Municipality in which the parcel is located.	
C.	CIndicate how the land has been secured for manure application: O – Own / C-Crown / L – Lease / A – Ag	greement. Multiple designations may be used as appropriate (ex. C/A for
	Crown lands that are under a spread agreement with the producer that holds the agricultural Crown land lease).	
D.	DEnter the total acreage for the parcel.	
E.	EEnter setbacks from surface water or groundwater features that reduce the land available for manure applications.	cation; include identification of type of feature (ex. 8m, Order 3 drain).
F.	FEnter the net acreage available for manure application for the parcel after taking into account setbacks and	excluding Class 6, 7 and unimproved organic soils.
G.	GEnter the agriculture capability class and subclass ratings for the acreage available for manure application.	
Η.	HProvide soil test results for phosphorus in ppm Olsen P for soil samples taken at the 0-6 inch depth. Soil test	est results must be no more than 12 months old and must be completed by
	an accredited soil-testing laboratory.	
I	IIndicate the Development Plan and its by-law number in addition to the map designation for each field (ex. E	By-law #1/2008: AG).
J	JIndicate the Zoning By-law and its by-law number in addition to the zoning for each field (ex. By-law 12/2009)	9: AG 80).

			Daily N	Manure Production		Production Poriod	Number of Animals		Total Manure Volume
Animal Type (A)	Animal Sub-type (B)	References (C)	Manure Type (D)	Default Manure Production (ft ³ /animal/day) (E)	Operation Manure Production ¹ (ft ³ /animal/day) (F)	² (Days) (G)	³ (Capacity) (H)	Total Manure Volume (ft ³) (FxGxH)	for Semi-Solid and Liquid Manure (Imp Gal)
			Semi-Solid 5	3.5				-	0.0
	Free Stall		Solid	3.4				-	
D-1 (:11-i4		T	Liquid ⁵	3.5				-	0.0
Dairy (milking cows ⁴ and associated		Table 6, pg 59, FPGs for Dairy	Semi-Solid 5	3.6				-	0.0
livestock)	Tie Stall	1995	Solid	3.5				-	
livestocky			Liquid 5	3.6				-	0.0
	Loose Housing	1	Solid	3.0				-	
	Milking Parlour Manure and Washwater		Liquid	0.5					
	Beef cows including associated livestock		Solid	1.2				-	
Beef	Backgrounder (200 day)	pg 117, FPGs for	Solid	0.73				-	
Deel	Summer pasture / replacement heifers	Hogs 1998	Solid	0.85				-	
	Feeder cattle		Solid	1.1				-	
	Sows - farrow to finish (234 - 254 lbs)		Liquid	2.3				-	0.0
	Sows - farrow to wean (up to 11 lbs)	MAFRI website,	Liquid	0.8				-	0.0
	Sows - farrow to nursery (51 lbs)	FPGs for Pigs	Liquid	1				-	0.0
	Weanlings, Nursery (11 - 51 lbs)	2007	Liquid	0.1				-	0.0
	Grower / Finisher (51 - 249 lbs)		Liquid	0.25				-	0.0
			Yearly Manure Produ		ıction	Braduation Bariad	Number of Birds ³	Total Manure	Total Manure Volume
Animal Type	Type of Operation			nure Production ar/bird space)	Operation Manure Production ¹ (ft ³ /year/bird space)	² (Days)	(Capacity)	Volume (ft ³) (F/365xGxH)	for Semi-Solid and Liquid Manure (Imp Gal)
	Broilers – floor ⁶			1.23				-	
	Broiler breeder hens 7			2.3				-	
	Broiler breeder pullets ⁶			0.99				-	
	Roasters – floor ⁶	1		1.16				-	
	Layers – cage ⁸	Table 3, pg 85,		2.33	1.25	365	90,000	112,500	700,875.0
Chickens	Layers – floor ⁷	FPGs for Poultry 2000		1.68	1.23		55,555	-	700,070.0
	Layers – solid pack ⁹	2000						_	
		4	0.71		0.5	365	37,500	18,750	440.040.5
	Pullets – cage ⁸	1		0.75	0.5	305	37,500	18,750	116,812.5
	Pullets – floor ⁶			0.73				-	
	Pullets – solid pack ⁹			2.83				-	
	Broilers ⁶	Table 3, pg 85,						-	
Turkeys	Heavy toms ⁶	FPGs for Poultry 2000		5.58				-	
	Heavy hens ⁶	2000		3.32				131 250	1 212

131,250 1,313

Sizing of a manure storage facility in accordance with all requirements of the Livestock Manure and Mortalities Management Regulation (M.R. 42/98) is the responsibility of the operator.

Instructions and footnotes:

Manure production values based on current industry rate utilized in sizing dry manure storage.

¹ ENTER the manure production estimate for your operation. If no estimate is available, use the default value provided in colum E. References for default daily and yearly manure production are provided in column C.

² ENTER the number of days worth of manure that will be produced. For earthen manure storage facilities the minimum storage requirement is 250

³ ENTER the total number of animals or birds that the operation can hold (e.g. barn or feedlot capacity).

⁴ Milking cows includes all lactating and dry cows.

⁵ Default manure production estimates for semi-solid and liquid dairy manure include manure and washwater from the milking parlour.

⁶ 2 inches of wood shavings or 4 inches of straw placed on floor. Manure and litter removed from barn at 25% moisture content, with a density of 20 lb/ft³

⁷ One-third litter floor, two-thirds slatted floor. Manure and litter removed from barn at 40% moisture content, with a density of 25 lb/ft³

 $^{^8}$ Manure removed from barn at 90% moisture content with a density of 59 lb/ft 3

⁹ Poultry operations using litter (solid pack) must provide an estimate of yearly manure production

Account Number: 06352 Report Number: C16291-10336

To: PATERSON GRAIN

P.O. BOX 356

Canada Laboratories Inc.

Telephone: (519) 457-2575 Fax: (519) 457-2664 2136 Jetstream Road, London, Ontario, N5V 3P5

For: D.P. WIEBE

50 acres

SA-0)

Field: S1/2

Attn: AARON BOLDUC

204-388-6888

25 HERITAGE TRAIL NIVERVILLE, MB ROA 1E0

0 0 A 10 HA Number Sample Number Sample Reported Date: Legal Land Descpt: **∞ c ∞** ppm \leq Sulfur \leq S Printed Date: Oct 19, 2016 ibs/ac 2944 Nitrate Nitrogen ppm <u>→</u> 22 4 VL NO3-N Depth 12 24 ibs/ac 19930 19929 19928 Number Cap 3.0 M Zn ppm Zinc Matter Organic 5.4 3.8 Manganese mdd um 39 H 24 N 21 M 5 VL Phosphorus - P ppm Bicarb Bray-P1 Fe ppm 63 VH fron 27 M TEST REPORT 6VL Copper Cu ppm 2.4 H 2.2 H Potassium 121 M 276 H 159 M K ppm 0.4 0.6 M Boron B ppm Magnesium Mg ppm 1345 VH 1465 VH 1505 VH mmhos/cm Soluble Salts 3730 M 4240 M 3680 M Ca ppm Calcium Saturation Aluminum N 9 %P 7.5 7.6 7.7 pH Buffer meg/100g Al ppm 323 385 Saturation K/Mg 33.3 31.8 31.6 0.06 %AI 0.03 %K %Mg %Ca %H 0.06 0.03 2.1 33.7 63.8 **Percent Base Saturations** 39.4 MNR 504 58.6 58.3 Chloride mdd Na ppm 12 42 X Sodium 166 VH 65 M % Na 1.6 2.3 0.8

VL = VERY LOW, L = LOW, M = MEDIUM, H = HIGH, VH = VERY HIGH, G = GOOD, MA = MARGINAL, MT = MODERATE PHYTO-TOXIC, T = PHYTO-TOXIC, ST = SEVERE PHYTO-TOXICSOIL FERTILITY GUIDELINES (ibs/ac)

1A	1A	Sample Number	
Soybeans	Soybeans	Previous Crop	
Barley (Feed) Bld	Barley (Feed)	Intended Crop	
100 bu	100 bu	Yield Goal	
0.0	0.0	Lime Tons/Acre	
88	88	z	
55	30	P205	
35	15	K20	
0	0	Mg	
0	0	Са	
75	75	s	
0.5	0.5	Zn	
0	0	Mn	
0	0	Fe	
0	0	Cu	
0.0	0.0	83	

Results Authorized By:

Ian McLachlin, Vice President

^{*} Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

^{*} If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury

The results of this report relate to the sample submitted and analyzed.

