

RED RIVER FLOODWAY LONG-TERM MONITORING PROGRAM 2018 PROGRAM A – ANNUAL REPORT DELIVERABLE D6

FINAL - REV 0

KGS Group 16-0300-002 December 2018

PREPARED BY:

Marci Friedman Hamm, P.Geo. Senior Hydrogeologist

APPROVED BY:

J. Bert Smith, P.Eng., FEC Principal

Filicipal

M.A.F. HAMM

3rd Floor 865 Waverley Street Winnipeg, Manitoba R3T 5P4 204.896.1209 fax: 204.896.0754 www.kgsgroup.com December 20, 2018

File No: 16-0300-002

Manitoba Infrastructure 2nd Floor - 280 Broadway Winnipeg, Manitoba R3C 0R8

ATTENTION: Mr. Paul Graveline Project Manager

RE: Red River Floodway Long-Term Monitoring Program 2018 Program A – Annual Report, Final Rev 0

Dear Mr. Graveline:

KGS Group is pleased to provide two (2) paper copies and electronic copies on DVD of the 2018 Program A – Annual Report Rev 0, which is part of the Red River Floodway Long-Term Monitoring Program. This report summarizes activities for 2018.

We appreciate the opportunity to provide on-going services to Manitoba Infrastructure.

Sincerely,

J. Bert Smith, P.Eng.

Principal

MFH/jr Enclosure

TABLE OF CONTENTS

1.0	INTRO	DUCTION			
	1.1	ENVIRONMENT ACT LICENCE REQUIREMENTS	1		
	1.2	SCOPE OF WORK			
	1.3	AQUIFER CHARACTERIZATION	3		
2.0	METH	ODOLOGY	6		
	2.1	SURFACE WATER	6		
	2.2	WELL PUMPING METHOD MODIFICATIONS	6		
	2.3	GROUNDWATER			
	2.4	TRANSDUCER GROUNDWATER LEVEL AND QUALITY PROGRAM	7		
	2.5	WELL DISINFECTION PROGRAM			
	2.6	QUALITY ASSURANCE / QUALITY CONTROL (QA/QC)	2		
	2.0	QUALITY ACCOUNTS OF ACTUAL CONTINUE (QAVQC)	C		
3.0	SURFACE WATER RESULTS AND ASSESSMENT				
	3.1	2018 SPRING MELT			
	3.2	2018 MONITORING LOCATIONS AND DATA	10		
	3.3	2018 TEMPERATURE			
	3.4	2018 BACTERIOLOGICAL QUALITY			
	3.5	2018 NITRATE PLUS NITRITE (AS NITROGEN) AND OTHER NUTRIENTS			
	3.6	2018 CONDUCTIVITY AND MAJOR IONS	12		
	3.7	2018 DISSOLVED OXYGEN			
	3. <i>1</i> 3.8	RELATIONSHIP AMONG PARAMETERS			
4.0	GROUNDWATER RESULTS				
	4.1	FLOODWAY OUTLET AND PTH 44	15		
	4.2	HAY ROAD TO DUNNING ROAD			
	4.3	PTH 59N BRIDGE AREA			
	4.4	KEEWATIN BRIDGE AND AREA TO THE SOUTH			
	7.7	RELWATIN BRIDGE AND AREA TO THE GOOTT			
5.0	GROU	NDWATER RESULTS AND ASSESSMENT	19		
	5.1	CONDUCTIVITY CHANGES			
	5.2	BACTERIA			
	5.3	NITRATE PLUS NITRITE AS (NITROGEN)			
	5.4	RELATIONSHIP BETWEEN PARAMETERS			
	5.5	SUMMARY ASSESSMENT OF CHANGES			
6.0	SPRIN	G TREATMENT AREAS	24		
- 0	\A/=! !	BIGINEFOTION	-		
7.0	WELL	DISINFECTION	28		
8.0	LONG	-TERM MONITORING	20		
0.0	LONG				
9.0	STATEMENT OF LIMITATIONS AND CONDITIONS				
	9.1 THIRD PARTY USE OF REPORT3				
	9.2	GEO-ENVIRONMENTAL STATEMENT OF LIMITATIONS			
TABL	ES				
FIGU					
	NDICE	S			

LIST OF TABLES

D6-1	2016 to 2018 Monitoring Well and Surface Water Field Parameters
D6-2	2016 to 2018 General Groundwater Quality Data
D6-3	2016 to 2018 General Surface Water Quality Data Floodway Channel
D6-4	2018 Water Quality Assessment – Instrumented Wells
D6-5	2018 Water Quality Assessment – Non-Instrumented Wells

LIST OF FIGURES

D6-1 Program A Monitoring Well Locations

LIST OF APPENDICES

APPENDIX D6-A	FLOODWAY OPERATION AND RED RIVER WATER QUALITY (GRAND FORKS)
D6-A-1	Table D6-A-1 Summary of Observed Flow in the Floodway during Spring and Summer Operation
D6-A-2	Real-Time Hydrograph Data Graph for Red River above Floodway Control Structure (05OC021), Environment Canada
D6-A-3	Flood Report and Daily Flood Sheet April 30, 2018, Manitoba Sustainable Development
D6-A-4	Red River at Grand Forks, Real-Time water Quality Data-USGS
APPENDIX D6-B	2016 to 2018 TRANSDUCER PROGRAM
D6-B-1	Water Elevation and Temperature Readings at K09-12316
D6-B-2	(Floodway Outlet) Water Elevation and Temperature Readings at K09-12012 (Church Road)
D6-B-3	Water Elevation and Temperature Readings at K11-12014 (PTH 59N Bridge West Side)
D6-B-4	Water Elevation and Temperature Readings at K11-12015 (PTH 59N Bridge West Side)
D6-B-5	Water Elevation and Temperature Readings at K13-12321 (Rockhaven Road)
D6-B-6	Rev. A Water Elevation, Conductivity and Temperature Readings at Spring 7A1 (Kildare)
APPENDIX D6-C	HISTORICAL TRANSDUCER PROGRAM
HM66-3 - Rev. 5	Water Elevation and Temperature Readings at K09-12316
HM66-13 - Rev. 5	(Floodway Outlet) Rev. A Water Elevation, Conductivity and Temperature Readings at K09-12012 (Church Road)

HM66-37 - Rev. 6	Rev. A Water Elevation, Conductivity and Temperature Readings at K11-12014 (PTH 59N Bridge West Side)
HM66-38 - Rev. 6	Rev. A Water Elevation, Conductivity and Temperature Readings at K11-12015 (PTH 59N Bridge West Side)
HM66-43 - Rev. 5	Rev. A Water Elevation, Conductivity and Temperature Readings at Spring 7A1 (Kildare)
HM66-45 - Rev. 2	Rev. A Water Elevation and Temperature Readings at K13-12321 (Rockhaven Road)

APPENDIX D6-D 2018 INSPECTION OF SPRING TREATMENT AREAS

Appendix D6-D-1 Summary 2018 Inspection of Spring Treatment Areas

Table D6-D-1 2018 Inspection of Spring Treatment Areas

Appendix D6-D-2 Field Documentation

Appendix D6-D-3 Additional Photographs and Video (included on DVD)

APPENDIX D6-E LABORATORY REPORTS

Appendix D6-E-1 Pre-melt

Appendix D6-E-2 Spring Melt

Appendix D6-D-3 Post Melt

1.0 INTRODUCTION

1.1 ENVIRONMENT ACT LICENCE REQUIREMENTS

This 2018 Program A Annual Report is submitted in response to the requirements for annual monitoring in accordance with Clause 27 and Clause 30 of Environmental Licence No. 2691 dated July 8, 2005 and described in the Manitoba Floodway Authority memorandum HM72 Rev 1 Post-construction and Long-term Monitoring Program, issued April 2013. Revisions to the Long-term Monitoring Program were given in HM99, the 2013 to 2014 Post-construction Monitoring Program Comprehensive Annual Report February 2015. Background information and historic data that are not included in this report can be found in the annual groundwater Monitoring Data Analysis Reports 2005 through 2017. There was no monitoring program in 2012.

1.2 SCOPE OF WORK

The objectives of the project are to carry out long-term monitoring, testing and reporting on groundwater conditions within and adjacent to the Red River Floodway (Floodway) in accordance with the Provincial commitment to flood protection and as required under the Red River Floodway's Operating License (Environment Act License No. 2691). The original work program, overseen through Manitoba Infrastructure (MI) included a monitoring period from spring 2016 through fall 2018, outlined in KGS Group proposal 15-000-1555. In March 2018 MI approved a three year extension to the work with a revised budget and work plan for 2018 as well as 2019 through 2021. The Project Scope of Work includes the following annual activities:

- Spring and Summer Flood Monitoring Program A (or B if required);
- Inspection of Treated Groundwater Springs;
- Annual Well Disinfection, Inspection/Maintenance/Repair Programs and Channel Inspections;
- Reporting.

Previous deliverables for the current MI work program included:

- Deliverable D1 Red River Floodway Long-Term Monitoring Program 2017 Program A-Annual Report Deliverable D1.
- Deliverable D2 Red River Floodway Long-Term Monitoring Program 2016 Annual Inspection and Maintenance Report- Deliverable D2.
- Deliverable D3 Red River Floodway Long-Term Monitoring Program Deliverable D3-2017 Program A-Task 14 Notification Report 01.
- Deliverable D4 Red River Floodway Long-Term Monitoring Program 2017 Program A-Annual Report Deliverable D4.
- Deliverable D5 Red River Floodway Long-Term Monitoring Program 2017 Annual Inspection and Maintenance Report- Deliverable D5.

This report (Deliverable D6) contains reporting for Program A Annual Report (Task 1), which also includes the inspection of treated groundwater springs and the annual well disinfection. In 2017 MI approved a scope change for the spring inspections and channel bottom survey to be conducted by boat in the Low Flow Channel at the same time. The 2018 Annual Inspection and Maintenance Report (Task 2) was submitted as Deliverable D7. Tables and Figures are labelled using the deliverable numbers to create unique products. For example, Appendix D6-A indicates Appendix A of the Deliverable D6 report.

In 2018, the Red River Floodway was not operated, nor was there any Red River flow into the Floodway Channel. The requirements for Long-term Monitoring Program A (Task 1) (as outlined in proposal 15-000-1555) were initiated in Spring 2018. This included sampling of 5 instrumented wells for inorganic parameters and bacteria two times: at the peak flow of the Red River at the Inlet Control Structure; and post-melt (several weeks after peak flow) along with sampling of 7 additional core monitoring wells once during the peak flow of the Red River. Sampling of surface water is required once at two locations (PTH 59N Bridge and PTH 44 Bridge) during the peak flow in the Red River; however an additional sample was taken after the melt to help interpret the post-melt groundwater data.

In addition to the Spring Flood Monitoring Program A (Task 1) in 2018, KGS Group conducted an inspection of treated groundwater springs and an annual well disinfection program as described in this report. The 2018 Annual Inspection and Maintenance Report (Deliverable D7)

has been submitted separately and also includes a discussion of the channel bottom inspection, which was conducted at the same time as the springs inspection.

The Red River peaked on May 1, 2018 at Station G05OC021 (Red River above the Floodway Control Structure) at El. 227.913 m as discussed in Section 3.0.

The detailed 2018 program was as follows:

- Pre-melt monitoring was conducted on March 28 to 30, 2018 before the rise in the Red River.
- Spring melt monitoring was conducted on April 30 to May 1, 2018.
- Surface water monitoring at locations near the PTH 44 Bridge and PTH 59N Bridge was conducted from April 30, 2018 to May 1, 2018 and Post-melt surface water monitoring was conducted on June 7, 2018.
- Post-melt groundwater monitoring was conducted on June 7, 2018.
- Annual groundwater springs inspection and channel bottom inspection was conducted on August 28 and 29, 2018.
- Annual well disinfection program was conducted on October 19, 2018.

The 2018 program represents the fourth year of the Long-term Monitoring Program, and the third year falling under MI direction. The 2018 Long-term Monitoring Program used monitoring wells designated in the monitoring program for Program A Task 1 as shown on Figure D6-1.

1.3 AQUIFER CHARACTERIZATION

The carbonate aquifer found along the Floodway Channel is part of a regional groundwater flow system from eastern Manitoba. The confined carbonate bedrock aquifer has natural variations in water quality, with the conductivity ranging from moderate to high (1,000 to 2,000 μ S/cm). Conductivity is a measure of dissolved solids, such as calcium, magnesium, chloride, sodium and sulphate. Near the Floodway Inlet, local mixing with saline groundwater found west of the Red River, results in higher conductivity groundwater (greater than 3,000 μ S/cm) with increased chloride and sodium.

Lower conductivity values are found in the bedrock aquifer where it is influenced by the Birds Hill surficial granular aquifer, from CPR Keewatin Bridge to Church Road. The Birds Hill sand and gravel surficial aquifer is a local unconfined aquifer near PTH 59N Bridge. The bedrock aquifer beneath and surrounding the Birds Hill deposit has lower groundwater conductivity due to the freshwater recharge through the sand and gravel.

Natural variations in groundwater quality by location and with the seasons must be considered when the baseline and ongoing water quality results are evaluated during construction activities and Floodway operation events. One way to detect whether there is surface water intrusion into the groundwater aquifer is to monitor an indicator parameter such as conductivity which, along with other major ions, can be used to evaluate this contrast. In the vicinity of the Birds Hill sand and gravel surficial aquifer, recharge from precipitation results in groundwater with lower conductivity (500 μ S/cm to 1,000 μ S/cm) than is found in other areas of the carbonate aquifer.

The intrusion of surface water into the groundwater is most readily detected when there is a contrast between the chemistry of the samples. Most groundwater conductivity values were found to be greater than surface water conductivity values measured during annual spring Floodway operation. Red River conductivity values are historically lowest during spring Floodway operation events, such as in the spring of 2005, 2006, 2007, 2009, 2010, 2011, 2013, 2014 and 2017, which were measured in previous programs. In this situation, groundwater conductivity would be expected to decrease, if surface water intruded.

During summer Floodway operation in 2005, summer Floodway use in 2007, and summer Floodway operation in 2010 and 2011, conductivity values of surface water from the Red River diverted in the Floodway were slightly higher than in the spring, and higher than the natural groundwater conductivity levels in some areas near the CPR Keewatin Bridge, PTH 59N Bridge and Church Road. These areas have naturally low groundwater conductivity in the bedrock aquifer. Floodway Channel surface water conductivity was also higher during the summer precipitation events in June 2008, than during the spring melt, with no Floodway operation in April 2008. An increase in groundwater conductivity might occur in summer, if surface water intrudes into the groundwater at this time.

In the spring 2015 flood, one time sampling in the Floodway Channel during the spring melt on April 6, 2015 (no Floodway flow or Floodway operation) showed that the conductivity of the local surface water in the Floodway Channel was low in April, and increased in May as the surface water input decreased and the groundwater base flow became a greater percentage of the flow system.

In the spring of 2016, the conductivity during the spring melt on March 28 to 30, 2016 (no Floodway flow or Floodway operation) showed a low conductivity for the local surface water in the Floodway channel. An increase was seen in June 2016 as the percentage of groundwater base flow increased.

2.0 METHODOLOGY

2.1 SURFACE WATER

Surface water samples in 2018 were taken in the Floodway Channel at the PTH 44 and PTH 59 Bridges. Grab samples were collected from the channel. Samples were taken directly into sample bottles attached to an extension pole. KGS Group recorded field parameters (dissolved oxygen, specific conductivity, temperature and pH) using the YSI Pro meter. Results for the field parameters are shown in Table D6-1. Laboratory analysis data are shown in Table D6-2 and Table D6-3. Original laboratory reports are given in Appendix D6-E. Laboratory results are given in mg/L unless indicated otherwise.

2.2 WELL PUMPING METHOD MODIFICATIONS

In 2018, monitoring wells were purged using a combination of small diameter submersible pumps (either dedicated to the well or portable) and dedicated inertial pumps (Waterra tubing with foot valves). Monitoring wells K13-12321, K09-12012, K11-12014 and K11-12015 contain Waterra tubing. Monitoring well K09-12316 contains a dedicated inertial pump. These pumps were initially intended to be long term monitors; however, they have not functioned long term and have been replaced with Waterra tubing.

After the well disinfection program on October 19, 2018, as approved by MI, the remaining dedicated well pump was removed for inside storage at KGS Group over the winter, to protect against long-term precipitation of carbonate groundwater within the pump during submergence over the winter months, prior to the next spring pre-melt event.

2.3 GROUNDWATER

Monitoring well groundwater samples were taken from the 5 instrumented wells (of 12 total monitoring wells) on March 28 to 30, 2018. Subsequently all 12 monitoring wells were sampled on April 30 to May 2, 2018. The 5 instrumented wells sampled in March were also sampled on June 7, 2018. All monitoring wells were located within the Floodway Right-of-Way. One of the monitoring wells sampled is a water supply well for Inlet Control Structure (G05OC006). Water

samples are taken from an inside tap, however the water is not used for drinking. Well locations are shown on Figure D6-1. Monitoring wells are not used for drinking water supply.

In order to ensure groundwater samples were representative of the natural formation water, the monitoring wells were purged a minimum of three (3) well volumes, or until groundwater parameters (conductivity and temperature) stabilized. Field measurements were taken at the start of purging and at set intervals of 5 to 10 minutes. Stable groundwater parameters were achieved at all sample locations within 20 minutes.

Field measurements for pH, conductivity and dissolved oxygen were taken during each sampling period. Groundwater samples were stored in a cooler chest at 4°C for transport to the laboratory. The samples were analyzed at ALS Laboratory in Winnipeg, Manitoba. Metal samples were filtered and acidified in the laboratory, since iron and manganese were not analyzed.

Results for the field parameters are shown in Table D6-1. Laboratory analysis data are shown in Table D6-2 and Table D6-3. Original laboratory reports are given in Appendix D6-E. Laboratory results are given in mg/L, unless otherwise noted.

2.4 TRANSDUCER GROUNDWATER LEVEL AND QUALITY PROGRAM

Continuous measurements of groundwater elevation and temperature were collected from the previous December 2017 download, to October 2018 in the 5 instrumented monitoring wells. Transducers were installed at depth so that the tips were in the open bedrock or screened zone. Transducers and pumps installed in these monitoring wells are owned by MI. Transducer results are shown in Appendix D6-B. Historical transducer data (prior to 2016), reported in the most recent previous Red River Floodway 2015 Long-term Monitoring Program Report (HM101) is compiled in Appendix D6-C. Transducer monitoring in spring 7A1 (Kildare) is discussed in Section 6.0.

2.5 WELL DISINFECTION PROGRAM

The methodology employed for the well disinfection program included the following for each location:

- Recorded water level measurement from the top of the PVC well casing;
- Temporarily removed the dedicated transducer;
- For monitoring wells with dedicated submersible pumps, the pumps were removed, labelled and placed in dedicated bags for winter storage at KGS Group;
- Added a calculated amount of household bleach to the well to raise the chlorine level in the well water to 200 ppm;
- Operated a temporary submersible well and pumped the well until discharge water had a chlorine odour (approximately 10 minutes);
- Removed the temporary inertial pump from the well;
- Closed and locked each well.

2.6 QUALITY ASSURANCE / QUALITY CONTROL (QA/QC)

Standardized sampling procedures and protocols were used during the sampling event to ensure representative samples were collected in a controlled manner so that scientifically defensible comparisons can be made.

Chain of Custody – KGS Group ensured all Chain-of-Custody procedures were properly undertaken and holding times were not exceeded.

Sample Collection – Samples were collected directly from the dedicated pump outlet, which is sealed in the well. Disposable latex gloves were worn when handling each piece of equipment and groundwater sample, using a new pair for each sample collection. Samples were collected in clean containers (supplied by the lab) and stored at the appropriate temperature using the proper preservatives. Any equipment replacement in the five instrumented monitoring wells was disinfected prior to installation.

Laboratory Qualification – ALS Environmental of Winnipeg, Manitoba, is a Canadian Association for Laboratory Accreditation Inc. (CALA) accredited analytical testing laboratory. Criteria and guidelines used for assessment of analytical data were clearly established with the laboratory to ensure the appropriate detection limits were used.

Duplicate Samples – Duplicate groundwater samples were submitted at a frequency of 10% for the total samples submitted to assess the quality of the laboratory analysis. The field duplicates

were labelled such that the laboratory did not know the samples were duplicates. Laboratory standards and duplicates are run regularly by ALS and are on file.

Field Equipment – Field equipment such as field chemistry meters and transducers (if they include conductivity) are calibrated prior to use or installation.

3.0 SURFACE WATER RESULTS AND ASSESSMENT

3.1 2018 SPRING MELT

The Floodway was not operated in 2018 and there was no flow over the lip of the Floodway (El. 228.6 m – 750 ft). The previous Floodway operation flows are summarized in Appendix Table D6-A-1. The 2018 spring melt monitoring was timed to coincide with the peak of the Red River flow which occurred on May 1, 2018 at Station G05OC021 (Red River above the Floodway Control Structure) at El. 227.913 as shown on the hydrograph in Appendix D6-A-2. The April 30, 2018 flood report and daily flood sheet for April 29, 2018 is given in Appendix D6-A-3, summarizing conditions just prior to the crest of the flood.

Real time data for elevation, temperature and water quality available on-line from the USGS (United States Geological Survey) for the Red River at Grand Forks is presented in Appendix D6-A-4. This data is used as a general reference since the Floodway Long-term Monitoring Program does not include monitoring in the Red River. The profile shows the spring peak, which occurred prior to the spring peak in Manitoba.

During the 9 Post-Construction and Long-Term Monitoring periods (2010 through 2018), there were three previous years where the Floodway was not operated (2012, 2015 and 2016). There was no monitoring in 2012, therefore 2015 and 2016 would represent the years with conditions most similar to the 2018 spring melt (Table D6-A-1).

3.2 2018 MONITORING LOCATIONS AND DATA

Surface water monitoring locations in 2018 were as follows:

- Floodway Channel at PTH 59N Bridge.
- Floodway Channel at PTH 44 Bridge.

Surface water quality data is shown in Table D6-1 for field data and Table D6-2 for laboratory data.

3.3 2018 TEMPERATURE

Based on historical data collected, the cold temperature of the Red River at the beginning of the spring melt is generally useful as an indicator of surface water infiltration when the river or overland surface water runoff temperature is a few degrees above freezing and the groundwater temperature is higher. As the spring melt advances over time, water from the spring melt starts to warm, increasing in temperature as the peak passes. Historically, a decrease in temperature has been observed in groundwater with the initial onset of spring melt.

In 2018 the first surface water samples (temperatures between 8.1 and 12.6 °C) were measured in the Floodway Channel on April 30, 2018 and May 1, 2018. The range of sampled monitoring well groundwater temperatures at the time measured from 6.0 to 7.4 °C for most wells as shown on Table D6-1. The low groundwater temperature at Church Rd. (4.4 °C) and higher temperature at the Inlet Control Structure domestic well 9.9 °C were exceptions. The June 7, 2018 surface water samples had temperatures of 18.8 and 23°C and were taken after the spring melt, representing groundwater baseflow combined with surface flow from local sources.

3.4 2018 BACTERIOLOGICAL QUALITY

Bacteria results in the Floodway Channel surface water during the 2018 spring melt monitoring are shown in Table D6-2. Total coliform at PTH 59N Bridge was 866 MPN / 100 mL on May 1 and increased to 6200 MPN / 100 mL on June 7, 2018. The *E. coli* count at PTH 59N Bridge was 94 MPN/100 mL on May 1, 2018 and decreased to 6 MPN / 100 mL on June 7, 2018.

Total coliform at PTH 44 Bridge was 649 MPN / 100 mL at on April 30, 2018 and increased to 2420 MPN / 100 mL on June 7, 2018. The *E. coli* count at PTH 59N Bridge was 5 MPN / 100 mL on April 30, 2018 increased to 66 MPN / 100 mL on June 7, 2018. With the exception of *E. coli* at PTH 59N Bridge, the increase in bacteria counts between May and June reflect a combination of increasing exposure to point sources, lower flow of local runoff sources within the channel and warmer temperatures.

3.5 2018 NITRATE PLUS NITRITE (AS NITROGEN) AND OTHER NUTRIENTS

The spring melt nitrate plus nitrite (as N) concentration at the PTH 59N Bridge was 0.0156 mg/L on April 30, 2018 and decreased to <0.01 mg/L in post melt monitoring on June 7, 2018. The spring melt nitrate plus nitrite (as N) concentration at the PTH 44N Bridge was <0.0051 mg/L on May 1, 2018 and increased to 0.046 mg/L in post melt monitoring on June 7, 2018. All concentrations were below the Health Canada Canadian Drinking Quality Objectives of 10 mg/L, which are used for comparison. The concentrations during and after the spring melt are lower than typical concentrations measured during Floodway operation, such as in 2017 when the maximum nitrate plus nitrite (as N) concentration was closer to 1 mg/L.

The spring melt ammonia concentration at the PTH 59N Bridge was 0.054 mg/L on April 30, 2018 and decreased to 0.017 mg/L in post melt monitoring on June 7, 2018. The spring melt ammonia concentration at the PTH 44N Bridge was <0.01 mg/L on April 30, 2018 and increased to 0.02 mg/L in post melt monitoring on June 7, 2018. The concentrations during and after the spring melt are lower than typical concentrations measured during Floodway operation, such as in 2017 when the maximum ammonia concentration was 0.137 mg/L.

None of the unionized ammonia concentrations calculated in surface water in 2018 exceeded the CCME Freshwater Aquatic Life guideline of 0.019 mg/L (Table D6-2, note 3).

The spring melt Total Kjehdahl Nitrogen (TKN) concentration at the PTH 59N Bridge was 0.66 mg/L on May 1, 2018 and decreased to 0.58 mg/L in post melt monitoring on June 7, 2018. The spring melt TKN concentration at the PTH 44N Bridge was 0.84 mg/L on April 30, 2018 and decreased to 0.6 mg/L in post melt monitoring on June 7, 2018. The concentrations during and after the spring melt are lower than typical concentrations measured during Floodway operation, such as in 2017 when the maximum ammonia concentration was 1.2 mg/L. There are no CCME Guidelines for TKN.

The spring melt total phosphorous concentration at the PTH 59N Bridge was 0.174 mg/L on May 1, 2018 and decreased to 0.0531 mg/L in post melt monitoring on June 7, 2018. The spring melt total phosphorous concentration at the PTH 44N Bridge was 0.175 mg/L on April 30, 2018 and decreased to 0.111 mg/L in post melt monitoring on June 7, 2018. The concentrations

during and after the spring melt are lower than typical concentrations measured during Floodway operation, such as in 2017 when the maximum phosphorous concentration was 0.52 mg/L. The phosphorous concentrations measured are in the hypereutrophic to eutrophic range used for evaluation of river water quality in the CCME Environmental Quality Guidelines for Freshwater Aquatic Life. Phosphorous concentrations above 0.1 mg/L are considered hypereutrophic in rivers. Phosphorous concentrations between 0.035 and 0.050 mg/L are considered eutrophic in rivers.

The spring melt Total Suspended Solids (TSS) concentration at the PTH 59N Bridge was 24.9 mg/L on May 1, 2018 and decreased to 2 mg/L in post melt monitoring on June 7, 2018. The spring melt TSS concentration at the PTH 44N Bridge was 34.8 mg/L on April 30, 2018 and decreased to 2.9 mg/L in post melt monitoring on June 7, 2018. The concentrations during and after the spring melt are lower than typical concentrations measured during Floodway operation, such as in 2017 when the maximum TSS concentration was 176 mg/L. CCME guidelines for TSS relate to exposure events not baseflow, and so are not applicable.

3.6 2018 CONDUCTIVITY AND MAJOR IONS

Conductivity during the spring melt was 496 to 578 μ S/cm on April 30 to May 1, 2018 increasing to 983 and 1070 μ S/cm on June 7 at PTH 59N and PTH 44 Bridge respectively. This increase reflects the increase in total dissolved solids, hardness (as CaCO₃), alkalinity, sodium, chloride and sulphate.

3.7 2018 DISSOLVED OXYGEN

Dissolved oxygen ranged from 10 to 12 mg/L in the spring melt surface water sampled and slightly higher from 7 to 9.5 mg/L in the post-melt sampling. The dissolved oxygen in the groundwater was compared to the surface water to try to detect any areas of surface water infiltration (Table D6-1); however, a correlation between higher dissolved oxygen and changes in groundwater water quality was not established.

3.8 RELATIONSHIP AMONG PARAMETERS

Conductivity and major ions were lower during the spring melt than in the post melt period. Bacteria counts were also lower (except for *E. coli* at one location) reflecting the dilution from the spring melt. Nutrient concentrations and total suspended solids; however, were higher in the spring melt than the post melt, reflecting the initial local runoff into the channel. Post–flood conditions are characterized by an increased contribution of groundwater baseflow.

It is important to note that surface water in the floodway channel varies widely over the course of the year as was shown by extensive surface water monitoring program during the floodway expansion program.

4.0 GROUNDWATER RESULTS

Groundwater results from 2018 are compared to 2016 since both are years with no operation of the Red River Floodway. Groundwater quality results from monitoring wells measured in 2018 are discussed below. Results for samples collected during the spring melt are compared to samples collected post-melt. In general, lower concentrations of dissolved solids observed during the spring Floodway melt period versus the post-melt period would reflect possible surface water influence on groundwater within the monitoring wells sampled. As flow from the spring melt in the Floodway decreases, parameter concentrations (excluding nutrients) in the Floodway tend to increase, reflecting a return to greater contribution of groundwater from the surrounding aquifer to the baseflow of the Floodway at these locations.

4.1 FLOODWAY OUTLET AND PTH 44

At the Floodway Outlet, the monitoring well located 350 m (K13-12321) north of the expanded channel within the Right-of-Way, showed some evidence of surface water intrusion during the spring melt; however the closer monitoring well only 65 m north of the channel (K09-12316) did not, as discussed below. Hydrographs showed a rise in groundwater elevation during the spring melt. At monitoring well K09-12316 (Appendix D6-B-1 and D6-C - Figure HM66-3) and monitoring well K13-12321 (Appendix D6-B-5 and D6-C - Figure HM66-45) the elevation increase in 2018 was much smaller than the 2016 spring melt response, with no decrease in temperature, reflecting the more limited run-off from spring snowmelt in 2016.

At the Rockhaven Road well K13-12321 an increase in conductivity was seen which is not indicative of surface water intrusion. However slight decreases were seen in TDS, and associated alkalinity, hardness, chloride, calcium and magnesium, indicating that the conductivity measurements may not be representative. Nitrate plus nitrite as nitrogen also decreased at K13-12321 between the March pre-melt and May spring melt, which is an indication of surface water intrusion in wells near the outlet which have elevated nitrate in pre-melt monitoring. The increase may be due to local recharge sources north of Rockhaven Road or the influence of the Red River, since the well closest to the Floodway does not show these changes.

Well K09-12316, closest to the channel, showed a slight increase in conductivity from 885 μ S/cm in March pre-melt sampling to 908 μ S/cm during spring melt sampling as shown on Table D6-3, which is not indicative of surface water intrusion. The increase in conductivity reflects the increase in hardness. Nitrate as nitrate (as N) concentrations are similar during and after the melt.

Total coliform and *E. coli* were not detected at either well in pre-melt, spring melt or post-melt monitoring in 2018. Dissolved oxygen concentrations did not correlate with water quality changes at well K13-12321 at Rockhaven Road and higher dissolved oxygen readings may be due to the use of the Waterra pump.

4.2 HAY ROAD TO DUNNING ROAD

At the bedrock well within the Right-of-Way at Church Road (K09-12012) a change in conductivity was not seen. The increase in groundwater elevation during the spring 2018 melt was much less than in 2016 and there was little change in temperature (Appendix D6-B-2 and D6-C - Figure HM66-13). Nitrate plus nitrite (as N) remained below detection. Higher dissolved oxygen readings in 2018 may be due to the use of the Waterra pump.

At the PTH 44 Bridge (U09-13571), parameter concentrations decreased during the spring melt compared with historic pre-melt measurements indicating potential surface water intrusion. Nitrate plus nitrite (as N) was elevated in the pre-melt sample and decreased during the spring melt. The dissolved oxygen value was low (below 1 mg/L).

At Hay Road (K11-12018) and Ludwick Road (K09-12011) there were no noticeable changes in parameter concentrations during the spring Floodway melt compared with the historic pre-melt measurements.

At Dunning Road (K11-12017), parameter concentrations decreased during the spring melt compared with historic pre-melt measurements indicating potential surface water intrusion. No change was seen in nitrate plus nitrite (as N) values. The dissolved oxygen value was low (at or below 0.75 mg/L).

Total coliform and *E. coli* were not detected in these wells at either well in pre-melt, spring melt or post-melt monitoring in 2018.

4.3 PTH 59N BRIDGE AREA

Near Bray Road, north of the PTH 59N Bridge, well K11-12016 showed a decrease in water quality parameters between the historic pre-melt concentrations and the spring melt, but with no change in nitrate plus nitrite (as N).

At the bedrock well located upstream of the PTH 59N bridge, and 250 m west of the expanded channel at the west Right-of-Way boundary (K11-12014) the increase in groundwater elevation was much less than the 2016 spring melt and temperatures were stable (Appendix D6-B-3 and D6-C - Figure HM66-37). Parameter concentrations including nitrate plus nitrite (as nitrogen) did not change during the spring melt from pre-melt concentrations. Dissolved oxygen was below 1 mg/L in spring melt monitoring.

At the bedrock well located upstream of the PTH 59N bridge and 60 m west of the west channel slope within the Right-of-Way (K11-12015) the increase in groundwater elevation was much less than the 2016 spring melt with stable temperature (Appendix D6-B-4 and D6-C - Figure HM66-38). Parameter concentrations including nitrate plus nitrite (as nitrogen) did not change during the spring melt from pre-melt concentrations. Dissolved oxygen was below 1 mg/L in spring melt monitoring.

Total coliform and *E. coli* were not detected in these wells at either well in pre-melt, spring melt or post-melt monitoring in 2018 except for a total coliform count of 1 MPN/100 mL at well K11-12014 in the post melt sampling.

Near McGregor Farm Road at K13-12322 parameter concentrations decreased during the spring melt from historic pre-melt concentrations indicating potential surface water intrusion; however, nitrate plus nitrite (as nitrogen) decreased, which does not indicate surface water intrusion at this location. Dissolved oxygen was low, at 0.1 mg/L.

4.4 KEEWATIN BRIDGE AND AREA TO THE SOUTH

There is no monitoring from the Keewatin Bridge south to the inlet structure for Program A. These wells are monitored only in Program B.

At the inlet control structure (GO50C006) parameter concentrations decreased during the spring melt from historic pre-melt concentrations indicating potential surface water intrusion. Nitrate plus nitrite as nitrogen did not show a change. Dissolved oxygen was low at 0.75 mg/L. Total coliform bacteria 3 MPN/100mL was detected at the Floodway Inlet Control Structure domestic well (washrooms), which is not used for potable water. MI was informed of this sample result.

5.0 GROUNDWATER RESULTS AND ASSESSMENT

5.1 CONDUCTIVITY CHANGES

Conductivity changes are being used as an indicator of surface water influence on groundwater quality, as conductivity is a parameter that is readily measured. Conductivity changes reflect the changes in major ions contributing to the dissolved solids.

If surface water intrudes into the aquifer, the mixing would result in changes observed in groundwater conductivity. Groundwater conductivity decreases with the addition of surface waters in most areas. Changes are most readily observed in areas where groundwater is more mineralized and thus has higher conductivity than surface water, which is typically the case during the spring. Conversely, increases in groundwater conductivity would be seen in areas where baseline groundwater conductivity is less than that of surface waters.

In addition to the Floodway, potential surface water infiltration sources in the area include ponds and open sand and gravel quarries, creeks, and the Red River (primarily near the Floodway Outlet).

The magnitude of the water quality change is described by a range in the percentage change in conductivity as follows: Type A (>50% change); Type B (25 to 50% change); Type C (10 to 25% change); Type D (5 to 10% change). Tables D6-4 and D6-5 show the 2018 water quality assessment based on changes in conductivity. For instrumented wells (Table D6-4), pre-melt samples (March) were compared with samples taken during the spring melt (April 30 to May 1 2018). For the remaining 7 non-instrumented monitoring wells (Table D6-5), spring melt samples were compared with recent historical pre-melt samples. The monitoring wells selected for sampling for the Long-Term monitoring program were in areas with higher potential for surface water intrusion due to hydrogeologic conditions, or locations near other surface water sources (such as the Floodway Outlet).

In 2018, 5 monitoring wells (with installed transducers) were sampled in three events for water chemistry and bacteria (pre-melt, spring melt, post melt). From the pre-melt period to the spring melt and post-melt period in 2018, a change in groundwater quality was not seen in any of the

wells based on the conductivity data (0 wells sampled %) sampled. However, a change is interpreted in well K13-12321 based on the TDS and other parameters. All of these monitoring wells are within the Floodway Right-of-Way.

For the remaining 7 core monitoring wells, which only required measurement during the spring Floodway operation period, 5 of the 7 monitoring wells (71%) showed an observable change as follows:

- Type B (25 to 50% change) for 1 well (14% of the total) located inside of the Right-of-Way at the Floodway Inlet (G050C006).
- Type C (10 to 25% change) for 4 monitoring wells (57% of the total) located inside of the Right-of-Way at the Outlet the PTH44 bridge (U09-13571), Dunning Road (K11-12017), and just south of the PTH59N Bridge at McGregor Farm Road (K13-12322).

5.2 BACTERIA

Total coliform and *E. coli* were not detected in these wells at either well in pre-melt, spring melt or post-melt monitoring in 2018 except for a total coliform count of 1 MPN/100 mL at well K11-12014 in the post melt sampling. Total coliform bacteria 3 MPN/100 mL was detected at the Floodway Inlet Control Structure domestic well (washrooms), which is not used for potable water. MI was informed of this sample result.

Notification to Manitoba Infrastructure

KGS Group sent the following notification to MI on May 8, 2018.

KGS Group is reporting on bacteria concentrations during the Floodway monitoring event on May 8, 2018. No total coliform or E. coli were found in the monitoring wells sampled.

Total coliform (3 CFU/100 mL) were found in the sample from the Floodway Inlet Control Structure washroom tap sample (well) G050C006 taken on May 2, 2018. No E. coli bacteria were detected. Total coliforms have been found in this well in past years (2016 most recently). The results for the Inlet Control well are attached.

We recommend you forward them to MI staff in charge of this well for possible actions by MI. Re-sampling of a domestic well with this level of bacteria would generally be recommended to the well owner, followed by well disinfection if the bacteria persists. In

either event, the water should not be used for potable purposes. Additional guidance on domestic wells can be obtained by contacting the Office of Drinking Water.

No other actions or reporting is required under the monitoring protocols for the Floodway monitoring project.

The MI project manager indicated this information was forwarded.

5.3 NITRATE PLUS NITRITE AS (NITROGEN)

Nitrate plus nitrite (as N) concentrations were below the Canadian Drinking Water Quality Guidelines (CDWQG) of 10 mg/L at all monitoring wells tested. Eight (8) of the 12 sample locations had concentrations below detection (<0.0051 to <0.051 mg/L) in 2018, either for spring melt sampling only, or spring melt, pre-melt and post-melt events.

There were no wells where higher concentrations of nitrate plus nitrite (as N) were observed during the spring melt sampling than during the pre-melt sampling.

In contrast, one sample within the Right-of-Way at Rockhaven Road (K13-12321) showed a decrease in nitrate plus nitrite (as N) during the spring Floodway operation compared with both pre-melt and post-flood values, which have higher background values. The reduction in observed values demonstrates the potential influence of surface water with lower nitrate plus nitrite (as N) values relative to background.

5.4 RELATIONSHIP BETWEEN PARAMETERS

One instrumented well had lower conductivity values during the May 2018 spring melt sampling than during the pre-melt sampling; however, bacteria was not detected at this location. Bacteria sampling was not conducted in the 5 non-instrumented wells that showed lower conductivity values in 2018.