^{*} Crop yield is influenced by a number of factors in addition to soil fertility.

Account Number: 06352 Report Number: C16288-10228

To: PATERSON GRAIN P.O. BOX 356

Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

For: DP WIEBE

Field: S5

SOIL TEST REPORT

Reported Date:

Printed Date: Oct 19, 2016

Attn: AARON BOLDUC

204-388-6888

NIVERVILLE, MB ROA 1E0 25 HERITAGE TRAIL

	W VL=	10	Ď	1A	Number	Sample	îc	B	1A	Number	Sample
VERY LOW, L = LOW, M	VL = VERY LOW, $L = LOW$, $M = MEDIUM$, $H = HIGH$, $VH = VERY HIGH$, $G = GOOD$, $MA = MARGINAL$, $MT = VERY LOW$, $L = LOW$, L	32 VL 115	20 VL 36	35 VL 63	ppm lbs/ac	Sulfur				hogai haira booopi.	logal and Decent:
	= MEDIUM, H	<u>→</u>	7 L	10 M	ppm ibs/ac	Nitrate Nitrogen	24	12	6	popul	Danth
	= HIGH,	40	ದ	18	ac	gen	16636	16635	16634	Number	Lab
	VH = VEF		-1 -3 -	7.6 H	Zn ppm	Zinc	2.9	3.4	6.2	Watter	Organic
SOILFE	RY HIGH, G =		0	7 L	Mn ppm	Manganese		7 L	44 H	Bicarb	
RTILLITY G	GOOD, MA =		67 VH	96 VH	Fe ppm	iron		10L	119 H	Bray-P1	Phosphorus - P ppm
SOIL FERTILITY GUIDELINES (lbs/ac)	MARGINAL			2.3 H	Cu ppm	Copper	325 H	337 H	589 VH	K ppm	Potassium
S (lbs/ac)	MT = MODER		0.7 M	0.6 M	B ppm mmi		1985 VH	1755 VH	1 1420 VH	Mg ppm	m Magnesium
	MODERATE PHYTO-TOXIC, $T = PHYTO-TOXIC$, $ST = SEVERE PHYTO-TOXIC$		3 M	23 H	cm	Soluble Satura	7200 M	5500 M	4510 M	Ca ppm	n Calcium
	OXIC, T = PHY		M 464	H 661	Al ppm	Saturation Aluminum Saturation K/Mg ENR	7.7	7.4	6.6 6.8	pH Buffe	РΗ
	TO-TOXIC, S		0.0 G	0.1 G	%Al	m Saturatio	54.4	43.6	38.6	Buffer meg/100g	CEC
	T = SE	0.05 41	0.06	0.13	Ratio	n K/Mg	-5	2.0	3.9	% X	Per
	ERE PH	41	46	75			1.5 30.4 66.1	33.6 6	30.7 5	% Mg %	cent Bas
	ATO-TC				ppm	Chloride Cl	6.1	3.1	30.7 58.5 5.8	6 Ca %	Percent Base Saturations
	XIC	291 VH	175 H	99 H	Na ppm	Sodium	2.3	1.7	8 1.1	%K %Mg %Ca %H %Na	ations

	1A	ZO	
D	D	Sample Number	
		e e	
		distribution desired to the second to the se	
S	S	Pr	
Soybeans	Soybeans	Previous Crop	
ans	ans	ıs Cr	
		do	
		naja jaja na kalada na	
т	m	-	
arle	Barle	itenc	
Barley (Feed) Bld	y (F	Intended Crop	
eed	eed	rop	
) Blo		and the second s	
inde		and an interest of the same of	
(0		Y)	
90 b	90 bu	Yield Goal	
	_	oal	
		To	
0.0	0.0	Lime ons/Ac	
		cre	
67	67	z	
7	7	con quantum qu	
25	10	P205	
O,)5	
30	15	K20	
	0.	0	
0	0	Mg	
0	0	Са	
45	45	S	
0.0	0.0	Zn	
8	∞	M _D	
0	0	Fe	
0	0	Cu	
0.0	0.0	œ	
		1	

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By:

Ian McLachlin, Vice President

^{*} Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

^{*} If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

Account Number: 06352 Report Number: C16291-10339

To: PATERSON GRAIN

P.O. BOX 356

25 HERITAGE TRAIL

Canada Laboratories inc.

2136 Jetstream Road, London, Ontario, N5V 3P5

Telephone: (519) 457-2575 Fax: (519) 457-2664

For: D.P. WIEBE

SALO

Field: S6

Attn: AARON BOLDUC

204-388-6888

NIVERVILLE, MB ROA 1E0

18 A Number Sample Reported Date: Legal Land Descrit Printed Date:Oct 19, 2016 Depth 2 9 Number 19938 19937 19939 Cap Organic Matter 5.7 3.7 Bicarb 35 H Phosphorus - P ppm 14 M Bray-P1 63 H 23 L TEST REPORT Potassium 250 H 249 H 344 VH K ppm Magnesium 1065 VH 1060 VH 1245 VH Mg ppm 3490 M 3120 M 3460 M Ca ppm Calcium 7.4 7.6 pH Buffer meg/100g 7.6 27.1 PO 26.7 27.0 CEC 2.4 <u>သ</u> သ % K % Mg % Ca Percent Base Saturations 38.9 58.5 32.8 63.9 32.7 64.6 % H % Na 0.5 0.7

5			
<	0	<u></u>	A
<			
VL = VI			
ERY LOW,			
10	7	రు	0
, ,	<	\leq	<
11		-	_
LOW, I	25	Ch	
, S	0.		
M = ME			
EDIC		N	
Ž,	\leq	\leq	\leq
I			
7	_	4	57
HIGH, VH			
H		 	2.61
= VE		Γ-	_
ERY HIGH,			
HG-			25
0		F-	\leq
= G			
100		86 VH	105 VH
, M		\leq	\leq
GOOD, MA = N			
MARGINAL		23 E	1.5 H
GIN			I
AL,			
M		0.3 VI	0.51
1		\leq	_
ODE			
RA			
E P			
KH			
0-7		CO	24
XO		I	I
C, T			
II P		38	340
TYH		Ö	Ö
T-0			
XO		0.0	0.0 G
C, S		(D)	G
1	0	0	0
SEV	.07	0.06	.10
DERATE PHYTO-TOXIC, T = PHYTO-TOXIC, ST = SEVERE PHYTO-TOXIC	49		
PH	9	2)	4-2
TYF			
J-TC			
OIXC	S	4	N
. /	52 M	43 M	9

SOIL FERTILITY GUIDELINES (lbs/ac)

Number Sample

> Sulfur S

Nitrate Nitrogen ppm ibs/ac

NO3-N

0.3 VL 0.5 L B ppm Boron

Zn ppm Zinc

mad um

Fe ppm fron

Copper Cu ppm

mmhos/cm Soluble Salts

0.10 Ratio

Saturation Aluminum

Saturation K/Mg

ENR

Chloride Cl

Na ppm Sodium

%AI

%P

Al ppm

Manganese

ibs/ac

e de companyone de la companyone de companyone de companyone de companyone de companyone de companyone de compa			100 40 I
	1A	Ď	Sample
	Soybeans	Soybeans	Previous Crop
	Wheat Red Spring Bl 70 bu	Wheat Red Spring	Intended Crop
	70 bu	70 bu	Yield Goal
	0.0	0.0	Lime Tons/Acre
	77	77	Z
	25	15	P205
	35	5	K20
	0	0	Mg
	0	0	Са
	70	70	S
	0.5	0.5	Zn
	4	4	Mn
	Ō	0	Fe
	т.	\)	Си
	0.5	0.0	В

No guarantee or warranty concerning crop performance is made by A & L.

Results Authorized By:

^{*} Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

^{*} If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

^{*} Crop yield is influenced by a number of factors in addition to soil fertility.

Account Number: 06352 Report Number: C17103-10016

To: PATERSON GRAIN

Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

For: D.P. WIEBE

Field: S7

TES-REPORT

Reported Date:

Printed Date:Apr 18, 2017

NIVERVILLE, MB R0A 1E0 Attn: AARON BOLDUC

204-388-6888

25 HERITAGE TRAIL P.O. BOX 356

10 B 1B A Number A Sample Number Sample Legal Land Descpt: 13 12 2 < < Sulfur S lbs/ac 38 25 47 Nitrate Nitrogen 42 VH 12 M 8 L ppm lbs/ac NO3-N Depth 12 0 Number 63526 63525 63524 76 22 29 Lab 2.0 L 4.3 M Zn ppm Organic Matter Zinc 3.9 5.5 Manganese Mn ppm 17 M 13 M 40 H Bicarb Phosphorus - P ppm 9 Fe ppm 69 VH fron Bray-P1 68 H 21 M Cu ppm 2.3 H 1.9 H Copper Potassium 242 H 220 M 359 VH K ppm 0.7 M B ppm 0.6 M Boron Magnesium Mg ppm 1600 VH 1480 VH 1380 VH nmhos/cm Soluble Salts 4740 M 5480 M 4220 L Calcium Ca ppm Saturation Aluminum Saturation K/Mg 18 H 8 I %P 7.4 7.0 pH Buffer meq/100g PH Al ppm 473 347 41.8 0.0 G 0.0 G 37.0 38.8 CEC %AI 2.4 29.6 54.4 % K % Mg % Ca 0.04 0.05 0.08 Ratio Percent Base Saturations 33.4 64.1 31.9 65.5 MNR 57 89 Chloride Cl mdd % H % Na Page: 1 / 1 112 H 161 H Na ppm Sodium 84 M 0.9 <u>٦</u>

VL = VERY LOW, L = LOW, M = MEDIUM, H = HIGH, VH = VERY HIGH, G = GOOD, MA = MARGINAL, MT = MODERATE PHYTO-TOXIC, T = PHYTO-TOXIC, ST = SEVERE PHYTO-TOXIC SOIL FERTILITY GUIDELINES (lbs/ac)

5

1A	1A	Sample
Soybeans	Soybeans	Previous Crop
Canola build	Canola	Intended Crop
50 bu	50 bu	Yield Goal
0.0	0.0	Lime Tons/Acre
17	17	z
30	15	P205
30	20	K20
0	0	Mg
0	0	Са
55	55	S
0.0	0.0	Zn
0	0	Mn
0	0	Fig
0	0	Cu
2.0	2.0	700

The results of this report relate to the sample submitted and analyzed

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By:

Ian WcLachlin, Vice President

^{*} Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

^{*} If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

Account Number: 06352 Report Number: C17103-10015

To: PATERSON GRAIN

P.O. BOX 356 25 HERITAGE TRAIL

Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) 457-2575 Fax: (519) 457-2664

For: D.P. WIEBE

Field: S8

TEST REPORT

Attn: AARON BOLDUC 204-388-6888

NIVERVILLE, MB ROA 1E0

Reported Date:	Sample	Number	1A	18	10	Sample	Number	1A	18	10
Date:		Leg						w	N	N
		al Lain				Sulfur	mdd	38 VL	24 VI	2 1
Printed	Docon	regai Land Deschi.				fur	lbs/ac	. 68		. 79
Date:Ap	•					2				
Printed Date: Apr 18, 2017		nepu	6	72	24	Nitrate Nitrogen NO3-N	ppm I	13 M	6	4 VL
17	Lab	Number	63521	635	63523	trogen .N	lbs/ac	23	<u>_</u>	14
						75 2	17	2.	<u>-</u> -	
	Organic	Matter	5.5	4.3	4.3		Zn ppm	8	1.4	
	Phos	Bicarb	25 (19		Manganese	undd um	19 M	1	
C	phorus	ъ	(1)	1						
ひつここにいったにでして、こ	Phosphorus - P ppm	Bray-P1	38 G	91		fron	re ppin	55 VH	57 VH	
7	the state of the s			2	2	Copper	cu ppm	2.01	2.3 H	
TTC	Potassium	K ppm	367 VH	250 H	234 H					
え		Mic	125	131	154	Boron	mdd a	0.9 M	0.8 M	
Total Auditorial Annial	Magnesium	Mg ppm	1255 VH	1310 VH	1545 VH	Soluble Salts	mmhos/cm			
And the second s	Calcium	Ca ppm	4720 M	4630 M	4780 M		os/cm			
Section of the sectio	ium	mdo	Z	Z	Z	saturati	701	11 _H	3 M	
	Pd	pH E	7.1	7.4	7.6	on Alur	AI	4		
		differ r				ninum	Al ppm	450	412	
	CEC	pH Buffer meq/100g	38.7	35.1	38.1	Saturation Aluminum Saturation K/Mg	%AI	0.0 G	0.0 G	
	P		2.4	1.8	1.6	ion K/A	Katio	3 0.09		0.05
	ercent	% M	27.0	31.1	33.8	Mg ENR	001)9 68)6 55	
	Percent Base Saturations	% K % Mg % Ca % H % Na	60.9	1 66.0	1.6 33.8 62.7	Chloride R Cl	mqq		٠.	
Pag	aturati	% H	60.9 8.7	_	7				_	2
Page: 1 / 1	sno	% N	0.9	1.5	2.	Sodium	Na ppm	84 M	121 H	207 VH

SOIL FERTILITY GUIDELINES (Ibs/ac)

	-		_
1A	1A	Sample Number	
Barley (Feed)	Barley (Feed)	Previous Crop	
Canola build	Canola	Intended Crop	
50 bu	50 bu	Yield Goal	
0.0	0.0	Lime Tons/Acre	
114	114	z	
30	15	P205	
30	20	K20	
0	0	Mg	
0	0	Са	
35	35	s	
0.5	0.5	Zn	
0	0	Mn	
0	0	Fe	
0	0	Cu	
1.5	1.5	00	

No guarantee or warranty concerning crop performance is made by A & L.

Results Authorized By:

^{*} Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

^{*} If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

^{*} Crop yield is influenced by a number of factors in addition to soil fertility.

Account Number: 06352 Report Number: C17108-10146

To: PATERSON GRAIN

Canada Laboratories Inc.

Telephone: (519) 457-2575 Fax: (519) 457-2664 2136 Jetstream Road, London, Ontario, N5V 3P5

For: D.P. WIEBE

Field: FIELD \$9

SA-09

Attn: AARON BOLDUC

204-388-6888

NIVERVILLE, MB ROA 1E0 25 HERITAGE TRAIL

SOIL TEST REPORT

Number Sample Sample Number Reported Date: VL = VERY LOW, L = LOW, M = MEDIUM, H = HIGH, VH = VERY HIGH, G = GOOD, MA = MARGINAL, MT = MODERATE PHYTO-TOXIC, T = PHYTO-TOXIC, ST = SEVERE PHYTO-TOXIC Legal Land Descpt: 1430 VH 2574 517 VH 1861 520 VH 936 mod Sulfur S lbs/ac Printed Date: Apr 20, 2017 Nitrate Nitrogen 9 12 13 C X X ppm lbs/ac NO3-N Depth 0 66832 Number 66831 22 66830 Lab 11.1 VH 2.51 Zn ppm Zinc Matter Organic 4.2 6.3 Manganese Mn ppm SOIL FERTILITY GUIDELINES (lbs/ac) 101 Phosphorus - P ppm 48 H Bicarb 116 VH Fe ppm 68 VH iron 110 H Bray-P1 24 M Copper Cu ppm 2.5 H 2.3 H Potassium 257 M 204 M 390 VH K ppm 0.9 M 1.2 M Boron B ppm Magnesium 1930 VH 2015 VH 1310 VH Mg ppm mmhos/cm Soluble Salts 4380 L 4790 L 6950 M Ca ppm Calcium Saturation Aluminum 6H %P 6.1 6.4 7.0 pH Buffer meq/100g Al ppm P 503 868 Saturation K/Mg 41.3 60.7 45.5 0.2 G CEC %AI 0.04 % K % Mg % Ca Ratio 0.03 0.09 2.4 26.4 53.0 17.1 1.1 Percent Base Saturations 27.7 57.3 12.7 35.4 52.7 MUR 55 76 Chloride Cl 8.6 % H % Na 179 H 104 H 230 VH Na ppm Sodium ان 2.2

10 B

1 B IA

	Sample	
	er	
	Pr	
	Previous Crop	
	Crop	
	MANUAL MA	
	Intended Crop	
1	Crop	
	Yield Goal	
	Lime Tons/Acre	
	derawith the state of the state	
	Z	
	P205	
	K20	
	Mg	
	Са	
	S	
	Zn	
	Mn	
	Fe	
	Cu	
	B	

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L. A&L Canada Laboratories Inc. is accredited by the Standards Council of Canada for specific tests as listed on www.scc.ca and by the Canadian Association for Laboratory Accreditation as listed on www.cala.ca

^{*} Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

^{*} If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury

The results of this report relate to the sample submitted and analyzed.