Changes in nitrate plus nitrite (as N) correlated with changes in Floodway water quality at 20% (1) of 5 core monitoring wells with dedicated transducers sampled within the Right-of-Way (K13-12321 at Rockhaven Road), and 14% (1) of 7 remaining core monitoring wells (U09-13571). Higher nitrate plus nitrite (as N) concentrations were not observed during the spring melt

compared with pre-melt and post flood samples for the area near the PTH 59N Bridge. Where groundwater is locally affected by elevated nitrate plus nitrite (as N) near Rockhaven Road, the Floodway outlet and PTH44 Bridge (U09-13571), a decrease in concentrations with the spring Floodway operation was observed, as expected. Nitrate plus nitrite (as N) concentrations in all monitoring wells tested were well below the Canadian Drinking Water Quality Guideline of 10 mg/L nitrate plus nitrite (as N).

Many of the monitoring wells are located on the shoulder of the Floodway Channel, or in the spoil pile, and would be expected to experience any water quality changes more quickly than domestic wells located further away, beyond the Floodway Right-of Way. Domestic wells (with the exception of the Floodway Inlet well) are not monitored in the Long-term monitoring program. Travel times from the Floodway surface water to the monitoring wells vary, depending on Floodway Channel water elevations, piezometric water elevations, the surface water/groundwater interconnection pathway which depends on clay and till thickness, and the hydraulic conductivity of the bedrock, which ranges from highly fractured to massive.

In general, groundwater gradients will be greater and travel rates will be faster closer to the Floodway. Gradients will decrease and travel times will lengthen further from the Floodway or in years where there is no Floodway operation, drier conditions, or limited channel flow.

5.5 SUMMARY ASSESSMENT OF CHANGES

The 2018 monitoring event flood represented a year with no Floodway operation. Of the years 2005 to 2018 when Floodway Monitoring has taken place, the 2018 year was the fifth year with no Floodway operation (2008, 2012, 2015, 2016) (Table D6-A-1). Groundwater quality changes observed from monitoring wells located within the Floodway Right-of-Way in 2018 were less than similar to years with no Floodway operation since the expansion was complete (2015, 2016).

Bacteria (total coliform and *E. coli*) were not detected in spring melt monitoring, whereas bacteria was detected in other years where the Floodway was not operated.

All monitoring wells which showed groundwater quality changes in 2018 also showed changes in previous years when the Floodway was not operated. Inorganic groundwater quality parameters seen in monitoring wells in 2018 did not exceed the Canadian Water Quality Guidelines for Drinking Water.

As required in the monitoring plan, procedures were implemented to notify Manitoba Infrastructure (e-mail and notification reports) when bacteria were detected in monitoring wells. Notification to Manitoba Water Stewardship Water Quality was not required as water quality changes within the monitoring wells were within those observed historically for years with no spring Floodway operation.

6.0 SPRING TREATMENT AREAS

The Spring Treatment Program mitigates surface water infiltration in the bedrock aquifer. This is accomplished by providing sand filtration of any migrating fines, by decreasing the amount of flow into the springs at the filter locations for a given flood, by reducing the potential for expansion of spring areas through piping, and by improving the bacterial quality of any infiltrating water. The constructed fine sand filters have a much lower hydraulic conductivity than an open bedrock fracture; therefore, the initial flow rate from the surface water into the aquifer is decreased. As the low permeability silt fraction builds up above the sand filter layer during surface water discharge into the aquifer, the infiltration rate is reduced further. The fine sand also meets criteria for slow sand filters designed to reduce bacteria passage through the filter. After the Floodway operation, when the flow direction reverses to groundwater discharge, the sand filter protects against upward piping of the foundation material (silt, sand) which otherwise could have increased the size of a fracture/hole. In addition, during the upward flow process, silt fraction buildup and bacteria will be flushed out of the sand filter.

Sealing the groundwater discharge areas completely is not desirable, as a pressure build-up and uncontrolled discharge in another area would likely develop. The treatments provide pressure relief, but in a controlled fashion and with a flow rate lower than was present before treatment.

Previous sampling in 2009 through 2011 (HM99, 2013 to 2014 Post Construction Monitoring Report) showed that total coliform and *E. coli* bacteria are generally present and at higher levels above the filter. The filter has been effectively reducing total coliform concentrations. *E. coli* has not been detected beneath the filter. Soon after the Floodway drains, surface water infiltration is flushed out quickly from the system as shown by a return to groundwater quality and an absence of bacteria. A return to groundwater quality (as shown by conductivity) was seen towards the end of the Floodway operation period as shown by the transducer data in 2009, 2011 and 2013, with more limited change seen in 2014 Appendix D4-B-6.

In 2016, monitoring of spring locations with a transducer was not included in the program. In 2015 one spring discharge location was monitored with a transducer during the spring melt when there was no Floodway operation. The results from 2015 (Appendix D4-C Figure HM66-

43) showed no infiltration and no drop in conductivity or temperature during the spring melt. The water level during the spring melt monitoring in 2015 was at the top of the Low Flow Channel. Monitoring in prior years showed that higher channel flows typical of Floodway operation will temporarily reverse the discharge groundwater gradient allowing surface water to recharge with a flow direction from the channel to the bedrock beneath the spring. There is a return to groundwater quality beneath the spring as the Floodway begins to drain and groundwater is again discharged into the channel. Since there was no Red River flow into the channel in 2015, these conditions did not occur and would not have occurred in 2016, which was also a year with no Floodway operation. The total flow and water depth in the channel was insufficient to reverse the gradient during the spring melt in 2015 and would have been similar in 2016.

A groundwater pressure and temperature transducer was installed at spring 7A1 (Kildare) as shown on Figure D6-1 in 2017 to monitor the 2017 spring Floodway operation. The plot of the transducer data is included in Appendix D6-B on Figure D6-B-6 spring 7A1 (Kildare). The plot shows a steep rise in groundwater elevation coincident with Floodway operation with a steep drop in groundwater temperature to nearly 1°C in the initial days of the operation as surface water intruded beneath the spring filter. The transducer installed in 2017 was not equipped to measure conductivity and was removed. A new transducer installed on May 1, 2018 at the same location was equipped to measure conductivity and groundwater pressure and temperature. Groundwater elevation data on May 1, 2018 coincides with peak groundwater elevations at the monitoring wells sampled, however no peak is observed at the spring location. No conductivity changes were observed during the May to November 2018 monitoring period. Temperature data was stable indicating continued groundwater discharge to the channel during the spring melt period.

A summer inspection of 23 spring locations was conducted in August 2018 as summarized in Appendix D6-D including description (Appendix D6-D-1, Table D6-D-1) and field documentation sketches and photos (Appendix D6-D-2). A plan view of these locations is included in Deliverable D7 (Appendix B) Long-Term Monitoring Program 2018 Annual Inspection and Maintenance Report. These plans have not been updated for 2018, since inspection locations remained the same and no new spring locations were found. Springs noted in 2018 are the same as those identified in 2017. Additional photos and video (Appendix D6-D-3) are provided on a separate DVD included with this report. This work documents conditions in the Long-Term

monitoring period and can be compared with surveys completed in 2013 through 2015 (HM99 2013 to 2014 Post Construction Monitoring Report), 2016 (Deliverable D1) and 2017 (Deliverable D4).

The constructed filters were found to be in good condition and were working as designed. Flow appeared to be coming up through the filter and discharging through the granular layer overlying the sand filter bed. No settlement or heaving of the filters was observed. No required repairs were identified.

The discharge trenches were constructed as shallow excavated trenches that were filled with riprap to grade or slightly above grade. As in previous years, it was observed that at 11 of the treated spring sites, the rip rap within the discharge trenches was infilling with sediment and spring discharge was finding alternate flow paths to the Low Flow Channel (Appendix D6-D-1, Table D6-D-1). This resulted in overland flow toward the Low Flow Channel or flow into low areas near the filter, creating wet and soft areas. No significant erosion channels were observed at any of these locations. The discharge trenches were constructed as ditches in a few locations (5A1 and 7A1). This method appeared to be more effective in directing discharge flows along the design discharge flow path, versus other trenches. Modifying the 11 identified discharge trenches to create more pronounced ditches would improve control of flow towards the Low Flow Channel.

Both high level and low level sampling pipes were found to be in good condition, with no damage observed. The covers for the low level sampling pipes at 5A1 and 7A1 were replaced by MI in 2018 after the inspection.

In 2016 and 2017, additional eroded discharge areas were observed in a small area along the discharge trench at 9B2. Construction of a graded sand filter would minimize potential for direct groundwater and surface water flow interconnections to develop at this location.

No new discharge areas were located in 2018. Five new discharge locations were identified in 2017 between Hay Road and the CEMR Bridge. One location had been observed previously in 2016. Two of the locations are near a Beaver Dam in the Low Flow Channel and may represent

surface water. Source areas were found at two of the 5 locations. Flow rates were low and in most cases diffuse as they entered the Low Flow Channel.

- *AD17-1* No change in 2018.
- *AD17-2* No change in 2018.
- AD17-3 Observed in 2016, 2017 and 2018 at similar flow rates.
- **AD17-4** Observed in 2017. In 2018 this area appeared dry in comparison, with only a small amount of soft soil along the bank.
- AD17-5 Observed in 2017. In 2018 this area appeared dry.

Additional discharge areas AD17-1 through AD17-5 should be re-inspected in 2019 including field conductivity and temperature and source identification. Additional discharge locations AD17-1, AD17-2 and AD17-5 are adjacent to the channel; therefore, remediation may not be practical. Discharge areas AD17-3 and AD 17-4 should be assessed for potential remediation.

Remediation Items

- Modifying the 11 identified discharge trenches to create more pronounced ditches should be considered to improve control of flow towards the low flow channel.
- Construction of a graded sand filter at additional discharge areas at 9B2 should be considered.
- Additional discharge areas AD17-1 through AD17-5 should be re-inspected in 2019 including field conductivity and temperature and source identification.
- Discharge areas AD17-3 and AD 17-4 should be assessed for potential remediation.

7.0 WELL DISINFECTION

The purpose of the well disinfection program is to prepare instrumented monitoring wells that are used for bacteria analysis for the pre-melt (typically March) and flood (typically March/April) monitoring programs. The program in 2018 was conducted in the fall, as several months are required between disinfection and sampling. Disinfection was completed at the five core monitoring wells with dedicated transducers, which are used for bacteria analysis.

On October 19, 2018 KGS Group personnel disinfected 5 monitoring wells (K11-12316, K09-12012, K13-12321, K11-12014 and K11-12015) along the Red River Floodway at PTH 59N Bridge, Church Road, Rockhaven Road and at the Floodway Outlet following the procedure outlined in Section 2.5.

Any dedicated submersible pumps were removed from the monitoring wells at the time of disinfection for winter storage at KGS Group.

8.0 LONG-TERM MONITORING

The current work program, overseen by Manitoba Infrastructure includes a monitoring period from spring 2016 through fall 2021. The Scope of Work should be continued for 2019, to include the following annual activities:

- Spring and Summer Flood Monitoring Program A (or B if required);
- Inspection of Treated Groundwater Springs and Channel Inspections by boat;
- Annual Well Disinfection, Inspection/Maintenance/Repair Programs
- Reporting.

9.0 STATEMENT OF LIMITATIONS AND CONDITIONS

9.1 THIRD PARTY USE OF REPORT

This report has been prepared for Manitoba Infrastructure to whom this report has been addressed and any use a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. KGS Group accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions undertaken based on this report.

9.2 GEO-ENVIRONMENTAL STATEMENT OF LIMITATIONS

KGS Group prepared the geo-environmental conclusions and recommendations for this report in a professional manner using the degree of skill and care exercised for similar projects under similar conditions by reputable and competent environmental consultants. The information contained in this report is based on the information that was made available to KGS Group during the investigation and upon the services described, which were performed within the time and budgetary requirements of the Manitoba Infrastructure. As the report is based on the available information, some of its conclusions could be different if the information upon which it is based is determined to be false, inaccurate or contradicted by additional information. KGS Group makes no representation concerning the legal significance of its findings or the value of the property investigated.

TABLES

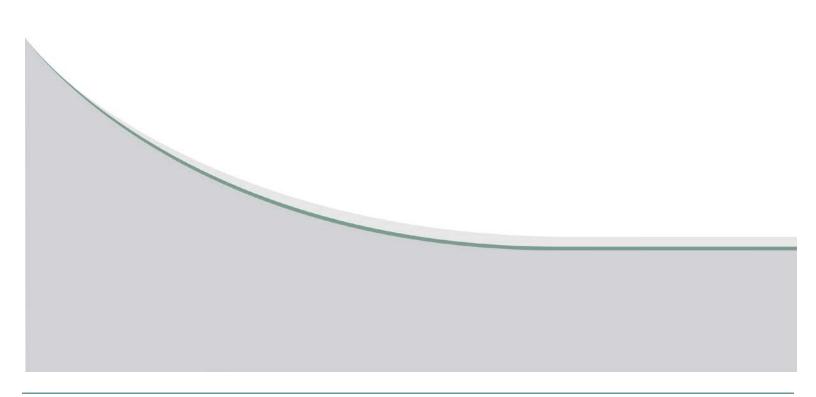


TABLE D6-1
2016-2018 MONITORING WELL AND SURFACE WATER FIELD PARAMETERS

Location	Well No.	Date	E.C. (μS/cm)	Temp.	pH (Units)	DO (mg/L)	Comments
Ground Water Sample	s	-				1	
		28-Mar-16	950	6.7	7.07	4.37	(1), (2), (3)
		21-Apr-16	1,100	6.8	7.25	3.13	-
		02-Jun-16	1,741	7.5	7.02	5.04	-
		02-Mar-17	-	6.8	6.97	4.77	-
Rockhaven Rd.	K13-12321	20-Apr-17	1032	7.0	6.99	6.02	
		11-May-17	1508	6.9	7.04	6.04	(8)
		15-Mar-18	1222	3.4	6.9	9.19	(-)
		30-Apr-18 07-Jun-18	1084 1186	7.2 7.5	6.91 6.92	7.71 4.5	
		07-3011-10	1100	7.5	0.92	4.5	
		28-Mar-16	752	7.0	7.21	3.68	(1), (2), (3)
		21-Apr-16	823	6.9	7.43	1.96	-
		02-Jun-16	851	7.0	7.15	2.50	-
		03-Mar-17	-	6.9	7.1	2.76	
Outlet Structure	K09-12316	05-Apr-17	600.4	7.0	7.16	1.75	(1)
		20-Apr-17 11-May-17	688.4 881	7.0 6.9	7.31 7.2	3.84 2.99	
		15-Mar-18	908	7.0	7.09	3.09	
		30-Apr-18	943	7.0	6.97	3.56	(1), (6)
		07-Jun-18	944	7.2	7.01	2.55	
		20 Mar 16	909	7.7	7.10	1.04	(5)
PTH 44 Bridge	U09-13571	28-Mar-16 05-Apr-17	705.7	7.7 7.8	7.18 7.11	0.92	(6)
	000 1001 1	30-Apr-18	1072	7.4	6.98	0.48	
·		28-Mar-16	1,103	6.1	7.36	0.99	(5)
Hay Rd.	K11-12018	05-Apr-17	866	6.3	6.88	0.49	(6)
ridy iva.	1111 12010	30-Apr-18	1153	6.7	6.67	2.33	(8)
							(1), (2), (3)
		29-Mar-16	1,036	6.2	7.39	0.18	(1), (2), (3)
		21-Apr-16 02-Jun-16	1,249 1,005	6.2	7.35 7.23	0.02	•
		02-Jun-16 02-Mar-17	1,005	6.4 6.2	7.23	0.15 0.43	
		05-Apr-17	769.4	6.5	7.17	0.49	
Church Rd.	K09-12012	07-Apr-17	704.1	6.3	7.15	0.72	(1)
5113115111131		20-Apr-17	947	6.2	7.26	1.13	
		11-May-17	1128	6.2	7.23	0.95	
		15-Mar-18	999	6.4	7.16	4.42	(1), (8)
		30-Apr-18	1066	4.7	7.68	4.17	(1), (10)
		07-Jun-18	958	6.5	7.33	3.94	
		29-Mar-16	441	6.8	7.41	1.52	(5)
Ludwick Rd.	K09-12011	06-Apr-17	349.6	6.9	7.29	0.52	(6)
		01-May-18	471.6	6.5	7.26	0.70	(8)
I		29-Mar-16	1,037	6.10	7.25	0.19	(5)
Dunning Rd.	K11-12017	06-Apr-17	737.6	6.3	7.22	0.51	(6)
		01-May-18	1,052	6.1	7.16	0.74	(8)
		29-Mar-16	952	6.3	6.70	0.17	(5)
Bray Rd.	K11-12016	06-Apr-17	766.9	6.3	7.19	0.4	(6)
		01-May-18	1,005	6.0	7.36	1.48	(8)
		30-Mar-16	557	7.30	7.51	0.90	(1), (2), (5)
		21-Apr-16	606	7.40	7.51	1.14	(4)
		02-Jun-16	688	7.90	7.32	4.71	-
		03-Mar-17	-	6.4	7.2	3.72	
PTH59N Bridge	K11-12014	06-Apr-17	397.2	7.6	7.47	2.61	
oo.i Bilago	12011	20-Apr-17	595.7	7.5	7.3	1.49	
		11-May-17	681.1	7.8	7.24	0.78	(1), (8)
		15-Mar-18	630	6.2	6.67	1.38	
		01-May-18	622.3	7.1	7.38	0.71	
		07-Jun-18	694.6	8.7	7.62	3.44	

TABLE D6-1 2016-2018 MONITORING WELL AND SURFACE WATER FIELD PARAMETERS

Location	Well No.	Date	E.C. (μS/cm)	Temp. (°C)	pH (Units)	DO (mg/L)	Comments
		30-Mar-16	521	7.2	7.70	1.12	(1), (2), (5)
		21-Apr-16	565	7.2	7.76	0.99	(3)
		02-Jun-16	583	7.4	7.44	1.49	-
		02-Mar-17	-	7.2	7.39	0.45	
PTH59N Bridge	K11-12015	06-Apr-17	370.1	7.3	7.51	3.84	(1)
Continued	K11-12013	20-Apr-17	580.6	7.3	7.44	1.43	
		11-May-17	659.5	7.3	7.39	0.89	
		15-Mar-18	647	7.4	7.04	0.71	(1), (6)
		01-May-18	608.1	7.0	7.51	0.91	(1), (2), (8)
		07-Jun-18	696.6	9	7.75	0.18	
		30-Mar-16	737	6.2	7.56	0.09	(5)
McGregor Farm Rd.	K13-12322	06-Apr-17	605.4	6.6	7.30	0.57	(6)
-		02-May-18	858	6.3	7.18	0.10	(8)
		30-Mar-16	2,340	9.90	8.02	1.07	-
Inlet Control Structure	G050C006	07-Apr-17	1,709	14.1	7.72	0.53	(7)
		02-May-18	2,339	9.9	6.93	0.75	(7)
Surface Water Sample	s						
		28-Mar-16	415	9.30	7.77	13.80	-
		02-Jun-16	553	14.40	7.61	8.37	-
		05-Apr-17	305.1	5.1	7.95	11.57	-
		12-Apr-17	591	7.5	6.64	10.25	-
PTH 44 Bridge	PTH 44	19-Apr-17	709	7.7	7.09	10.03	-
		26-Apr-17	919	3.6	6.82	14.82	-
		11-May-17	743	12.7	6.94	10.08	-
		30-Apr-18	545.7	12.6	6.99	12.29	-
		07-Jun-18	1126	18.8	7.04	7.03	(11)
		30-Mar-16	608	6.30	7.36	8.11	-
		02-Jun-16	767	17.60	7.81	9.38	-
		05-Apr-17	312.8	6.2	7.8	9.32	-
		12-Apr-17	607.1	7.7	6.66	9.42	-
PTH59N Bridge	PTH 59N	19-Apr-17	800	7.3	6.64	9.06	-
ĭ		26-Apr-17	737.5	3.8	7.61	15.21	-
		11-May-17	657	14.8	7.93	9.29	-
		01-May-18	627.4	8.1	6.84	9.98	-
		07-Jun-18	1054	23.0	8.35	9.51	(11)

Notes:

"-" = No Data

E.C. = Electrical Conductivity

- 1. Well contains dedicated transducers.
- 2. Original Dedicated Well Pump Failed
- New Dedicated Well Pump Installed
 New Dedicated Waterra Tubing and Foot Valve
- 5. Sampled with Portable Pump.
- 6. Purged and sampled with tornado pump.
- 7. Washroom tap, not used for drinking.8. Purged and sampled with Waterra pump.
- 9. Conductivity results for March 3, 2017 anomalous due to meter/calibration. See laboratory conductivity results Tables D-6-2 and D-6-3.
- 10. Not enough water in well to use tornado or Waterra pumps. Bailer used to take grab sample. Well dry after one bailer.

 11. No Floodway Operation in 2018. Red River peaked on May 1, 2018 at Station 05-OC021 (EL. 227.913 m) Red River Above Floodway Contr

TABLE D6-2 2016-2018 GENERAL SURFACE WATER QUALITY DATA FLOODWAY CHANNEL

																		Paramete	r ⁽²⁾												
Sample Location ⁽¹⁾	Location	Event	Duplicate	Date	Turbidity (NTU)		E.C. (µS/cm)	Alkalinity as CaCO ₃	Bicarbonate as HCO ₃	Carbonate as CO ₃	Hydroxide as OH	as	Chloride - Soluble	Sulphate - Soluble	Ammonia (NH ₃)	Nitrate+ Nitrite-N	Nitrate-N	Nitrite-N	Calcium	Magnesium	Potassium	Sodium	Total Phosphorus	T.D.S. (Calc.)	T.S.S.T.I	K.N. Anior Sum	Cation Sum	Cation - Anion Balance	Ion Balance (%)	Total Coliform MPN/100mL	E.coli MPN/100mL
CCME (4)																										-	_				
Freshwater Aq	quatic Life				(5)	6.5- 9.0	-	-	-	-	-	-	120 (6a)/640	-	(3a)	-	-	-	-	-	-	-	(9)	-	(7)		-	-	-	-	-
RRF at PTH 5	9 N																														
Event - Spring	g Melt/Spring Floor	Monitoring																													
		Spring Melt Spring Melt		30-Mar-16 2-Jun-16	21 17	8.13 8.24	549 718	193 210	236 256	<0.60 <0.60	<0.34	231 352	45.6 46.2	39.1 93.2	0.072 0.014	0.414 4.68	0.405 4.620	0.0093	50.2 64.4	25.7 46.4	6.63 6.53	28.7 30.4	0.196 0.285	314 434		.75 6 .87 7.77	6.04 8.52	0.4 4.6	101 110	2790 26100	630 1440
PTH59	RRF at PTH 59 N	Spring Flood Spring Flood		5-Apr-17 12-Apr-17	163 112	7.86 7.96	403 534	135 163	165 199	<0.60 <0.60	<0.34 <0.34	195 239	12.8 19.3	55.9 99	0.134 0.048	0.945 0.885	0.896 0.863	0.0490 0.022	44.0 54.7	20.6 24.9	9.19 8.26	15.5 22.6	0.505 0.336	239 327		19 4.3 19 5.9	4.81 6.0	5.6 0.4	112 101	2430 1550	3
1 11159	Spring Hill Ski	Spring Flood		19-Apr-17	26	8.03	696	198	241	<0.60	<0.34	298	45.3	123	-	0.522	0.517	0.0056	63.6	33.7	7.26	43.4	0.176	437	<20 0	66 7.8	8.0	1.2	102	34	<1
		Spring Flood Spring Melt		26-Apr-17 01-May-18	22.3 42.7	8.38 8.42	649 578	285 209	336 239	6 7.44	<0.34 <0.34	350 251	24.3 33.1	63 73.4	0.054	0.0233 0.0156	0.0221 0.0118	0.0011 0.0038	71.5 51.8	41.7 29.5	4.15 6.21	20.7	0.092 0.174	396 343		0.20 7.7 66 6.6	8.0 6.2	1.9 -3.3	104 93.6	308 866	6 94
Event - Post I	Melt/Post Flood Mo	nitoring																													
PTH59	RRF at PTH 59 N Spring Hill Ski	Spring Flood Spring Flood Spring Melt	SW100	11-May-17 11-May-17 07-Jun-18	12 11.6 1.31	8.45 8.45 9.46	634 632 983	283 283 150	328 328 109	8.4 8.52 36.6	<0.34 <0.34 <0.34	340 345 314	21.7 21.7 156	51.9 59.2 140	<0.010 <0.010 0.017	<0.0051 <0.0051 <0.010	<0.0050	<0.0010 <0.0010 <0.0020	74 75.2 41.3	37.8 38.1 51.3	3.65 3.77 6.98	20.7 21 105	0.077 0.077 0.0531	387 389 590	10 0	75 7.5 78 7.5 58 10.3	7.8 7.9 11.0	2 2.6 3.3	104 105 107	1050 1200 6200	78 73 6
RRF at PTH 4	4	<u> </u>																							<u>, , , , , , , , , , , , , , , , , , , </u>						
Event - Spring	g Melt/Spring Floor	Monitoring																													
		Spring Melt Spring Melt Spring Flood Spring Flood	SW100	28-Mar-2016 2-Jun-2016 5-Apr-17 5-Apr-17	42.5 10.0 171 172	7.96 8.03 7.84 7.83	407 665 394 398	175 227 134 135	213 277 164 164	<0.60 <0.60 <0.60 <0.60	<0.34 <0.34 <0.34 <0.34	198 329 195 194	13.5 38.4 12.5 12.4	26.2 81.0 54.0 54.1	0.054 <0.010 0.137 0.145	1.28 0.727 0.943 0.943	1.25 0.704 0.890 0.892	0.0263 0.0234 0.0521 0.0513	45.3 62.8 44.3 43.8	20.7 41.7 20.4 20.6	7.82 4.84 9.13 9.51	9.41 27.8 15.1 15.1	0.356 0.108 0.520 0.519	233 396 236 236	13.0 1. 173 1.	79 4.51 32 7.36 19 4.23 22 4.23	7.9 4.79	0.8 3.5 6.2 6.2	102 107 113 113	980 ⁽⁸⁾ 41100 2090 1450	139 ⁽⁸⁾ 1210 8 4
PTH 44	NW side of PTH44 bridge	Spring Flood Spring Flood Spring Flood Spring Melt	011100	12-Apr-17 19-Apr-17 26-Apr-17 30-Apr-18	107 54 24 27.6	7.97 8.53 8.33 8.44	524 644 704 496	160 205 283 182	195 230 337 210	<0.60 9.96 3.96 5.76	<0.34 <0.34 <0.34 <0.34	228 309 362 231	18.6 27.4 38.1 30.4	95.8 124 71.9 56.5	0.048	0.893 0.597 0.0552 <0.0051	0.87 0.586 0.0536 <0.0050	0.0226 0.0109 0.0016 <0.0010	53.6 69.3 73.2 44.5	22.8 33 43.6 29.2	7.85 7.61 4.69 6.42	21.3 36.4 29.3 24.7	0.329 0.219 0.1 0.175	316 423 431	124 1 52 0 26 0	.1 5.78 85 7.5 56 8.23 84 5.86	5.68 7.95 8.64	-0.8 2.9 2.4	98.3 106 105 103	1300 236 548 649	6 4 30
Event - Post I	Melt/Post Flood Mo	Spring Melt	SW100	30-Apr-18	28.3	8.46	496	182	208	6.48	<0.34	217	30.5	56.5	<0.010	<0.0051	<0.0050	0.002	45.9	25	6.04	22.4	0.18			74 5.48		-1.7	96.7	866	5
PTH 44	NW side of PTH44 bridge	Spring Flood Spring Melt Spring Melt	SW100	11-May-17 07-Jun-18 07-Jun-18	9.3 1.65 1.81	8.34 8.61 8.61	679 1070 1070	293 236 238	349 260 263	4.44 13.6 13.9	<0.34 <0.34 <0.34	357 468 471	23.5 84.2 77.7	65.9 246 219	<0.010 0.02 0.02	0.0116 0.046 0.045	0.044	<0.0010 0.0023 <0.0020	76.3 58.3 59.1	40.3 78.4 78.5	3.95 7.33 7.52	22.1 78.2 79.9	0.065 0.111 0.109	408 694 665	2.9	65 7.9 0.6 12.2 62 11.5		1.8 2.9 6.3	104 106 113	411 5900 2420	12 73 66

Notes:

"-" = No Data "*" = Detection Limit Adjusted For Sample Matrix Effects

E.C. = Electrical Conductivity T.K.N. = Total Kjeldahl Nitrogen T.D.S. = Total Dissolved Solids T.S.S. = Total Suspended Solids

- 1. See Figure HM95-1 for sample locations.
- 2. All values are expressed in milligrams per litre (mg/L) unless indicated otherwise.

 3. Guideline for un-ionized ammonia is 0.019 mg/L, which is equivalent to 16 µg ammonia-N /L (=19*14.0067 / 17.35052, rounded to Guideline for total ammonia is temperature and pH dependent, See below table.

				pН				
Temp (°C)	6	6.5	7	7.5	8	8.5	9	10
0	231	73	23.1	7.32	2.33	0.749	0.25	0.042
5	153	48.3	15.3	4.84	1.54	0.502	0.172	0.034
10	102	32.4	10.3	3.26	1.04	0.343	0.121	0.029
15	69.7	22	6.98	2.22	0.715	0.239	0.089	0.026
20	48	15.2	4.82	1.54	0.499	0.171	0.067	0.024
25	33.5	10.6	3.37	1.08	0.354	0.125	0.053	0.022
30	23.7	7.5	2.39	0.767	0.256	0.094	0.043	0.021

4. Canadian Council of Ministers of the Environment. Canadian Environmental Quality Guidelines, 1999. Update 2012. Chapter 4 - Aquatic Life

BOLD - Exceedance of Criteria

5. Turbidity Guidelines Narrative (see fact sheet for complete details):

Clear Flow:

Maximum increase of 8 NTUs from background levels for a short-term exposure (e.g. 24 hr period).

Maximum average increase of 2 NTUs from background levels for a longer exposure (e.g. 30 d period).

High Flow or Turbid Waters:

Maximum increase of 8 NTUs from background levels at any one time when background levels are between 8 and 80 NTUs.

- Should not increase more than 10% of background levels when background is >80 NTUs. 6. Chloride toxicity to freshwater organisms was evaluated using tests with both CaCl₂ and NaCl salts.
- a. Long-term exposure May not be protective of certain species of endangered and special concern freshwater mussels. Refer to fact sheet for more explanation
- b. Short-term exposure derived with severe-effect data (such as lethality) and are not intended to protect all components of aquatic ecosystem structure and function but rather to protect most species against lethality during severe but transient events. Refer to fact sheet for more information.
- 7. Suspended Sediments Guidelines (see fact sheet for complete details):

Clear Flow

 $Maximum\ increase\ of\ 25\ mg/L\ from\ background\ levels\ for\ any\ short-term\ exposure\ (e.g..\ 24\ hr\ period).$

Maximum average increase of 5 mg/L from background levels for longer term exposures (e.g.. Inputs lasting between 24 hrs and 30 days).

Maximum increase of 25 mg/L from background levels at any time when background levels are between 25 and 250 mg/L.

Should not increase more than 10% of background levels when background is >250 mg/L.

8. Bacteria sample taken on March 29, 2016

9. If trigger ranges for total phosphorous are exceeded, the potential exists for an environmental impact. If trigger range is not exceeded, but TP is more than 50% above baseline values, the potential exists for an environmental impact. meso-eutrophic 0.020-0.035

ultra-oligotrophic <0.004 Trigger ranges (mg/L):

0.004-0.010 oligotrophic eutrophic 0.035-0.10 mesotrophic 0.010-0.020 hyper-eutrophic >0.10

TABLE D6-3 2016-2018 GENERAL GROUNDWATER QUALITY DATA

																Parameter	r ⁽¹⁾											
tion	ell ID	cate	Date	Turbidity (NTU)	pH (units)	E.C. (µS/cm)	Alkalinity as CaCO ₃	Bicarbonate as HCO ₃	Carbonate as CO ₃	Hydroxide as OH	Hardness as CaCO ₃	Chloride	Sulphate	Nitrate & Nitrite as N	Nitrate as N	Nitrite as		Magnesium	Potassium	Sodium	T.D.S. (calc.) ⁽⁸⁾	Total Cation	Total Anion	Cation- Anion Balance (%) (9,10)	Ion Balance	Total Coliform (MPN/100 mL)	E.coli (MPN/100 mL)	Comments
ocai	Well	ildn	EQL	0.05	0.01	0.4	1	2	0.6	0.4	0.07	9	9	0	0.005-0.0)1	0.05	0.01	0.05	0.02	5	-	-	-	-	0	0	
_			HC-CDWQ (2)																									
			Drinking Water ⁽³⁾	0.3/ 1.0/ 0.1 ⁽⁴⁾	7.0 - 10.5 (AO)	-	-	-	-	-	80-100 ⁽⁵⁾ (AO)	250 (AO)	500 (AO)	-	10 (7)	1.0 (7)	-	-	-	200 (AO)	500 (AO)	-	-	-	-	0 per 100 mL	0 per 100 mL	-
		-	28-Mar-2016 21-Apr-2016	3.11	7.39	974	408	498	<0.60	<0.34	497	44.6	79.2	2.33	2.33	<0.0010	74.2	75.9	4.88	27.3	561	11.3	11.2	0.1	100	11	<1 <1	-
		-	2-Jun-2016	0.41	7.30	1710	506	617	<0.60	<0.34	882	243	93.7	3.25	3.25	<0.0020	113	146	6.55	69.8	990	20.9	19.1	4.3	109	<1	<1	-
		-	2-Mar-2017	0.30	7.17	1780	576	703	<0.60	<0.34	938	236	87.2	4.48	4.48		122	154	6.32	67.8	1020	21.9	20.3	3.7	108	<1	<1	-
Rockhaven Rd.	K13-12321	-	5-Apr-2017 20-Apr-2017	0.33	7.57	1030	445	542	<0.60	<0.34	552	40.4	75.6	2.89	2.89	<0.0020	78.2	86.6	4.89	27.6	580	12.4	11.8	2.3	105	2 <1	<1 <1	-
		-	11-May-2017	16	7.3	1440	542	661	<0.60	<0.34	792	141		3.31	3.31	<0.0050	105	129	6.13	42.9	836	17.9	16.9	2.9	106	<1	<1	-
		-	15-Mar-2018 30-Apr-2018	43 3	7.55 7.37	1030 1100	546 500	666 610	<0.60 <0.60	<0.34 <0.34	693 613	63.3 50.1	82.1 80.6	6.83 3.78	6.83 3.78		92.8 83.6	98.1	5.18 5.11	30.6 30.2	714 648	15.3 13.7	14.9 13.4	1.4	103 102	<1 <1	<1 <1	-
		-	7-Jun-2018	5	7.55	1150	510	622	<0.60	<0.34	670	55.4	98.9	5.55	5.55	<0.0020	89.6	108	5.16	29.4	717	14.2	14.8	1.9	104	<1	<1	-
		-	28-Mar-2016	0.27	7.51	775	312	381	<0.60	<0.34	372	30.6	75.6	1.56	1.56		62.8	52.3	4.33	24.5	444	8.61	8.79	-1	98	22	<1	-
		-	21-Apr-2016 2-Jun-2016	0.17	7.63	853	359	438	<0.60	<0.34	482	30.6	64.1	1.57	1.57	<0.0010	74.8	71.7	4.47	21.6	490	10.7	9.49	5.9	113	4 1	<1	-
		-	3-Mar-2017	<0.10	7.32	893	432	527	<0.60	<0.34	523	29.5	59.0	1.8	1.80		77.8	79.8	4.60	21.3	539	11.5	10.8	3	106	<1	<1	-
Outlet Chrustine	K00 40040	MW100 -	3-Mar-2017 5-Apr-2017	0.11	7.32	900 804	430 323	524 393	<0.60 <0.60	<0.34 <0.34	521 398	29.5 34.5	58.8 73.2	1.81 0.832	1.81 0.832	<0.0010 2 <0.0020	77.8 64.3	79.3 57.6	4.49 4.42	21.2 28.8	537 456	11.4 9.32	10.8 9	1.7	106 104	<1 2	<1 1	-
Outlet Structure	K09-12316	MW-100	5-Apr-2017	0.19	7.61	802	324	395	<0.60	<0.34	406	34.7	73.0	0.838	0.836		64.3	59.6	4.53	29.9	460	9.53	9.03	2.7	106	1	<1	-
		-	20-Apr-2017 11-May-2017	0.25	7.5	844	381	465	<0.60	<0.34	452	28.5	63.4	1.49	1.48	0.008	74.2	64.8	4.46	21.7	486	10.1	9.85	1.2	102	3 <1	<1 <1	-
		-	15-Mar-2018	0.19	7.62	790	428	522	<0.60	<0.34	509	30.4	60.9	2.29	2.29	0.0022	77.2	76.7	4.22	23.2	529	11.3	10.8	2	104	<1	<1	-
		-	30-Apr-2018 7-Jun-2018	0.96 0.12	7.43 7.53	885 908	421 414	513 505	<0.60 <0.60	<0.34 <0.34	494 512	35.7 33		2.24 2.29	2.24		75.8 78	74.1 77	4.29 4.26	24.8	528 535	11.1 10.6	10.9 11.4	3.3	102 107	<1 <1	<1 <1	-
		-	28-Mar-2016	0.14		940	347	423	<0.60	<0.34	427	58.2		1.64	1.64			61.7	4.89	38.1	543	10.3	10.7	-1.7	96.6	-	-	-
PTH 44 Bridge	U09-13571	-	5-Apr-2017	0.50	7.44	952	353	431	<0.60	< 0.34	466	46.9	105	1.03	1.03	<0.0020	71.9	69.5	5.01	41.5	552	11.2	10.6	2.7	106	-	-	-
		-	30-Apr-2018	0.54	7.42	1010	400	488	<0.60	<0.34	509	62.1		1.85	1.85		76.8	77.2	4.83	44.6	607	12.2	12	1	102	-	-	-
Hay Rd.	K11-12018	-	28-Mar-2016 5-Apr-2017	8.20 2.88		1130 1180	593 608	723 741	<0.60 <0.60	<0.34 <0.34	636 657	2.29 1.8	102 107	<0.0051 <0.010	<0.005		92.4 87.7	98.5 106	5.19 5.31	27.8 31.0	683 704	14.1 14.6	14 14.4	0.1 0.6	100 101	-	-	-
. ay ra	1111 12010	-	30-Apr-2018	8.06			603	736	<0.60	<0.34	654	2.5		<0.0051		0.0010		105	5.03	28.9	695	14.5	14.3	0.8	102	-	-	-
			29-Mar-2016	73.3	7.44	1060	350	427	<0.60	<0.34	531	23.0	237	<0.0051	<0.005	60 < 0.0010	94.9	71.3	4.50	45.2	686	12.7	12.6	0.4	101	<1	<1	-
		-	21-Apr-2016 2-Jun-2016	12.8	7.56	1020	- 311	379	- <0.60	- <0.34	530	21.0	238	<0.0051	<0.005	- 60 < 0.0010	86.3	76.5	4.50	46.8	660	- 12.8	- 11.8	4.1	108	<1 <1	<1 <1	-
		-	2-Mar-2017	226	7.36	1140	392	478	<0.60	<0.34	609	23.5	277	<0.010	<0.010		98.4	88.1	4.81	52.4	779	14.6	14.3	1	102	<1	<1	-
Church Rd.	K09-12012	-	7-Apr-2017 20-Apr-2017	16.5	7.55	934	324	395	<0.60	<0.34	430	23.6	180	<0.010	<0.010	0 <0.0020	71.0	61.3	3.83	40.7	575	10.5	10.9	-2	96	1 <1	<1 <1	-
Charon rta.	1100 12012	-	11-May-2017	0.5	7.47	1090	387	473	<0.60	<0.34	589	19.2	242	<0.010	<0.010	0 <0.0020	97.9	83.7	4.85	47.9	728	14	13.3	2.4	105	<1	<1	-
		S100	15-Mar-2018 15-Mar-2018	0.3	7.77 7.66	976 902	356 361	435 440	<0.60 <0.60	<0.34 <0.34	539 528	24.5 24.5		<0.010 <0.010	<0.010		88.4 85.7	77.4 76.2	4.48 4.49	49 48.9	672 672	13 12.8	12.3 12.4	1.6	106 103	<1 <1	<1 <1	-
		-	1-May-2018	10.8	7.52	953	337	411	<0.60	<0.34	462	24.4		<0.0051	<0.005		74.4	67.2	4.33	45.9	611	11.4	11.4	-0.3	99.4	<1	<1	-
		-	7-Jun-2018	0.1	7.66	987	340	415	<0.60	<0.34	510	22.8	175	<0.010	<0.010	0 <0.0020	82.8	73.6	4.45	48	610	11.1	12.4	5.6	112	<1	<1	-
		- MW100	29-Mar-2016 29-Mar-2016	0.82		454 459	235	286 277	<0.60 <0.60	<0.34	230	7.98	15.4			0.0010 0 <0.0010		27.1 26.8	2.62 2.70	9.54 9.51	251 246	5.08 5.07	5.23 5.09	-1.5 -0.2	97 99.7	-	-	-
Ludwick Rd.	K09-12011	-	6-Apr-2017	1.13	7.73	463	241	294	<0.60		239	7.12	14.9	< 0.0051	<0.005	0.0014	48.1	28.7	2.67	8.67	255	5.21	5.33		97.7	-	-	-
		-	1-May-2018					288	<0.60	<0.34						5 <0.0010			2.60	9.01		5.15		-0.8	98.3	-	-	-
Dunning Rd.	K11-12017	-	29-Mar-2016					324	<0.60							0.0010			3.93	48.0		12.6		1.2	102	-	-	-
Dunning Ru.	K11-12017	-	6-Apr-2017 1-May-2018					320 322	<0.60 <0.60	<0.34 <0.34	476 479					60 <0.0010 60 <0.0010		65.5 67.9	3.86 3.81	45.0 47.2	630 659			0.1	104 100	-	-	-
		-	29-Mar-2016					364	<0.60	<0.34	500		236			60 < 0.0010		64.1	4.49	33.8	629			1	102	-	- 1	-
Bray Rd.	K11-12016	-	6-Apr-2017	0.33	7.50	1010	300	366	<0.60	< 0.34	522	14.6	254	< 0.0051	<0.005	0.0010	92.7	70.5	4.45	37.5	654	12.2	11.7	2	104	-	-	-
	<u> </u>	-	1-May-2018	1.04	7.52	967	307	375	<0.60	< 0.34	519	21.5	230	< 0.0051	I < 0.005	0.0010	88.7	72.2	4.73	39.2	641	12.2	11.5	2.8	106	-	-	-