^{*} Crop yield is influenced by a number of factors in addition to soil fertility.

Account Number: 06352 Report Number: C16315-10212

To: PATERSON GRAIN

P.O. BOX 356

Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5

Telephone: (519) 457-2575 Fax: (519) 457-2664

C16315-10212

Field: NE 32-6-35 Farm: S 11 Desalaberry

For: D.P. WIEBE

Attn: AARON BOLDUC

204-388-6888

NIVERVILLE, MB ROA 1E0

25 HERITAGE TRAIL

SOIL TEST REPORT

Reported Date:	Printed Date	Printed Date: Nov 14, 2016			SO		SOIL TEST REPORT	R			Angele de la company de la com			area de colo de proposicio de la colonida del colonida del colonida de la colonida del colonida del colonida de la colonida del coloni	70	Page: 1 / 1
Sample		7	Lab	Organic	Phosphor	Phosphorus - P ppm	Potassium	n Magnesium		Calcium	Н	CEC	Per	cent Bas	Percent Base Saturations	ations
Number	regai rana resopt	Depui	Number	Matter	Bicarb	Bray-P1	K ppm				pH Buffe	Buffer meg/100g	% X	% Mg %	%K %Mg %Ca %H %Na	H %
1A		6	60495	5.4	24 G	49 H	366 VH		H 4240 M		6.8 6.8	36.7	2.6	32.2 5	57.7 6.1	.1 1.4
1B			60496	3.3	61	91	275 H	1835 V			7.5	42.1	1.7	36.3 6	0.1	2.3
10		24	60497	ω ω			244 M	1965 VH			7.7	47.1		34.8 6	61.2	3.2
Sample Number	Sulfur S ppm ibs/ac	Nitrate Nitrogen NO3-N ppm lbs/ac		Zinc Zn ppm	Manganese Mn ppm	Iron Fe ppm	Copper Cu ppm	Boron B ppm m	Soluble Salts mmhos/cm	Saturation %P	Aluminu Al ppm	Saturation Aluminum Saturation K/Mg %P Al ppm %Al Ratio	n K/Mg Ratio	ENR	Chloride Cl ppm	Sodium Na ppm
1A	\leq	6 L		4.3 M	91	87 VH	1.9 H	0.6 M		11 1	549	0.0 G	0.08	67		118 H
ĆŌ	28 VL 50	4 \<	7	1.7	7-	74 VH		0.7 M		\ ≥	479	0.0 G	0.05	12		226 VH
10		7 L	25										0.04	45		345 VH
	kaytereiskaar (plaksjonkes szreskiezekoprodestis kakesej kajos filosofis akteologiskiej kajos kajos kajos kaj	sanegie en esta nutit promergen metricitation topologicales			inimportaumipoi projektivini kai kongreporti kaneda delete							electric de la companie de la compa				
101	$V_{ij} = V_{ij} + V$			ALL VED			MADORIAL	MT - MODE	DATE DUY	TO TOY	7 TOUV	てつ てつくう の	T - OF	חסח סו	770 7	3

VL = VERY LOW, L = LOW, M = MEDIUM, H = HIGH, VH = VERY HIGH, G = GOOD, MA = MARGINAL, MT = MODERATE PHYTO-TOXIC, T = PHYTO-TOXIC, ST = SEVERE PHYTO-TOXIC SOIL FERTILITY GUIDELINES (lbs/ac)

13

1A	1A	Sample	
Soybeans	Soybeans	Previous Crop	
Wheat Red Spring Bl 70 bu	Wheat Red Spring	Intended Crop	
70 bu	70 bu	Yield Goal	
0.0	0.0	Lime Tons/Acre	
74	74	2	
25	O'r	P205	
35	15	K20	
0	0	Mg	
0	0	Са	
35	35	S	
0.0	0.0	Zn	
∞	00	Mn	
0	0	Fe	
0	0	Cu	
0.5	0.0	B	

Results Authorized By:

Ian WcLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L. A&L Canada Laboratories Inc. is accredited by the Standards Council of Canada for specific tests as listed on www.scc.ca and by the Canadian Association for Laboratory Accreditation as listed on www.cala.ca

^{*} Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

^{*} If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

The results of this report relate to the sample submitted and analyzed.

^{*} Crop yield is influenced by a number of factors in addition to soil fertility.

Account Number: 06352 Report Number: C17145-10014

To: PATERSON GRAIN

Canada Laboratories Inc.

2136 Jetstream Road, London, Ontario, N5V 3P5

Telephone: (519) 457-2575 Fax: (519) 457-2664

Field: SE1 7 3E

For: D.P. WIEBE

NIVERVILLE, MB R0A 1E0
Attn: AARON BOLDUC

204-388-6888

25 HERITAGE TRAIL P.O. BOX 356

Sample Number 18 A 1 A Number Sample Reported Date: Legal Land Descpt: 120 42 ppm Sulfur < < S Printed Date:Jun 2, 2017 lbs/ac 216 76 Nitrate Nitrogen ppm NO3-N Depth 2 ibs/ac Number 16 89661 89660 Lab 4.7 M 2.9 L Zn ppm Zinc Organic Matter 4.9 5.4 Manganese Mn ppm 33 H 25 M 32 G 22 G Phosphorus - P ppm Bicarb Bray-P1 113 VH 73 VH Fe ppm fron 41 G 59 H TEST REPORT 1.9H 2.6H Cu ppm Copper Potassium Magnesium 297 H 287 VH K ppm 0.9 M 0.6 M Boron B ppm 2260 VH 1165 VH Mg ppm mmhos/cm Soluble Salts 3720 L 2280 VL Ca ppm Calcium Saturation Aluminum Saturation K/Mg %P Al ppm %Al Ratio 13 H 6.2 7.4 pH Buffer meg/100g 407 887 6.7 38.7 25.7 0.0 G 0.2 G 2.0 2.9 %K %Mg %Ca %H %Na 0.04 0.08 Percent Base Saturations 48.7 48.1 37.8 44.4 13.5 1.5 ENR 67 Chloride ppm 0 Page: 1 / 1 Sodium 167 VH Na ppm 86 H

VL = VERY LOW, L = LOW, M = MEDIUM, H = HIGH, VH = VERY HIGH, G = GOOD, MA = MARGINAL, MT = MODERATE PHYTO-TOXIC, T = PHYTO-TOXIC, ST = SEVERE PHYTO-TOXICSOIL FERTILITY GUIDELINES (Ibs/ac)

≶

1 _A	Sample
	ple
	Previ
	Previous Crop
	do.
Soybeans	Intended Crop
eans	ed Cro
	p
45 bu	Yield Goal
bu	Goal
2.0	Li
.0	Lime Tons/Acre
5	z
	P
25	P205
40	K20
	Mg
0	lg
0	Ca
35	S
0.0	Zn
0	Mn
0	Fe
0	Cu
0.0	В
0	

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By:

^{*} Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency

^{*} If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury

Account Number: 06352 Report Number: C17128-10219

To: PATERSON GRAIN

NIVERVILLE, MB R0A 1E0 Attn: AARON BOLDUC 204-388-6888

25 HERITAGE TRAIL P.O. BOX 356

Canada Laboratories Inc.

Telephone: (519) 457-2575 Fax: (519) 457-2664 2136 Jetstream Road, London, Ontario, N5V 3P5

C17128-10219

For: D.P WIEBE

Field: L+M RR 6079

Printed Date: May 10, 2017 TEST REPORT

Reported Date:	Printed Date	Printed Date: May 10, 2017			SO	LIES	SOIL TEST REPORT	7		And the second s			Principal Section (Section)		Page: 1 / 1
Sample	Togal and Docont	Donth	Lab	Organic	Phosphor	Phosphorus - P ppm	Potassium	n Magnesium		Calcium	рН	CEC	Perce	Percent Base Saturations	turations
Number	rogar mana people.	Capan	Number	Matter	Bicarb	Bray-P1	K ppm	Mg pi		Ca ppm	pH Buffer meg/100g	meq/100g	% K %	Mg % Ca	% K % Mg % Ca % H % Na
1A		o	82819	5.3	17 M	26 M	345 VH	2100 VH		3280 L	7.7	35.2	2.5 4	49.8 46.6	1.7
<u></u>		12	82820	3.9	51	6VL	268 H			4570 L	7.9	45.1	1.5 4	6.0 50.6	2.5
10		24	82821	3.5			241 M			5410 L	8.1	51.9	1.2 4	43.7 52.1	3.6
Sample	Sulfur S	Nitrate Nitrogen NO3-N		Zinc	Manganese Mn ppm	Fe ppm	Copper	Boron	Soluble Salts	Saturatio %p	Saturation Aluminum Saturation K/Mg	Saturation %AI		Chloride ENR Cl	de Sodium
1A	61 VL 110	53 VH 9	51	2.21	27 M	63 VH	3.2 VH	1.3 H		H 9	525	0.0G		66	140 H
1B	64 VL 115	9 L		1.4	13			0.51		21	452	0.0 G	0.03	51	259 VH
10	138 M 497	8	29											47	424 VH
-															

VL = VERY LOW, L = LOW, M = MEDIUM, H = HIGH, VH = VERY HIGH, G = GOOD, MA = MARGINAL, MT = MODERATE PHYTO-TOXIC, T = PHYTO-TOXIC, ST = SEVERE PHYTO-TOXICSOIL FERTILITY GUIDELINES (Ibs/ac)

<

Sample Number	
94	
Previous Crop	
Crop	
Intended Crop	
Yield Goal	
Lime Tons/Acre	
Z	
P205	
K20	
Мg	
Ca	
S	
Zn	
Mn	
Fe	
Си	
₽	

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By:

No guarantee or warranty concerning crop performance is made by A & L. A&L Canada Laboratories Inc. is accredited by the Standards Council of Canada for specific tests as listed on www.scc.ca and by the Canadian Association for Laboratory Accreditation as listed on www.cala.ca

^{*} Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

^{*} If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

Account Number: 06352 Report Number: C17128-10217

Canada Laboratories Inc.

Telephone: (519) 457-2575 Fax: (519) 457-2664 2136 Jetstream Road, London, Ontario, N5V 3P5

To: PATERSON GRAIN NIVERVILLE, MB ROA 1E0 25 HERITAGE TRAIL P.O. BOX 356

Attn: AARON BOLDUC 204-388-6888

C17128-10217

For: D.P. WIEBE

NI of SL-00X

Field: N RR 6079

Reported Date:	Printed Date:May 10, 2017	May 10, 201	7		SO	TES	SOIL TEST REPORT	7							Page: 1 / 1	
Sample	l onal I and Doscort	Donth	Lab	Organic	Phosphoru	ıs - P ppm	Potassium	1	Calcium	рН	CEC	Perc	ent Bas	Percent Base Saturations	rations	
Number	regai raild peschr.	Depui	Number	Matter	Bicarb	Bray-P1		ı		pH Buffer	meq/100g	% K %	% Mg %	Ca %	6 H % Na	
1A		6	82813	5.8	15 M 24 M	24 M	261 H	1255 VH		7.8 33.0	33.0	2.0	31.7 6	6.4	2.0 31.7 66.4 0.3	
8		12	82814	3.9	10 M	14		1595 VH	5110 M	8.0	39.5	1.4	33.7 6	4.8	0.6	
10		24	82815	5.1			263 H	1700 VH		7.9	39.5	1.7	35.9 6	2.0	0.9	
Sample	Sulfur	Nitrate Nitrogen		Zinc I	Zinc Manganese	iron	Copper Boron	Soluble	-	Saturation Aluminum Saturation K/Mg	Saturatio	n K/Ma		Chloride	Sodium	

VL = VERY LOW, L = LOW, M = MEDIUM, H = HIGH, VH = VERY HIGH, G = GOOD, MA = MARGINAL, MT = MODERATE PHYTO-TOXIC, T = PHYTO-TOXIC, ST = SEVERE PHYTO-TOXICSOIL FERTILITY GUIDELINES (lbs/ac)

 \leq

10 A

25 25

29 14 90

32 H 15 M

115 67

37 H

2.3L

13 31 H

48 H 51 VH

2.3 H 2.4 H

1.5H B ppm Boron

8 H

380 252

0.0 G

0.04 0.05

51 L 79 M

25 VL

0.06

ppm 0

> Sodium Na ppm

51 64

mmhos/cm

Salts

Saturation Aluminum Saturation K/Mg ENR %P Al ppm %Al Ratio

Al ppm

Sample

Number

mod \leq

ibs/ac

ppm lbs/ac NO3-N

> Zn ppm Zinc

> Manganese Mn ppm

Fe ppm

iron

Copper Cu ppm

1A		ZØ	
A	A	Sample Number	
		Previous Crop	
Canola build	Canola	Intended Crop	
60 bu	60 bu	Yield Goal	
0.0	0.0	Lime Tons/Acre	
124	124	z	
45	35	P205	
35	25	K20	
0	0	Mg	
0	0	Ca	
65	65	S	
1.0	1.0	Zn	
0	0	Mn	
0	0	Fe	
0	0	Cu	
1.0	1.0	8	

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By:

Ian McLachlin, Vice President

No guarantee or warranty concerning crop performance is made by A & L. A&L Canada Laboratories Inc. is accredited by the Standards Council of Canada for specific tests as listed on www.sec.ca and by the Canadian Association for Laboratory Accreditation as listed on www.cala.ca

^{*} Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

^{*} If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury.

Account Number: 06352 Report Number: C17128-10220

To: PATERSON GRAIN

Canada Laboratories Inc.

Telephone: (519) 457-2575 Fax: (519) 457-2664 2136 Jetstream Road, London, Ontario, N5V 3P5

For: D.P WIEBE

Field: O RR 6079

TEST REPORT

Reported Date: Legal Land Descpt: Sulfur Printed Date: May 10, 2017 Nitrate Nitrogen Depth 12 24 0 82823 82822 82824 Number Lab Organic Matter 4.3 6.8 Phosphorus - P ppm 25 G 5 L Bicarb Bray-P1 34 M 6 VL Copper Cu ppm Potassium Magnesium 209 M 227 M 345 VH K ppm 1525 VH 1265 VH 1960 VH Mg ppm Soluble 5740 M 5580 M 4740 M Ca ppm Calcium 8.0 7.8 pH Buffer meg/100g POH 35.2 42.1 45.3 CEC % K % Mg % Ca 2.5 30.0 67.4 <u>د</u> دن Percent Base Saturations 30.2 68.2 36.1 61.6 Chloride Cl % H Sodium 1.5 0.5

Sample Number

10 B 1A Number Sample

Attn: AARON BOLDUC

204-388-6888

NIVERVILLE, MB ROA 1E0 25 HERITAGE TRAIL P.O. BOX 356

10 B

À

8 7 0

 \leq

<

22 14 36

40 VH 13 M 11 M

72 23 40

2.3L 1.2L

33 H 12 L

52 VH 46 H

2.8 H 2.4 H

0.5L 1.1 M B ppm Boron

3 ¹/₁ ≤ H

409 231

0.0 G

0.04 0.08 Ratio

54 55 24

0.04

156 H

ppm

lbs/ac

ppm lbs/ac NO3-N

> Zn ppm Zinc

> Manganese Mn ppm

Fe ppm

mmhos/cm

Salts

Saturation Aluminum

%P Al ppm

Saturation %Al

ENR

ppm

Na ppm 41 L 74 M

Al ppm

iron

S

VL = VERY LOW, L = LOW, M = MEDIUM, H = HIGH, VH = VERY HIGH, G = GOOD, MA = MARGINAL, MT = MODERATE PHYTO-TOXIC, T = PHYTO-TOXIC, ST = SEVERE PHYTO-TOXIC

SOIL FERTILITY GUIDELINES (Ibs/ac)

Sample Number
Previous Crop
Intended Crop
Yield Goal
Lime Tons/Acre
Z.
P205
K20
Mg
Ca
s
Zn
Mn
Fe
Cu
8

The results of this report relate to the sample submitted and analyzed.