TABLE D6-3 2016-2018 GENERAL GROUNDWATER QUALITY DATA

																Parameter	r ⁽¹⁾											
ion	<u> </u>	cate	Date	Turbidity (NTU)		E.C. (μS/cm)	Alkalinity as CaCO ₃	Bicarbonate as HCO ₃	Carbonate as CO ₃	Hydroxide as OH	Hardness as CaCO ₃	Chloride	Sulphate	Nitrate & Nitrite as N	Nitrate as N	Nitrite as N	Calcium	Magnesium	Potassium	Sodium	T.D.S. (calc.) ⁽⁸⁾	Total Cation	Total Anion	Cation- Anion Balance (%) (9,10)	lon Balance	Total Coliform (MPN/100 mL)	E.coli (MPN/100 mL) (6,11)	Comments
ocat	Nell	upli,	EQL	0.05	0.01	0.4	1	2	0.6	0.4	0.07	9	9	0.	.005-0.01		0.05	0.01	0.05	0.02	5	-	-	-		0	0	
7		۵	HC-CDWQ (2)																									
			Drinking Water ⁽³⁾	0.3/ 1.0/ 0.1 ⁽⁴⁾	7.0 - 10.5 (AO)	-	-	-	-	-	80-100 ⁽⁵⁾ (AO)	250 (AO)	500 (AO)	-	10 ⁽⁷⁾	1.0 (7)	-	-	-	200 (AO)	500 (AO)	-	-	-	-	0 per 100 mL	0 per 100 mL	-
		-	30-Mar-2016	<0.10		573	247	301	<0.60	<0.34	299	13.6	57.6	0.252	0.252	<0.0010	59.9	36.3	3.82	6.53	327	6.36	6.53	-1.4	97.3	9	<1	-
		MW-101	30-Mar-2016 21-Apr-2016	<0.10	7.67	575	249	304	<0.60	<0.34	309	13.6	57.7	0.249	0.249	<0.0010	63.2	36.6	3.85	6.57	332	6.55	6.58	-0.3	99.5	12 <1	<1 1	-
		-	2-Jun-2016	0.49	7.60	625	256	312	<0.60	<0.34	363	16.1	60.9	0.211	0.211	<0.0010		44.3	4.25	7.40	360	7.69	6.85	5.8	112	10	<1	-
		-	3-Mar-2017	0.71	7.39	687	320	391	<0.60	< 0.34	397	12.6	67.6	0.159	0.159	<0.0010		47.7	4.44	7.14	413	8.36	8.18	1.1	102	<1	<1	-
	K11-12014	-	6-Apr-2017 20-Apr-2017	2.35	7.73	531	208	254	<0.60	<0.34	269	11.7	64.7	0.372	0.372	<0.0010	52.7	33.4	4.35	9.19	301	5.89	5.87	0.2	100	17	1 <1	-
	K11-12014	-	11-May-2017		7.52	672	303	370	<0.60	<0.34	379	12.3	65.4	0.314	0.314	<0.0010		46.3	4.48	7.98	394	8.04	7.79	1.6	103	<1	<1	-
		K11-100	11-May-2017		7.48	678	302	368	<0.60	< 0.34	385	12.2	65.9	0.321	0.321	<0.0010	76.8	47	4.58	8.11	396	8.17	7.77	2.5	105	<1	<1	-
		-	15-Mar-2018	2.66	7.77	582	283	345	<0.60	<0.34	356	18.3	55.1	0.112	0.112	<0.0010		44.3	4.12	8.84	370	7.61	7.33	1.9	104	<1	<1	-
		MW-100	1-May-2018 1-May-2018	0.76	7.63 7.64	600 599	272 269	332 329	<0.60 <0.60	<0.34	338 332	15.6 16	52.1 51.4	0.1 0.0954	0.099	0.0012 <0.0010	60 60.8	45.8 43.7	4.46 4.16	8.09 7.52	350 346	7.23	6.97 6.92	1.8	104 102	<1 <1	<1 <1	-
PTH59N Bridge		-	7-Jun-2018		7.61	689	311	379	<0.60	<0.34	408	13.3	61.5	0.146	0.145		76.6	52.7	4.39	7.73	403	7.88	8.61	4.4	109	1	<1	-
1 Tricon Bridge		I -	30-Mar-2016	0.32	7.78	532	222	270	<0.60	<0.34	269	16.7	50.5	0.207	0.207	<0.0010	54.2	32.4	3.89	6.72	298	5.76	5.96	-1.7	96.7	Q	1	_
		-	21-Apr-2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	<1	-
		MW-100	21-Apr-2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	<1	-
		-	2-Jun-2016	0.93	7.72	596	236	288	<0.60	<0.34	337	16.9	64.6	0.076	0.0733	0.0027	66.2	41.7 43.0	4.22	7.36	343	7.16	6.55	4.5	109	5	<1	-
		-	2-Mar-2017 6-Apr-2017	0.22	7.64	614 489	267 191	326 233	<0.60 <0.60	<0.34 <0.34	349 249	14.6 12.6	58.3 55.4	0.0486 0.474	0.0486	<0.0010 <0.0010		43.0 30.5	4.16 3.96	6.43 9.14	355 276	7.36 5.47	6.97 5.36	2.7	106 102	<1 12	<1	-
	K11-12015	-	20-Apr-2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	3	<1	-
		-	11-May-2017		7.68	615	248	302	<0.60	< 0.34	331	14.9	78.9	0.143	0.128	0.0153	63.9	41.7	4.44	8.94	361	7.12	7.02	0.7	101	<1	<1	-
		-	15-Mar-2018	0.23	7.77	594	276	336	<0.60	<0.34	364 310	17.9	68.4	0.0641	0.0627	0.0014	73.1	44.1	4.28	8.09	381	7.74	7.44	2	104	<1	<1	-
		-	1-May-2018 7-Jun-2018		7.62	590 677	252 277	307 338	<0.60 <0.60	<0.34	310	18.7 16	54 77.5	0.0527 0.042	0.0527	<0.0010 <0.0020		39.1 46	4.13 4.15	7.56 8.43	334 396	6.63 7.61	6.69 8.11	-0.4 3.2	99.2 107	<1 <1	<1 <1	-
		K11-100	7-Jun-2018	0.22	7.71	673	283	345	<0.60	<0.34	387	16	78	0.042	0.042	<0.0020		46.3	4.25	8.48	401	7.73	8.22	3	106	<1	<1	-
	· 	1 -	30-Mar-2016	•	7.60	741	247	302	<0.60	<0.34	356	16.1	148			<0.0010		48.8	3.36	23.3	450	8.2	8.48	-1.7	96.7	-		-
McGregor Farm Rd.	K13-12322	-	6-Apr-2017	0.75	7.62	796	264	322	<0.60	<0.34	400	16.1	162	<0.0051	<0.0050			55.7	3.79	27.8	492	9.31	9.1	1.1	102	-	-	-
		-	2-May-2018		7.67		261	318	<0.60	<0.34	416	16.9	184	<0.0051		<0.0010		57.6	3.80	28.9	519	9.66	9.52	0.7	102	-	-	-
	1	I -	30-Mar-2016	38.4	7.84	2340	206	252	<0.60	<0.34	477	539	295	<0.051	<0.050	<0.010	95.5	57.9	12.8	325	1450	24	25.5	-3	94.1	1	0	-
Inlet Control Structure	G050C006	-	7-Apr-2017	37.0	7.75	2240	233	285	<0.60	<0.34	467	422	282	<0.051	<0.050	<0.010	89.2	59.4	12.3	304	1310	22.9	22.4	1	102	0	0	-
		-	2-May-2018	38.8	7.84	2230	223	272	<0.60	<0.34	459	451	278	< 0.025	<0.025	<0.0050	91.5	56.0	12.0	326	1350	23.7	23	1.4	103	3	0	-

Notes:

EQL = Estimated Quantitation Limit = The lowest level of the parameter that can be quantified with confidence

- E.C. = Electrical Conductivity
- "-" = No Data
- 1. All values are expressed in milligrams per litre (mg/L) unless indicated otherwise.
- 2. Health Canada Canadian Drinking Water Quality Guidelines (HC-CDWQ). Updated February 2017.
- 3. Guidelines for Canadian Drinking Quality, February 2017. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario. Prepared by the Federal-Provincial-Territorial Committee on Drinking Water.

 MAC = Maximum Acceptable Concentration = The maximum concentration of a parameter that is designed to protect those individuals most at risk, such as children and the elderly.
- AO = Aesthetic Objective = A guideline which addresses a parameter that may affect consumer acceptance of drinking water, such as taste, odour, and colour.
- 4. Waterworks systems that use a surface water source or a groundwater source under the direct influence of surface water should filter the source water to meet the following health-based turbidity limits, as defined for specific treatment technologies.
- Where possible, filtration systems should be designed and operated to reduce turbidity levels as low as possible, with a treated water turbidity target of less than 0.1 NTU at all times. Where this is not achievable, the treated water turbidity levels from individual filters:
 a) For chemically assisted filtration, shall be less than or equal to 0.3 NTU in at least 95% of the measurements made, or at least 95% of the time each calendar month,
 and shall not exceed 1.0 NTU at any time.
- b) For slow sand or diatomaceous earth filtration, shall be less than or equal to 1.0 NTU in at least 95% of the measurements made, or at least 95% of the time each calendar month, and shall not exceed 3.0 NTU at any time.
- c) For membrane filtration, shall be less than or equal to 0.1 NTU in at least 99% of the measurements made, or at least 99% of the time each calendar month, and shall not exceed 0.3 NTU at any time. If membrane filtration is the sole treatment technology employed, some form of virus inactivation* should follow the filtration process.
- 5. Public acceptance of hardness varies considerably. Generally, hardness levels between 80 and 100 mg/L (as CaCO3) provide acceptable balance between corrosion and incrustation; Where water is softened by sodium ion exchange, it is recommended that a separate, unsoftened supply be retained for culinary and drinking purposes.
- 6. Total Coliform and E.coli analyzed by Low Level Quantitray Method TC/EC QT97.
- 7. Systems using chloramine disinfection or that have naturally occurring ammonia should monitor the level of nitrate/nitrite in the distribution system. Homeowners with a well should test the concentration of nitrate/nitrite in their water supply.
- 8. ALS Laboratory reports total dissolved solids (calculated) as the sum of cations plus anions using the following formula (mg/L).
- 9. Cation Anion balance = sum of meg of Cations sum of meg of Anions X 100 = %
 - sum of meq of Cations + sum of meq Anions
- 10. Cation-anion balances greater than the absolute 10% are highlighted for reference only.
- 11. Detection of total coliforms should be investigated in consecutive samples from the same site, or from more than 10% of collected samples in a given sampling period.

-Exceedance of HC- CDWQ Drinking Water

TABLE D6-4
2018 WATER QUALITY ASSESSMENT - INSTRUMENTED WELLS

					CONDUCTIV	/ITY				NITRATE		E	. COLI
WELL ID	PROGRAM	PRE-MELT CONDUCTIVITY (March 15, 2018)	SPRING MELT CONDUCTIVITY (April 30, 2018)	% CHANGE ⁽³⁾	CHANGE IS GREATER THAN 5% ⁽²⁾	CHANGE (1)	WELL HAS PRE- MELT GROUNDWATER CONDUCTIVITY VALUES SIMILAR TO THE FLOODWAY CHANNEL SURFACE WATER DURING THE FLOOD	ASSOCIATED WITH THE SPRING MELT	PRE-MELT NITRATE PLUS NITRITE (as N) (March 15, 2018)	SPRING FLOOD NITRATE PLUS NITRITE (as N) (April 30, 2018)	% CHANGE ⁽³⁾	E.COLI DETECTED IN A DISINFECTED WELL IN PRE- MELT SAMPLING	E. COLI DETECTED IN A DISINFECTED WELL IN SPRING FLOOD PEAK SAMPLING
K13-12321 ⁽⁴⁾	Program A	1030	1100	-6	No	N/A	No	Yes	6.83	3.78	81	No	No
K09-12316	Program A	790	885	-11	No	N/A	No	Yes	2.29	2.24	2	No	No
K09-12012	Program A	976	953	2	No	N/A	No	Yes	<0.01	<0.005	0	No	No
K11-12014	Program A	582	600	-3	No	N/A	No	Yes	0.112	0.1	12	No	No
K11-12015	Program A	594	590	1	No	N/A	No	Yes	0.0641	0.0527	22	No	No

Notes

- 1. Magnitude of water quality change: Type A (>50% change), Type B (25% to 50% change). Type C (10% to 25% change), Type D (5% to 10%) change
- 2. Changes of ≤ 5% are considered to be within the accuracy of the analysis and are considered "no change" for purposes of this analysis.
- 3. Negative % change values indicate higher concentrations for spring melt peak vs pre-melt sampling. Increasing conductivity is not an indicator of surface water intrusion in this analysis.

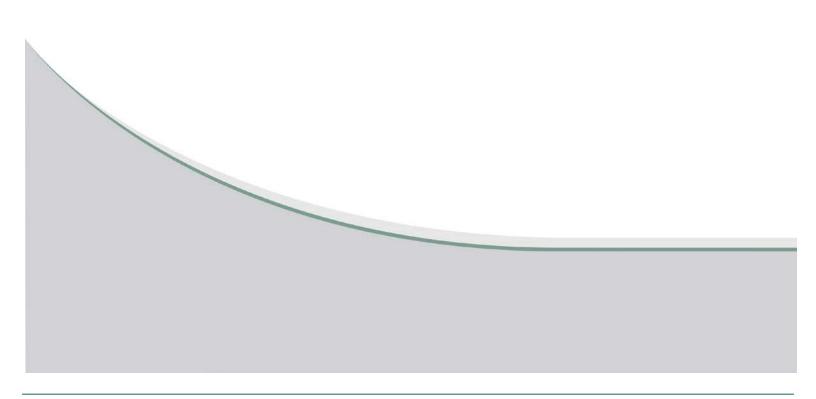
Increasing nitrate is not considered to be an indicator of surface water intrusion at locations near Lockport and the Outlet. Decreasing nitrate is not considered to be an indicator of surface water intrusion at other locations.

4. Conductivity may not be representative since total dissolved solid and other parameters decreased.

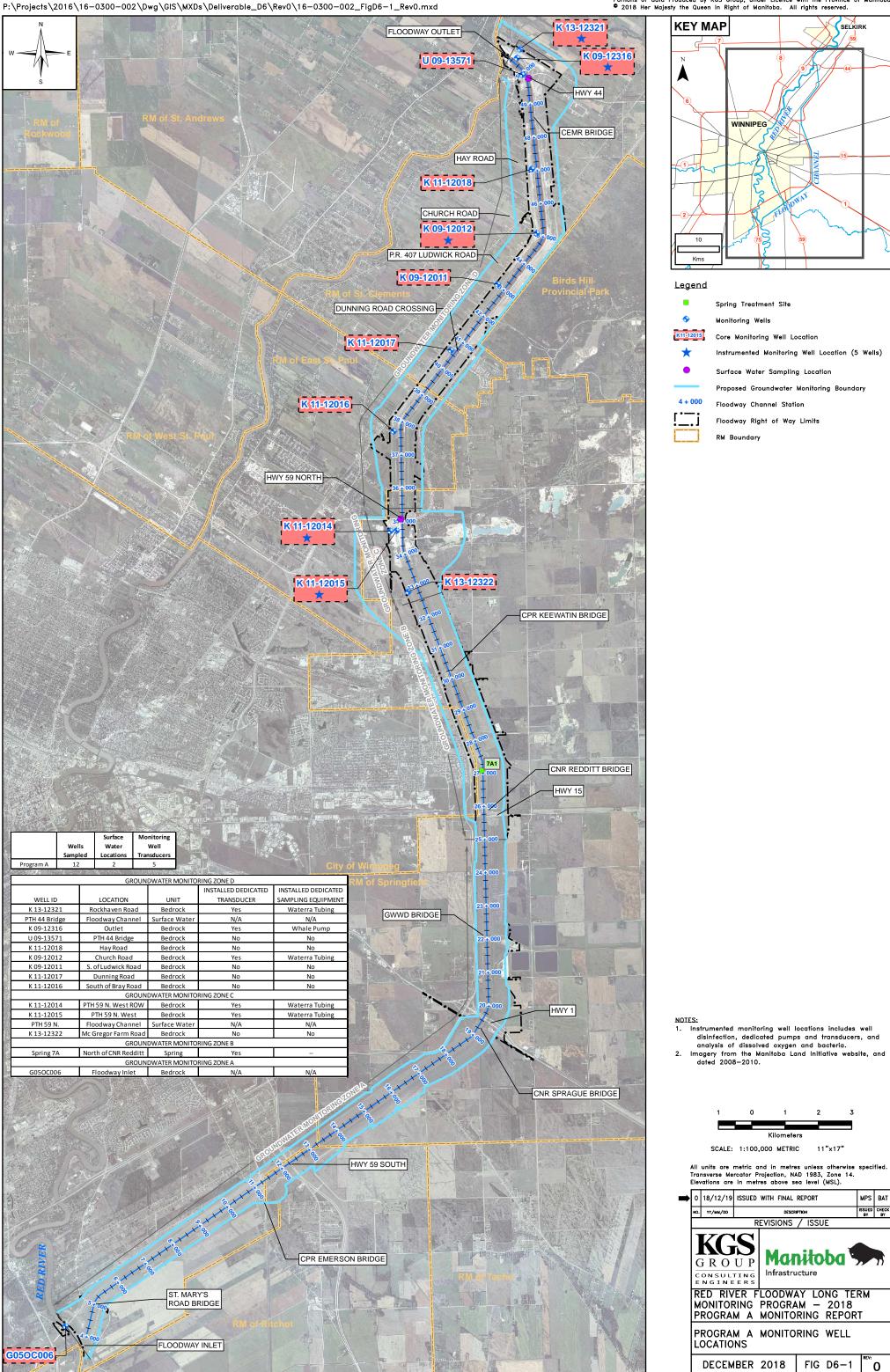
- Positive Water quality change in conductivity >5% detected, or decrease in nitrate (Outlet and Lockport) or increase in nitrate (other locations).

TABLE D6-5 2018 WATER QUALITY ASSESSMENT - NON-INSTRUMENTED WELLS

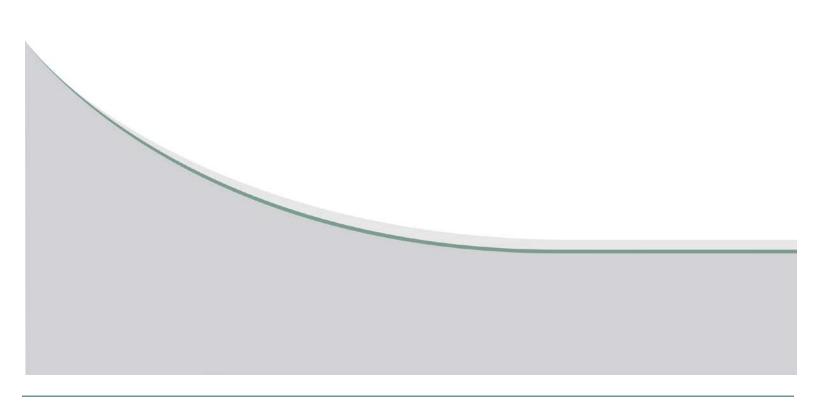
					CONDU	CTIVITY				NITRATE	
WELL ID	PROGRAM	PRE-MELT CONDUCTIVITY PREVIOUS YEAR (2011, 2013 or 2014)	(April 30-May 1,	% CHANGE ⁽³⁾	CHANGE IS	MAGNITUDE OF WATER QUALITY CHANGE ⁽¹⁾	WELL HAS PRE-MELT GROUNDWATER CONDUCTIVITY VALUES SIMILAR TO THE FLOODWAY CHANNEL SURFACE WATER DURING THE FLOOD	CONDUCTIVITY VALUES FOR GROUNDWATER DO NOT CHANGE ASSOCIATED WITH THE SPRING MELT EVENT	PRE-MELT NITRATE PREVIOUS YEAR	SPRING MELT NITRATE PLUS NITRITE (as N) (April 30 - May 1, 2018)	% CHANGE ⁽³⁾
U09-13571	Program A	1170	1010	16	Yes	С	No	No	1.42	1.03	38
K11-12018	Program A	1090	1090	0	No	-	No	Yes	<0.0050	<0.01	0
K09-12011	Program A	465	449	4	No	-	Yes	Yes	<0.0051	<0.0051	0
K11-12017	Program A	1080	995	9	Yes	С	No	No	<0.0051	<0.0051	0
K11-12016	Program A	1050	967	9	Yes	С	No	No	<0.0050	<0.0051	0
K13-12322	Program A	880	816	8	Yes	С	No	No	0.0116	<0.0051	127
G050C006	Program A	2890	2230	30	Yes	В	No	No	<0.35	<0.051	0

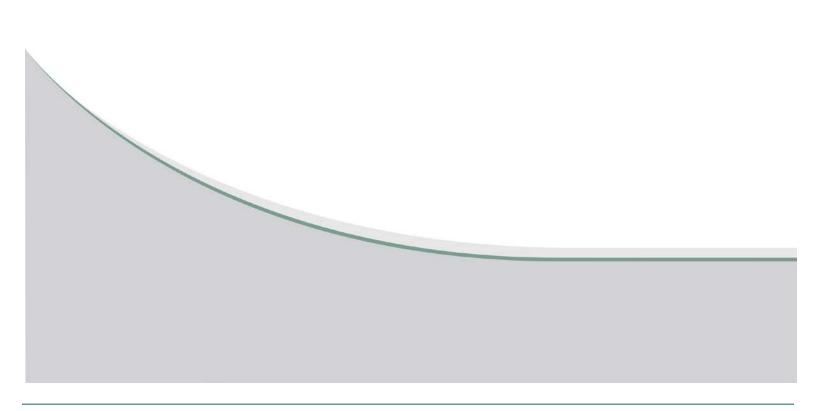

Notes

- 1. Magnitude of water quality change: Type A (50% change), Type B (25 to 50% change). Type C (10% to 25% change), Type D (5 to 10%) change
- 2. Changes of ≤ 5% are considered to be within the accuracy of the analysis and are considered "no change" for purposes of this analysis.
- 3. Negative % change values indicate higher concentrations for flood peak vs pre-melt sampling. Increasing conductivity is not an indication of surface water intrusion in this analysis. Increasing nitrate is not considered to be an indicator of surface water intrusion at locations near Lockport and the Outlet. Decreasing nitrate is not considered to be an indicator of surface water intrusion at other locations.
- 4. Pre-melt value for previous years may not be representative of 2018; therefore, percent change may not be valid.
- 5. Change may not be valid due to low detection limits.


- Positive water quality change in conductivity > 5% detected, or decrease in nitrate (Outlet and Lockport) or increase in nitrate (other locations).

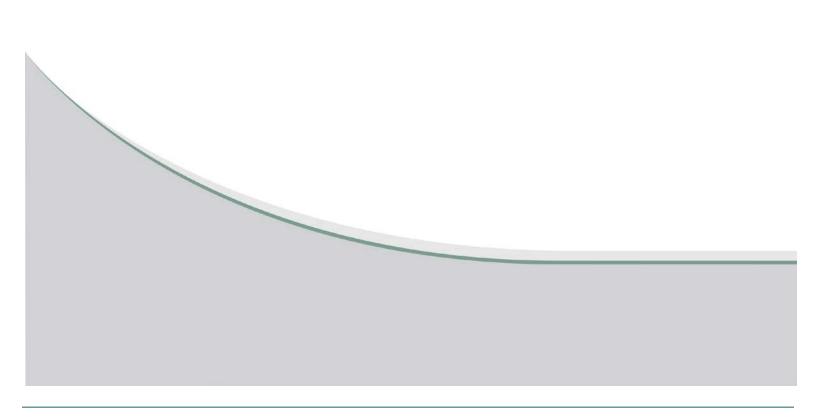
PAGE 1 OF 1


FIGURES


APPENDIX D6-A FLOODWAY OPERATION AND RED RIVER WATER QUALITY

APPENDIX D6-A-1

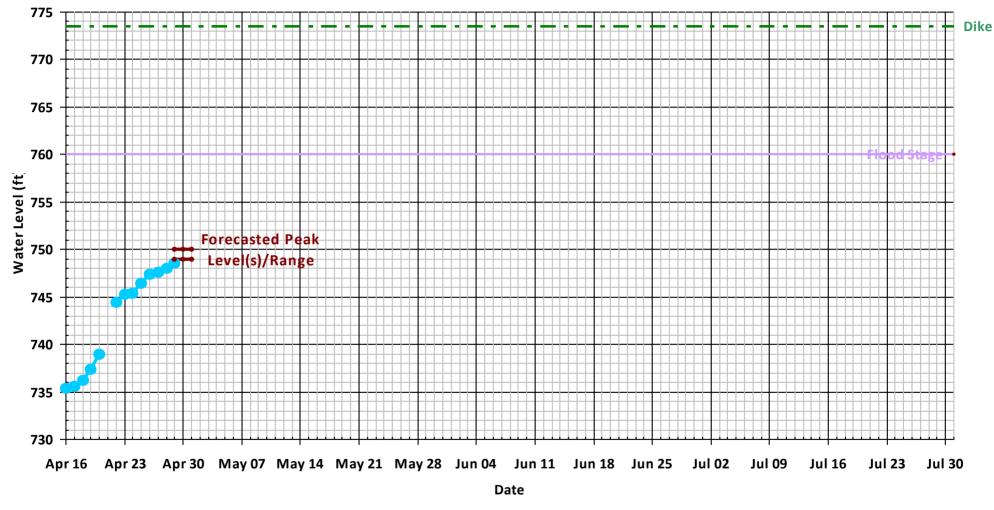
TABLE D6-A-1 SUMMARY OF OBSERVED FLOW IN THE FLOODWAY DURING SPRING AND SUMMER OPERATION


TABLE D6-A-1 SUMMARY OF OBSERVED FLOW IN FLOODWAY DURING SPRING AND SUMMER OPERATION

			Spring Operation	on			S	Summer Opera	tion		
Year	Peak Flow	Date of	Start of	End of	No. of Days	Peak Flow	Date of Peak	Start of	End of	No. of Days	Comments
	(cms)	Peak Flow	Operation	Operation	of Operation	(cms)	Flow	Operation	Operation	of Operation	
1969	626	May 3	April 14	May 18	35	-	-	-	-	-	
1970	646	May 1	April 17	May 21	35	-	-	-	-	-	
1971	257	April 14	April 11	April 21	11	-	-	-	-	-	
1972	33.4	April 18	April 14	April 21	8	-	-	-	-	-	
1973	-	-	- A11.47	- M 47	-	-	-	-	-	-	
1974	1040	April 24 & 25	April 17	May 17	31	-	-	-	-	-	
1975	267	May 7 & 8	May 21 April 30	May 30 May 19	10 20	_	_	-	-	_	
1976	292	April 11	April 7	April 18	12	-	-		-	-	
1977	-	- April 11	- April 7	- April 10	-	-	-	-	-	-	
1978	513	April 16	April 9	May 3	25	-	_	-	-	_	
1979	1190	May 9	April 19	May 29	41	_	-	-	_	_	
1980	-	-	-	-	-	_	_		_	_	
1981	-		-	-	-	-	-	-	-	-	
1982	17.8	April 18	April 15	April 21	7	-	-	-	-	-	
1983	26.4	April 11	April 9	April 13	5	-	-	-	-	-	
1984	-	-	-	-	-	-	-	-	-	-	
1985	-	-	-	-	-	-	-	-	-	-	
1006	270	Aneil O	April 1	April 14	14	_			-		
1986	278	April 3	May 6	May 11	6	· ·	-		-	-	
1987	507	April 10	April 5	April 18	14	-	-	•	-	-	
1988	-	-	-	-	-	-	-	•	-	-	
1989	136	April 24	April 21	May 1	11	-	-	-	-	-	
1990	-	-	-	-	-	-	-	-	-	-	
1991	-	-	-	-	-	-	-	-	-	-	
1992	101	April 8	April 7	April 12	6	-	-	-	-	-	
1993	-	-	-	-	-	-	-	-	-	-	
1994	-	-	-	-	-	-	-	-	-	-	
1995	387	March 29	March 22	April 25	35	-	-	-	-	-	
1996	1100	April 30 & May 1 & 2	April 18	June 9	53	-	-	•	-	-	
1997	1880	May 3 & 4	April 19	June 2	45	-	-	-	-	-	
1998	191	April 1	March 30	April 6	8	-	-	-	-	-	
1999	445	April 16	April 3	May 1	29	-	-	-	-	-	
2000	-	-	-	-	-	-	-	-	-	-	
2001	598	April 28	April 5	May 20	46	-	-	-	-	-	
								June 13	June 25	13	
2002	-	-	-	-	-	159	July 6	July 4	July 10	7	
								July 17	July 26	10	
2003	-		-	- 104	-	-	- 10	- 10	-	-	
2004	446	April 5	March 31	April 21	22	294	June 12	June 10	June 30	21	
2005	433	April 8	April 2	April 22	21	657	July 4	June 9	July 24	46	
2006	941	April 15	April 5	May 7	22	-	-	July 31 -	August 3	5	
2006	t	April 15	April 5	May 7	33						Summer Flood was
2007	119	April 12	April 3	April 16	14	23	June 29	June 28	July 2	5	with no operation
2008	-	-	-	-	-	-	-	-	-	-	
2009	1208	April 21	April 8	May 24	47	-	-	-	-	-	
2010	450	April 6	March 28	April 22	25	345	June 4	May 30	June 16	18	
2011	1019	May 4	April 9	June 2	55	64	July 10	July 7	July 15	8	
2012	-	-	- 100		-	-	-	-	-	-	-
2013	444	May 4	April 29	June 7	41	-	-	-	-	-	Spring Flood was
2014	142	April 21	41748	41756	9.0	68.0	July 5	June 30	July 13	14.0	with no operation
2015 2016	-	-	-	-	-	-	-		-	-	
2017	635	April 6	March 31	April 21	22	-	-	-	-	-	
2018	-	-	-	-	-	-	-	-	-	-	

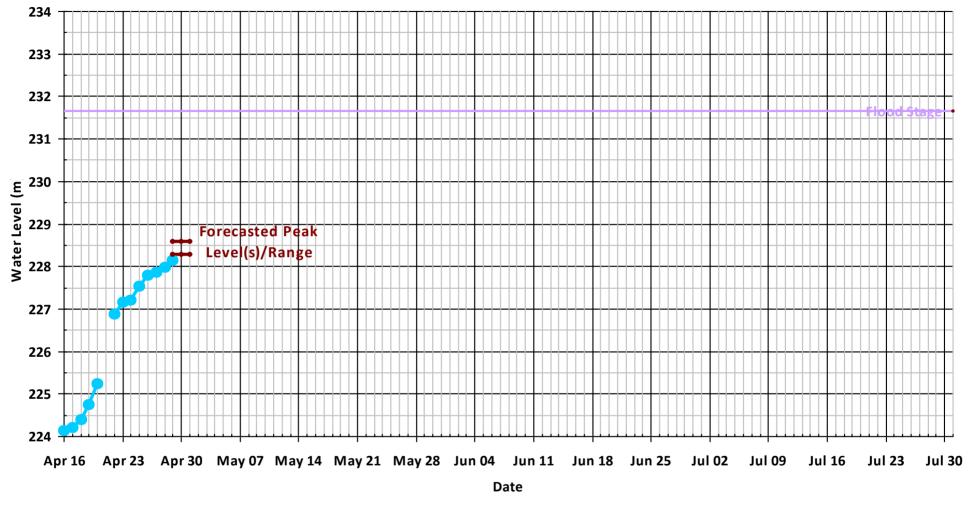
Data is based on recorded flows from the Water Survey of Canada Gauge 05OC017 except for the 2006 data which is based on the Province of Manitoba's Daily Flood Forecast Reports

APPENDIX D6-A-2


REAL-TIME HYDROGRAPH DATA GRAPH FOR RED RIVER ABOVE FLOODWAY CONTROL STRUCTURE (05OC021), ENVIRONMENT CANADA

http://www.gov.mb.ca/mit/floodinfo

Flood Hydrograph - Imperial Red River: Above Floodway Inlet - Actual

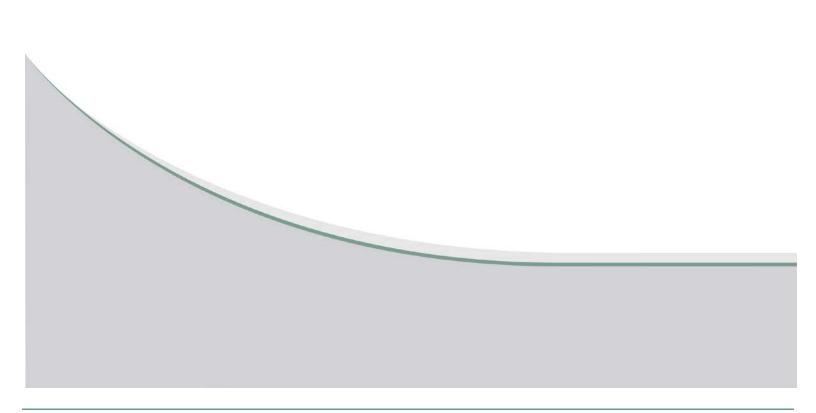


Today's Level: 748.52 ft Current Forecast: 749 - 750 ft, April 29 - May 1

Reference Year 1: 2010 Reference Year 2: 2013 Last Year: 2017

http://www.gov.mb.ca/mit/floodinfo

Flood Hydrograph - Metric Red River: Above Floodway Inlet - Actual



Today's Level: 228.15 m Current Forecast: 228.295 - 228.6 m, April 29 - May 1

Reference Year 1: 2010 Reference Year 2: 2013 Last Year: 2017

APPENDIX D6-A-3

FLOOD REPORT AND DAILY FLOOD SHEET APRIL 30, 2018, MANITOBA SUSTAINABLE DEVELOPMENT

FLOOD REPORT FOR MANITOBA

April 30, 2018 - 9:00 am

Summary

- Flows are still increasing on the Saskatchewan River upstream in Saskatchewan.
 Forecasting staff from Manitoba and Saskatchewan are coordinating and a forecast for the Saskatchewan River in Manitoba will be available soon.
- The Portage Diversion remains closed and it is not expected to be used this season. As
 of this morning, flow on the Assiniboine River downstream of the diversion is
 approximately 8,510 cfs (240 cms).
- The Red River upstream of the Floodway Inlet is near crest, water levels will remain below the top of bank. The Red River Floodway will not be operated this spring.
- As most flows are nearing or past their peak, Manitoba Infrastructure will discontinue
 production of the daily flood report and associated flood products. Staff will remain in
 regular communication with RM Kelsey to provide condition and forecasting reports on
 the Saskatchewan and Carrot Rivers. Any other questions or concerns about flood
 mitigation should be directed to the municipal authority.

Red River Basin

- With the exception of Emerson, flows on the Canadian portion of the Red River are continuing to rise but water levels remain within bank and the water levels are very near to cresting. Water levels on tributaries to the Red River are continuing to decline.
- The Red River upstream of the Floodway Inlet is near crest, water levels will remain below the top of bank. The Red River Floodway will not be operated this spring.
- The water level at James Ave is 15.6 feet. The water level at James Avenue in Winnipeg is expected to crest in the early part of this week, at approximately 16 feet.

Assiniboine River Basin

- The Shellmouth Reservoir was drawn down over the winter in preparation for spring runoff; water levels are now increasing to reach the summer target level. The current water level is at 1395.97 feet. Inflows into the reservoir are approximately 5,420 cfs (155 cms) and outflows are 1,390 cfs (39 cms).
- Water levels on the upper Assiniboine River have crested. Minor increases on the lower Assiniboine River will continue to occur until the river peaks in early May.
- Inflows to the Portage Reservoir this morning were recorded at 8,510 cfs (240 cms). The
 Portage Diversion remains closed as ice along the lower Assiniboine River has moved
 out and there is no longer a risk of ice jamming. Flows upstream of the diversion are
 near crest.

Parkland Region

- Flows on streams and tributaries in the Dauphin and Swan Rivers watersheds remain low and are generally declining.
- Dauphin Lake is reported to be 40% ice covered.

The Pas and Northern Manitoba

- The Carrot River is mostly ice-free, some ice remains in place at the Turk Road Bridge.
 The winter ice on the Saskatchewan River continues to break up and is mostly open water.
- Flows are increasing on the Saskatchewan River upstream in Saskatchewan. Flow on the Saskatchewan River at The Pas is 43,730 cfs (1,240 cms). The Tobin Reservoir on the Saskatchewan River is expected to rise to spillway level due to high inflow volumes. Officials in Saskatchewan are preparing an operational forecast for the dam and reservoir. Forecasting staff from Manitoba and Saskatchewan are coordinating and a forecast for the Saskatchewan and Carrot Rivers in Manitoba will be available soon.
- Flows on the Red Deer River at Erwood, Saskatchewan are 6,670 cfs (190 cms) and are continuing to decrease. Forecasted peak Red Deer Lake water levels are expected to cause no flooding problems.