* Crop yield is influenced by a number of factors in addition to soil fertility.

Results Authorized By:

No guarantee or warranty concerning crop performance is made by A & L. A&L Canada Laboratories Inc. is accredited by the Standards Council of Canada for specific tests as listed on www.scc.ca and by the Canadian Association for Laboratory Accreditation as listed on www.cala.ca

^{*} Recs are based on building nutrients to a level to maintain soil health. Banding and/or precision placement techniques can be utilized to increase fertilizer efficiency.

^{*} If this report contains soil in excess of 7500 ppm Ca it may or may not effect the calculated Cation Exchange Capacity. Excessive seed placed fertilizer can cause injury

Water Requirement Calculation Table

Livestock	Number	IG/day per animal in winter	IG/day per animal in summer	IG/day (Imperial gallons per day)
Beef/Dairy/Bison *				
Feeder/heifer/steer (600 lb.)		5	9	-
Feeder (900 lb.)		7	12	-
Feeder (1250 lb.)		10	15	-
Cow/calf pair		12	15	-
Dry milking cow **		10	12	-
Lactating cow **		25	30	-
Bison		8	10	-
Horses				
Horses		8	11	-
Hogs				
Sow (Farrow/wean)		6	.5	-
Dry Sow/Boar		4	1	-
Feeder		3	3	-
Nursery (33 lb.)		2	2	-
Chickens				
Broilers		0.0)35	-
Roasters/Pullets	37,500	0.	04	1,500
Layers	90,000	0.0)55	4,950
Breeders		0.	07	-
Turkeys				
Turkey Growers		0.	13	-
Turkey Heavies		0.	16	-
Sheep/Goats				
Sheep/Goats		2	2	-
Ewes/Does		3	3	-
Lambs/Kids (90 lb.)		1	.6	-
		TOTAL	(IG/day)	6,450
	***	TOTAL with 10	% wash water	7,095

^{*} For beet, dairy, bison and horse enterprises:

Use summer numbers if appropriate for the operation. Otherwise base projections on winter values.

Always use the greater of the two values.

** For intensive Dairy operations, please use the Dairy Barn Water Requirement Estimator found on separate sheet.

Enter this number on page 7 of Application Form.

*** 10% of the total is added to allow for wash water

Other consumption:

Normal household consumption: 60-75 IG/day per person or (272-340 I/day/person)

U	nit Conversion	าร
Total per day	Total per year	Unit
7,095	2,589,675	IG
29,322	10,702,421	litres
0.029	11	cubic decametres (dam³)

Enter this number on page 7 of Application Form.

Conversion Factor: 1 IGPM = 4.546 I/m

LOCATION: 5-6-5E

Well PID: 126929

Owner: PURATONE/BURNBRAE FARMS

Driller: Echo Drilling Ltd.

Well Name:

Well Use: PRODUCTION
Water Use: Domestic, Livestock

UTMX: 653415.75 UTMY: 5479737.75

Accuracy XY:

UTMZ:

Accuracy Z:

Date Completed: 2003 Sep 12

WELL LOG

From To Log

(ft.) (ft.)

0 175.0 SAND AND GRAVEL 175.0 204.0 RED SHALE 204.0 216.0 TILL 216.0 335.0 LIMESTONE

WELL CONSTRUCTION

From To Casing Inside Outside Slot (ft.) (ft.) Type Dia.(in) Dia.(in) Size(in) Type Material

0 223.0 CASING 5.00 INSERT PVC

170.0 223.0 CASING 4.00 INSERT

GALVANIZED

223.0 335.0 OPEN HOLE 4.00

10.0 223.0 CASING GROUT

BENTONITE

Top of Casing: 2.0 ft. above ground

PUMPING TEST

2003 Sep 12 Date:

Pumping Rate: 75.0 Imp. gallons/minute Water level before pumping: 10.0 ft. below ground Pumping level at end of test: 120.0 ft. below ground Test duration: ??? hours, ?? minutes

LOCATION: NE5-6-5E

Well_PID: 52211 Owner: HESTHER FARM

Driller: GUY'S WELL DRILLING

Well Name:

Well Use: PRODUCTION
Water Use: Livestock
UTMX: 653808.305
UTMY: 5480156.28
Accuracy XY: UNKNOWN

UTMZ:

Accuracy Z:

Date Completed: 1984 Jun 13

WELL LOG

From	To	Log
(ft.)	(ft.)	
0	119.9	SAND
119.9	156.9	GRAVEL
156.9	170.9	TILL
170.9	172.9	BOULDER
172.9	196.9	SHALE; RED
196.9	200.9	LIMESTONE
200.9	207.9	SHALE; RED
207.9	339.8	BEDROCK

WELL CONSTRUCTION

From	To	Casing	Inside	Outside	Slot	Type	Material
(ft.)	(ft.)	Type	Dia.(in)	Dia.(in)	Size(in)		
0	209.9	casing	5.00				PVC
199.9	339.8	open hole	4.80				

Top of Casing: 1.0 ft. below ground

PUMPING TEST

Date: 1984 Jun 13

Pumping Rate: 50.0 Imp. gallons/minute Water level before pumping: 9.0 ft. below ground Pumping level at end of test: 20.0 ft. below ground

Test duration: 1 hours, minutes Water temperature: ?? degrees F

LOCATION: NE5-6-5E

Well PID: 28618 Owner: A DUECK

Driller: EMIL MANKEY & SON

Well Name:

Well Use: PRODUCTION Water Use: Domestic UTMX: 653808.305 UTMY: 5480156.28 Accuracy XY: UNKNOWN

UTMZ:

Accuracy Z:

Date Completed: 1976 Apr 02

WELL LOG

From To Log

(ft.) (ft.)

0 30.0 SAND AND GRAVEL WITH LAYER OF CLAY 30.0 72.0 SAND AND GRAVEL

WELL CONSTRUCTION

From To Casing Inside Outside Slot (ft.) (ft.) Type Dia.(in) Dia.(in) Size(Type Material

Dia.(in) Dia.(in) Size(in)

4.00 0 67.0 casing INSERT BLACK

IRON

67.0 72.0 perforations 3.00 0.012 WIRE WOUND S. S.

Top of Casing: ft. below ground

PUMPING TEST

Date:

Pumping Rate: 25.0 Imp. gallons/minute Water level before pumping: 14.0 ft. below ground Pumping level at end of test: ?? ft. below ground Test duration: 1 hours, minutes

LOCATION: NE5-6-5E

Well PID: 81023 Owner: E FROESE

Driller: Echo Drilling Ltd.

Well Name:

Well Use: PRODUCTION
Water Use: Domestic, Livestock

UTMX: 653808.305 UTMY: 5480156.28 Accuracy XY: UNKNOWN

UTMZ:

Accuracy Z:

Date Completed: 1995 Dec 21

WELL LOG

From	To	Log
(ft.)	(ft.)	
0	1.0	SOD AND BROWN LOAM
1.0	4.0	BROWN TILL
4.0	12.0	GRAVEL
12.0	26.0	BROWN TILL
26.0	49.0	FINE GREY SAND
49.0	55.0	GREY CLAY
55.0	65.0	FINE GREY SAND
65.0	73.0	GREY CLAY
73.0	87.9	FINE GREY-BLACK SAND
87.9	91.9	GREY CLAY

WELL CONSTRUCTION

	From	To	Casing	Inside	Outside	Slot	Type	Material
	(ft.)	(ft.)	Type	Dia.(in)	Dia.(in)	Size(in)		
	0	79.9	casing	5.00			INSERT	PVC
	79.9	84.9	perforations	5.00		0.015	WIRE WOUND	S. S.
	75.0	85.9	gravel pack				NO. 10-30	SILICA
S.								
	25.0	75.0	casing grout					casing

Top of Casing: 2.0 ft. below ground

PUMPING TEST

1995 Dec 21 Date:

Pumping Rate: 8.0 Imp. gallons/minute Water level before pumping: 22.0 ft. below ground Pumping level at end of test: 79.9 ft. below ground

2 hours, minutes Test duration:

LOCATION: NW5-6-5E

Well_PID: 100856 Owner: HENERY BRAUN

Driller: Echo Drilling Ltd.

Well Name:

Well Use: PRODUCTION
Water Use: Domestic, Livestock

UTMX: 653000.388 UTMY: 5480130.28

Accuracy XY: 4 FAIR [350M-1KM] [WITHIN SECTION]

UTMZ:

Accuracy Z:

Date Completed: 1996 Jun 12

WELL LOG

From	To	Log
(ft.)	(ft.)	
0	1.0	BLACK LOAM
1.0	7.0	BROWN TILL
7.0	14.0	BROWN SAND
14.0	22.0	GREY TILL
22.0	39.0	GREY SAND
39.0	75.0	GREY TILL WITH NARROW SAND STRINGERS
75.0	110.0	FINE TO MEDIUM GREY-BLACK SAND
110.0	115.0	GREY TILL

WELL CONSTRUCTION

	From	To	Casing	Inside	Outside	Slot	Type	Material
	(ft.)	(ft.)	Type	Dia.(in)	Dia.(in)	Size(in)		
	0	97.0	CASING	5.00			INSERT	PVC
	97.0	107.0	PERFORATIONS	5.00		0.015	WIRE WOUND	S. S.
	80.0	110.0	GRAVEL PACK				NO. 10-30	SILICA
S.								
	14.0	75.0	CASING GROUT					

Top of Casing: 2.0 ft. above ground

PUMPING TEST

BENTONITE

Date: 1996 Jun 12

75.0 Imp. gallons/minute Pumping Rate: Water level before pumping: 4.0 ft. below ground Pumping level at end of test: 95.0 ft. below ground

Test duration: 2 hours, minutes

LOCATION: SE5-6-5E

Well_PID: 34887 Owner: NEUFELD

Driller: Friesen Drillers Ltd.

Well Name:

Well Use: PRODUCTION
Water Use: Domestic
UTMX: 653832.555
UTMY: 5479351.61
Accuracy XY: UNKNOWN

UTMZ:

Accuracy Z:

Date Completed: 1978 Oct 17

WELL LOG

From To Log
(ft.) (ft.)
0 20.0 SAND
20.0 79.9 TILL
79.9 139.9 BLUE CLAY
139.9 149.9 TILL
149.9 159.9 LIMESTONE

WELL CONSTRUCTION

From To Casing Inside Outside Slot Type Material (ft.) (ft.) Type Dia.(in) Dia.(in) Size(in) 0 150.9 casing 4.25 INSERT BLACK

IRON

150.9 159.9 open hole 4.00

Top of Casing: ft. below ground

PUMPING TEST

Date:

Flowing Rate: 15.0 Imp. gallons/minute Water level before pumping: 4.0 ft. above ground Pumping level at end of test: 25.0 ft. below ground

Test duration: hours, minutes Water temperature: ?? degrees F

LOCATION: SE5-6-5E

Well_PID: 134538

Owner: BURNBRAE FARMS Driller: Echo Drilling Ltd.

Well Name:

Well Use: PRODUCTION Water Use: Domestic UTMX: 653832.555 UTMY: 5479351.61

Accuracy XY:

UTMZ:

Accuracy Z:

Date Completed: 2005 Oct 27

WELL LOG

From To Log

(ft.) (ft.)

0 175.0 SAND AND GRAVEL 175.0 197.0 SHALE 197.0 208.0 TILL 208.0 330.0 LIMESTONE

WELL CONSTRUCTION

From To Casing Inside Outside Slot Type Material (ft.) (ft.) Type Dia.(in) Dia.(in) Size(in) INSERT PVC 212.0 230.0 OPEN HOLE 4.00

10.0 80.0 CASING GROUT

BENTONITE

Top of Casing: 2.0 ft. above ground

PUMPING TEST

Date: 2005 Oct 27

Pumping Rate: 100.0 Imp. gallons/minute Water level before pumping: 4.0 ft. below ground Pumping level at end of test: 80.0 ft. below ground Test duration: ??? hours, ?? minutes

LOCATION: SE5-6-5E

Well PID: 125910

Owner: PURATONE - BURNBRAE FARMS

Driller: Echo Drilling Ltd.

Well Name:

Well Use: PRODUCTION Water Use: Livestock UTMX: 653832.555 UTMY: 5479351.61

Accuracy XY:

UTMZ:

Accuracy Z:

Date Completed: 2003 Sep 12

WELL LOG

From To Log (ft.) (ft.) 0 15.0 BROWN TILL 15.0 90.0 SAND 90.0 175.0 SAND AND GRAVEL 175.0 214.0 RED SHALE 214.0 323.0 LIMESTONE

WELL CONSTRUCTION

From To Casing Inside Outside Slot Type (ft.) (ft.) Type Dia.(in) Dia.(in) Size(in) O 221.0 CASING 5.00 5.50 INSERT Material 5.00 INSERT PVC 221.0 323.0 OPEN HOLE 4.00 20.0 100.0 CASING GROUT

BENTONITE

Top of Casing: 2.0 ft. above ground

PUMPING TEST

2003 Sep 12 Date:

75.0 Imp. gallons/minute Pumping Rate: Water level before pumping: 10.0 ft. below ground Pumping level at end of test: 145.0 ft. below ground rest duration: ??? hours, ?? minutes
Water temperature: ?? degrees F

LOCATION: SW5-6-5E

Well PID: 34889 Owner: J NEUFELD

Driller: Friesen Drillers Ltd.

Well Name:

Well Use: PRODUCTION Water Use: Domestic UTMX: 653022.138 UTMY: 5479327.11 Accuracy XY: UNKNOWN

UTMZ:

Accuracy Z:

Date Completed: 1978 Oct 30

WELL LOG

From To Log (ft.) (ft.) 0 25.0 SAND 25.0 35.0 TILL

WELL CONSTRUCTION

From To Casing Inside Outside Slot (ft.) (ft.) Type Dia.(in) Dia.(in) Size(in) 20.0 casing 4.25 Type Material

INSERT BLACK

20.0 25.0 perforations 0.018 WIRE WOUND S. S. 18.0 30.0 gravel pack NO. 10-30 SILICA

S.

Top of Casing: ft. below ground

PUMPING TEST

Date:

Pumping Rate: 7.0 Imp. gallons/minute Water level before pumping: 13.0 ft. below ground Pumping level at end of test: 22.0 ft. below ground

Test duration: hours, minutes Water temperature: ?? degrees F

LOCATION: SW5-6-5E

Well_PID: 138606 Owner: FRAZER FARMS

Driller: Echo Drilling Ltd.

Well Name:

Well Use: PRODUCTION
Water Use: Domestic
UTMX: 653022.138
UTMY: 5479327.11

Accuracy XY:

UTMZ:

Accuracy Z:

Date Completed: 2006 Oct 13

WELL LOG

From	To	Log
(ft.)	(ft.)	
0	23.0	BROWN TILI
23.0	35.0	CLAY
35.0	158.0	SANDY TILI
158.0	229.0	SHALE
229.0	335.0	LIMESTONE

WELL CONSTRUCTION

From	To	Casing	Inside	Outside	Slot	Type	Material
(ft.)	(ft.)	Type	Dia.(in)	Dia.(in)	Size(in)		
0	238.0	CASING	5.00	5.50		INSERT	PVC
238.0	335.0	OPEN HOLE	4.00				
10.0	80.0	CASING GROUT					OTHER

Top of Casing: 2.0 ft. above ground

PUMPING TEST

Date: 2006 Oct 13

Pumping Rate: 75.0 Imp. gallons/minute Water level before pumping: 7.0 ft. below ground Pumping level at end of test: 80.0 ft. below ground Test duration: ??? hours, ?? minutes

Water temperature: ?? degrees F

REMARKS

GRUNTHAL. WELL MUST BE VENTED.

LOCATION: SW5-6-5E

Well_PID: 121928 Owner: ED FROESE

Driller: Echo Drilling Ltd.