Manitoba Lakes

- Generally, minimal ice cover is reported on all major Manitoba lakes (30-40% ice cover).
 The water levels on Manitoba's major lakes are relatively stable. Once the major lakes are ice free, wind alert maps for the lakes will be produced when significant wind events are forecasted.
- The Fairford River Water Control Structure is being operated for maximum possible discharge; outflow from Lake Manitoba is approximately 4,775 cfs (135 cms).
- With the exception of Lake St. Martin and Lake Winnipegosis which are higher than average, most of Manitoba's major lakes are near their average level for this time of year. Lake Manitoba, Lake Winnipeg and Lake St. Martin are within their desired operating range.
- Lake Manitoba is expected to peak around mid-May. Risk of ice pile-up is considered low, but wind forecasts will continue to be monitored. An updated lake level forecast will be provided in the next few days.
- Inflows into Pelican Lake remain low and lake levels are expected to remain near their current level until the occurrence of spring or summer rainfalls.
- Detailed information on lake levels is available online (http://www.gov.mb.ca/mit/floodinfo/index.html).

*Definitions

Flood Warning: A flood warning is issued when river or lake levels are exceeding or are expected to be exceeding flood stage within the next 24 hours.

Flood Watch: A flood watch is issued when river or lake levels are approaching and likely to reach flood stage, but likely not within the next 24 hours.

High Water Advisory: A high water advisory is issued when a heavy storm or high flows are expected and may cause water levels to rise, but not necessarily reach flood stage. A high water advisory can be an early indicator for conditions that may develop into a flood watch or flood warning.

Hydrologic Forecasting and Water Management, Manitoba Infrastructure

DAILY FLOOD SHEET - Imperial

April 29, 2018

Red River

http://www.gov.mb.ca/mit/floodinfo

	Today's 0	Conditions	U	Total	Foreca	sted Peak	DIKE	Existing			15		Referenc	e Years	
			from	Rise			ELEV	Сар	acity	Spring	g Peak	20	010	20)13
LOCATION	FLOW (cfs)	LEVEL (ft)	Apr 28 (ft)	(ft)	LEVEL (ft)	DATE	(ft)	FLOW (cfs)	LEVEL (ft)	FLOW (cfs)	LEVEL (ft)	FLOW (cfs)	LEVEL (ft)	FLOW (cfs)	LEVEL (ft)
Wahpeton, MN	1,572	7.39	-0.04		P:8.2	April 20			10.00		10.36				14.40
Fargo, ND	1,850	16.14	-0.07		P:18.5	April 19			18.00		22.26				33.30
Halstad, MN	6,431	14.13	-1.75		P:24.9	April 23				13,700					32.38
Grand Forks, ND	19,999	27.33	-3.37		P:35.0	April 24			28.00	19,600	29.58				40.85
Drayton, ND		33.74	-0.30		P:34.5	April 28			32.00	25,300	35.68				82.32
Emerson	32,874	774.71	+0.14			near peak	795.60		783.20						
Letellier		772.65	+0.23		773.0 - 774.0		790.60		780.10						
St. Jean		766.14	+0.25				788.00		771.60						
Morris - PTH 23		761.98	+0.32		762.5 - 763.5	April 29 - May 1	787.40		769.40						
Ste. Agathe	33,699	754.57	+0.42		755.0 - 756.0	April 29 - May 1	778.50		771.00						
St. Adolphe		751.36	+0.40		752.0 - 753.0	April 29 - May 1	775.50		757.50						
Above Floodway Inlet - Natural															
Above Floodway Inlet - Actual	31,321	748.52	+0.55		749.0 - 750.0	April 29 - May 1	773.50		760.00		759.81	68,500	759.00		758.10
Below Floodway		747.70	+0.55						752.00		753.82		755.20		752.72
Floodway Channel	0														
Winnipeg - James Avenue	39,658	15.42	+0.72		16.0 - 17.0	April 30 - May 2	26.50		18.00		747.10	56,400	18.60		18.70
Lockport - u/s Dam		726.60	+0.40						735.00						
Lockport - d/s Dam									735.00				727.50		
Selkirk - Dock		716.75	+0.12						727.50	112,301	723.81		727.20		719.82
Selkirk - PTH 4									724.50				723.50		719.85
Breezy Point		713.83	-0.13						718.00		720.70				715.85

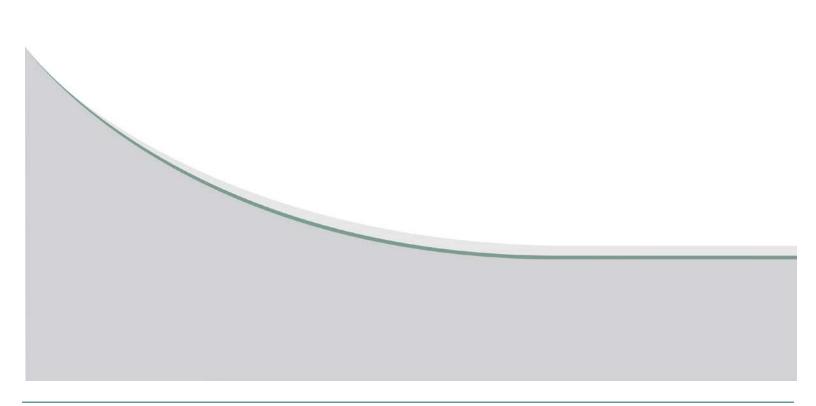
P: Denotes a crested elevation that has occurred in the past.

Levels referenced to historical datum, except Emerson which is in CGVD2013 (add 1.539 ft to convert back to CGVD28). Please note that Water Survey of Canada will be reporting Ste. Agathe and Emerson levels on CGVD2013 datum.

Hydrologic Forecasting and Water Management, Manitoba Infrastructure

DAILY FLOOD SHEET - Metric Red River

April 29, 2018


http://www.gov.mb.ca/mit/floodinfo

	Today's (Conditions	Change	Total	Forecast	ed Peak	DIKE	Existing	Channel	20)15		Referenc	e Years	
			from	Rise			ELEV	Cap	acity	Sprin	g Peak	201	10	20	13
LOCATION	FLOW (cms)	LEVEL (m)	Apr 28 (m)	(m)	LEVEL (m)	DATE	(m)	FLOW (cms)	LEVEL (m)	FLOW (cms)	LEVEL (m)	FLOW (cms)	LEVEL (m)	FLOW (cms)	LEVEL (m)
Wahpeton, MN	44.5	2.25	-0.01		P:2.50	April 20			3.05		3.16				4.39
Fargo, ND	52.4	4.92	-0.02		P:5.64	April 19			5.49		6.78				10.15
Halstad, MN	182.1	4.31	-0.53		P:7.60	April 23				387.9					9.87
Grand Forks, ND	566.3	8.33	-1.03		P:10.67	April 24			8.53	555.0	9.02				12.45
Drayton, ND		10.28	-0.09		P:10.51	April 28			9.75	716.4	10.88				25.09
Emerson	930.9	236.13	+0.04			near peak	242.50		238.72						
Letellier		235.50	+0.07		235.61 - 235.92		240.97		237.77						
St. Jean		233.52	+0.08				240.18		235.18						
Morris - PTH 23		232.25	+0.10		232.41 - 232.72	April 29 - May 1	240.00		234.51						
Ste. Agathe	954.3	229.99	+0.13		230.12 - 230.43	April 29 - May 1	237.29		235.00						
St. Adolphe		229.01	+0.12		229.21 - 229.51	April 29 - May 1	236.37		230.89						
Above Floodway Inlet - Natural															
Above Floodway Inlet - Actual	886.9	228.15	+0.17		228.30 - 228.60	April 29 - May 1	235.76		231.65		231.59	1,939.7	231.34		231.07
Below Floodway		227.90	+0.17						229.21		229.76		230.18		229.43
Floodway Channel	0.0														
Winnipeg - James Avenue	1,123.0	4.70	+0.22		4.88 - 5.18	April 30 - May 2	8.08		5.49		227.72	1,597.1	5.67		5.70
Lockport - u/s Dam		221.47	+0.12						224.03						
Lockport - d/s Dam									224.03				221.74		_
Selkirk - Dock		218.46	+0.04						221.74	3,180.0	220.62		221.65		219.40
Selkirk - PTH 4									220.83				220.52		219.41
Breezy Point		217.58	-0.04					_	218.85		219.67				218.19

P: Denotes a crested elevation that has occurred in the past.

Levels referenced to historical datum, except Emerson which is in CGVD2013 (add 1.539 ft to convert back to CGVD28). Please note that Water Survey of Canada will be reporting Ste. Agathe and Emerson levels on CGVD2013 datum.

APPENDIX D6-A-4 RED RIVER AT GRAND FORKS, REAL-TIME WATER QUALITY DATA-USGS

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:	Geographic Area:		
Current Conditions ✓	North Dakota	~	GO

Click to hideNews Bulletins

- Please see news on new formats
- UPDATE, 11/9: As of November 8, the USGS has successfully restored all of the operational gages that stopped transmitting due to an issue with the satellite telemetry system that records and transmits data. The USGS will now focus on restoring other equipment that experienced the telemetry issues, including about 85 rapid deployment gages that are used periodically for emergency response. Read more
- Full News 🔊

Click to hide state-specific text

USGS 05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND

PROVISIONAL DATA SUBJECT TO REVISION

Click to hidestation-specific text

■ USGS North Dakota Water Science Center Celebrating Over 100 Years of Streamgage Records

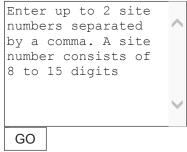
Water Quality data provided in <u>cooperation</u> with the <u>North Dakota</u> <u>Department of Health</u>, the cities of <u>Grand Forks</u> and <u>East Grand Forks</u>, and the <u>Minnesota Pollution Control Agency</u>.

Gage height and discharge data provided in cooperation with the following:

USGS Federal Priority Streamgage (fomerly NSIP)

Station 05082500 Gage Height History Write-up

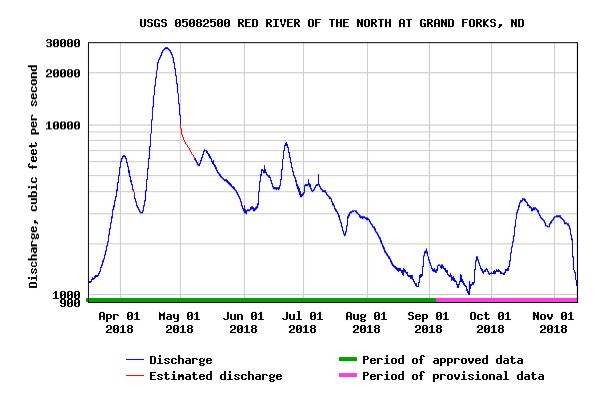
- Flood-tracking chart
- Streamflow duration hydrograph
- Current stage-discharge rating
- Water-quality Estimates


This station managed by the Grand Forks Field Office.

	Available Parameters	Available Period	
	All 7 Available Parameters for this site		
✓	00010 Temperature, water	2007-10-01 2018-11-12	
✓	00060 Discharge	1994-10-01 2018-11-12	
✓	00065 Gage height [Bubbler]	2007-10-01 2018-11-12	
✓	00095 Specific cond at 25C	2007-10-01 2018-11-12	
✓	00300 Dissolved oxygen	2007-10-01 2018-11-12	
✓	00400 pH	2007-10-01 2018-11-12	
✓	63680 Turbidity, Form Neph	2007-10-01 2018-11-12	
Output format			
○ Graph w/ stats			
○ Graph w/o stats			
○ Graph w/ (up to 3) parms			
○ Table			
○ Tab-separated			
Days (240) Summary of all available data for this site			GO
Instantaneous-data availability statement			
	or		
Begin date			
20	2018-03-17 Temperature, water, degrees Celsius		
End	date Most recent instantaneous val	ue: 0.0 11-12-2018 10:45 CST	
20	18-11-12		

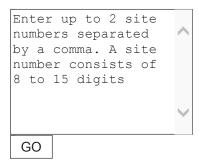
Add up to 2 more sites and replot for "Temperature, water, degrees Celsius"

Add site numbers Note


Create <u>presentation-quality</u> / <u>stand-alone</u> graph. Subscribe to

WaterAlert

Share this graph

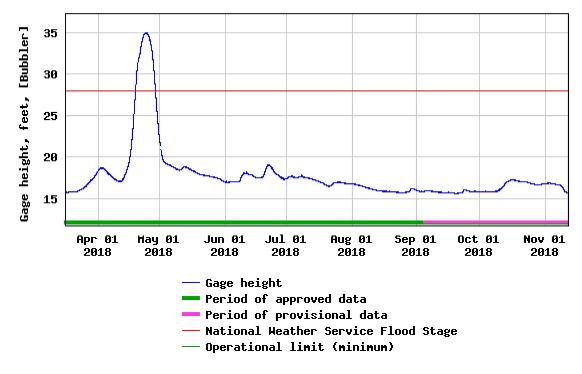

Discharge, cubic feet per second

Most recent instantaneous value: 1130 11-12-2018 10:45 CST

Add up to 2 more sites and replot for "Discharge, cubic feet per second"

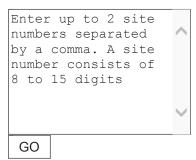
Add site numbers Note

Create <u>presentation-quality</u> / <u>stand-alone</u> graph. Subscribe to


WaterAlert

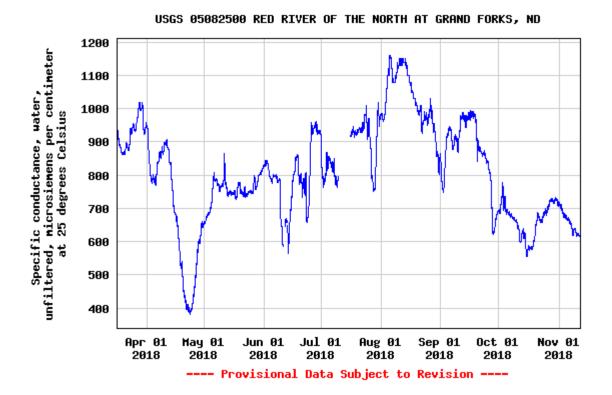
Share this graph |

Gage height, feet, [Bubbler]


Most recent instantaneous value: 15.67 11-12-2018 10:45 CST

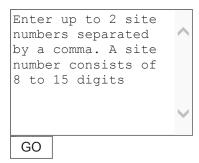
Add up to 2 more sites and replot for "Gage height, feet, [Bubbler]"

? Add site numbers Note


Create <u>presentation-quality</u> / <u>stand-alone</u> graph. Subscribe to

WaterAlert

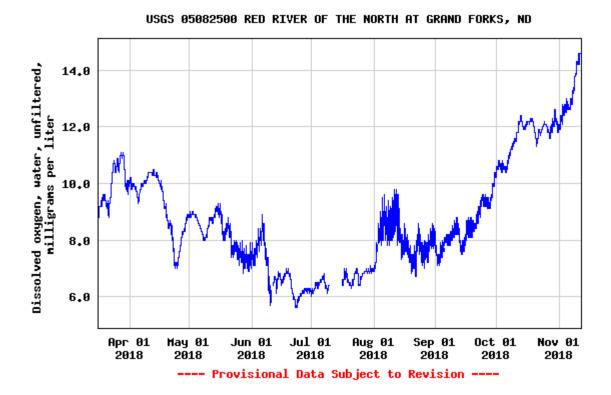
Share this graph |


Specific conductance, water, unfiltered, microsiemens per centimeter at 25 degrees Celsius

Most recent instantaneous value: 616 11-12-2018 10:45 CST

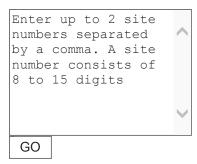
Add up to 2 more sites and replot for "Specific conductance, water, unfiltered, microsiemens per centimeter at 25 degrees Celsius"

? Add site numbers Note


Create $\underline{\text{presentation-quality}}$ / $\underline{\text{stand-alone}}$ graph. Subscribe to $\underline{?}$

WaterAlert

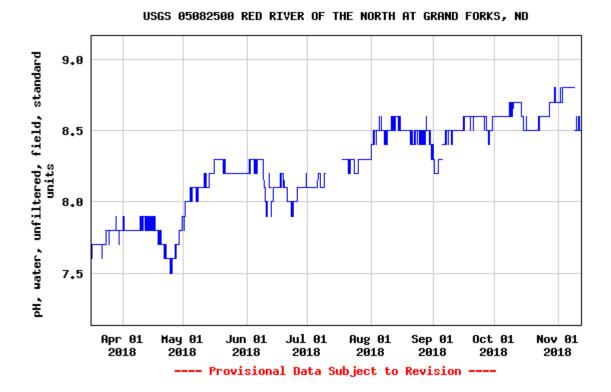
Share this graph


Dissolved oxygen, water, unfiltered, milligrams per liter

Most recent instantaneous value: 14.6 11-12-2018 10:45 CST

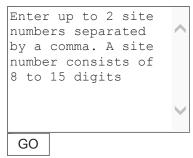
Add up to 2 more sites and replot for "Dissolved oxygen, water, unfiltered, milligrams per liter"

? Add site numbers Note


Create $\underline{\text{presentation-quality}}$ / $\underline{\text{stand-alone}}$ graph. Subscribe to $\underline{?}$

WaterAlert

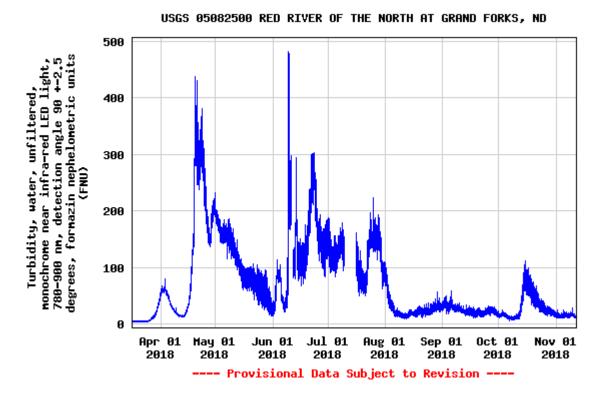
Share this graph


pH, water, unfiltered, field, standard units

Most recent instantaneous value: 8.5 11-12-2018 10:45 CST

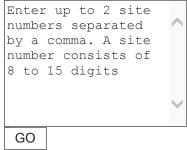
Add up to 2 more sites and replot for "pH, water, unfiltered, field, standard units"

? Add site numbers Note


Create <u>presentation-quality</u> / <u>stand-alone</u> graph. Subscribe to ?

WaterAlert

Share this graph


Turbidity, water, unfiltered, monochrome near infra-red LED light, 780-900 nm, detection angle 90 +-2.5 degrees, formazin nephelometric units (FNU)

Most recent instantaneous value: 12.3 11-12-2018 10:45 CST

Add up to 2 more sites and replot for "Turbidity, water, unfiltered, monochrome near infra-red LED light, 780-900 nm, detection angle 90 +-2.5 degrees, formazin nephelometric units (FNU)"

? Add site numbers Note

Create $\underline{\text{presentation-quality}}$ / $\underline{\text{stand-alone}}$ graph. Subscribe to $\underline{?}$

WaterAlert

Share this graph |

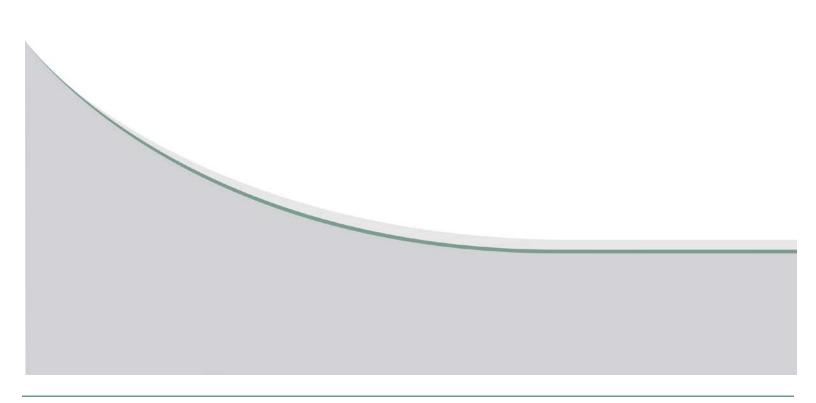
Questions about sites/data? Feedback on this web site

Automated retrievals Help Data Tips **Explanation of terms** Subscribe for system changes **News**

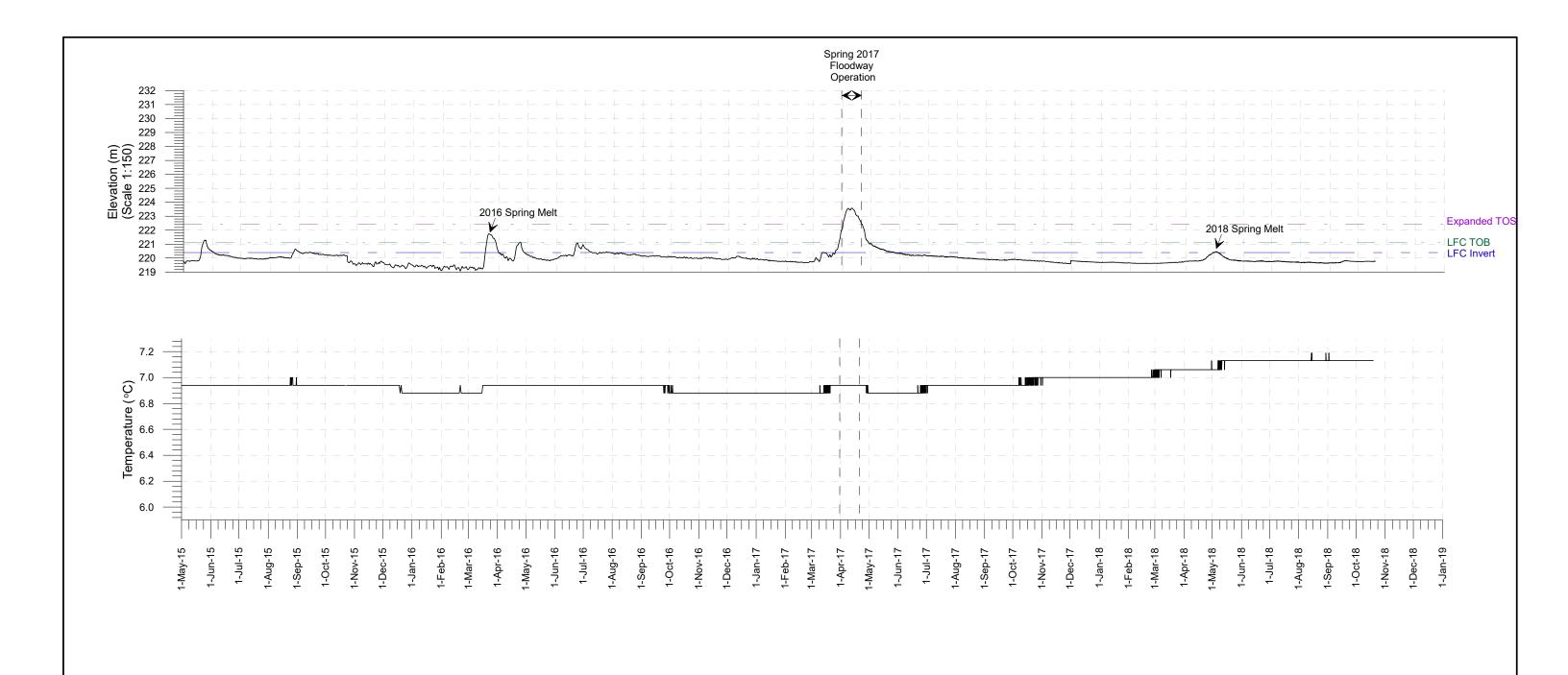
Accessibility Plug-Ins FOIA Policies and Notices Privacy

U.S. Department of the Interior | U.S. Geological Survey

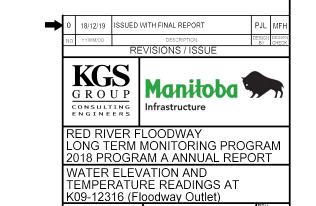
Title: USGS Current Conditions for North Dakota URL: https://nwis.waterdata.usgs.gov/nd/nwis/uv?


Page Contact Information: North Dakota Water Data Support Team

Page Last Modified: 2018-11-12 12:12:41 EST


41.81 29.05 nadww01

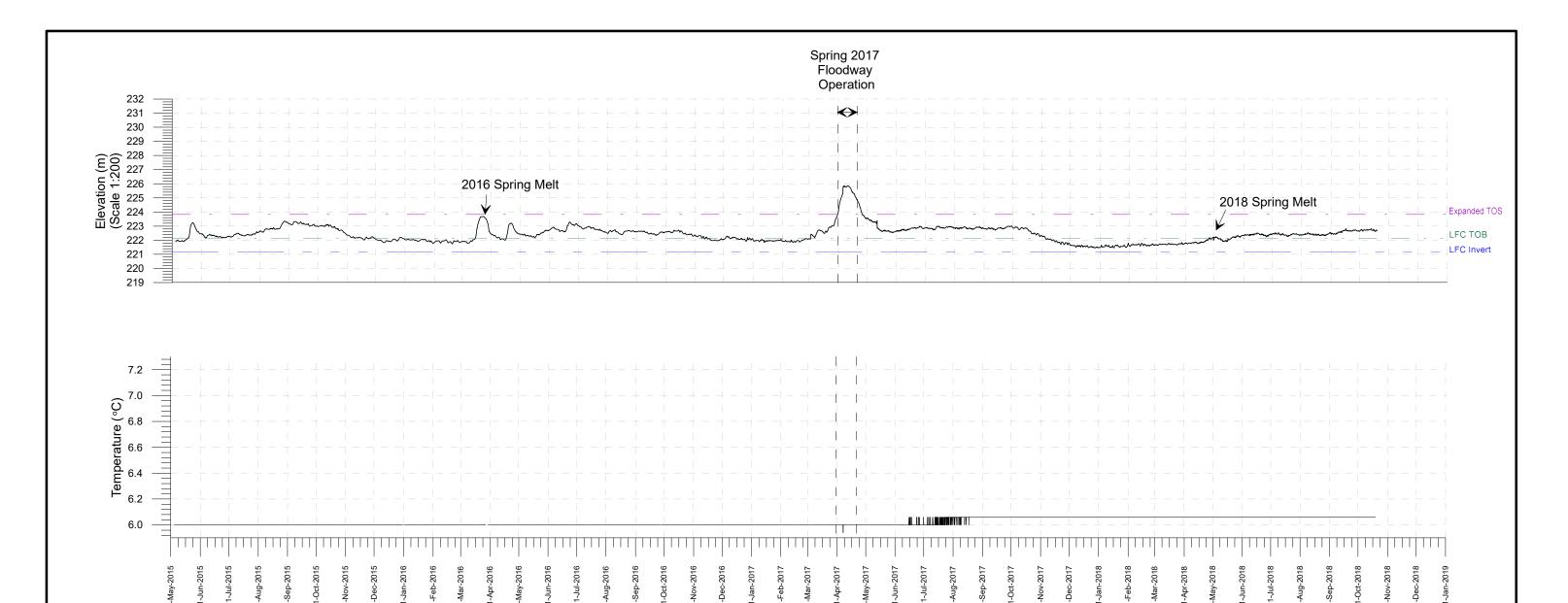
APPENDIX D6-B 2016 TO 2018 TRANSDUCER PROGRAM


Notes:

TOS - Toe of Slope LFC - Low Flow Channel TOB - Top of Bank

1. See Appendix D4-C Figure HM66-13 Rev. 5 for historical data.

Groundwater


- Transducer Data - K09-12316

APPENDIX D6-B-1

0

DEC 2018

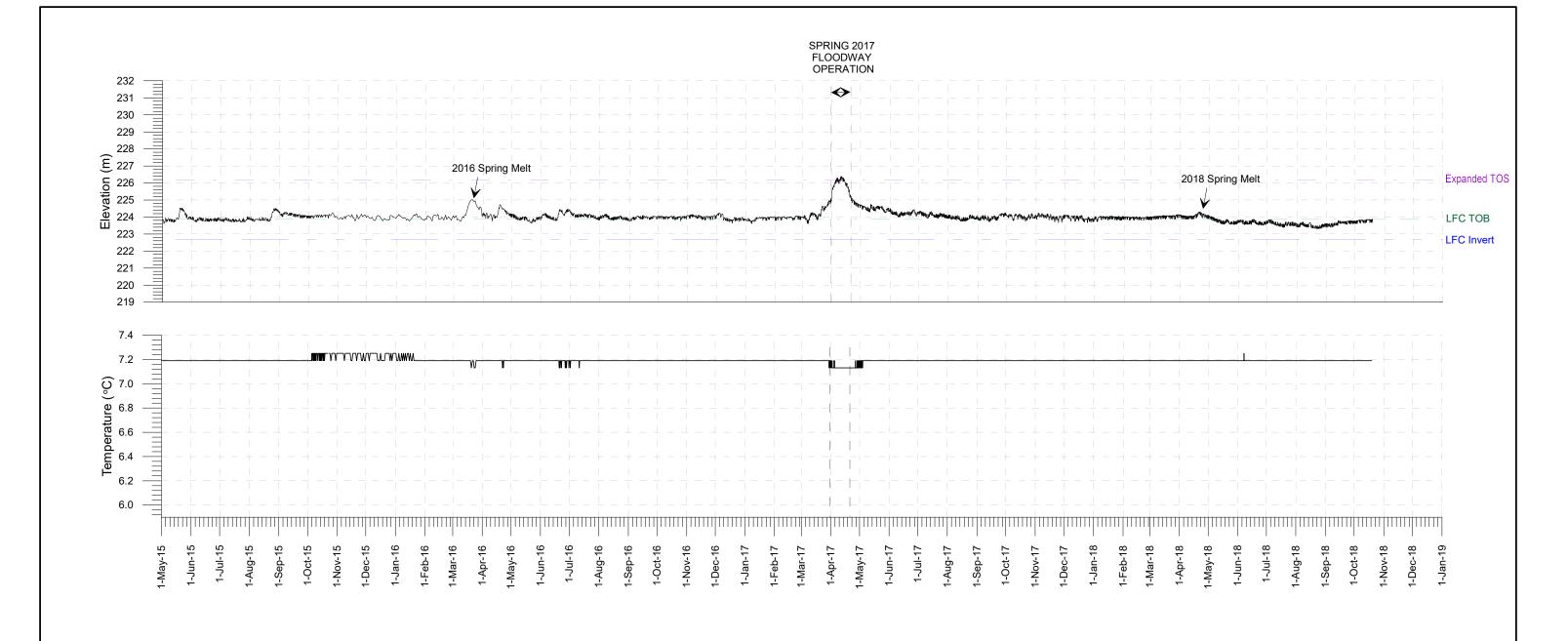
Notes:

TOS - Toe of Slope LFC - Low Flow Channel TOB - Top of Bank

1. See Appendix D4-C Figure HM66-13 Rev.5 for historical data.

Groundwater

Transducer Data - K09-12012



RED RIVER FLOODWAY LONG TERM MONITORING PROGRAM 2018 PROGRAM A ANNUAL REPORT WATER ELEVATION AND

WATER ELEVATION AND TEMPERATURE READINGS AT K09-12012 (Church Rd.)

DEC 2018 API

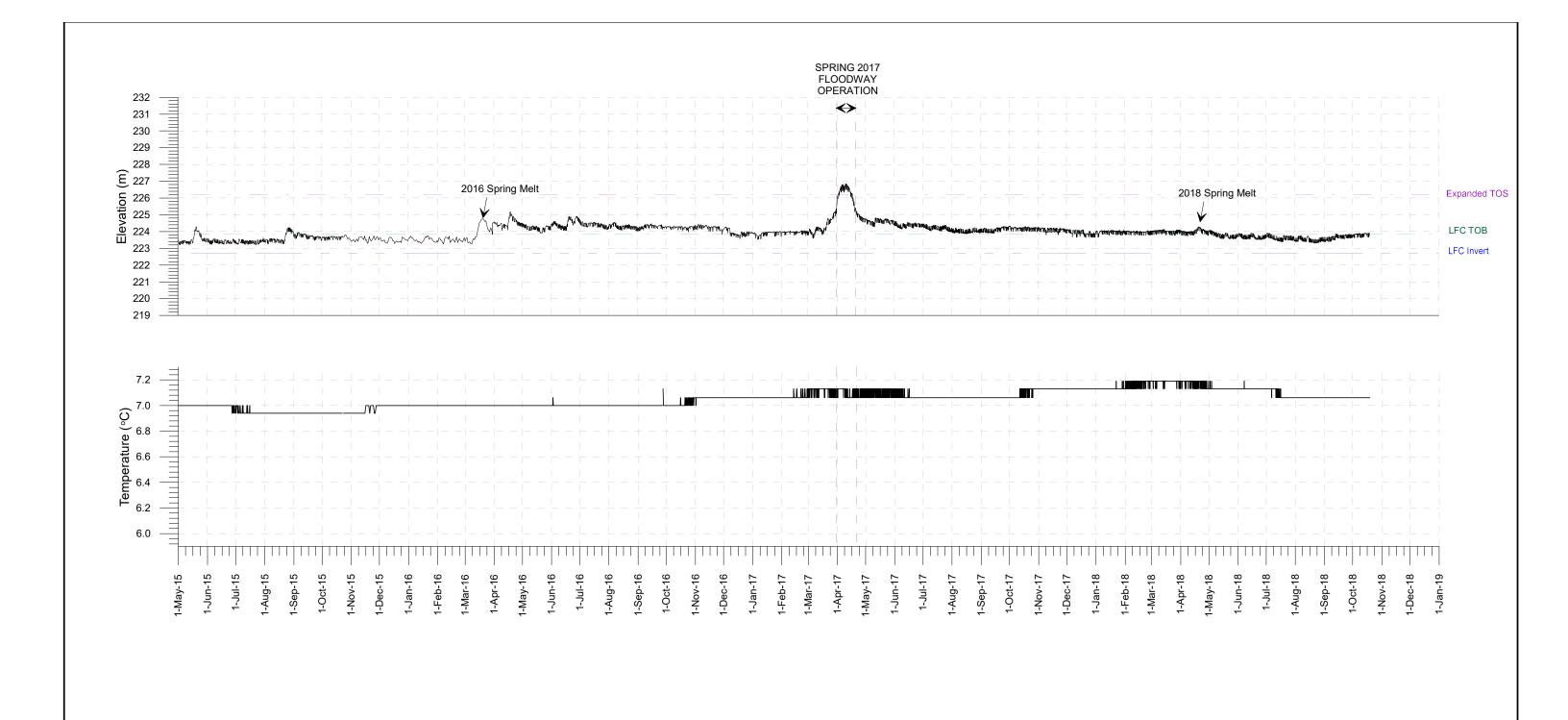
APPENDIX D6-B-2

Note

TOS - Toe of Slope LFC - Low Flow Channel TOB - Top of Bank

1. See Appendix D4-C Figure HM66-37 Rev.6 for historical data

Groundwater


Transducer Data - K11-12014

RED RIVER FLOODWAY LONG TERM MONITORING PROGRAM 2018 PROGRAM A ANNUAL REPORT

WATER ELEVATION AND TEMPERATURE READINGS AT K11-12014 (PTH 59N West Side)

0

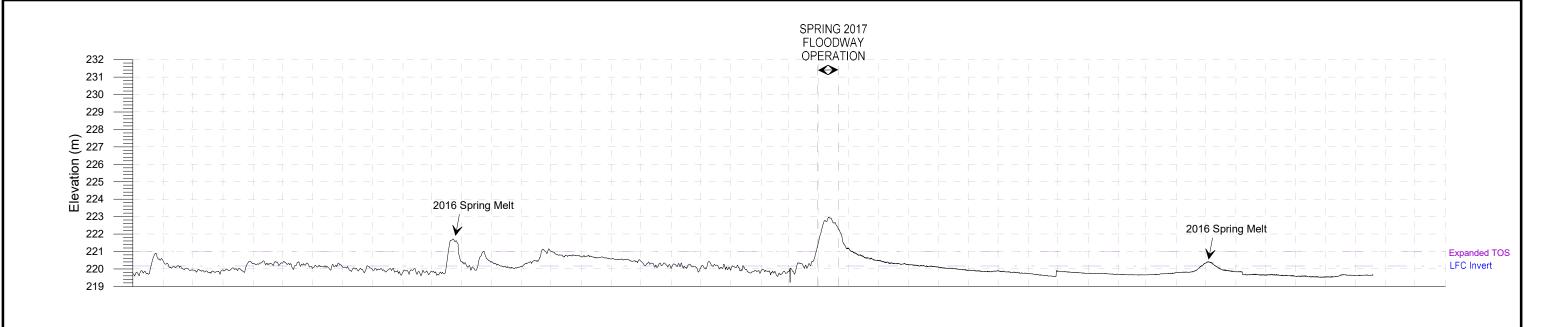
Note

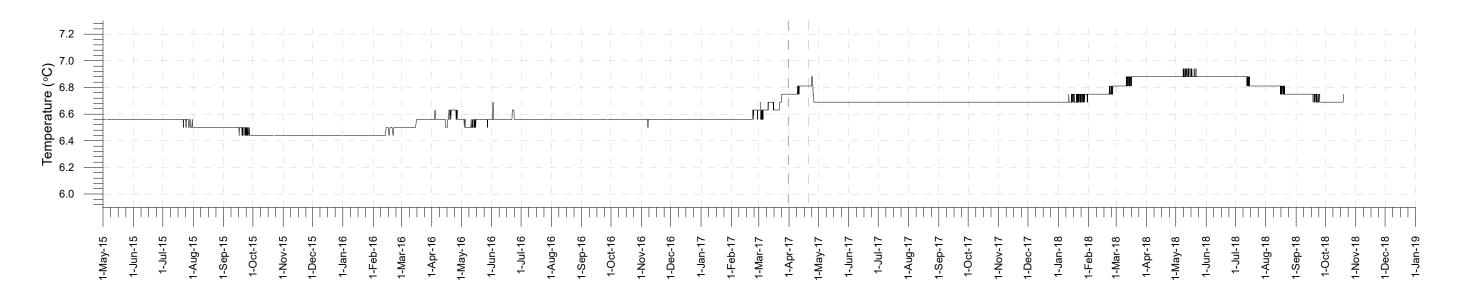
TOS - Toe of Slope LFC - Low Flow Channel TOB - Top of Bank

1. See Appendix D4-C Figure HM66-38 - Rev. 6 for historical data.

Groundwater

Transducer data - K11-12015




DEC 2018

P:\Projects\2016\16-0300-002\Design\Env\Grapher & Transducer Data\16-0300-002_Grapher Files\K11-12015\K11_12015.grf

APPENDIX D6-B-4

0

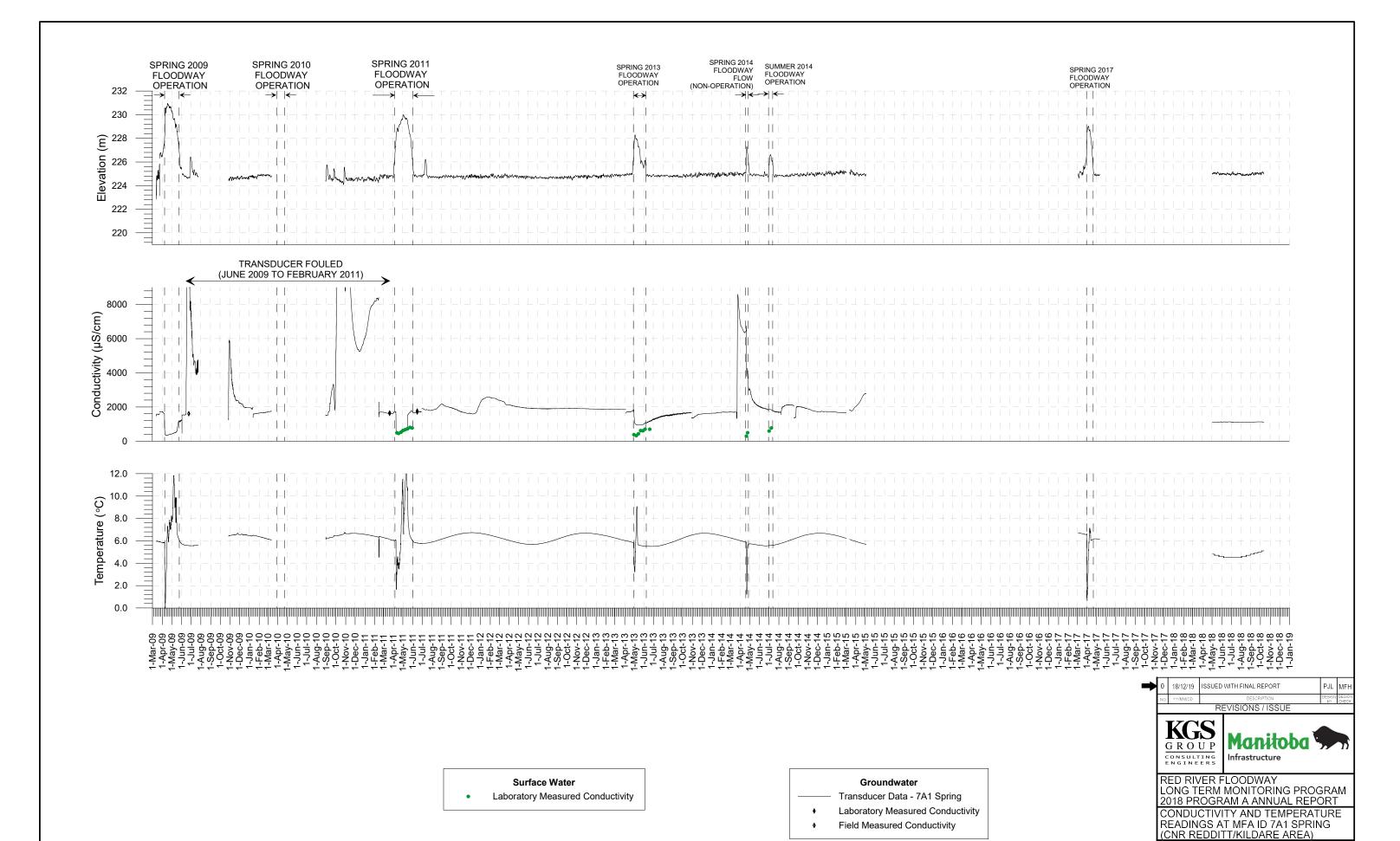
Note

TOS - Toe of Slope TOB - Top of Bank

1. See Appendix D4-C Figure HM66-45 - Rev. 2 for historical data.

Groundwater

Transducer Data - K13-12321

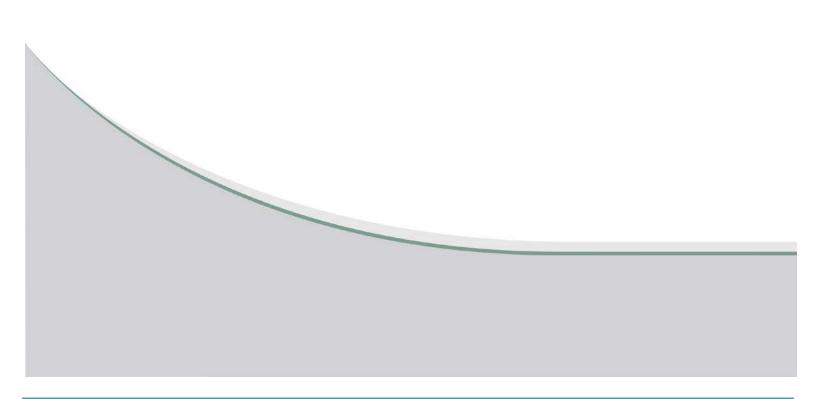


WATER ELEVATION AND TEMPERATURE READINGS AT K13-12321 (Rockhaven Rd.)