Well Name:

Well Use: PRODUCTION
Water Use: Domestic
UTMX: 653022.138
UTMY: 5479327.11

Accuracy XY:

UTMZ:

Accuracy Z:

Date Completed: 2002 Oct 23

WELL LOG

From	${ m To}$	Log
(ft.)	(ft.)	
0	15.0	TILL
15.0	30.0	CLAY
30.0	161.0	SANDY TILL
161.0	218.0	RED SHALE
218.0	330.0	LIMESTONE

WELL CONSTRUCTION

From	То	Casing	Inside	Outside	Slot	Type	Material
(ft.)	(ft.)	Type	Dia.(in)	Dia.(in)	Size(in)		
0	236.0	CASING	5.00	5.50		INSERT	PVC
236.0	330.0	OPEN HOLE	4.50				
10.0	236.0	CASING GROUT					
BENTONIT	Ε						

Top of Casing: 2.0 ft. above ground

PUMPING TEST

Date: 2002 Oct 23

Pumping Rate: 75.0 Imp. gallons/minute Water level before pumping: 7.0 ft. below ground Pumping level at end of test: 80.0 ft. below ground Test duration: ??? hours, ?? minutes

Water temperature: ?? degrees F

LOCATION: NW6-6-5E

Well_PID: 111500 Owner: ELITE SWINE

Owner: ELITE SWINE
Driller: Echo Drilling Ltd.
Well Name: QUINFIELD FARMS PIG BARN
Well Use: PRODUCTION
Water Use: Livestock UTMX: 651368.644 UTMY: 5480080.04

Accuracy XY:

UTMZ:

Accuracy Z:

Date Completed: 1999 Aug 24

WELL LOG

From To Log (ft.) (ft.) 0 50.0 BROWN TILL 50.0 160.0 GREY TILL 160.0 216.0 RED SHALE 216.0 330.0 LIMESTONE

WELL CONSTRUCTION

		Casing			Slot	Type	Material
(ft.)	(ft.)	Type	Dia.(in)	Dia.(in)	Size(in)		
0	50.0	CASING	5.00			INSERT	PVC
50.0	330.0	OPEN HOLE	4.00				
0	218.0	CASING GROUT					CEMENT

Top of Casing: 2.0 ft. above ground

PUMPING TEST

Date: 1999 Aug 24

Flowing Rate: 100.0 Imp. gallons/minute Water level before pumping: 10.0 ft. above ground Pumping level at end of test: ?? ft. below ground Test duration:
Water temperature: ??? hours, ?? minutes

?? degrees F

REMARKS

FLOW RATE IS ESTIMATED

Search

Search Summary

6 records returned

966 farm varieties grown on 193,430.0 acres

Average Yield

0.929 Tonnes (41.0 Bushels) per acre

Average Fertilizer Application

Nitrogen: 118.4 lbs per acre Phosphorus: 34.6 lbs per acre Potassium: 5.0 lbs per acre Sulphur: 12.3 lbs per acre

Summary includes aggregate data from 'below minimum tolerance' records

Fertilizer Usage Data

'Below Minimum Tolerance' records contain data from fewer than 3 producers or 500 acres, marked as such to retain producer anonymity. Data from these records is included in the Search Summary totals.

Hide 'Below Min. Tolerance'

Year •	Risk Area •	Crop •	Soil •	Farms •	Acres •	Yield/acre _ (metric)	Yield/acre e (imperial)	Nitrogen © (lbs)	Phosphorus • (lbs)	Potassium • (libs)	Sulphur • (libs)
2014	Risk Area 12	Argentine Canola	С	153	28,577.0	1.159 Tonnes	51.1 Bushels	119.1	36.9	5.9	13.3
2013	Risk Area 12	Argentine Canola	С	172	31,472.0	1.119 Tonnes	49.3 Bushels	118.0	33.6	4.2	12.3
2015	Risk Area 12	Argentine Canola	С	159	31,804.0	1.022 Tonnes	45.1 Bushels	125.6	38.2	6.1	13.5
2016	Risk Area 12	Argentine Canola	С	128	24,522.0	0.826 Tonnes	36.4 Bushels	122.6	36.6	6.3	13.7
2011	Risk Area 12	Argentine Canola	С	197	45,700.0	0.768 Tonnes	33.8 Bushels	113.9	31.7	3.9	10.4
2012	Risk Area 12	Argentine Canola	С	157	31,355.0	0.751 Tonnes	33.1 Bushels	113.8	32.3	4.8	11.7

Search

Search Summary

6 records returned

781 farm varieties grown on 140,425.9 acres

Average Yield

1.613 Tonnes (59.3 Bushels) per acre

Average Fertilizer Application

Nitrogen: 107.1 lbs per acre Phosphorus: 34.5 lbs per acre Potassium: 6.9 lbs per acre Sulphur: 3.6 lbs per acre

Summary includes aggregate data from 'below minimum tolerance' records

Fertilizer Usage Data

'Below Minimum Tolerance' records contain data from fewer than 3 producers or 500 acres, marked as such to retain producer anonymity. Data from these records is included in the Search Summary totals.

Hide 'Below Min. Tolerance'

Year •	Risk Area o	Crop •	Soil •	Farms •	Acres •	Yield/acre _ (metric)	Yield/acre (imperial)	Nitrogen • (lbs)	Phosphorus * (lbs)	Potassium • (libs)	Sulphur • (lbs)
2014	Risk Area 12	Red Spring Wheat	С	114	21,138.0	1.865 Tonnes	68.5 Bushels	110.3	38.1	6.6	3.9
2013	Risk Area 12	Red Spring Wheat	С	130	22,266.0	1.773 Tonnes	65.1 Bushels	102.6	32.8	7.1	3.0
2012	Risk Area 12	Red Spring Wheat	С	130	22,154.8	1.724 Tonnes	63.3 Bushels	105.1	33.3	6.7	3.6
2015	Risk Area 12	Red Spring Wheat	С	146	24,434.0	1.701 Tonnes	62.5 Bushels	110.7	36.0	7.5	3.9
2016	Risk Area 12	Red Spring Wheat	С	114	20,548.0	1.518 Tonnes	55.8 Bushels	114.0	37.5	7.3	4.7
2011	Risk Area 12	Red Spring Wheat	С	147	29,885.1	1.226 Tonnes	45.1 Bushels	101.9	30.7	6.3	2.8

Select Year Range 1993 1998 2003 2008 2012 2011 to 2016

Search

Search Summary

6 records returned

470 farm varieties grown on 89,583.0 acres

Average Yield

1.113 Tonnes (40.9 Bushels) per acre

Average Fertilizer Application

Nitrogen: 6.1 lbs per acre Phosphorus: 33.0 lbs per acre Potassium: 4.1 lbs per acre Sulphur: 1.6 lbs per acre

Summary includes aggregate data from 'below minimum tolerance' records

Fertilizer Usage Data

'Below Minimum Tolerance' records contain data from fewer than 3 producers or 500 acres, marked as such to retain producer anonymity. Data from these records is included in the Search Summary totals.

Hide 'Below Min. Tolerance'

Year ◆	Risk Area •	Crop •	Soil •	Farms •	Acres •	Yield/acre _ (metric)	Yield/acre o (imperial)	Nitrogen • (lbs)	Phosphorus * (lbs)	Potassium • (libs)	Sulphur * (libs)
2016	Risk Area 12	Soybeans	С	104	20,162.0	1.253 Tonnes	46.0 Bushels	7.4	35.0	4.8	3.1
2013	Risk Area 12	Soybeans	С	72	14,210.0	1.183 Tonnes	43.5 Bushels	6.0	32.4	1.5	0.9
2014	Risk Area 12	Soybeans	С	108	22,812.0	1.062 Tonnes	39.0 Bushels	4.0	34.3	4.9	1.3
2015	Risk Area 12	Soybeans	С	106	19,924.0	1.059 Tonnes	38.9 Bushels	4.3	34.8	5.6	1.6
2012	Risk Area 12	Soybeans	С	47	7,442.0	1.049 Tonnes	38.6 Bushels	10.2	26.8	2.9	0.5
2011	Risk Area 12	Soybeans	С	33	5,033.0	0.904 Tonnes	33.2 Bushels	11.9	23.3	0.8	1.1