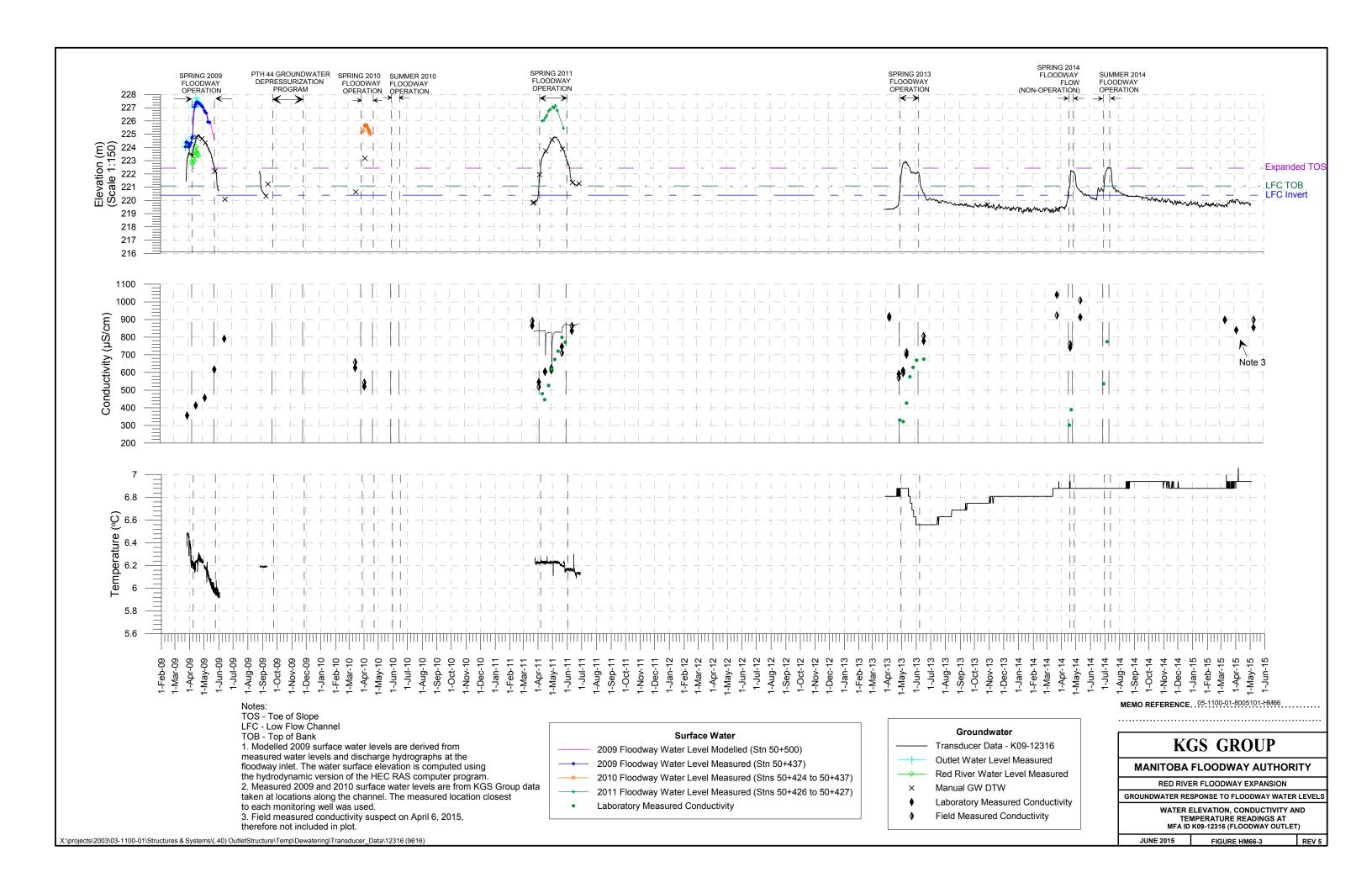
DEC 2018

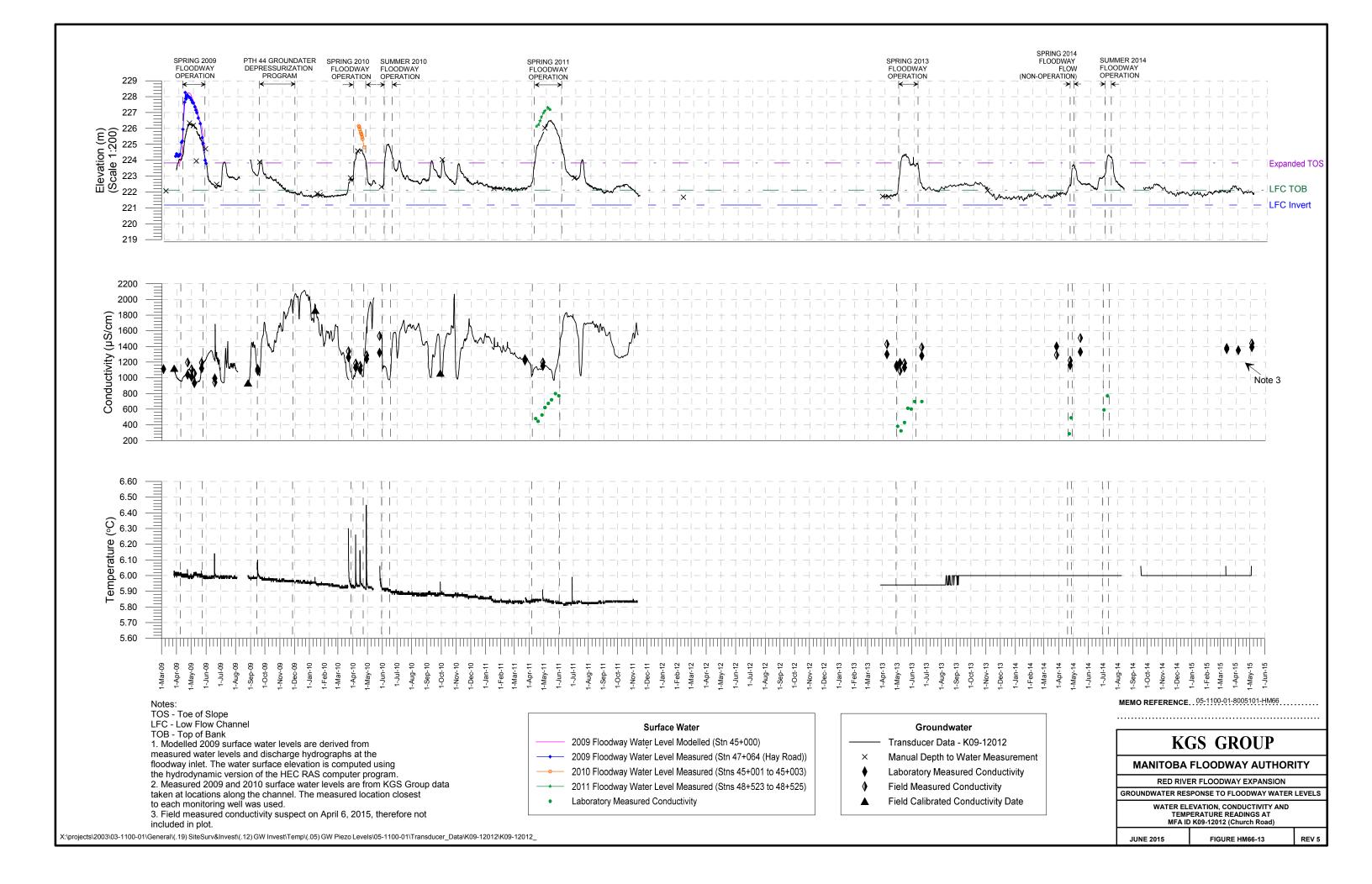
APPENDIX D6-B-5

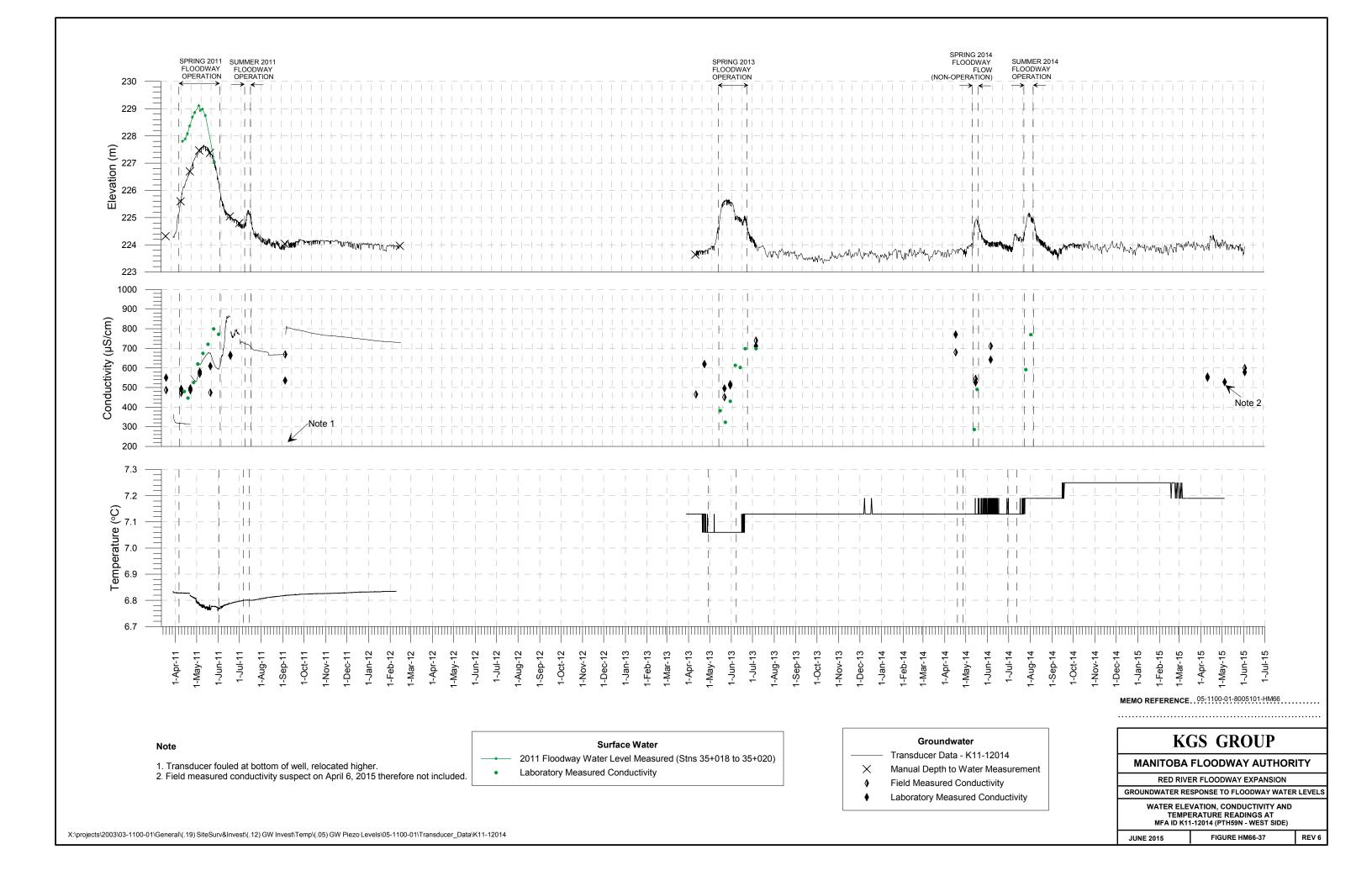
0

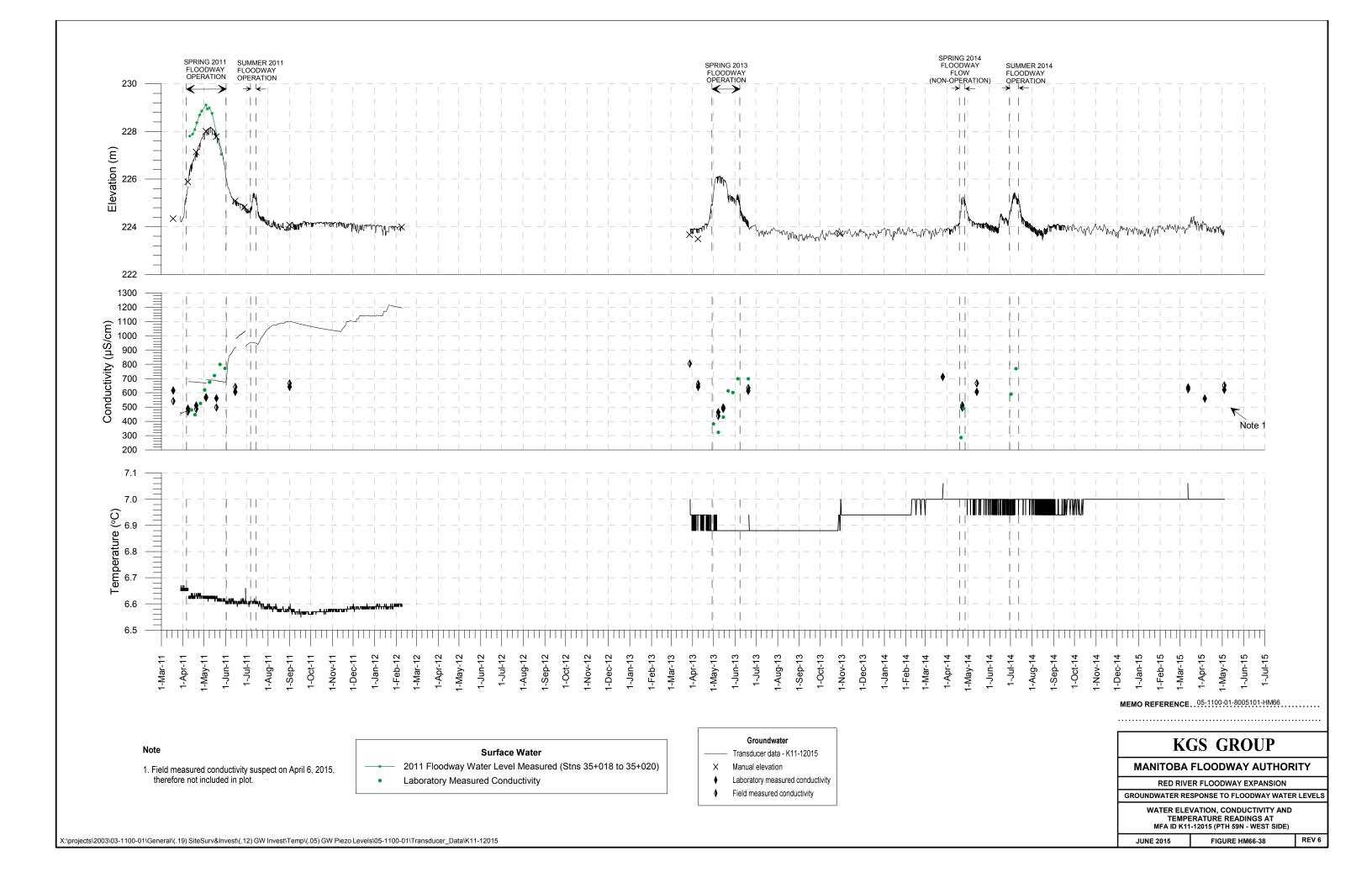


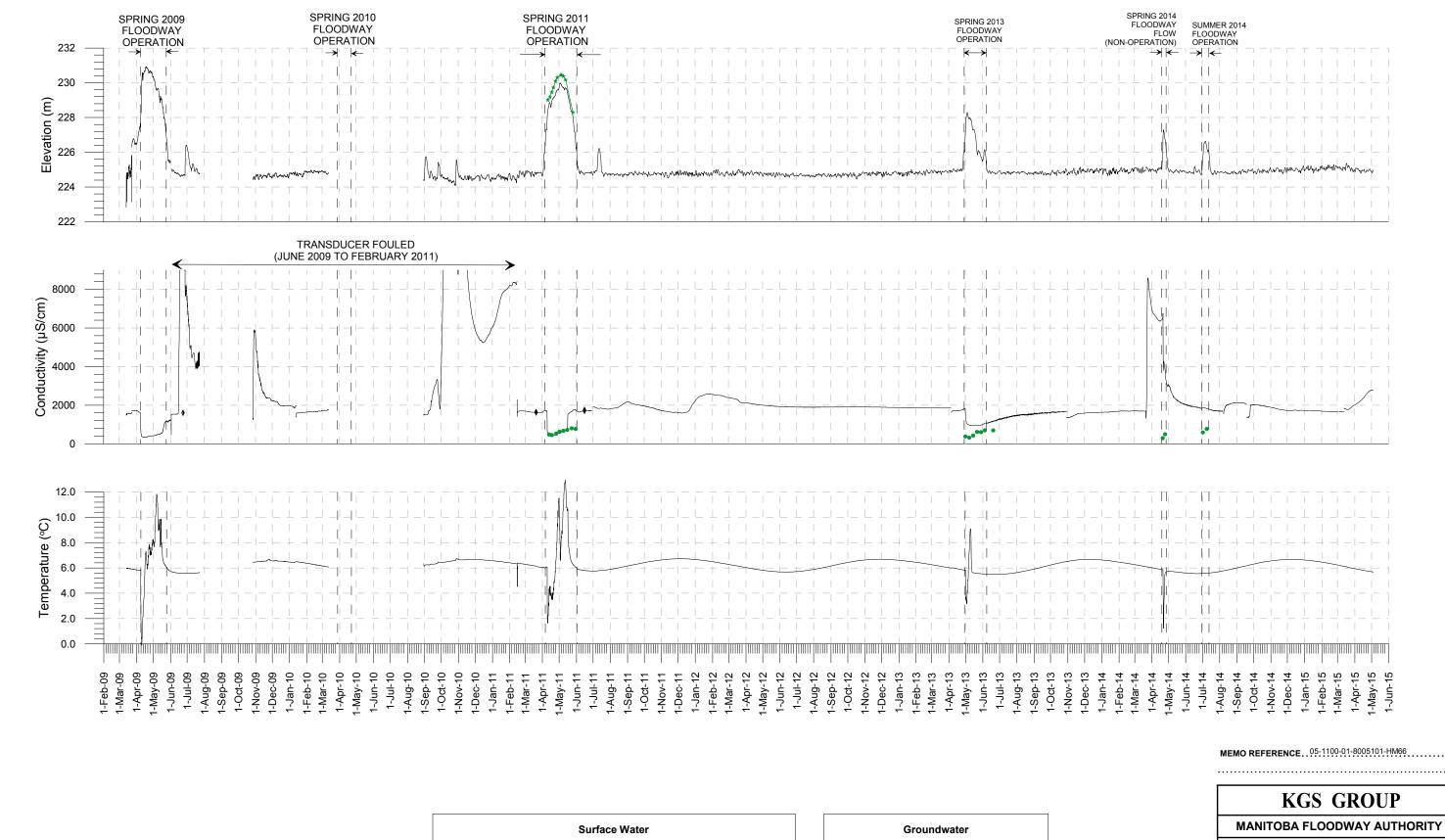
APPENDIX D6-B-6


DEC 2018


P:\Projects\2016\16-0300-002\Design\Env\Grapher & Transducer Data\16-0300-002 Grapher Files\Spring 7A1


APPENDIX D6-C HISTORICAL TRANSDUCER PROGRAM

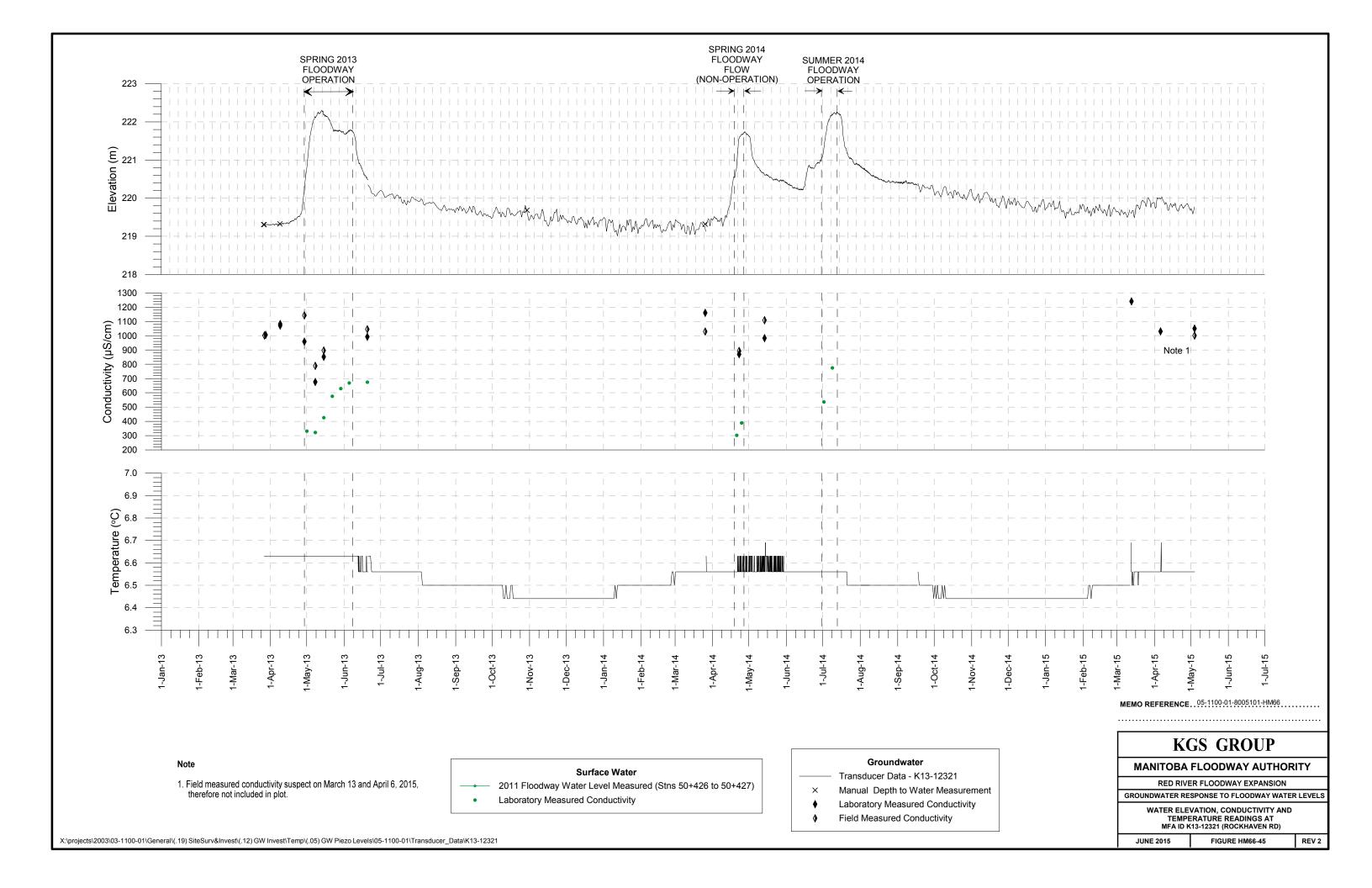




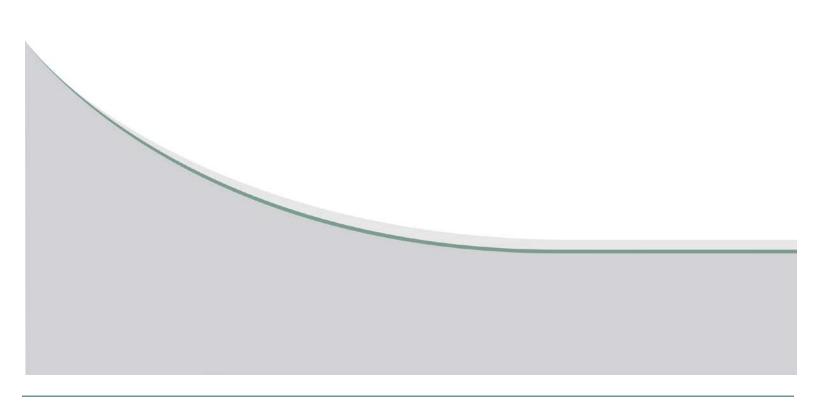
2011 Floodway Water Level Measured (Stns 25+626 to 25+799)

Laboratory Measured Conductivity

- Transducer Data 7A1 Spring
- Laboratory Measured Conductivity
- Field Measured Conductivity

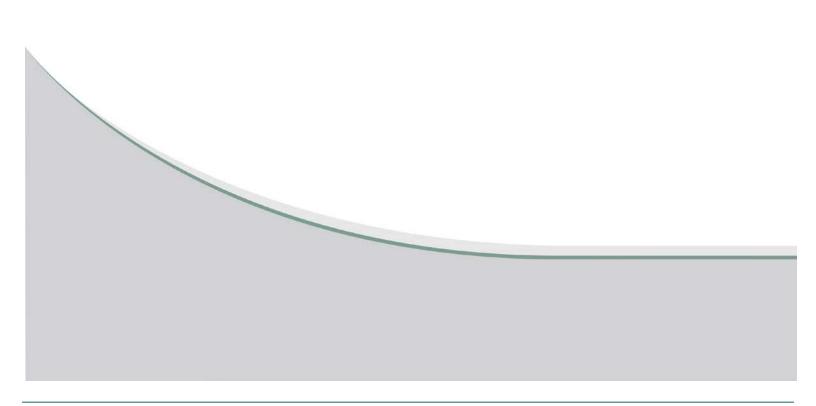

RED RIVER FLOODWAY EXPANSION

GROUNDWATER RESPONSE TO FLOODWAY WATER LEVELS


CONDUCTIVITY AND TEMPERATURE READINGS AT

MFA ID 7A1 SPRING (CNR REDDITT/KILDARE AREA)

JUNE 2015 FIGURE HM66-43



APPENDIX D6-D 2018 INSPECTION OF SPRING TREATMENT AREAS

APPENDIX D6-D-1 SUMMARY 2018 INSPECTION OF SPRING TREATMENT AREAS

APPENDIX D6-D-1 2018 INSPECTION OF SPRING TREATMENT AREAS

1.0 INTRODUCTION AND SCOPE OF WORK

Annual summer inspections of the previously treated groundwater spring discharge areas are required in the Long-term monitoring program and were conducted in August 2018 by KGS Group. At total of 23 spring areas were treated as part of the program between March 2009 and February 2011. Treatment of these sites involved the construction of pervious graded sand filters to minimize potential for direct groundwater and surface water flow interconnections to develop. The filters were designed to: restrict the exfiltration rate of groundwater discharge by using the clean lower permeability sand layer while allowing for continued piezometric pressure relief; protect against ongoing piping and development of additional flow pathways under exfiltrating conditions; and satisfy requirements to restrict infiltration of silt and pathogens (e.g. bacteria) if possible.

The purpose of the 2018 inspection program was to:

- Document the condition of treated spring areas;
- Verify that additional discharge areas have not developed at the periphery of the treated area or immediately adjacent;
- Verify that the sampling standpipe is undamaged and accessible; and
- Identify any maintenance/repairs necessary.

A summary of the inspected sites is included in Appendix Table D6-D-1. Inspection forms including sketches and select photos for each of the treated spring areas are included in Appendix D6-D-2.

Detailed maps of spring locations can be found in the 2018 Annual Inspection and Monitoring Report Deliverable D-7 (Appendix B). These maps have not been updated for 2018 since the inspection areas were the same and no new springs were located in 2018. Springs noted in 2018 are the same as those identified in 2017. Spring locations are also included in the Floodway Drilling and Instrumentation Published Map File HM80 Rev 1 (November 2013) and the Compilation of Subsurface Investigations CCO-418Y-002g Rev0 included as a PDF copy in Appendix K of HM99.

Electronic files containing additional photographs and video of each site have been included on a CD only in Appendix D6-D-3 of this report. This report serves as a complete documentation of baseline conditions in the Long-term monitoring period and can be compared to future conditions.

2.0 INSPECTION PROGRAM METHODOLOGY

KGS Group representatives completed the spring inspections on August 28 to 29, 2018. An aluminum boat and motor was used to access the treated spring sites with a handheld GPS used to identify the location of each of the sites. The inspection for each spring included:

 Photographs of the filter, discharge trench, low level and high level sampling pipes, flow paths, and any additional discharge areas;

- Videos of flowing springs:
- Assessment of any damage to the filter, discharge trench, or sampling pipes and the repairs required;
- Identification of any additional discharge areas in the vicinity (~500 m north and south) of the treated spring areas;
- Measurement of water levels within low level sampling pipes where possible;
- Overall assessment of how the filter is working relative to design.

Observations from the inspections were recorded on inspection forms (Appendix D6-D-2) and the photograph and video numbers and times were recorded to identify the treated spring area.

3.0 SUMMARY OF INSPECTION FINDINGS

3.1 CONDITION OF FILTERS

The constructed filters were found to be in good condition and were working as designed. Flow appeared to be coming up through the filter and discharging through the granular layer overlying the sand filter bed. No settlement or heaving of the filters was observed.

3.2 ADDITIONAL DISCHARGE AREAS

Some additional discharge locations outside of the filtered springs were observed as follows:

- **AD17-1** An additional discharge location into the low flow channel from the west side mid way between Church Rd. and Hay Rd. (UTM 648661, 5546623) is just 10 m downstream of a beaver dam across the low flow (UTM 648659, 5546613) and is potentially sourced from upstream water finding a new pathway around the dam as opposed to being from a spring source.
- **AD17-2** A second similar location of discharge on the west side (UTM 648646, 5546742) is 129 m downstream of the beaver dam and it is possible that this also is a redirection of upstream water from the dam although this appears to be localized and no ponding is apparent at this location.
- **AD17-3** During the 2016 springs inspection an additional discharge location (UTM 648624, 5547187) was observed on the east side of the low flow channel across from Hay Rd. This location was once again observed at UTM 648624, 5547181 several fanned pathways of individually low volume (<1 USgpm) discharge locations were found for approximately 64 m along the east side of the low flow channel.
- **AD17-4** In 2017 on the west side, across the low flow channel from the AD17-3 additional discharge location there was also a section of discharge locations that extended from a ponding location starting at approximately UTM 648593, 5547218 downstream to UTM 648587, 5547306, approximately 88 m. In 2018 this area appeared dry in comparison, with only a small amount of soft soil along the bank.
- **AD17-5** Low volume (<1 USgpm) discharge was observed in 2017 mid way between Hay Rd. and CEMR bridge on the east shore with no apparent ponding or source at UTM 648528, 5548099. In 2018 this area appeared dry.

3.3 CONDITION OF DISCHARGE TRENCHES

The discharge trenches were constructed as shallow excavated trenches that were filled with riprap to grade or slightly above grade. It was observed that at 11 of the 23 treated spring sites, the rip rap within the discharge trenches was infilling with sediment and spring discharge was finding alternate flow paths to the Low Flow Channel. This resulted in overland flow toward the Low Flow Channel or flow into low areas near the filter, creating wet and soft areas. No significant erosion channels were observed at any of these locations.

The discharge trenches at the 5A1 and 7A1 locations were constructed as ditches (see photos in inspection reports) which appeared to be more effective in directing discharge flows along the design discharge flow path.

3.4 CONDITION OF SAMPLING PIPES

The two high level sampling pipes, at 11A2 and 18A1, were both found to be in good condition with no damage observed.

The 10 low level sampling pipes were generally found to be in good condition. At location, 5A1 and location 7A1, a new large diameter cover and marker was installed by MI in 2018.

4.0 REPAIRS REQUIRED

4.1 FILTERS

No repairs of the filters are required. The filters appear to be operating as designed.

4.2 ADDITIONAL DISCHARGE AREAS

Additional eroded discharge areas were observed in a small area along the discharge trench at 9B2. Construction of a graded sand filter would minimize potential for direct groundwater and surface water flow interconnections to develop at this location.

4.3 DISCHARGE TRENCHES

The discharge trenches that were constructed with riprap to grade or above grade generally appeared to infill with sediment, resulting in spring flows finding alternate flow paths to the Low Flow Channel. Excavating out the existing discharge channel to create a ditch, similar to 5A1 and 7A1, would likely direct flow along the design discharge trench. Alternatively, constructing a new ditch, with riprap armouring, along the existing overland discharge path would also be effective in limiting any erosion concerns with overland flow. The discharge trenches that require some repair include:

- 5A1 widening of the existing discharge ditch;
- 7C1 excavating out discharge trench to create ditch, constructing new discharge ditch;
- 8B1 excavating out discharge trench to create ditch;
- 8B2 excavating out discharge trench to create ditch;
- 8C1 excavating out discharge trench to create ditch;
- 9B1 constructing new discharge ditch;
- 9B2 excavating out discharge trench to create ditch;

- 10A1 excavating out discharge trench to create ditch;
- 11A1 constructing new discharge ditch;
- 18A1 excavating out discharge trench to create ditch, constructing new discharge ditch;
- 21A1 excavating out discharge trench to create ditch.

4.4 SAMPLING PIPES

The low level sampling pipe at spring 5A1 was missing its cap in 2017. Low level sampling pipes with vertical culvert protective casings at Spring 5A1 and Spring 7A1 both received replacement covers and markers provided and installed by MI in 2018.

Low Level Sampling Pipe Covers added to culvert casings at Springs 5A1 and 7A1 by MI.

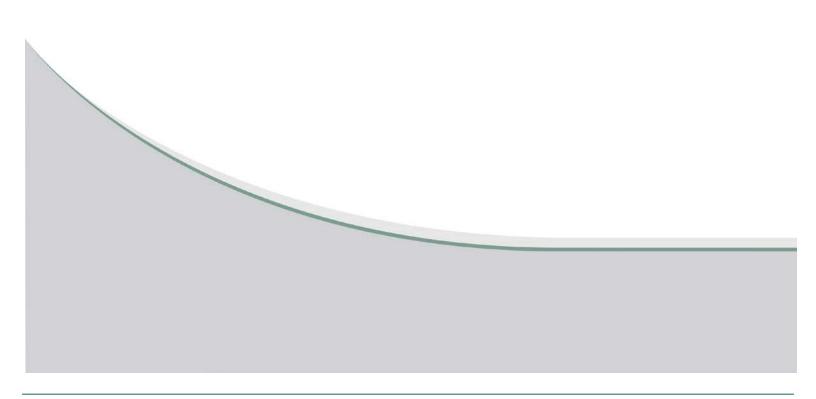

APPENDIX TABLE D6-D1

TABLE D6-D1 2018 SUMMER INSPECTION OF SPRING TREATMENT AREAS

Site No.	Channel Side	Approximate Channel Station	Low Level Sampling Pipe Installed	High Level Sampling Pipe Installed	Northing	Easting	Flow Observed August 2018	Condition of Filter	Additional Discharge Areas in Vicinity of Filter	Constructed Discharge Trench Operating as Designed	Low Level Sampling Pipe Repairs Required
Spring Area T	Treatment Sites										
2A1	West	21+000	Yes	No	5523219	647097	Yes	Good	No	Yes	No
5A1	West	26+280	Yes	No	5528520	646961	Yes	Good	No	No	No (Cap and marker installed in 2018)
7A1	West	27+060	Yes	No	5529304	646939	Yes	Good	Yes. Very low flow discharge 10 m upstream	Yes	No (Cap and marker installed in 2018)
	West		No	No					Yes. Very low flow: -7 m upstream; -14 m upstream; and - 70 m downstream		
7B2		27+157			5529475	646951	Yes	Good	along LFC.	Yes	<u>-</u>
7C1	East	27+400	Yes	No	5529640	646969	Yes	Good	No	No	No
8B1	West West	29+880	No No	No	5531953	646023	Yes	Good	No	No	<u>-</u>
8B2	West	29+970	Yes	No No	5532027	645993	Yes	Good	No	No	<u>-</u>
8C1		30+080			5532127	645959	Very Little	Good	No	No	No
9A6	East West	30+400	No No	No No	5532480	645890	Yes	Good	No	Yes	-
9B1		30+840			5532846 5532997	645734	Very Little	Good	No	No	-
9B2	East	30+978	No	No		645715	No	Good	Yes	No	-
10A1	West	31+000	No Yes	No No	5533022	645665	Yes Yes	Good	No No	No No	- No
11A1	West East	31+290	Yes	Yes	5533274	645559	Yes No	Good			
11A2 16A2	West	33+900 42+180	No	No	5535772	644767		Good	No No	N/A (no flow)	No
16A2 17A2				No No	5543145	647070	No	Good	No No	No (Ponding) Yes	- No
	East	42+769	Yes		5543545	647519	Yes	Good		Yes No	-
18A1 18A2	West West	42+800 42+900	Yes No	Yes No	5543620	647443	Yes	Good	No No		No
20A2	East	42+900 47+030	No No	No No	5543718 5547417	647478	No No	Good	No No	N/A (no flow)	<u>-</u>
20A2 21A1	West	47+030 47+796	No No	No No	5547417 5548152	648610 648465	Very Little	Good Good	No No	N/A (no flow) No	-
21A1 21A2	East	47+796 47+796	No	No No			Very Little Yes	Good	No No		-
21A2 23A1	West	47+796	No No	No	5548170	648545	No Yes	Good	No No	N/A (no flow)	-
23A1 23A2	East	49+395 49+450	Yes	No No	5549740 5549842	648290 648355	No Yes	Good	No No	N/A (no flow) N/A (no flow)	- No

APPENDIX D6-D-2 FIELD DOCUMENTATION

Treatment Site ID: 2A1 Date: August 28, 2018

Site Description: West side, north of HWY1 bridge.

Site Sketch and Photo Locations:

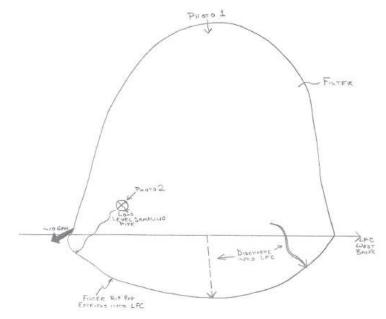


Photo 1: Spring treatment filter site 2A1.

Photo 2: Discharge into LFC at 2A1.

Filter Condition: Good Repairs Required: None

Approximate Flow: 8 USgpm

Additional Discharge Areas: No

Sampling Standpipe: Yes, low level **Depth to bottom:** Could not measure

Depth to water: At surface

Condition: Water above PVC, so left sealed to avoid cross contamination.

Repairs Required: None.

Other Comments: Filter appears to be working effectively.

Treatment Site ID: 5A1 Date: August 28, 2018

Site Description: West side, north of Redditt bridge.

Site Sketch and Photo Locations:

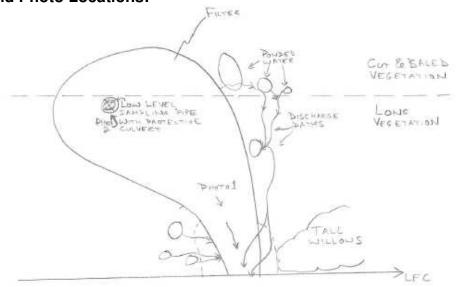


Photo 1: Spring treatment filter site 5A1 and constructed discharge trench.

Photo 2: Low level sampling pipe and protective steel casing at 5A1. Cover was missing in during 2018 springs inspections. MI added cap and marker in 2018.

Filter Condition: Good – water flowing along discharge channel as well as finding alternate flow paths to LFC. No significant erosion observed within overland discharge areas. Vegetation is quite grown over.

Repairs Required: Widening the discharge channel may focus flow along design discharge path and accommodate flows.

Approximate Flow: 15 USgpm

Additional Discharge Areas: No

Sampling Standpipe: Yes, low level. MI added cap to culvert in 2018

Depth to bottom: Could not measure, 50 mm poly pipe, coiled in CMP protective casing

Depth to water: Water has filled protective steel casing

Condition: Missing a 30 inch cover

Repairs Required: Replace the 30 inch cover

Other Comments: Filter appears to be working effectively other than alternate flow paths.

Treatment Site ID: 7A1 Date: August 28, 2018

Site Description: West side, south of 7B2.

Site Sketch and Photo Locations:

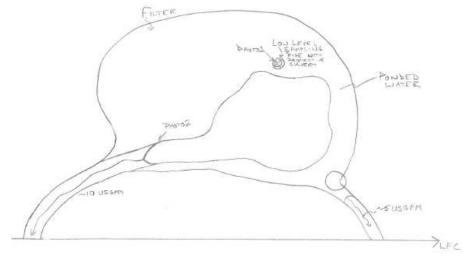


Photo 1: Low level sampling pipe and water within protective casing. MI added a new protective cap and marker to the casing after the annual inspection was conducted.

Photo 2: Discharge ditches at 7A1 effectively direct water to LFC.

Filter Condition: Good Repairs Required: None

Approximate Flow: 15 USgpm

Additional Discharge Areas: No

Sampling Standpipe: Yes, low level

Depth to bottom: Could not measure, 50 mm poly pipe, coiled in CMP protective casing.

Depth to water: Water has filled protective steel casing.

Condition: Good

Repairs Required: None

Other Comments: Large flow through filter, appears to be working effectively. Constructed discharge channels are formed as ditches and effectively direct discharge water to the LFC.

Treatment Site ID: 7B2 Date: August 28, 2018

Site Description: West side, north of 7A1.

Site Sketch and Photo Locations:

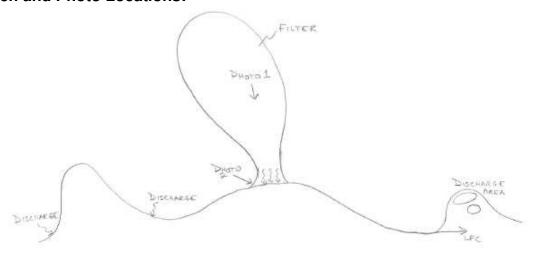


Photo 1: Spring treatment filter 7B2.

Photo 2: Filter discharge at 7B2 into LFC.

Filter Condition: Good Repairs Required: None

Approximate Flow: 4 USgpm

Additional Discharge Areas: Two very low flow discharge areas approximately 7 m and 14 m upstream along LFC. One area of discharge approximately 70 m downstream along LFC.

Sampling Standpipe: No

Other Comments: Filter appears to be working effectively.

Treatment Site ID: 7C1 Date: August 28, 2018

Site Description: East side, between Redditt and Keewatin bridges.

Site Sketch and Photo Locations:

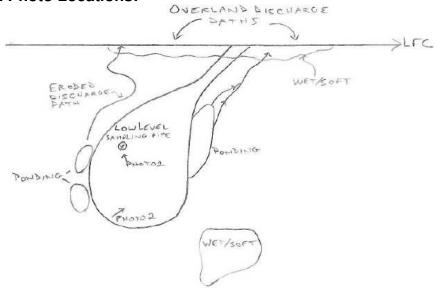


Photo 1: Spring treatment filter site 7C1.

Photo 2: Water flowing through 7C1 filter and finding alternate flow paths to LFC or ponding in low areas.

Filter Condition: Good – water finding alternate flow paths to LFC or ponding in low areas. Constructed discharge channel appears to be clogged with sediment. Eroded path on south side of filter.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path.

Approximate Flow: 4 USgpm

Additional Discharge Areas: No

Sampling Standpipe: Yes, low level

Depth to bottom: Did not measure in order to avoid cross contamination. 2.41 m previously.

Depth to water: 0 m (at top of pipe). Artesian when opened.

Condition: Good

Repairs Required: Low level standpipe casing has shifted sideways and is holding PVC cap

in place. Use pry bar to straighten and give space to the PVC cap.

Other Comments: Filter appears to be working effectively other than the discharge channel. Very soft along LFC.

Treatment Site ID: 8B1 Date: August 28, 2018

Site Description: West side, south of Keewatin bridge.

Site Sketch and Photo Locations:

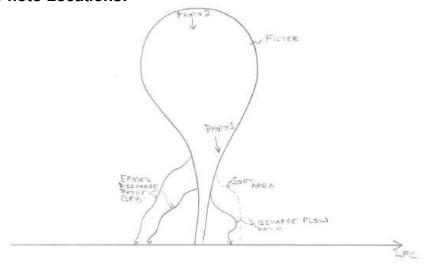


Photo 1: Water finding alternate flow path to LFC.

Photo 2: Spring treatment filter 8B1.

Filter Condition: Good – water finding alternate flow path to LFC. Constructed discharge channel appears to be clogged with sediment. Some erosion observed on south side in 2 paths but not currently flowing

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path.

Approximate Flow: 5 USgpm

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: Filter appears to be working effectively other than the discharge channel.

Treatment Site ID: 8B2 Date: August 28, 2018

Site Description: West side, south of Keewatin bridge, north of 8B1.

Site Sketch and Photo Locations:

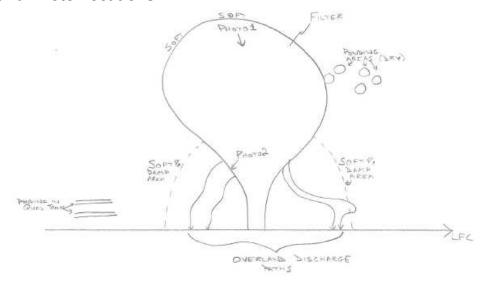


Photo 1: Spring treatment filter 8B2.

Photo 2: Water finding alternate flow path to LFC at 8B2.

Filter Condition: Good – water finding alternate flow paths to LFC. Constructed discharge channel appears to be clogged with sediment. No significant erosion observed within overland discharge area.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path.

Approximate Flow: 8 USgpm

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: Filter appears to be working effectively other than the discharge channel.

Treatment Site ID: 8C1 Date: August 28, 2018

Site Description: West side, south of Keewatin bridge, north of 8B2.

Site Sketch and Photo Locations:

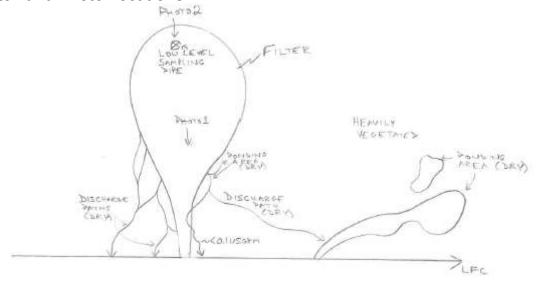


Photo 1: Spring treatment filter site 8C1 and constructed discharge trench.

Photo 2: Low level sampling pipe and protective steel casing at 8C1.

Filter Condition: Good – water finding alternate flow paths to LFC. Flow paths wet and soft, but not currently flowing. Constructed discharge channel appears to be clogged with sediment. No significant erosion observed within overland discharge areas.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path.

Approximate Flow: >0.1USgpm

Additional Discharge Areas: No. **Sampling Standpipe:** Yes, low level

Depth to bottom: 3.790 m

Depth to water: 0.173 m below steel casing.

Condition: Good

Repairs Required: None

Other Comments: Filter appears to be working effectively other than alternate flow path. Ponded area to the North of filter is discharging to LFC and appears to be sourced from the filter. PVC cap & threaded coupling was off of casing and was replaced upon inspection. Top of PVC casing measured at 0.19 m below ground surface.

Treatment Site ID: 9A6 Date: August 28, 2018

Site Description: East side, north of CPR Keewatin bridge.

Site Sketch and Photo Locations:

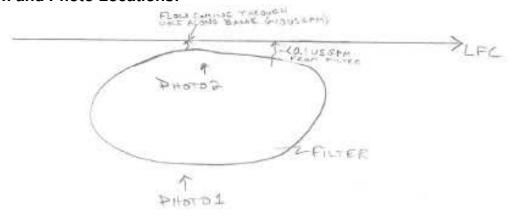


Photo 1: Spring treatment filter 9A6.

Photo 2: Spring 9A6 discharge into Low Flow Channel.

Filter Condition: Good

Repairs Required: None

Approximate Flow: 10 USgpm

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: Flow coming through filter, appears to be working effectively.

Treatment Site ID: 9B1 Date: August 28, 2018

Site Description: West side, north of Keewatin bridge.

Site Sketch and Photo Locations:

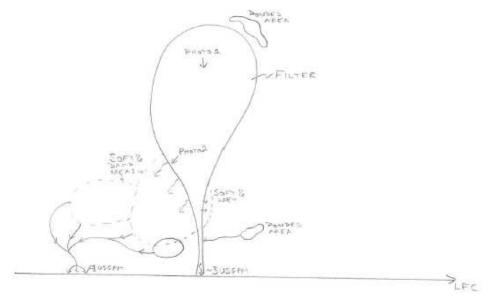


Photo 1: Spring treatment filter 9B1.

Photo 2: Water ponding to the south of 9B1 filter and finding alternate flow paths to LFC.

Difficult to determine if additional springs in this area.

Filter Condition: Good – water finding alternate flow paths to LFC. Constructed discharge channel appear to be clogged with sediment. No significant erosion observed within overland discharge area.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path. Alternatively, construct a new swale along existing overland discharge path.

Approximate Flow: 2 USgpm

Additional Discharge Areas: No, however, very difficult to tell if wet area to the south of the filter is a spring or is ponded water from discharge from the filter. Wet areas continue south, almost to Keewatin bridge.

Sampling Standpipe: No

Other Comments: Filter appears to be working effectively other than the discharge channel.

Treatment Site ID: 9B2 Date: August 28, 2018

Site Description: East side, north of CPR Keewatin Bridge.

Site Sketch and Photo Locations:

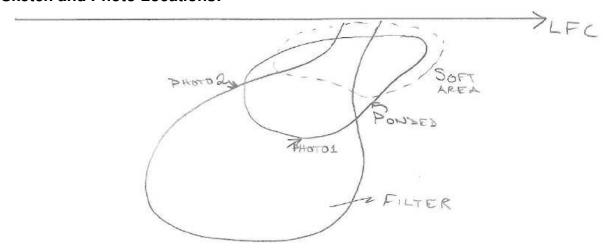


Photo 1: Additional discharge points along constructed discharge trench, very soft area.

Photo 2: Spring treatment filter 9B2.

Filter Condition: Good – water finding alternate flow paths to LFC. No significant erosion observed within overland discharge area.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path.

Approximate Flow: <1 USgpm

Additional Discharge Areas: Yes, piping observed along constructed discharge trench, very low flows. Further investigation treatment of additional discharge areas may be required.

Sampling Standpipe: No

Other Comments: Wet and soft along discharge trench and near LFC.

Treatment Site ID: 10A1 Date: August 28, 2018

Site Description: West side, north of Keewatin bridge.

Site Sketch and Photo Locations:

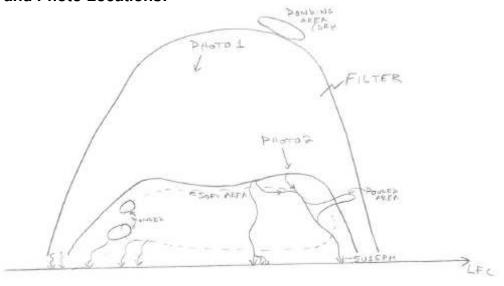


Photo 1: Spring treatment filter 10A1.

Photo 2: Water flowing through 10A1 filter and finding alternate flow paths to LFC.

Filter Condition: Good – water finding alternate flow paths to LFC. Constructed discharge channels appear to be clogged with sediment. No significant erosion observed within overland discharge area.

Repairs Required: Excavating rip rap from discharge channels and creating swales may focus flow along design discharge paths.

Approximate Flow: 5 USgpm at North discharge

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: Filter appears to be working effectively other than the discharge channels.

Treatment Site ID: 11A1 Date: August 28, 2018

Site Description: West side, north of Keewatin bridge.

Site Sketch and Photo Locations:

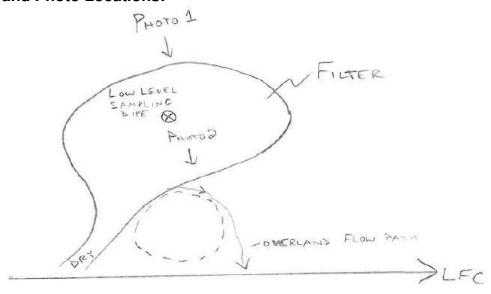


Photo 1: Spring treatment filter site 11A1 and low level sampling pipe, covered by vegetation.

Photo 2: Water flowing through 11A1 filter and finding alternate flow path to LFC.

Filter Condition: Good – water finding alternate flow path to LFC. Constructed discharge channel appears to be clogged with sediment. No significant erosion observed within overland discharge area.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path. Alternatively, construct a new swale along existing flow path.

Approximate Flow: 6 USgpm **Additional Discharge Areas:** No

Sampling Standpipe: Yes, low level **Depth to bottom:** 4.845 m (2016)

Depth to water: 0.204 m below PVC TOC

Condition: Good.

Repairs: Low level protective steel casing has settled and PVC casing is holding lid open.

Prop up steel casing to allow lid to close

Other Comments: Filter appears to be working effectively other than alternate flow path. Water flowing over very soft soil between filter and LFC.

>LFC

Treatment Site ID: 11A2 Date: August 28, 2018

Site Description: East side of Floodway, south of PTH59N bridge.

Site Sketch and Photo Locations:

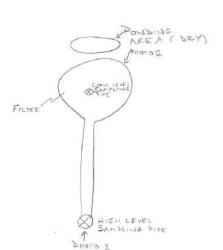


Photo 1: High level sampling pipe and protective CMP casing.

Photo 2: Water flowing through 11A2 filter and finding alternate flow paths to LFC.

Filter Condition: Good

Repairs Required: None

Approximate Flow: 0 USgpm

Additional Discharge Areas: No

Sampling Standpipe: Yes, low level and high level

Depth to bottom: 3.60 m (low level). **Depth to water:** 1.10m (low level)

Condition: Good

Repairs Required: None

Other Comments: There is no discharge trench constructed to Low Flow Channel. Dry around filter. Could add mono foam around PVC at opening in steel protector at high level standpipe but is a low priority.

Treatment Site ID: 16A2 Date: August 29, 2018

Site Description: West side, north of Dunning Road.

Site Sketch and Photo Locations:

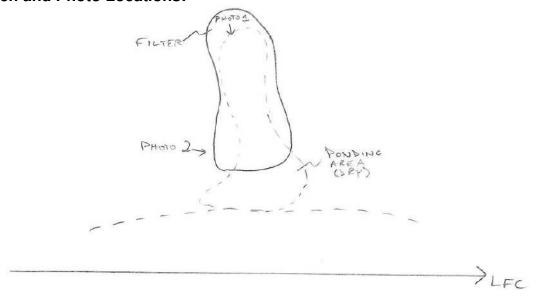


Photo 1: Spring treatment filter 16A2.

Photo 2: Spring treatment filter 16A2.

Filter Condition: Good. No apparent discharge path to drain into LFC.

Repairs Required: None.

Approximate Flow: No Flow

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: No flow observed. Dried ponding area exists on and around filter. Heavily

vegetated.

Treatment Site ID: 17A2 Date: August 29, 2018

Site Description: East side, north of Dunning Road

Site Sketch and Photo Locations:

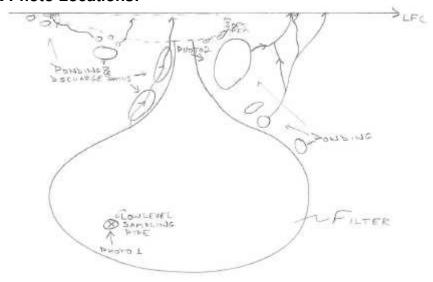


Photo 1: Spring treatment filter site 17A2 and low level sampling pipe.

Photo 2: Water ponding beside the French drain at 17A2.

Filter Condition: Good

Repairs Required: None

Approximate Flow: 1 USgpm

Additional Discharge Areas: Small discharge area along French Drain, may just be ponding

water.

Sampling Standpipe: Yes, low level

Depth to bottom: 1.566 m Depth to water: 0.274 m

Condition: Good

Repairs Required: None

Other Comments: Area around filter is dry; filter appears to be working well other than

alternate flow path. Heavy vegetation in area.

Treatment Site ID: 18A1 Date: August 29, 2018

Site Description: West side, north of LFC bike/pedestrian bridge.

Site Sketch and Photo Locations:

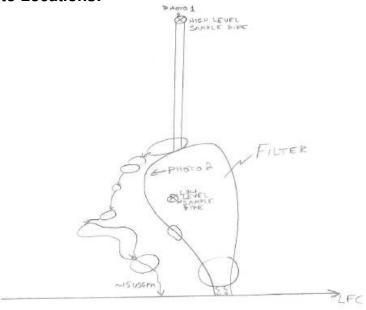


Photo 1: High level sampling pipe and protective CMP casing.

Photo 2: Water flowing through filter and finding alternate flow paths to LFC at 18A1.

Filter Condition: Good – water finding alternate flow paths to LFC. Constructed discharge channel appears to be clogged with sediment. No significant erosion observed within overland discharge areas.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path.

Approximate Flow: Path to South of discharge path ~ 15 USgpm. Path adjacent to discharge path ~ 3 USgpm.

Additional Discharge Areas: No

Sampling Standpipe: Yes, low level and high level.

Depth to bottom: 3.40 m (low level). **Depth to water:** 0.117 m (low level).

Condition: PVC has lifted up and is in contact with steel protective casing.

Repairs: Protective steel casing on low level sampling pipe is leaning against PVC. Pry to

reposition.

Other Comments: Filter appears to be working effectively other than the discharge channel.

Treatment Site ID: 18A2 Date: September 6, 2018

Site Description: West side, approximately 100 m north of 18A1.

Site Sketch and Photo Locations:

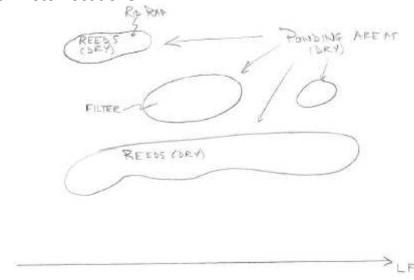


Photo 1: Spring treatment filter site 18A2.

Photo 2: Dried ponding area near spring treatment filter site 18A2.

Filter Condition: Good Repairs Required: None

Approximate Flow: No flow

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: Dried areas with reeds from previous surface water ponding around filter.

Treatment Site ID: 20A2 Date: August 29, 2018

Site Description: East side, south of 21A2

Site Sketch and Photo Locations:

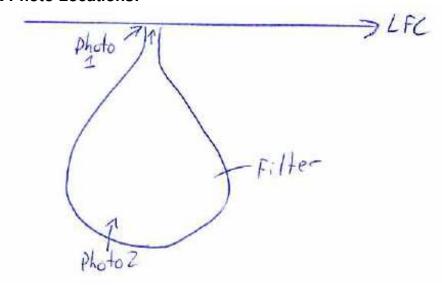


Photo 1: Tie-in of filter drain to Low Flow Channel.

Photo 2: Spring treatment filter 20A2.

Filter Condition: Good

Repairs Required: None

Approximate Flow: <0.1 USgpm

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: No flow observed, no wet or soft areas.

Treatment Site ID: 21A1 Date: August 29, 2018

Site Description: West side, south of CEMR bridge.

Site Sketch and Photo Locations:

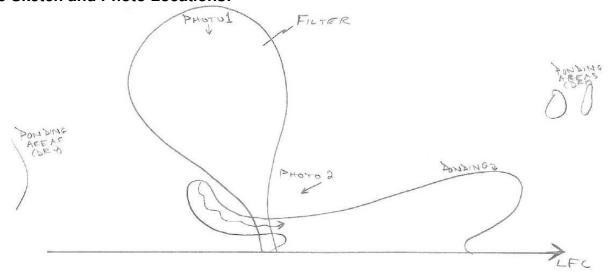


Photo 1: Spring treatment filter 21A1.

Photo 2: Water flowing through 21A1 filter and finding alternate flow path to LFC.

Filter Condition: Good – water finding alternate flow path to LFC. Constructed discharge channel appears to be clogged with sediment. No significant erosion observed within overland discharge area.

Repairs Required: Excavating rip rap from discharge channel and creating a swale may focus flow along design discharge path.

Approximate Flow: <1 USgpm

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: Filter appears to be working effectively other than the discharge channel. LFC at filter elevation / above discharge channel.

Treatment Site ID: 21A2 Date: August 29, 2018

Site Description: East side, north of 20A2

Site Sketch and Photo Locations:

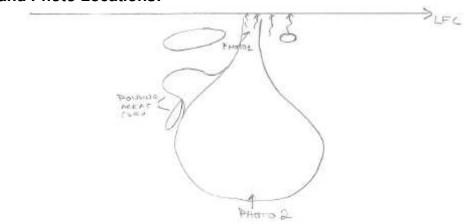


Photo 1: Spring treatment filter 21A2.

Photo 2: Tie-in of 21A2 filter drain to Low Flow Channel.

Filter Condition: Good

Repairs Required: None

Approximate Flow: <0.1 USgpm

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: No flow observed, no wet or soft areas around filter.

Treatment Site ID: 23A1 Date: August 29, 2018

Site Description: West side, south of PTH 44 bridge.

Site Sketch and Photo Locations:

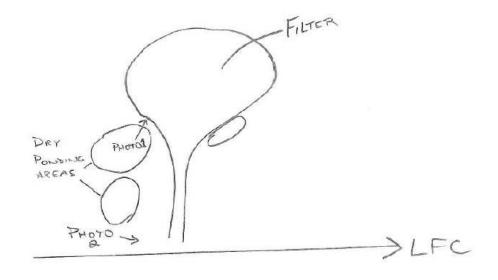


Photo 1: Spring treatment filter 23A1.

Photo 2: Tie in of discharge channel to LFC at 23A1.

Filter Condition: Good

Repairs Required: None

Approximate Flow: No Flow

Additional Discharge Areas: No

Sampling Standpipe: No

Other Comments: Rip rap is filling with sediment, hard to see filter and discharge channel.

Heavy vegetation.

Treatment Site ID: 23A2 Date: August 29, 2018

Site Description: East side, just south of PTH 44 bridge.

Site Sketch and Photo Locations:

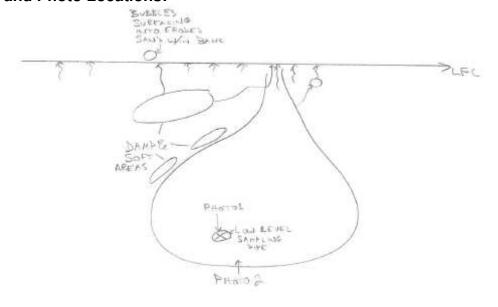


Photo 1: Low level sampling pipe steel protective casing.

Photo 2: Spring treatment filter site 23A2.

Filter Condition: Good

Repairs Required: None

Approximate Flow: < 0.1 USgpm

Additional Discharge Areas: No

Sampling Standpipe: Yes, low level

Depth to bottom: 3.18 m

Depth to water: 0.376 m below PVC top of casing.

Condition: Good. **Repairs:** None.

Other Comments: PVC cap is friction fit, not threaded. Area where bubbles are emerging

from along the bank just below the LFC water (see sketch).

Treatment Site ID: AD17-1 Date: August 29, 2018

Site Description: West side, approximately 10 m downstream of a beaver dam crossing the

low flow channel. Located mid way between Church Rd. and Hay Rd.

UTM: 14U 648661 5546623.

Photo 1: Additional discharge location facing upstream toward beaver dam.

Photo 2: Slow seepage at additional discharge location.

Approximate Flow: <0.1 USgpm

Other Comments: Additional discharge location 10 m downstream of beaver dam and is potentially diverted flow from the dam.

Treatment Site ID: AD17-2 Date: August 29, 2018

Site Description: West side, approximately 129 m downstream of a beaver dam that crosses

the low flow channel. Located mid way between Church Rd. and Hay Rd.

UTM: 14U 648646 5546742.

Photo 1: Additional discharge location facing west from mid channel.

Photo 2: Slow seepage at additional discharge location.

Approximate Flow: < 0.1 USgpm

Other Comments: Additional discharge location 129 m downstream of beaver dam and is potentially diverted flow from the dam as opposed to groundwater discharge.

Treatment Site ID: AD17-3 Date: August 29, 2018

Site Description: East side of channel across from Hay Rd. Across channel from AD17-4.

UTM: 14U 0648624 5547181.

Site Sketch and Photo Locations:

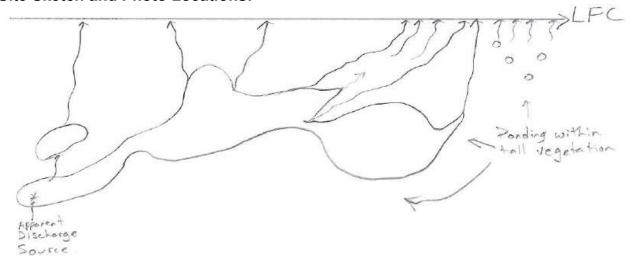
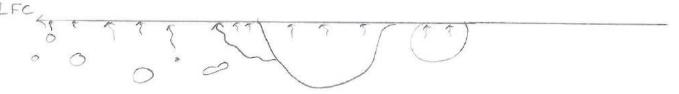


Photo 1: Additional discharge location apparent source pooling.

Photo 2: Low flow seepage into channel.

Approximate Flow: <0.1 USgpm individual streams. Approximately <5 USgpm total discharge.


Other Comments: Additional discharge location with low flow discharges into the channel spanning approximately 65 m from 14U 0648624 5547181 downstream to 14U 0648614 5547245.

Treatment Site ID: AD17-4 Date: August 29, 2018

Site Description: West side of channel across from Hay Rd. Across the channel from AD17-3.

UTM: 14U 0648593 5547218.

Site Sketch and Photo Locations:

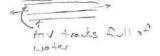


Photo 1: Additional discharge pooling and seepage area from 2017 appears dry in 2018.

Photo 2: Area of low flow seepage into channel.

Approximate Flow: <0.1 USgpm

Other Comments: Additional discharge location from 2017 with very little discharge in 2018.

2018 Summer Inspection of Spring Treatment Areas

Treatment Site ID: AD17-5 Date: August 28, 2018

Site Description: West side of channel between Hay Rd. and CEMR Bridge and

approximately 70 m south of Spring 21A2.

UTM: 14U 0648492 5548099.

Photos:

Photo 1: Additional discharge location from 2017 adjacent to low flow channel not flowing in 2018.

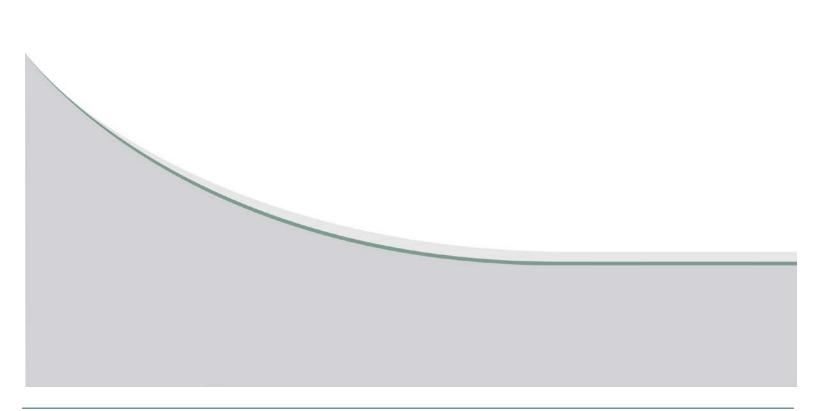
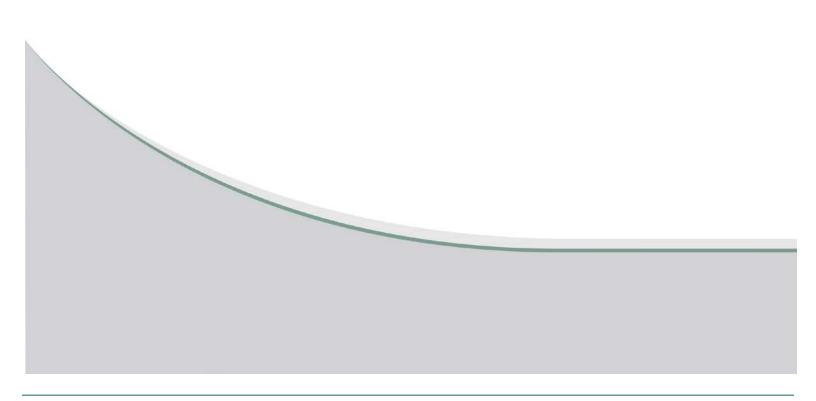
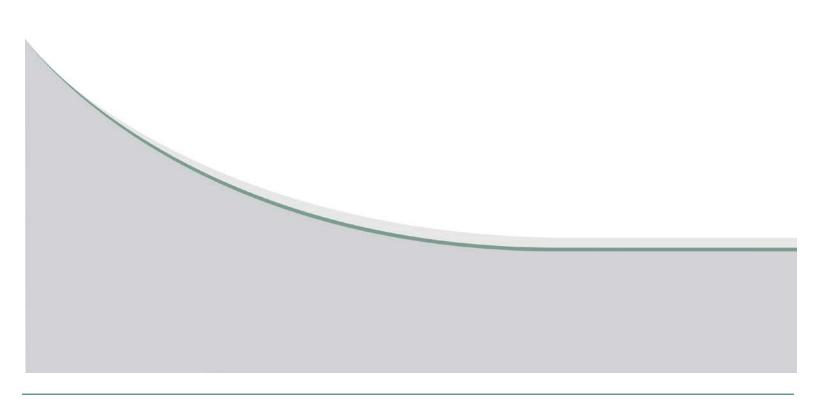


Photo 2: Area appeared dry along bank.

Approximate Flow: 0 USgpm


Other Comments: Additional discharge identified in 2017 was not apparent during the 2018 investigation.

APPENDIX D6-D-3 ADDITIONAL PHOTOGRAPHS AND VIDEO (INCLUDED ON DVD)



APPENDIX D6-E LABORATORY REPORTS

APPENDIX D6-E-1 PRE-MELT

ATTN: Paul Lindell

Date: 22-MAR-18

PO No.: MI Floodway Premelt

WO No.: L2068496
Project Ref: 16-0300-002
Sample ID: K13-12321
Sampled By: ATM/AS
Date Collected: 15-MAR-18
Lab Sample ID: L2068496-1

Matrix: Ground Water

PAGE 1 of 13

Carbonate (CO3) <0.60 mg/L 20-1 Hydroxide (OH) <0.34 mg/L 20-1 Nitrate and Nitrite as N 6.83 mg/L 10 22-1 PH		Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Carbonate (CO3)	ROU1W Dissol	ved Floodway						
Hydroxide (OH)		Bicarbonate (HCO3)	666		mg/L			20-MAR-18
*Nitrate and Nitrite as N 6.83 mg/L 10 22-4 pH		Carbonate (CO3)	<0.60		mg/L			20-MAR-18
pH pH 7.55 pH units 19-1 Turbidity "Turbidity 42.6 NTU 16-1 TDS calculated TDS (Calculated) 714 mg/L 500 20-1 Sulfate in Water by IC Sulfate (SO4) 82.1 mg/L 500 16-1 Nitrite in Water by IC (Low Level) "Nitrite (as N) 0.0074 mg/L 1 16-1 Nitrate in Water by IC (Low Level) "Nitrate (as N) 6.83 mg/L 10 16-1 Ion Balance Calculation Ion Balance 14.4 % 22-1 Cation - Anion Sum 14.9 me/L 22-1 Hardness Calculated Hardness (as CaCO3) 693 mg/L 20-1 Dissolved Metals by IC-MS Dissolved Metals Pilitation Location Calcium (Ca)-Dissolved 92.8 mg/L 19-1 Calculation (Ca)-Dissolved 92.8 mg/L 19-1 Dissolved Metals Polissolved 5.18 mg/L 19-1 Dissolved Metals Polissolved 5.18 mg/L 19-1 Conductivity Conductivity 1030 umhos/cm 19-1 Chloride in Water by IC Chloride (CI) 63.3 mg/L 250 16-1		Hydroxide (OH)	<0.34		mg/L			20-MAR-18
PH		*Nitrate and Nitrite as N	6.83		mg/L	10		22-MAR-18
PH	pН							
*Turbidity 42.6 NTU 16-I TDS calculated TDS (Calculated) 714 mg/L 500 20-I Sulfate in Water by IC Sulfate (SO4) 82.1 mg/L 500 16-I Nitrite in Water by IC (Low Level) *Nitrite (as N) 0.0074 mg/L 1 16-I Nitrate in Water by IC (Low Level) *Nitrate (as N) 6.83 mg/L 10 16-I Ion Balance Calculation Ion Balance 103 % 22-I Anion Sum 14.9 me/L 22-I Anion Sum 15.3 me/L 22-I Hardness Calculated Hardness (as CaCO3) 693 mg/L 500 20-I Dissolved Metals by ICP-MS Dissolved Metals by ICP-MS Dissolved Metals by ICP-MS Calcium (Ca)-Dissolved 92.8 mg/L 19-I Magnesium (Mg)- 112 mg/L 19-I Dissolved Potassium (K)-Dissolved 30.6 mg/L 19-I Sodium (Na)-Dissolved 30.6 mg/L 200 19-I Conductivity Conductivity 1030 umhos/cm 19-I Chloride in Water by IC Chloride (CI) 63.3 mg/L 250 16-I		рН	7.55		pH units			19-MAR-18
TDS calculated TDS (Calculated) TDS (Calculated) TOS (Calculated) TOS (Calculated) TOS (Calculated) Sulfate in Water by IC Sulfate (SO4) Nitrite in Water by IC (Low Level) *Nitrite (as N) Nitrate in Water by IC (Low Level) *Nitrate (as N) Ion Balance Calculation Ion Balance Calculat	Turbidity							
TDS (Calculated) 714		*Turbidity	42.6		NTU			16-MAR-18
Sulfate in Water by IC Sulfate (SO4) 82.1 mg/L 500 16-I Nitrite in Water by IC (Low Level)	TDS calculate	ed						
Sulfate (SO4) 82.1 mg/L 500 16-1		TDS (Calculated)	714		mg/L		500	20-MAR-18
Sulfate (SO4) 82.1 mg/L 500 16-1	Sulfate in Wa	ater by IC						
*Nitrate (as N) 0.0074 mg/L 1 16-I Nitrate in Water by IC (Low Level) *Nitrate (as N) 6.83 mg/L 10 16-I Ion Balance Calculation Ion Balance 103 % 22-I Cation - Anion Balance 1.4 % 22-I Anion Sum 14.9 me/L 22-I Cation Sum 15.3 me/L 22-I Hardness Calculated Hardness (as CaCO3) 693 mg/L 500 20-I Dissolved Metals by ICP-MS Dissolved Metals 9 ICP-MS Dissolved Metals 9 ICP-MS Aliance Calcium (Ca)-Dissolved 92.8 mg/L 19-I Magnesium (Mg)- 112 mg/L 19-I Dissolved Metals in (N-Dissolved 5.18 mg/L 19-I Sodium (Na)-Dissolved 30.6 mg/L 200 19-I Conductivity Conductivity 1030 umhos/cm 19-I Chloride in Water by IC Chloride (Cl) 63.3 mg/L 250 16-I			82.1		mg/L		500	16-MAR-18
*Nitrate (as N) 0.0074 mg/L 1 16-I Nitrate in Water by IC (Low Level) *Nitrate (as N) 6.83 mg/L 10 16-I lon Balance Calculation lon Balance	Nitrite in Wat	er by IC (Low Level)						
*Nitrate (as N) 6.83 mg/L 10 16-I lon Balance Calculation lon Balance		*Nitrite (as N)	0.0074		mg/L	1		16-MAR-18
*Nitrate (as N) 6.83 mg/L 10 16-I lon Balance Calculation lon Balance	Nitrate in Wa	ter by IC (Low Level)						
Ion Balance			6.83		mg/L	10		16-MAR-18
Ion Balance	Ion Balance (Calculation						
Anion Sum Cation Sum 14.9 me/L 22-I			103		%			22-MAR-18
Cation Sum					%			22-MAR-18
Hardness Calculated								22-MAR-18
Hardness (as CaCO3) 693 mg/L 500 20-l			15.3		me/L			22-MAR-18
Dissolved Metals by ICP-MS	Hardness Ca		000					00 MAD 40
Dissolved Metals Filtration Location Calcium (Ca)-Dissolved 92.8 mg/L 19-I			693		mg/L		500	20-MAR-18
Filtration Location Calcium (Ca)-Dissolved 92.8 mg/L 19-I	Dissolved Me							40.1415.40
Calcium (Ca)-Dissolved 92.8 mg/L 19-I Magnesium (Mg)-Dissolved 112 mg/L 19-I Potassium (K)-Dissolved 5.18 mg/L 19-I Sodium (Na)-Dissolved 30.6 mg/L 200 19-I Conductivity 1030 umhos/cm 19-I Chloride in Water by IC 63.3 mg/L 250 16-I			LAB					19-MAR-18
Dissolved Potassium (K)-Dissolved 5.18 mg/L 19-I Sodium (Na)-Dissolved 30.6 mg/L 200 19-I			92.8		mg/L			19-MAR-18
Potassium (K)-Dissolved 5.18 mg/L mg/L 200 19-1			112		mg/L			19-MAR-18
Sodium (Na)-Dissolved 30.6 mg/L 200 19-1			5.18		ma/l			19-MAR-18
Conductivity 1030 umhos/cm 19-I Chloride in Water by IC Chloride (CI) 63.3 mg/L 250 16-I							200	19-MAR-18
Conductivity 1030 umhos/cm 19-I Chloride in Water by IC Chloride (CI) 63.3 mg/L 250 16-I	Conductivity							
Chloride (CI) 63.3 mg/L 250 16-I	•		1030		umhos/cm			19-MAR-18
Chloride (CI) 63.3 mg/L 250 16-I	Chloride in W	Vater by IC						
		•	63.3		mg/L		250	16-MAR-18
	Alkalinity, To							
	•,,	Alkalinity, Total (as	546		mg/L			19-MAR-18

KGS Group Consultants (Winnipeg) 865 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 ATTN: Paul Lindell **Date:** 22-MAR-18

PO No.: MI Floodway Premelt

WO No.: L2068496
Project Ref: 16-0300-002
Sample ID: K13-12321
Sampled By: ATM/AS
Date Collected: 15-MAR-18
Lab Sample ID: L2068496-1

Matrix: Ground Water

PAGE 2 of 13

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97						
Total Colliforms	<1		MPN/100mL	0		16-MAR-18
Escherichia Coli	<1		MPN/100mL	0		16-MAR-18
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWG	 If present as N guidelines on cor ter Quality 	itrate then the li ventional treatn	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration plea	ase see
Approved by Hua Wo Account Manager						

ATTN: Paul Lindell

Date: 22-MAR-18

PO No.: MI Floodway Premelt

WO No.: L2068496
Project Ref: 16-0300-002
Sample ID: K09-12316
Sampled By: ATM/AS
Date Collected: 15-MAR-18
Lab Sample ID: L2068496-2

Matrix: Ground Water

PAGE 3 of 13

Test D	Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissolved Floo	dway						
Bica	rbonate (HCO3)	522		mg/L			20-MAR-1
Carb	oonate (CO3)	<0.60		mg/L			20-MAR-1
Hydr	roxide (OH)	<0.34		mg/L			20-MAR-1
*Nitra	ite and Nitrite as N	2.29		mg/L	10		22-MAR-1
рН							
рН		7.62		pH units			19-MAR-1
Turbidity							
*Turb	idity	0.19		NTU			16-MAR-1
TDS calculated							
TDS	(Calculated)	529		mg/L		500	20-MAR-1
Sulfate in Water by IC	;						
	ate (SO4)	60.9		mg/L		500	16-MAR-1
Nitrite in Water by IC	(Low Level)						
*Nitrit	te (as N)	0.0022		mg/L	1		16-MAR-1
Nitrate in Water by IC	(Low Level)			_			
	ite (as N)	2.29		mg/L	10		16-MAR-1
Ion Balance Calculati	on			_			
Ion E	Balance	104		%			22-MAR-1
	on - Anion Balance	2.0		%			22-MAR-1
	n Sum	10.8		me/L			22-MAR-1
	on Sum	11.3		me/L			22-MAR-1
Hardness Calculated							
Hard	Iness (as CaCO3)	509	1	mg/L		500	20-MAR-1
Dissolved Metals by I							
	olved Metals	LAB					19-MAR-1
	ation Location ium (Ca)-Dissolved	77.2		mg/L			19-MAR-1
	nesium (Mg)-	76.7		mg/L			19-MAR-1
	olved	4.00					40 MAD 4
	ssium (K)-Dissolved um (Na)-Dissolved	4.22 23.2		mg/L		200	19-MAR-1 19-MAR-1
	uiii (Na)-Dissolveu	25.2		mg/L		200	13-WAIX-1
Conductivity	du ativitu	700					19-MAR-1
	ductivity	790		umhos/cm			19-IVIAK-1
Chloride in Water by I		20.4				050	16-MAR-1
	ride (CI)	30.4		mg/L		250	I O-IVIAR-T
Alkalinity, Total (as C	•	400					40 144 5 4
Alka CaC	linity, Total (as O3)	428		mg/L			19-MAR-1
Suc	/						

KGS Group Consultants (Winnipeg) 865 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 ATTN: Paul Lindell **Date:** 22-MAR-18

PO No.: MI Floodway Premelt

WO No.: L2068496

Project Ref: 16-0300-002

Sample ID: K09-12316

Sampled By: ATM/AS

Date Collected: 15-MAR-18

Lab Sample ID: L2068496-2

Matrix: Ground Water

PAGE 4 of 13

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97						
Total Coliforms	<1		MPN/100mL	0		16-MAR-18
Escherichia Coli	<1		MPN/100mL	0		16-MAR-18
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration plea	ase see
Approved by MM						
Hua Wo						
Account Manager						

ATTN: Paul Lindell

Date: 22-MAR-18

PO No.: MI Floodway Premelt

WO No.: L2068496
Project Ref: 16-0300-002
Sample ID: K09-12012
Sampled By: ATM/AS
Date Collected: 15-MAR-18
Lab Sample ID: L2068496-3

Matrix: Ground Water

PAGE 5 of 13

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissol	lved Floodway						
	Bicarbonate (HCO3)	435		mg/L			20-MAR-18
	Carbonate (CO3)	< 0.60		mg/L			20-MAR-18
	Hydroxide (OH)	<0.34		mg/L			20-MAR-18
	*Nitrate and Nitrite as N	<0.010		mg/L	10		22-MAR-18
рН							
•	рН	7.77		pH units			20-MAR-18
Turbidity							
_	*Turbidity	0.27		NTU			16-MAR-18
TDS calculat	ed						
	TDS (Calculated)	672	ĺ	mg/L		500	20-MAR-18
Sulfate in Wa	ater by IC						
	Sulfate (SO4)	214		mg/L		500	16-MAR-18
Nitrite in Wat	ter by IC (Low Level)						
	*Nitrite (as N)	<0.0020	DLM	mg/L	1		16-MAR-18
Nitrate in Wa	iter by IC (Low Level)						
	*Nitrate (as N)	<0.010	DLM	mg/L	10		16-MAR-18
Ion Balance							
	Ion Balance	106		%			22-MAR-18
	Cation - Anion Balance	3.0		%			22-MAR-18
	Anion Sum	12.3		me/L			22-MAR-18
	Cation Sum	13.0		me/L			22-MAR-18
Hardness Ca							
	Hardness (as CaCO3)	539		mg/L		500	20-MAR-18
Dissolved Me	etals by ICP-MS						
	Dissolved Metals Filtration Location	LAB					19-MAR-18
	Calcium (Ca)-Dissolved	88.4		mg/L			19-MAR-18
	Magnesium (Mg)-	77.4		mg/L			19-MAR-18
	Dissolved Potassium (K)-Dissolved	4.48		mg/L			19-MAR-18
	Sodium (Na)-Dissolved	49.0		mg/L		200	19-MAR-18
Conductivity	,						
Conductivity	Conductivity	976		umhos/cm			19-MAR-18
Chloride in V	•						
Jilloriae III V	Chloride (CI)	24.5		mg/L		250	16-MAR-18
Alkalinity To	otal (as CaCO3)	20		g, L		250	
Airaminty, 10	Alkalinity, Total (as CaCO3)	356		mg/L			19-MAR-18

ATTN: Paul Lindell

Date: 22-MAR-18

PO No.: MI Floodway Premelt

WO No.: L2068496 **Project Ref:** 16-0300-002 **Sample ID:** K09-12012 Sampled By: ATM/AS Date Collected: 15-MAR-18 **Lab Sample ID:** L2068496-3

Matrix: Ground Water

PAGE 6 of 13

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97						
Total Coliforms	<1		MPN/100mL	0		16-MAR-18
Escherichia Coli	<1		MPN/100mL	0		16-MAR-18
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration plea	ase see
Approved by Hua Wo Account Manager						

ATTN: Paul Lindell

Date: 22-MAR-18

PO No.: MI Floodway Premelt

WO No.: L2068496
Project Ref: 16-0300-002
Sample ID: K11-12015
Sampled By: ATM/AS
Date Collected: 15-MAR-18
Lab Sample ID: L2068496-4

Matrix: Ground Water

PAGE 7 of 13

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissolv	ved Floodway						
	Bicarbonate (HCO3)	336		mg/L			20-MAR-18
	Carbonate (CO3)	<0.60		mg/L			20-MAR-18
	Hydroxide (OH)	<0.34		mg/L			20-MAR-18
	*Nitrate and Nitrite as N	0.0641		mg/L	10		22-MAR-18
рН							
	рН	7.77		pH units			19-MAR-1
Turbidity							
	*Turbidity	0.23		NTU			16-MAR-1
TDS calculate	ed						
	TDS (Calculated)	381		mg/L		500	20-MAR-18
Sulfate in Wa	iter by IC						
	Sulfate (SO4)	68.4		mg/L		500	16-MAR-1
Nitrite in Wate	er by IC (Low Level)			_			
	*Nitrite (as N)	0.0014		mg/L	1		16-MAR-1
Nitrate in Wat	ter by IC (Low Level)						
	*Nitrate (as N)	0.0627		mg/L	10		16-MAR-1
Ion Balance C							
	Ion Balance	104		%			22-MAR-1
	Cation - Anion Balance	2.0		%			22-MAR-1
	Anion Sum	7.44		me/L			22-MAR-1
	Cation Sum	7.74		me/L			22-MAR-1
Hardness Cal	lculated						
	Hardness (as CaCO3)	364		mg/L		500	20-MAR-1
Dissolved Me	etals by ICP-MS						
	Dissolved Metals	LAB					19-MAR-1
	Filtration Location Calcium (Ca)-Dissolved	73.1		mg/L			19-MAR-1
	Magnesium (Mg)-	44.1		mg/L			19-MAR-1
	Dissolved						
	Potassium (K)-Dissolved	4.28		mg/L			19-MAR-1
	Sodium (Na)-Dissolved	8.09		mg/L		200	19-MAR-1
Conductivity							
	Conductivity	594		umhos/cm			19-MAR-1
Chloride in W	•						
	Chloride (CI)	17.9		mg/L		250	16-MAR-1
Alkalinity, To	tal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	276		mg/L			19-MAR-1

KGS Group Consultants (Winnipeg) 865 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 ATTN: Paul Lindell **Date:** 22-MAR-18

PO No.: MI Floodway Premelt

WO No.: L2068496
Project Ref: 16-0300-002
Sample ID: K11-12015
Sampled By: ATM/AS
Date Collected: 15-MAR-18
Lab Sample ID: L2068496-4

Matrix: Ground Water

PAGE 8 of 13

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97						
-	.4		MDN/400I			16 MAD 10
Total Coliforms Escherichia Coli	<1 <1		MPN/100mL MPN/100mL	0		16-MAR-18 16-MAR-18
		2015	IVIPIN/TOOTIL	0		TO-IVIAIX-10
 * CDWQG = Health Canada Guideline Limits updated * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Warner - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQ 	guidelines on cor iter Quality	itrate then the li ventional treatn	ent and slow sand	N.D. = less than de	tection limit. arth filtration plea	ase see
Approved by Hua Wo Account Manager						

ATTN: Paul Lindell

Date: 22-MAR-18

PO No.: MI Floodway Premelt

WO No.: L2068496

Project Ref: 16-0300-002

Sample ID: K11-12014

Sampled By: ATM/AS

Date Collected: 15-MAR-18

Lab Sample ID: L2068496-5

Matrix: Ground Water

PAGE 9 of 13

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissolved Floodway						
Bicarbonate (HCO3)	345		mg/L			20-MAR-18
Carbonate (CO3)	<0.60		mg/L			20-MAR-18
Hydroxide (OH)	<0.34		mg/L			20-MAR-18
*Nitrate and Nitrite as N	0.112		mg/L	10		22-MAR-18
pH						
pH	7.77		pH units			19-MAR-18
Turbidity			p			
*Turbidity	2.66		NTU			16-MAR-18
TDS calculated						
TDS (Calculated)	370		mg/L		500	20-MAR-18
Sulfate in Water by IC			IIIg/L		300	
Sulfate (SO4)	55.1		mg/L		500	16-MAR-18
	00.1		IIIg/L		300	
Nitrite in Water by IC (Low Level) *Nitrite (as N)	<0.0010		m a/l	4		16-MAR-1
, ,	Q0.0010		mg/L	1		TO-WAIX-10
Nitrate in Water by IC (Low Level)	0.440		,,			4C MAD 4
*Nitrate (as N)	0.112		mg/L	10		16-MAR-18
Ion Balance Calculation						
Ion Balance Cation - Anion Balance	104 1.9		%			22-MAR-1 22-MAR-1
Anion Sum	7.33		% me/L			22-MAR-1
Cation Sum	7.61		me/L			22-MAR-1
Hardness Calculated						
Hardness (as CaCO3)	356		mg/L		500	20-MAR-1
Dissolved Metals by ICP-MS						
Dissolved Metals	LAB					19-MAR-1
Filtration Location						
Calcium (Ca)-Dissolved	69.6 44.3		mg/L			19-MAR-1
Magnesium (Mg)- Dissolved	44.3		mg/L			19-IVIAR-1
Potassium (K)-Dissolved	4.12		mg/L			19-MAR-1
Sodium (Na)-Dissolved	8.84		mg/L		200	19-MAR-1
Conductivity						
Conductivity	582		umhos/cm			19-MAR-18
Chloride in Water by IC						
Chloride (CI)	18.3		mg/L		250	16-MAR-1
Alkalinity, Total (as CaCO3)						
Alkalinity, Total (as CaCO3)	283		mg/L			19-MAR-18

KGS Group Consultants (Winnipeg) 865 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 ATTN: Paul Lindell **Date:** 22-MAR-18

PO No.: MI Floodway Premelt

WO No.: L2068496
Project Ref: 16-0300-002
Sample ID: K11-12014
Sampled By: ATM/AS
Date Collected: 15-MAR-18
Lab Sample ID: L2068496-5

Matrix: Ground Water

PAGE 10 of 13

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97						
-	.4		MDN/400I			16 MAD 10
Total Coliforms Escherichia Coli	<1 <1		MPN/100mL MPN/100mL	0		16-MAR-18 16-MAR-18
		2015	IVIPIN/TOOTIL	0		TO-IVIAIX-10
 * CDWQG = Health Canada Guideline Limits updated * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Warner - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQ 	guidelines on cor iter Quality	itrate then the li ventional treatn	ent and slow sand	N.D. = less than de	tection limit. arth filtration plea	ase see
Approved by Hua Wo Account Manager						

ATTN: Paul Lindell

Date: 22-MAR-18

PO No.: MI Floodway Premelt

WO No.: L2068496
Project Ref: 16-0300-002
Sample ID: S100
Sampled By: ATM/AS
Date Collected: 15-MAR-18
Lab Sample ID: L2068496-6
Matrix: Ground Water

PAGE 11 of 13

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissol	lved Floodway						
	Bicarbonate (HCO3)	440		mg/L			20-MAR-18
	Carbonate (CO3)	<0.60		mg/L			20-MAR-18
	Hydroxide (OH)	<0.34		mg/L			20-MAR-18
	*Nitrate and Nitrite as N	<0.010		mg/L	10		22-MAR-18
рН							
•	рН	7.66		pH units			19-MAR-18
Turbidity							
	*Turbidity	0.28		NTU			16-MAR-18
TDS calculat	ed						
	TDS (Calculated)	672	í	mg/L		500	20-MAR-18
Sulfate in Wa	ater by IC						
	Sulfate (SO4)	216		mg/L		500	16-MAR-18
Nitrite in Wat	ter by IC (Low Level)						
	*Nitrite (as N)	<0.0020	DLM	mg/L	1		16-MAR-18
Nitrate in Wa	iter by IC (Low Level)						
	*Nitrate (as N)	<0.010	DLM	mg/L	10		16-MAR-18
Ion Balance				9_			
ion Balance	Ion Balance	103		%			22-MAR-18
	Cation - Anion Balance	1.6		%			22-MAR-18
	Anion Sum	12.4		me/L			22-MAR-18
	Cation Sum	12.8		me/L			22-MAR-18
Hardness Ca	lculated						
	Hardness (as CaCO3)	528		mg/L		500	20-MAR-18
Dissolved Me	etals by ICP-MS						
	Dissolved Metals	LAB					19-MAR-18
	Filtration Location Calcium (Ca)-Dissolved	85.7		mg/L			19-MAR-18
	Magnesium (Mg)-	76.2		mg/L			19-MAR-18
	Dissolved	4.40					10 MAD 10
	Potassium (K)-Dissolved Sodium (Na)-Dissolved	4.49 48.9		mg/L mg/L		200	19-MAR-18
0	, ,	40.5		IIIg/L		200	15 WARE TO
Conductivity		902		umbaa/a			19-MAR-18
	Conductivity	902		umhos/cm			19-IVIAR-10
Chloride in V		24.5		mc = //		050	16 MAD 49
	Chloride (CI)	24.5		mg/L		250	16-MAR-18
Alkalinity, To	otal (as CaCO3)	224					40 140 15
	Alkalinity, Total (as CaCO3)	361		mg/L			19-MAR-18
	34000,						

KGS Group Consultants (Winnipeg) 865 Waverly Street - 3rd Floor Winnipeg MB R3T 5P4 ATTN: Paul Lindell **Date:** 22-MAR-18

PO No.: MI Floodway Premelt WO No.: L2068496

Project Ref: 16-0300-002 Sample ID: \$100 Sampled By: ATM/AS

Date Collected: 15-MAR-18 Lab Sample ID: L2068496-6

Matrix: Ground Water

PAGE 12 of 13

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97 Total Coliforms	<1		MPN/100mL	0		16-MAR-18
Escherichia Coli	<1		MPN/100mL	0		16-MAR-18
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de f or diatomaceous e	tection limit. arth filtration plea	ase see
Approved by Hua Wo						
Account Manager						

Guidelines & Objectives

Sample Parameter Qualifier key listed:

Qualifier Description

DLM

nН

Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

Health Canada MAC Health Related Criteria Limits

Nitrate/Nitrite-N* Criteria limit is 10 mg/L (1.0 mg/L if present as all Nitrite-N). High concentrations may contribute to blue baby syndrome in infants.

Lead* A cumulative body poison, uncommon in naturally occurring hard waters.

Fluoride* Present in fluoridated water supplies at 0.8 mg/L to reduce dental caries. Elevated levels causes fluorosis (mottling of teeth).

Total Coliforms* Criteria is 0 CFU/100mL. Adverse health effects.

E. Coli* Criteria is 0 CFU/100 mL. Certain E. Coli bacteria can be life threatening.

*Health Canada Canadian Drinking Water Quality Guidelines (MAC limit)

Aesthetic Objective Concentration Levels

Alkalinity Acid neutralizing capacity. Usually a measure of carbonate and bicarbonates and calculated and reported as calcium carbonate.

Balance Quality control parameter ratioing cations to anions
Bicarbonate See Alkalinity. Report as the anion HCO3-1
Carbonate See Alkalinity. Reported at the anion CO3-2

Calcium See Hardness. Common major cation of water chemistry.

Chloride Common major anion of water chemistry.

Conductance Physical test measuring water salinity (dissolved ions or solids)

Hardness Classical measure or capacity of water to precipitate soap (chiefly calcium and magnesium ions). Causes scaling tendency in

water if carbonates/bicarbonates are present (if >200 mg/L). For drinking water purposes waters with results <200 mg/L are considered acceptable, results >200 mg/L are considered poor but can be tolerated. Results >500 mg/L are unacceptable.

Hydroxide See alkalinity

Magnesium See hardness. Common major cation of water chemistry. Elevated levels (>125 mg/L) may exert a cathartic or diuretic action.

Measure of water acidity/alkalinity. Normal range is 7.0-8.5.

Potassium Common major cation of water chemistry.

Sodium Common major cation of water chemistry. Measure of salinity (saltiness). The aesthetic objective (not related to health) for

sodium in drinking water is 200 mg/L. However, where sodium concentration of the drinking water exceeds 20 mg/L, it is recommended that any person on a sodium restricted diet consult with his/her physician or Medical Officer of Health

concerning the use of that water.

Sulphate Common major anion of water chemistry. Elevated levels may exert a cathartic or diuretic action.

Total Dissolved Solids A measure of water salinity.

Iron Causes staining to laundry and porcelain and astringent taste. Oxidizes to red-brown precipitate on exposure to air.

Manganese Elevated levels may cause staining of laundry and porcelain. Heterotrophic

Plate Count Criteria is 500 cfu/mL Measure of heterotrophic bacteria present.

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L2068496

Report Date: 22-MAR-18

Page 1 of 5

Client: KGS Group Consultants (Winnipeg)

865 Waverly Street - 3rd Floor

Winnipeg MB R3T 5P4

Contact: Paul Lindell

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-TITR-WP	Water							
	89068							
WG2735653-10 Alkalinity, Total (a		L2068496-3 356	353		mg/L	1.0	20	19-MAR-18
WG2735653-4 Alkalinity, Total (a			101.4		%		85-115	19-MAR-18
WG2735653-9 Alkalinity, Total (a	LCS as CaCO3)		104.0		%		85-115	19-MAR-18
WG2735653-1 Alkalinity, Total (a	MB as CaCO3)		<1.0		mg/L		1	19-MAR-18
WG2735653-6 Alkalinity, Total (a	MB as CaCO3)		<1.0		mg/L		1	19-MAR-18
CL-IC-N-WP	Water							
Batch R399	92910							
WG2734198-6 Chloride (CI)	LCS		100.1		%		90-110	16-MAR-18
WG2734198-5 Chloride (CI)	МВ		<0.50		mg/L		0.5	16-MAR-18
EC-WP	Water							
Batch R398	89068							
WG2735653-10 Conductivity	DUP	L2068496-3 976	937		umhos/cm	4.1	10	19-MAR-18
WG2735653-3 Conductivity	LCS		100.1		%		90-110	19-MAR-18
WG2735653-8 Conductivity	LCS		99.8		%		90-110	19-MAR-18
WG2735653-1 Conductivity	МВ		<1.0		umhos/cm		1	19-MAR-18
WG2735653-6 Conductivity	МВ		<1.0		umhos/cm		1	19-MAR-18
MET-D-MS-WP	Water							
Batch R398	89069							
WG2735288-2 Calcium (Ca)-Dis			103.9		%		80-120	19-MAR-18
Magnesium (Mg)-			107.3		%		80-120	19-MAR-18
Potassium (K)-Dis			99.2		%		80-120	19-MAR-18
Sodium (Na)-Diss			104.7		%		80-120	19-MAR-18
WG2735288-1 Calcium (Ca)-Dis	MB solved		<0.50		mg/L		0.5	19-MAR-18

Workorder: L2068496

Report Date: 22-MAR-18

Page 2 of 5

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-MS-WP		Water							
Batch R3 WG2735288-1 Magnesium (Mg	989069 MB a)-Dissolv	ved .		<0.050		mg/L		0.05	19-MAR-18
Potassium (K)-I				<0.50		mg/L		0.5	19-MAR-18
Sodium (Na)-Di				<0.50		mg/L		0.5	19-MAR-18
NO2-L-IC-N-WP		Water							
	992910								
WG2734198-6 Nitrite (as N)	LCS			99.0		%		90-110	16-MAR-18
WG2734198-5 Nitrite (as N)	MB			<0.0010		mg/L		0.001	16-MAR-18
NO3-L-IC-N-WP		Water							
Batch R3	992910								
WG2734198-6 Nitrate (as N)	LCS			99.9		%		90-110	16-MAR-18
WG2734198-5 Nitrate (as N)	MB			<0.0050		mg/L		0.005	16-MAR-18
PH-WP		Water							
Batch R3	989068								
WG2735653-2 pH	LCS			7.42		pH units		7.3-7.5	19-MAR-18
WG2735653-7 pH	LCS			7.42		pH units		7.3-7.5	19-MAR-18
	991489								
WG2736519-2 pH	LCS			7.43		pH units		7.3-7.5	20-MAR-18
SO4-IC-N-WP		Water							
	992910								
WG2734198-6 Sulfate (SO4)	LCS			100.9		%		90-110	16-MAR-18
WG2734198-5 Sulfate (SO4)	MB			<0.30		mg/L		0.3	16-MAR-18
TC,EC-QT97-WP		Water							
Batch R3	987160								
WG2733897-1 Total Coliforms	DUP		L2068496-1 <1	<1	RPD-NA	MPN/100mL	N/A	65	16-MAR-18
Escherichia Col	i		<1	<1	RPD-NA	MPN/100mL	N/A	65	16-MAR-18

Workorder: L2068496 Report Date: 22-MAR-18 Page 3 of 5

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TC,EC-QT97-WP	Water							
Batch R3987160 WG2733897-2 MB								
Total Coliforms			<1		MPN/100mL		1	16-MAR-18
Escherichia Coli			<1		MPN/100mL		1	16-MAR-18
TURBIDITY-WP	Water							
Batch R3989369 WG2735177-2 LCS								
Turbidity			100.5		%		85-115	16-MAR-18
WG2735177-1 MB Turbidity			<0.10		NTU		0.1	16-MAR-18

Workorder: L2068496 Report Date: 22-MAR-18 Page 4 of 5

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2068496 Report Date: 22-MAR-18 Page 5 of 5

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рН							
	1	15-MAR-18 10:30	19-MAR-18 12:00	0.25	97	hours	EHTR-FM
	2	15-MAR-18 11:40	19-MAR-18 12:00	0.25	96	hours	EHTR-FM
	3	15-MAR-18 13:07	20-MAR-18 12:00	0.25	119	hours	EHTR-FM
	4	15-MAR-18 14:40	19-MAR-18 12:00	0.25	93	hours	EHTR-FM
	5	15-MAR-18 15:40	19-MAR-18 12:00	0.25	92	hours	EHTR-FM
	6	15-MAR-18 13:10	19-MAR-18 12:00	0.25	95	hours	EHTR-FM

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

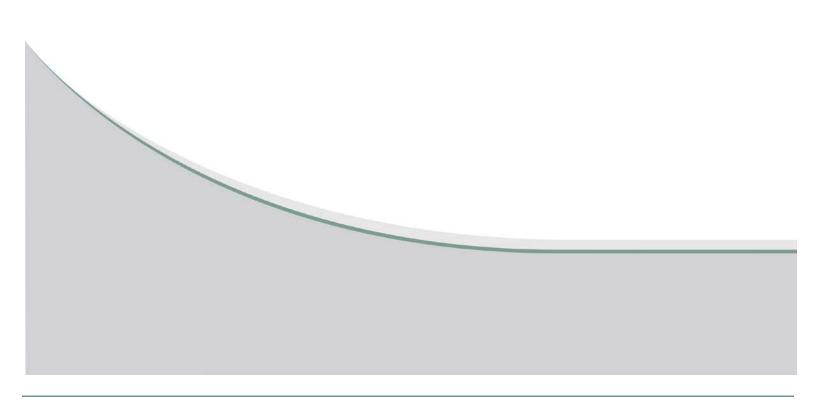
EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2068496 were received on 15-MAR-18 16:30.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.


The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Report To				Re	ропто	ппастоны вычен.		<i>_</i>	Servic	e Reque	st:(Rush s	ubject to	availabil	ity - Cor	ntact AL	S to con	firm TA	Γ) ·		
Company:	KGS Group				andard:	X Other (sp			X	Regular (Standard 1	Turnaroun	d Times	- Busine:	ss Days)				
Contact:	Poul LinDell	\			lect: PD	F X Excel	➤ Digital	Fax		Priority(2	-4 Busines	s Days)-5	0% surch	narge - C	Contact A	LS to co	nfirm TA	17		
Address: 8	65 waverier	Street will	~ My &	3T 584 En	nail 1: 🔽	LIDBEN OK	1250 coup, Co	~	L	Emergen	cy (1-2 Bu	siness Da	ys)-100%	Surcha	irge - Co	ntact AL	S to con	firm TAT	٢	
				En		melvla @ X				Same Da	y or Week	end Emer	gency - C	Contact A	ALS to p	onfirm TA	NT.			
	- 896-1209	Fax: 204-8	96-075	4		nsmith @X	Cosarroup, C	٥٨							eques					
	Same as Report ? (circle			ils) Cli		oject Information			3		(Ind	icate Fi	Itered	or Pre	serve	d, F/P)			
··	Copy of Invoice with Rep	port? (circle) 🚗	or No			<u>6-0306-00</u>			1			4		\angle			\leq	\triangle	4	
Company:				PC	O/AFE:	Mr Grood		1100	፯	3										
Contact: 🛕	counts gay	able		LS	D: M	18 Floodwa	<u> </u>		1 (2	1 1							- 1			
Address:	<u> </u>	·					l		1 7	6							1		.	ers
Phone: -		Fax:		Qu	uote#:	Q56271] [3	9797										ıtair
Lab Work Ord	der # (lab use only)	1 Q00	જાપજાપ	AL Co	.S \) ~ ho(Sampler: AT~	n/As	4419-4-211018-25)	<u>ل</u> ل										r of Cor
Sample #	(This	Sample Iden s description will ap		oort)	' '	Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	P										Number of Containers
•	K13-123	737				15 Mar-18	10:30	Gw	Х	X							· · · · · ·			Ŝ
2	K09- 12-					15 Mar-19		Ğω	X	×			-							3
b	K09-120					15 mw-18	T	60	×	×			1							3
v		•		·			14:40	Gω	<u>/</u>	X		+	+	<u> </u>	 					3
5		215				15 mar-18			+-	 			+ -						1	3
		614		 		15 mar-18	15 140	GW	×				+				.			
Ų	S-100					15 Nar-18	13:10	GW	×	×										3
		*																		
							<u> </u>				:									
		•																		
													<u> </u>							
	Special	Instructions / Re	gulation with w	vater or land u	se (CCN	/IE- Freshwater A	quatic Life/BC C	SR-Commercial/A	B Tie	r 1-Natı	ıral/ETC	C) / Haz	ardou	s Deta	ails					
Not f	itered / N	104 Preser	rved_				• • • •		_											
				omplete all po	ortions o	of this form may d	lelay analysis. F	Please fill in this fo	orm Li	EGIBLY										
	By t	he use of this for	m the user ack	nowledges an	d agrees	s with the Terms a	and Conditions	as specified on the	e baci	k page										
1	SHIPMENT RELEA					PMENT RECEPTI					SHI	PMEN		FICAT						
Released by:		Date:	Time:	Received by:	_	Date:	Time:	Temperature:	Veri	fied by:		Dat	e:		Time	e:		Obser Yes / I	rvation	is:
ller		Marak	4:30	af		15-Mar-17	4:30	5-2-0C											add S	IF.
REF	ER TO BACK PAGE FOR	ALS LOCATIONS AN	ND SAMPLING IN	IFORMATION			WHITE - LAB	DRATORY COPY	YELL	OW - C	LIENT C	OPY				1	GENF	18.01	Front	

APPENDIX D6-E-2 SPRING MELT

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087084
Project Ref: 16-0300-002
Sample ID: K13-12321
Sampled By: ATM & ACM
Date Collected: 30-APR-18
Lab Sample ID: L2087084-1

Matrix: GW

PAGE 1 of 13

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissol	lved Floodway						
	Bicarbonate (HCO3)	610		mg/L			03-MAY-18
	Carbonate (CO3)	<0.60		mg/L			03-MAY-18
	Hydroxide (OH)	<0.34		mg/L			03-MAY-18
	*Nitrate and Nitrite as N	3.78		mg/L	10		03-MAY-18
рН							
·	рН	7.37		pH units			02-MAY-18
Turbidity							
•	*Turbidity	2.88		NTU			02-MAY-18
TDS calculat	ed						
	TDS (Calculated)	648		mg/L		500	03-MAY-18
Sulfate in Wa	ater by IC						
	Sulfate (SO4)	80.6		mg/L		500	01-MAY-18
Nitrite in Wat	ter by IC (Low Level)						
Title iii Tita	*Nitrite (as N)	0.0011		mg/L	1		01-MAY-18
Nitrate in Wa	iter by IC (Low Level)				,		
Will all III Wa	*Nitrate (as N)	3.78		mg/L	10		01-MAY-18
Ion Balance		5 5		IIIg/L	10		
ion balance	Ion Balance	102		%			03-MAY-18
	Cation - Anion Balance	1.2		%			03-MAY-18
	Anion Sum	13.4		me/L			03-MAY-18
	Cation Sum	13.7		me/L			03-MAY-18
Hardness Ca	lculated						
	Hardness (as CaCO3)	613	ĺ	mg/L		500	03-MAY-18
Dissolved Me	etals by ICP-MS						
	Dissolved Metals	LAB					02-MAY-18
	Filtration Location Calcium (Ca)-Dissolved	83.6		m a/l			02-MAY-18
	Magnesium (Mg)-	98.1		mg/L mg/L			02-MAY-18
	Dissolved						
	Potassium (K)-Dissolved	5.11		mg/L			02-MAY-18
	Sodium (Na)-Dissolved	30.2		mg/L		200	02-MAY-18
Conductivity							
	Conductivity	1100		umhos/cm			02-MAY-18
Chloride in V	· · · · · · · · · · · · · · · · · · ·						
	Chloride (CI)	50.1		mg/L		250	01-MAY-18
Alkalinity, To	otal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	500		mg/L			02-MAY-18

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087084
Project Ref: 16-0300-002
Sample ID: K13-12321
Sampled By: ATM & ACM
Date Collected: 30-APR-18
Lab Sample ID: L2087084-1

Matrix: GW

PAGE 2 of 13

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total California and E asil by MDN 0707						
Total Coliform and E.coli by MPN QT97 Total Coliforms	<1		MPN/100mL			01-MAY-18
Escherichia Coli	<1		MPN/100mL	0		01-MAY-18
	DECEMBER	2015	1011101112	Ŭ		
CDWQG = Health Canada Guideline Limits updated			nit in 10mm/l . or	N.D. Jose than do	to ation limit	
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ	guidelines on cor iter Quality	ventional treatm	ent and slow sand	or diatomaceous e	tection limit. arth filtration plea	se see
Approved by						
Hua Wo Account Manager						

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087084
Project Ref: 16-0300-002
Sample ID: K09-12316
Sampled By: ATM & ACM
Date Collected: 30-APR-18
Lab Sample ID: L2087084-2

Matrix: GW

PAGE 3 of 13

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissol	lved Floodway						
	Bicarbonate (HCO3)	513		mg/L			03-MAY-18
	Carbonate (CO3)	<0.60		mg/L			03-MAY-18
	Hydroxide (OH)	<0.34		mg/L			03-MAY-18
	*Nitrate and Nitrite as N	2.24		mg/L	10		03-MAY-18
рН							
•	рН	7.43		pH units			02-MAY-18
Turbidity							
-	*Turbidity	0.96		NTU			02-MAY-18
TDS calculat	ed						
	TDS (Calculated)	528		mg/L		500	03-MAY-18
Sulfate in Wa	ater by IC						
	Sulfate (SO4)	61.5		mg/L		500	01-MAY-18
Nitrite in Wat	ter by IC (Low Level)						
	*Nitrite (as N)	0.0013		mg/L	1		01-MAY-18
Nitrate in Wa	ater by IC (Low Level)				·		
Title die in Tra	*Nitrate (as N)	2.24		mg/L	10		01-MAY-18
Ion Balance				9/ =			
ion balance	Ion Balance	102		%			03-MAY-18
	Cation - Anion Balance	1.0		%			03-MAY-18
	Anion Sum	10.9		me/L			03-MAY-18
	Cation Sum	11.1		me/L			03-MAY-18
Hardness Ca	alculated						
	Hardness (as CaCO3)	494		mg/L		500	03-MAY-18
Dissolved Me	etals by ICP-MS						
	Dissolved Metals	LAB					02-MAY-18
	Filtration Location Calcium (Ca)-Dissolved	75.8		mg/L			02-MAY-18
	Magnesium (Mg)-	74.1		mg/L			02-MAY-18
	Dissolved						
	Potassium (K)-Dissolved	4.29		mg/L			02-MAY-18
	Sodium (Na)-Dissolved	24.8		mg/L		200	02-MAY-18
Conductivity							
	Conductivity	885		umhos/cm			02-MAY-18
Chloride in V	•						
	Chloride (CI)	35.7		mg/L		250	01-MAY-18
Alkalinity, To	otal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	421		mg/L			02-MAY-18

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087084
Project Ref: 16-0300-002
Sample ID: K09-12316
Sampled By: ATM & ACM
Date Collected: 30-APR-18
Lab Sample ID: L2087084-2

Matrix: GW

PAGE 4 of 13

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97 Total Coliforms	<1		MPN/100mL	0		01-MAY-18
Escherichia Coli	<1		MPN/100mL	0		01-MAY-18
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de for diatomaceous e	tection limit. arth filtration plea	se see
Approved by Hua Wo	_					
Account Manager						

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087084
Project Ref: 16-0300-002
Sample ID: U09-13571
Sampled By: ATM & ACM
Date Collected: 30-APR-18
Lab Sample ID: L2087084-3

Matrix: GW

PAGE 5 of 13

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissolv	ved Floodway						
	Bicarbonate (HCO3)	488		mg/L			03-MAY-18
	Carbonate (CO3)	<0.60		mg/L			03-MAY-18
	Hydroxide (OH)	<0.34		mg/L			03-MAY-18
	*Nitrate and Nitrite as N	1.85		mg/L	10		03-MAY-18
рН							
•	рН	7.42		pH units			02-MAY-18
Turbidity							
•	*Turbidity	0.54		NTU			02-MAY-18
TDS calculate	ed						
	TDS (Calculated)	607		mg/L		500	03-MAY-18
Sulfate in Wat	ter by IC]				
	Sulfate (SO4)	102		mg/L		500	01-MAY-18
Nitrite in Wate	er by IC (Low Level)						
Title III Title	*Nitrite (as N)	<0.0010		mg/L	1		01-MAY-18
Nitrate in Wat	ter by IC (Low Level)						
Will ale III Wal	*Nitrate (as N)	1.85		mg/L	10		01-MAY-18
Ion Balance C		1.00		IIIg/L	10		
ion balance C	Ion Balance	102		%			03-MAY-18
	Cation - Anion Balance	1.0		%			03-MAY-18
	Anion Sum	12.0		me/L			03-MAY-18
	Cation Sum	12.2		me/L			03-MAY-18
Hardness Cal	culated						
	Hardness (as CaCO3)	509	(mg/L		500	03-MAY-18
Dissolved Me	etals by ICP-MS						
	Dissolved Metals	LAB					02-MAY-18
	Filtration Location	70.0					00 MAN/ 46
	Calcium (Ca)-Dissolved Magnesium (Mg)-	76.8 77.2		mg/L			02-MAY-18
	Dissolved	11.2		mg/L			02-1017 1 - 10
	Potassium (K)-Dissolved	4.83		mg/L			02-MAY-18
	Sodium (Na)-Dissolved	44.6		mg/L		200	02-MAY-18
Conductivity							
	Conductivity	1010		umhos/cm			02-MAY-18
Chloride in W	ater by IC						
	Chloride (CI)	62.1		mg/L		250	01-MAY-18
Alkalinity, Tot	tal (as CaCO3)						
-	Alkalinity, Total (as CaCO3)	400		mg/L			02-MAY-18

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087084
Project Ref: 16-0300-002
Sample ID: U09-13571
Sampled By: ATM & ACM
Date Collected: 30-APR-18
Lab Sample ID: L2087084-3

Matrix: GW

PAGE 6 of 13

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa-A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWC	guidelines on con ater Quality	ventional treatm	nent and slow sand	N.D. = less than de d or diatomaceous e	tection limit. arth filtration plea	se see
Approved by Hua Wo	_					
Account Manager						

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087084
Project Ref: 16-0300-002
Sample ID: K11-12018
Sampled By: ATM & ACM
Date Collected: 30-APR-18
Lab Sample ID: L2087084-4

Matrix: GW

PAGE 7 of 13

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissolv	ved Floodway						
	Bicarbonate (HCO3)	736		mg/L			03-MAY-18
	Carbonate (CO3)	<0.60		mg/L			03-MAY-18
	Hydroxide (OH)	<0.34		mg/L			03-MAY-18
	*Nitrate and Nitrite as N	<0.0051		mg/L	10		03-MAY-18
рН							
	рН	7.20		pH units			02-MAY-18
Turbidity							
-	*Turbidity	8.06		NTU			02-MAY-18
TDS calculate	ed						
	TDS (Calculated)	695		mg/L		500	03-MAY-18
Sulfate in Wa	iter by IC						
	Sulfate (SO4)	102		mg/L		500	01-MAY-18
Nitrite in Wate	er by IC (Low Level)						
	*Nitrite (as N)	<0.0010		mg/L	1		01-MAY-18
Nitrate in Wat	ter by IC (Low Level)				·		
	*Nitrate (as N)	<0.0050		mg/L	10		01-MAY-18
Ion Balance C				9_			
ion Balance C	Ion Balance	102		%			03-MAY-18
	Cation - Anion Balance	0.8		%			03-MAY-18
	Anion Sum	14.3		me/L			03-MAY-18
	Cation Sum	14.5		me/L			03-MAY-18
Hardness Cal	lculated						
	Hardness (as CaCO3)	654		mg/L		500	03-MAY-18
Dissolved Me	etals by ICP-MS						
	Dissolved Metals	LAB					02-MAY-18
	Filtration Location Calcium (Ca)-Dissolved	89.6		mg/L			02-MAY-18
	Magnesium (Mg)-	105		mg/L			02-MAY-18
	Dissolved						
	Potassium (K)-Dissolved	5.03		mg/L			02-MAY-18
	Sodium (Na)-Dissolved	28.9		mg/L		200	02-MAY-18
Conductivity							
	Conductivity	1090		umhos/cm			02-MAY-18
Chloride in W	•						
	Chloride (CI)	2.51		mg/L		250	01-MAY-18
Alkalinity, To	tal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	603		mg/L			02-MAY-18

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087084
Project Ref: 16-0300-002
Sample ID: K11-12018
Sampled By: ATM & ACM
Date Collected: 30-APR-18
Lab Sample ID: L2087084-4

Matrix: GW

PAGE 8 of 13

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than del d or diatomaceous e	ection limit. arth filtration plea	se see
Approved by Hua Wo Account Manager						

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087084
Project Ref: 16-0300-002
Sample ID: SWPTH44
Sampled By: ATM & ACM
Date Collected: 30-APR-18
Lab Sample ID: L2087084-5

Matrix: SW

PAGE 9 of 13

Test Descr	iption	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Total Floodway							
Bicarbona	ate (HCO3)	210		mg/L			03-MAY-18
Carbonat	e (CO3)	5.76		mg/L			03-MAY-18
Hydroxide	e (OH)	<0.34		mg/L			03-MAY-18
*Nitrate ar	d Nitrite as N	<0.0051		mg/L	10		03-MAY-18
рН							
pH		8.44		pH units			02-MAY-18
Turbidity							
*Turbidity		27.6		NTU			02-MAY-18
Total Metals by ICP-MS							
Calcium (Ca)-Total	44.5		mg/L			02-MAY-18
Magnesiu	ım (Mg)-Total	29.2		mg/L			02-MAY-18
	n (K)-Total	6.42		mg/L			02-MAY-18
Sodium (Na)-Total	24.7		mg/L		200	02-MAY-18
TDS calculated							
TDS (Cal	culated)	301		mg/L		500	03-MAY-18
Sulfate in Water by IC							
Sulfate (S	SO4)	56.5		mg/L		500	01-MAY-18
Nitrite in Water by IC (Low	Level)						
*Nitrite (as	5 N)	<0.0010		mg/L	1		01-MAY-18
Nitrate in Water by IC (Lov	v Level)						
*Nitrate (a	s N)	<0.0050		mg/L	10		01-MAY-18
Ion Balance Calculation							
Ion Balan		103		%			03-MAY-18
	Anion Balance	1.7		%			03-MAY-18
Anion Su Cation Su		5.67 5.86		me/L			03-MAY-18 03-MAY-18
	1111	5.66		me/L			03-IVIA 1 - 10
Hardness Calculated	(an CaCO3)	231	HTC	a./I		500	03-MAY-18
	(as CaCO3)	231	1110	mg/L		500	03-IVIA 1 - 10
Conductivity	26	400					00 MAY 40
Conductiv	Лty	496		umhos/cm			02-MAY-18
Chloride in Water by IC	·						
Chloride		30.4		mg/L		250	01-MAY-18
Alkalinity, Total (as CaCO							
Alkalinity, CaCO3)	Total (as	182		mg/L			02-MAY-18
Phosphoi	rus (P)-Total	0.175		mg/L			03-MAY-18
	, Total (as N)	<0.010		mg/L			02-MAY-18

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087084
Project Ref: 16-0300-002
Sample ID: SWPTH44
Sampled By: ATM & ACM
Date Collected: 30-APR-18
Lab Sample ID: L2087084-5

Matrix: SW

PAGE 10 of 13

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Escherichia Coli	5		MPN/100mL	0		01-MAY-18
Total Coliforms	649		MPN/100mL	0		01-MAY-18
Total Kjeldahl Nitrogen	0.84		mg/L			04-MAY-18
Total Suspended Solids	29.2		mg/L			04-MAY-18
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa-A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWG 	guidelines on cor ater Quality	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration plea	ase see
Approved by Hua Wo Account Manager						

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087084
Project Ref: 16-0300-002
Sample ID: SW100
Sampled By: ATM & ACM
Date Collected: 30-APR-18
Lab Sample ID: L2087084-6

Matrix: SW

PAGE 11 of 13

Т	est Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Total Floor	dway						
	Bicarbonate (HCO3)	208		mg/L			03-MAY-18
	Carbonate (CO3)	6.48		mg/L			03-MAY-18
	Hydroxide (OH)	<0.34		mg/L			03-MAY-18
*	Nitrate and Nitrite as N	<0.0051		mg/L	10		03-MAY-18
рН							
-	рН	8.46		pH units			02-MAY-18
Turbidity				·			
-	Turbidity	28.3		NTU			02-MAY-18
Total Metals by IC	CP-MS						
	Calcium (Ca)-Total	45.9		mg/L			03-MAY-18
	Magnesium (Mg)-Total	25.0		mg/L			03-MAY-18
	Potassium (K)-Total	6.04		mg/L			03-MAY-18
	Sodium (Na)-Total	22.4		mg/L		200	03-MAY-18
TDS calculated							
	TDS (Calculated)	295		mg/L		500	04-MAY-18
Sulfate in Water b	by IC						
	Sulfate (SO4)	56.5		mg/L		500	01-MAY-18
Nitrite in Water by	y IC (Low Level)						
*	Nitrite (as N)	0.0020		mg/L	1		01-MAY-18
Nitrate in Water b	y IC (Low Level)						
*	Nitrate (as N)	<0.0050		mg/L	10		01-MAY-18
Ion Balance Calc	ulation						
	Ion Balance	96.7		%			04-MAY-18
	Cation - Anion Balance	-1.7		%			04-MAY-18
	Anion Sum Cation Sum	5.66 5.48		me/L			04-MAY-18 04-MAY-18
		5.46		me/L			04-IVIA 1 - 10
Hardness Calcula		217	нтс	a./I		500	04-MAY-18
	Hardness (as CaCO3)	217	1110	mg/L		500	04-IVIA 1 - 10
Conductivity	On a death the	400		. ,			00 MAY 40
	Conductivity	496		umhos/cm			02-MAY-18
Chloride in Water	•						
	Chloride (CI)	30.5		mg/L		250	01-MAY-18
Alkalinity, Total (a							
	Alkalinity, Total (as CaCO3)	182		mg/L			02-MAY-18
	Phosphorus (P)-Total	0.180		mg/L			03-MAY-18
	Ammonia, Total (as N)	<0.010		mg/L			02-MAY-18

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087084
Project Ref: 16-0300-002
Sample ID: SW100
Sampled By: ATM & ACM
Date Collected: 30-APR-18
Lab Sample ID: L2087084-6

Matrix: SW

PAGE 12 of 13

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Escherichia Coli	5		MPN/100mL	0		01-MAY-18
Total Coliforms	866		MPN/100mL	0		01-MAY-18
Total Kjeldahl Nitrogen	0.74		mg/L			04-MAY-18
Total Suspended Solids	34.8		mg/L			04-MAY-18
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wall-A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ Approved by Hua Wo Account Manager	guidelines on cor iter Quality	ventional treatn	ent and slow sand	N.D. = less than de	tection limit. arth filtration ple	ase see

Guidelines & Objectives

Sample Parameter Qualifier key listed:

Qualifier Description

HTC Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).

Health Canada MAC Health Related Criteria Limits

Nitrate/Nitrite-N* Criteria limit is 10 mg/L (1.0 mg/L if present as all Nitrite-N). High concentrations may contribute to blue baby syndrome in infants.

Lead* A cumulative body poison, uncommon in naturally occurring hard waters.

Fluoride* Present in fluoridated water supplies at 0.8 mg/L to reduce dental caries. Elevated levels causes fluorosis (mottling of teeth).

Total Coliforms* Criteria is 0 CFU/100mL. Adverse health effects.

E. Coli* Criteria is 0 CFU/100 mL. Certain E. Coli bacteria can be life threatening.

*Health Canada Canadian Drinking Water Quality Guidelines (MAC limit)

Aesthetic Objective Concentration Levels

Alkalinity Acid neutralizing capacity. Usually a measure of carbonate and bicarbonates and calculated and reported as calcium carbonate.

Balance Quality control parameter ratioing cations to anions
Bicarbonate See Alkalinity. Report as the anion HCO3-1
Carbonate See Alkalinity. Reported at the anion CO3-2

Calcium See Hardness. Common major cation of water chemistry.

Chloride Common major anion of water chemistry.

Conductance Physical test measuring water salinity (dissolved ions or solids)

Hardness Classical measure or capacity of water to precipitate soap (chiefly calcium and magnesium ions). Causes scaling tendency in

water if carbonates/bicarbonates are present (if >200 mg/L). For drinking water purposes waters with results <200 mg/L are considered acceptable, results >200 mg/L are considered poor but can be tolerated. Results >500 mg/L are unacceptable.

Hydroxide See alkalinity

Magnesium See hardness. Common major cation of water chemistry. Elevated levels (>125 mg/L) may exert a cathartic or diuretic action.

Measure of water acidity/alkalinity. Normal range is 7.0-8.5.

Potassium Common major cation of water chemistry.

Sodium Common major cation of water chemistry. Measure of salinity (saltiness). The aesthetic objective (not related to health) for

sodium in drinking water is 200 mg/L. However, where sodium concentration of the drinking water exceeds 20 mg/L, it is recommended that any person on a sodium restricted diet consult with his/her physician or Medical Officer of Health

concerning the use of that water.

Sulphate Common major anion of water chemistry. Elevated levels may exert a cathartic or diuretic action.

Total Dissolved Solids A measure of water salinity.

Iron Causes staining to laundry and porcelain and astringent taste. Oxidizes to red-brown precipitate on exposure to air.

Manganese Elevated levels may cause staining of laundry and porcelain. Heterotrophic

Plate Count Criteria is 500 cfu/mL Measure of heterotrophic bacteria present.

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million.

< - Less than.

nН

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L2087084 Report Date: 08-MAY-18

Page 1 of 6

Client: KGS Group Consultants (Winnipeg)

865 Waverly Street - 3rd Floor

Winnipeg MB R3T 5P4

Contact: Marci Friedman Hamm

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-TITR-WP	Water							
Batch R4031307 WG2763726-10 DUP Alkalinity, Total (as CaCo	O3)	L2087084-3 400	398		mg/L	0.4	20	02-MAY-18
WG2763726-4 LCS Alkalinity, Total (as CaCo	O3)		102.4		%		85-115	02-MAY-18
WG2763726-9 LCS Alkalinity, Total (as CaCo	O3)		99.9		%		85-115	02-MAY-18
WG2763726-1 MB Alkalinity, Total (as CaCo	O3)		<1.0		mg/L		1	02-MAY-18
WG2763726-6 MB Alkalinity, Total (as CaCo	O3)		<1.0		mg/L		1	02-MAY-18
CL-IC-N-WP	Water							
Batch R4031661 WG2762141-6 LCS Chloride (CI)			100.3		%		90-110	01-MAY-18
WG2762141-5 MB Chloride (CI)			<0.50		mg/L		0.5	01-MAY-18
EC-QT97-ENDPT-WP	Water							
Batch R4030596 WG2762340-4 DUP Escherichia Coli		L2087084-5 5	2	DUP-H	MPN/100mL	89	65	01-MAY-18
WG2762340-3 MB Escherichia Coli		Ü	<1	DOI -11	MPN/100mL	03	1	01-MAY-18
EC-WP	Water							
Batch R4031307 WG2763726-10 DUP		L2087084-3						
Conductivity WG2763726-3 LCS		1010	1010		umhos/cm	0.1	10	02-MAY-18
Conductivity WG2763726-8 LCS			96.7 97.2		%		90-110	02-MAY-18
Conductivity WG2763726-1 MB Conductivity			97.2 <1.0		% umhos/cm		90-110	02-MAY-18 02-MAY-18
WG2763726-6 MB Conductivity			<1.0		umhos/cm		1	02-MAY-18
MET-D-MS-WP	Water		•		22.2, 3		·	02 W// (1-10

N-TOTKJ-WP

Water

Quality Control Report

Page 2 of 6

Workorder: L2087084 Report Date: 08-MAY-18

Test Matrix Reference Result Qualifier Units **RPD** Limit Analyzed MET-D-MS-WP Water Batch R4031209 WG2763283-2 LCS Calcium (Ca)-Dissolved 101.3 % 80-120 02-MAY-18 Magnesium (Mg)-Dissolved 107.7 % 02-MAY-18 80-120 Potassium (K)-Dissolved 100.1 % 80-120 02-MAY-18 Sodium (Na)-Dissolved 104.1 % 80-120 02-MAY-18 WG2763283-1 Calcium (Ca)-Dissolved < 0.50 mg/L 0.5 02-MAY-18 < 0.050 Magnesium (Mg)-Dissolved mg/L 0.05 02-MAY-18 Potassium (K)-Dissolved < 0.50 mg/L 0.5 02-MAY-18 Sodium (Na)-Dissolved < 0.50 mg/L 0.5 02-MAY-18 MET-T-MS-WP Water Batch R4031209 WG2763221-2 LCS Calcium (Ca)-Total 97.4 % 02-MAY-18 80-120 Magnesium (Mg)-Total 109.7 % 80-120 02-MAY-18 Potassium (K)-Total 98.1 % 80-120 02-MAY-18 Sodium (Na)-Total 102.8 % 80-120 02-MAY-18 WG2763221-1 Calcium (Ca)-Total < 0.50 mg/L 0.5 02-MAY-18 Magnesium (Mg)-Total < 0.050 mg/L 0.05 02-MAY-18 Potassium (K)-Total <0.50 mg/L 0.5 02-MAY-18 Sodium (Na)-Total < 0.50 mg/L 0.5 02-MAY-18 R4032905 Batch WG2764068-2 LCS Calcium (Ca)-Total 93.5 % 80-120 03-MAY-18 Magnesium (Mg)-Total 102.6 % 80-120 03-MAY-18 Potassium (K)-Total 99.9 % 80-120 03-MAY-18 Sodium (Na)-Total 99.8 % 80-120 03-MAY-18 WG2764068-1 <0.50 Calcium (Ca)-Total mg/L 0.5 03-MAY-18 Magnesium (Mg)-Total < 0.050 mg/L 0.05 03-MAY-18 Potassium (K)-Total < 0.50 mg/L 0.5 03-MAY-18 Sodium (Na)-Total < 0.50 mg/L 0.5 03-MAY-18

Workorder: L2087084

Report Date: 08-MAY-18

Page 3 of 6

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
N-TOTKJ-WP	Water							
Batch R4033470 WG2761420-10 LCS Total Kjeldahl Nitrogen			108.6		%		75-125	04-MAY-18
WG2761420-9 MB Total Kjeldahl Nitrogen			<0.20		mg/L		0.2	04-MAY-18
NH3-COL-WP	Water							
Batch R4031908 WG2763944-2 LCS Ammonia, Total (as N)			99.7		%		85-115	02-MAY-18
WG2763944-1 MB Ammonia, Total (as N)			<0.010		mg/L		0.01	02-MAY-18
NO2-L-IC-N-WP	Water							
Batch R4031661 WG2762141-6 LCS Nitrite (as N)			99.0		%		90-110	01-MAY-18
WG2762141-5 MB Nitrite (as N)			<0.0010		mg/L		0.001	01-MAY-18
NO3-L-IC-N-WP	Water							
Batch R4031661 WG2762141-6 LCS Nitrate (as N)			101.2		%		90-110	01-MAY-18
WG2762141-5 MB Nitrate (as N)			<0.0050		mg/L		0.005	01-MAY-18
P-T-L-COL-WP	Water							
Batch R4033256 WG2764646-14 LCS			101.1		%		00.400	00 1417/40
Phosphorus (P)-Total WG2764646-13 MB Phosphorus (P)-Total			<0.0010		mg/L		80-120 0.001	03-MAY-18 03-MAY-18
PH-WP	Water				C			
Batch R4031307 WG2763726-10 DUP pH		L2087084-3 7.42	7.39	J	pH units	0.03	0.2	02-MAY-18
WG2763726-2 LCS pH			7.39		pH units		7.3-7.5	02-MAY-18
WG2763726-7 LCS pH			7.39		pH units		7.3-7.5	02-MAY-18
SO4-IC-N-WP	Water							

Workorder: L2087084 Report Date: 08-MAY-18 Page 4 of 6

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SO4-IC-N-WP	Water							
Batch R4031661								
WG2762141-6 LCS Sulfate (SO4)			100.8		%		90-110	01-MAY-18
WG2762141-5 MB Sulfate (SO4)			<0.30		mg/L		0.3	01-MAY-18
SOLIDS-TOTSUS-WP	Water							
Batch R4035288								
WG2764707-10 LCS Total Suspended Solids			92.0		%		85-115	04-MAY-18
WG2764707-9 MB Total Suspended Solids			<2.0		mg/L		2	04-MAY-18
TC,EC-QT97-WP	Water							
Batch R4030646 WG2762186-2 DUP		L2087084-1						
Total Coliforms		<1	<1	RPD-NA	MPN/100mL	N/A	65	01-MAY-18
Escherichia Coli		<1	<1	RPD-NA	MPN/100mL	N/A	65	01-MAY-18
WG2762186-1 MB Total Coliforms			<1		MPN/100mL		1	01-MAY-18
Escherichia Coli			<1		MPN/100mL		1	01-MAY-18
TC-QT97-ENDPT-WP	Water							
Batch R4030600								
WG2762342-2 DUP Total Coliforms		L2087084-5 649	435		MPN/100mL	39	65	01-MAY-18
WG2762342-1 MB Total Coliforms			<1		MPN/100mL		1	01-MAY-18
TURBIDITY-WP	Water							
Batch R4031688								
WG2763322-3 DUP Turbidity		L2087084-1 2.88	2.94		NTU	2.1	15	02-MAY-18
WG2763322-2 LCS Turbidity			98.5		%		85-115	02-MAY-18
WG2763322-1 MB								

Workorder: L2087084 Report Date: 08-MAY-18 Page 5 of 6

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
DUP-H	Duplicate results outside ALS DQO, due to sample heterogeneity.
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2087084 Report Date: 08-MAY-18 Page 6 of 6

Hold Time Exceedances:

	Sample						
ALS Product Description	ID [.]	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рН							
	1	30-APR-18 10:45	02-MAY-18 12:00	0.25	49	hours	EHTR-FM
	2	30-APR-18 11:25	02-MAY-18 12:00	0.25	48	hours	EHTR-FM
	3	30-APR-18 12:35	02-MAY-18 12:00	0.25	48	hours	EHTR-FM
	4	30-APR-18 15:45	02-MAY-18 12:00	0.25	44	hours	EHTR-FM
	5	30-APR-18 12:50	02-MAY-18 12:00	0.25	47	hours	EHTR-FM
	6	30-APR-18 16:00	02-MAY-18 12:00	0.25	44	hours	EHTR-FM

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2087084 were received on 01-MAY-18 08:45.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody (COC) / Analytical Request Form

L2087084-COFC

YELLOW - CLIENT COPY

COC Number:	14 -	4!	5	0	3	7	9
-------------	------	----	---	---	---	---	---

NA-FM-0326e v08 Front/03 October 2013

Page _____ of ____

Environmental

www.alediahal.com

Canada Toll Free: 1 800 668 9878

www.aisglobai.com		<u></u>						J	. [
Report To		Report Format	/ Distribution			Sel	ect Service	Level Bel	low (Rusi	h Tumaro	ound Time	e (TAT) is	not avalla	ble for all t	ests)	
Company: KGS Group	Select Report F	ormat: PE	F DXCEL	EDD (DIGITAL)	R	Regi	ilar (Standar	d TAT if r	received b	by 3pm) _y	::COLDK	S are i	n.			
Contact: Marci Friedman-Hamm Address: 3rd Floor-Bas Waverleyst	Quality Control	(QC) Report with Rep	ort 🔽 Yes	No 🗀 No	Рί	. II Prio	ity (2-4 busi	nėss days	if receive	ed by 3pi	m) KSO	267791	\$	- 3		
Address: 3rd Floor-865 Waverleust.	Criteria on I	Report - provide details belo			E '	3 Eme	rgency (1-2	business o	days if re	ceived by	у Зрті) ^{Т І}	- 41 AO,	MC.		•	
Winniped MB KSTSP	Select Distributi				E2 .	Sam	e day or wee	ekend em	ergency i	receive	d by 10a	m – conta	ct ALS for	r surcharge	3,	
Phone: 204-896-1209	Email 1 or Fax	mfhamme	Kasarou	p. com	Specify	Date Re	quired for	E2,E or	r P:	Щ.						
404-940-1404	Email 2	<u>ndell@kq:</u>		<u>mż</u>			, B) (1)					est "19				
nvoice To Same as Report To ☐ Yes No		Invoice Bis	stribution			Indic	ate Filtered ((F), Prese	rved (P)	or Filtered	d and Pre	served (F	/P) below		·	.
Copy of Invoice with Report Ti Yes Ti No	Setect Invoice D	estribution:	EMAIL MAI	_ FAX		Marine 1. 19	en din e	. ц		: OA		+10-3				ا ب[
Company: KGS Group	Email 1 or Fax	wmacqua	rneeka	Saroup con	3	7.1	3	er EFES		0.	3	ι <u>β</u> ,	-]
Contact: Bill MacQuarrie	Email 2			, ,] [] [And the	The l	io iis		9	$ \mathcal{I}_{\mathcal{I}} $	T	ابيد			و
Project Information The Projec		Oil and Gas Require	d Fields (client us	ie)	[중]	3 4	3 da E	1 1 1	م ى	2 / 4/1	STONE OF THE PARTY	P.	le .			ajie
ALS Quote #: Q56271	Approver ID:		Cost Center:		4	구발	<u> 7</u> ' 7.	.3 9.	3	\ Y }	M	· \Z "	9	1 6	• 1	Containe
10b#: 16-0300-002	GL Account:	 	Routing Code:		4	11	エルク	اروا	1,	Torsús	: 1	100 m			1.,	J. S
POTAFE:	Activity Code:		<u> </u>		ΙĢΙ	φ,,	12 12	1	ᅰ	d ₁ -	8	N-	·.	``	4 5	Number of
.SD:	Location:] ¦	정말	3 -∵	7	ମ	: -		20 J A	r			<u>§</u>
ALS Lab Work Order # (lab use only)	ALS Contact:	Judy	Sampler:	M+ACM	NOS II	$\mathcal{B}_{\mathbf{a}}$		Q,	3.	Somos	8	8	• A.	.Hg. (
ALS Sample # Sample Identification and/or Coordinates	7*7	Date	Time	1	131	7 3	نا الا	:		- <u>T</u>	\mathcal{I}_{i}	[]		1 de	ا الا	'
(lab use only) (This description will appear on the report)	,,	(dd-mmm-yy)	(hh:mm)	Sample Type	8	5 3	2 2	2	多	8	Y	Ж				
K13-12321		30-APR-18	10:45	GW	×	文 .	d-		J	- 4			* *		+	3
K09-12316		1	11:25	1			1	1.,1	17k #		: 1	1	\dashv	1	+-	3
1009-13571			12:35	1	S	- -	-				-r	- +	+	44 4 44		131
K11-12018 4		<u> </u>	15:45	₩.					+	-: +		_	+	+		[중]
SWPTH 44	·	 	12:50	SW			_				ightharpoonup	$\overline{}$	-+	+	+-	な る 5
	.0		16:00	1	+ +					\Longrightarrow	\Rightarrow	\ominus			+	डि
SW1∞	.,,	· ·	16,00		1	<u> </u>	17			- 	\rightarrow	~ -	$\overline{}$		+-	121
	V	National States of the States			├					\dashv		7 -		-	+	╂
		ļ			╁				.	\dashv	` 				+	+
5 - 100 0 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				<u> </u>						\rightarrow	-+					
				<u> </u>	 					\rightarrow		-+	-+			1
	***			-	 						+.	-		+	~+	7
<u> </u>				1			CARA	DI E CO	NATIVETIC	001.46	BECEI	VED (lal	b 1120 c			┸
Drinking Water (DW) Samples¹ (client use) Spec	cial Instructions / Spe	cify Criteria to add on	report (client Use)	_/ **	Frozen		JAIN	FEE CC			servation		Yes		Νo	
Are samples taken from a Regulated DW System?	10+ filte	red		<u>, 7</u>	ice pac	ks Ye	s 🔲	No		Custod	y seal ir	ntact	Yes		No .	
Tyes TNo	ter samo	es not or	eservec	9 📐 💮 🥕	Cooling	Initiated		7 P. C.			Pa 1 1 1 1		, i	raylar		
Are samples for human drinking water use?	Pater Same	les arese	rved.	•	INF	TIAL COOL	ER TEMPER	RATURES	°C	100	Fil	VAL COOL	ER TEM	PERATURE	ES ºC	
Tyes INO Are samples for human drinking water use? Surface will yes INO Please Fil	ter Wor	preserve	in lab.		الايمساد	4				, Kolo	A 10 4 0		5			
SHIPMENT RELEASE (client use)	INITIAL	SHIPMENT RECEPT	ION (lab use only) · · · · · · · · · · · · · · · · · · ·			F	INAL SI	HPMEN		_	N (lab u)		
Released-by: May 1/18 B:30 Reco	eived by: AAL		Date: 1/05/14	B11/5	µRece∖∖	red by:					Date:		Time:			1
Anil Mallon May 1/18 8:30	TIPU		ツレラノ/外	6100	1	1.5						1.5	1			- 1

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Yerms and Conditions as specified on the back page of the white - report copy.

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087686
Project Ref: 16-0300-002
Sample ID: K09-12012
Sampled By: ATM + ACM
Date Collected: 01-MAY-18
Lab Sample ID: L2087686-1

Matrix: GW

PAGE 1 of 17

Carbonate (CO3) Carbonate (CO3) Carbonate (CO3) Carbonate (CO4) Carbonate		Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Carbonate (CO3)	ROU1W Dissolv	ved Floodway						
Hydroxide (OH)		Bicarbonate (HCO3)	411		mg/L			03-MAY-18
*Nitrate and Nitrite as N		Carbonate (CO3)	<0.60		mg/L			03-MAY-18
pH		Hydroxide (OH)	<0.34		mg/L			03-MAY-18
Turbidity		*Nitrate and Nitrite as N	<0.0051		mg/L	10		03-MAY-18
Turbidity *Turbidity *Turbid *Turbidity *Turbidity *Turbidity *Turbidity *Turbidity *Turbidity *Turbidity	Hq							
Turbidity TDS calculated TDS (Calculated) TDS (Calculated) TDS (Calculated) TDS (Calculated) TDS (Calculated) TDS (Calculated) Sulfate in Water by IC Sulfate (SO4) Nitrite in Water by IC (Low Level) *Nitrite (as N) Nitrate in Water by IC (Low Level) *Nitrate (as N) Ion Balance Cation - Anion Balance Cation - Anion Balance Cation - Sum 11.4 Hardness Calculated Hardness (as CaCO3) Dissolved Metals by ICP-MS Dissolved Metals Filtration Location Calcium (Ca)-Dissolved Alagnesium (Mg)- Dissolved Potassium (Na)-Dissolved Conductivity Conductivity Conductivity Conductivity Potassium (Na)-Dissolved Alkalinity, Total (as CaCO3)	•	рН	7.52		pH units			02-MAY-18
Turbidity 10.8 NTU 02-MA TDS calculated TDS (Calculated) 611 mg/L 500 04-MA* Sulfate in Water by IC Sulfate (SO4) 192 mg/L 500 02-MA* Nitrite in Water by IC (Low Level) *Nitrite (as N) < 0.0010 mg/L 1 02-MA* Nitrate in Water by IC (Low Level) *Nitrate (as N)	Turbidity				·			
TDS (Calculated) 611 mg/L 500 04-MA		*Turbidity	10.8		NTU			02-MAY-18
TDS (Calculated) 611	TDS calculate	ed						
Sulfate in Water by IC Sulfate (SO4) 192 mg/L 500 02-MA			611		ma/L		500	04-MAY-18
Sulfate (SO4) 192 mg/L 500 02-MA	Sulfate in Wa	iter by IC]				
Nitrite in Water by IC (Low Level)	Canale III Wa		192		ma/l		500	02-MAY-18
*Nitrate in Water by IC (Low Level) *Nitrate (as N)	Nitrite in Wat				9/ =			
Nitrate in Water by IC (Low Level) *Nitrate (as N)	with the in wat	• •	<0.0010		ma/l	1		02-MAY-18
*Nitrate (as N)	Nitroto in Wo	, ,	10.0010		IIIg/L	'		02 1111 11
Ion Balance Calculation	Miliale III Wa	• •	<0.0050		ma/l	10		02-MAY-18
Ion Balance	lan Balanca (<0.0050		IIIg/L	10		02-WAT-10
Cation - Anion Balance	ion Balance C		00.4		0/			04-MAY-18
Anion Sum								04-MAY-18
Cation Sum								04-MAY-1
Hardness (as CaCO3)								04-MAY-18
Dissolved Metals by ICP-MS	Hardness Cal	Iculated						
Dissolved Metals by ICP-MS		Hardness (as CaCO3)	462		mg/L		500	04-MAY-18
Dissolved Metals Filtration Location Calcium (Ca)-Dissolved 74.4 mg/L 03-MA	Dissolved Me	etals by ICP-MS						
Filtration Location Calcium (Ca)-Dissolved 74.4 mg/L 03-MA		-	LAB					03-MAY-18
Magnesium (Mg)- Dissolved Potassium (K)-Dissolved Potassium (Na)-Dissolved Assolium (Na)-Dissolved Sodium (Na)-Dissolved Assolium (Na)-Dissolve		Filtration Location						
Dissolved Potassium (K)-Dissolved 4.33 mg/L 03-MA Sodium (Na)-Dissolved 45.9 mg/L 200 03-MA Conductivity 953 umhos/cm Chloride in Water by IC Chloride (CI) 24.4 mg/L 250 02-MA Alkalinity, Total (as CaCO3) Alkalinity, Total (as 337 mg/L 02-MA 02-					-			03-MAY-1
Potassium (K)-Dissolved 4.33 mg/L 200 03-MA			67.2		mg/L			03-MAY-1
Conductivity 953 umhos/cm 02-MA Chloride in Water by IC Chloride (Cl) 24.4 mg/L 250 02-MA Alkalinity, Total (as CaCO3) Alkalinity, Total (as 337 mg/L 02-MA			4.33		mg/L			03-MAY-18
Conductivity 953 umhos/cm Chloride in Water by IC Chloride (Cl) 24.4 mg/L 250 02-MA Alkalinity, Total (as CaCO3) Alkalinity, Total (as 337 mg/L 02-MA		Sodium (Na)-Dissolved	45.9		mg/L		200	03-MAY-18
Chloride in Water by IC 24.4 mg/L 250 02-MA Alkalinity, Total (as CaCO3) Alkalinity, Total (as 337 mg/L 02-MA	Conductivity							
Chloride (CI) 24.4 mg/L 250 02-MA Alkalinity, Total (as CaCO3) Malkalinity, Total (as 337 mg/L 02-MA		Conductivity	953		umhos/cm			02-MAY-18
Chloride (CI) 24.4 mg/L 250 02-MA Alkalinity, Total (as CaCO3) Malkalinity, Total (as 337 mg/L 02-MA	Chloride in W	/ater by IC						
Alkalinity, Total (as CaCO3) Alkalinity, Total (as 337 mg/L 02-MA			24.4		mg/L		250	02-MAY-18
Alkalinity, Total (as 337 mg/L 02-MA	Alkalinity, To	tal (as CaCO3)						
	•		337		mg/L			02-MAY-18

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087686
Project Ref: 16-0300-002
Sample ID: K09-12012
Sampled By: ATM + ACM
Date Collected: 01-MAY-18
Lab Sample ID: L2087686-1

Matrix: GW

PAGE 2 of 17

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97						
Total Coliforms	<1		MPN/100mL	0		02-MAY-18
Escherichia Coli	<1		MPN/100mL	0		02-MAY-18
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration plea	ase see
Approved by MM						
Hua Wo						
Account Manager						

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087686
Project Ref: 16-0300-002
Sample ID: K09-12011
Sampled By: ATM + ACM
Date Collected: 01-MAY-18
Lab Sample ID: L2087686-2

Matrix: GW

PAGE 3 of 17

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissolv	ved Floodway						
	Bicarbonate (HCO3)	288		mg/L			03-MAY-18
	Carbonate (CO3)	<0.60		mg/L			03-MAY-18
	Hydroxide (OH)	<0.34		mg/L			03-MAY-18
	*Nitrate and Nitrite as N	0.0135		mg/L	10		03-MAY-18
рН							
·	рН	7.67		pH units			02-MAY-18
Turbidity							
•	*Turbidity	1.18		NTU			02-MAY-18
TDS calculate	ed						
	TDS (Calculated)	251		mg/L		500	04-MAY-18
Sulfate in Wa	iter by IC						
oundio iii iiu	Sulfate (SO4)	14.8		mg/L		500	02-MAY-18
Nitrite in Wat	er by IC (Low Level)						
Withte in Wat	*Nitrite (as N)	<0.0010		mg/L	1		02-MAY-18
Nitrate in Wat	ter by IC (Low Level)			9, _			
With all III Was	*Nitrate (as N)	0.0135		mg/L	10		02-MAY-18
Ion Balance (0.0.00		IIIg/L	10		
ion balance (Ion Balance	98.3		%			04-MAY-18
	Cation - Anion Balance	-0.8		%			04-MAY-18
	Anion Sum	5.24		me/L			04-MAY-18
	Cation Sum	5.15		me/L			04-MAY-18
Hardness Cal	lculated						
	Hardness (as CaCO3)	235		mg/L		500	04-MAY-18
Dissolved Me	etals by ICP-MS						
	Dissolved Metals	LAB					03-MAY-18
	Filtration Location	47.1		a/I			03-MAY-18
	Calcium (Ca)-Dissolved Magnesium (Mg)-	28.5		mg/L mg/L			03-MAY-18
	Dissolved			IIIg/L			
	Potassium (K)-Dissolved	2.60		mg/L			03-MAY-18
	Sodium (Na)-Dissolved	9.01		mg/L		200	03-MAY-18
Conductivity							
	Conductivity	449		umhos/cm			02-MAY-18
Chloride in W	later by IC						
	Chloride (CI)	7.56		mg/L		250	02-MAY-18
Alkalinity, To	tal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	236		mg/L			02-MAY-18

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087686
Project Ref: 16-0300-002
Sample ID: K09-12011
Sampled By: ATM + ACM
Date Collected: 01-MAY-18
Lab Sample ID: L2087686-2

Matrix: GW

PAGE 4 of 17

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
* CDWQG = Health Canada Guideline Limits updated * CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa	guidelines on con	itrate then the li	mit is 10mg/L < or ent and slow sand	N.D. = less than de l or diatomaceous e	tection limit. arth filtration plea	se see
 A blank entry designates no known limit. A shaded value in the Results column exceeds CDWQ 	G MAC and/ or A	esthetic Objecti	ve.			
1,11,0						
Approved by Hua Wo Account Manager						

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087686
Project Ref: 16-0300-002
Sample ID: K11-12017
Sampled By: ATM + ACM
Date Collected: 01-MAY-18
Lab Sample ID: L2087686-3

Matrix: GW

PAGE 5 of 17

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Disso	lved Floodway						
	Bicarbonate (HCO3)	322		mg/L			03-MAY-1
	Carbonate (CO3)	<0.60		mg/L			03-MAY-1
	Hydroxide (OH)	<0.34		mg/L			03-MAY-1
	*Nitrate and Nitrite as N	<0.0051		mg/L	10		03-MAY-1
рН							
•	рН	7.52		pH units			02-MAY-1
Turbidity							
-	*Turbidity	2.38		NTU			02-MAY-1
TDS calcula	ted						
	TDS (Calculated)	659		mg/L		500	04-MAY-1
Sulfate in W							
	Sulfate (SO4)	282		mg/L		500	02-MAY-1
Nitrite in Wa	iter by IC (Low Level)			9 _			
THE IT WE	*Nitrite (as N)	<0.0010		mg/L	1		02-MAY-1
Nitrate in Wa	ater by IC (Low Level)			g/ _	'		
Willate III W	*Nitrate (as N)	<0.0050		mg/L	10		02-MAY-1
Ion Balance		40.0000		IIIg/L	10		02 1/1/11
ion balance	Ion Balance	100		%			04-MAY-1
	Cation - Anion Balance	0.1		/° %			04-MAY-1
	Anion Sum	11.7		me/L			04-MAY-
	Cation Sum	11.7		me/L			04-MAY-
Hardness Ca	alculated						
	Hardness (as CaCO3)	479		mg/L		500	04-MAY-1
Dissolved M	letals by ICP-MS						
	Dissolved Metals	LAB					03-MAY-1
	Filtration Location	70.0					00.141)/
	Calcium (Ca)-Dissolved	79.9 67.9		mg/L			03-MAY-
	Magnesium (Mg)- Dissolved	67.9		mg/L			U3-IVIA 1 -
	Potassium (K)-Dissolved	3.81		mg/L			03-MAY-
	Sodium (Na)-Dissolved	47.2		mg/L		200	03-MAY-
Conductivity	•						
	Conductivity	995		umhos/cm			02-MAY-1
Chloride in \	Water by IC						
	Chloride (CI)	20.0		mg/L		250	02-MAY-1
Alkalinity, To	otal (as CaCO3)						
•	Alkalinity, Total (as CaCO3)	264		mg/L			02-MAY-1

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087686
Project Ref: 16-0300-002
Sample ID: K11-12017
Sampled By: ATM + ACM
Date Collected: 01-MAY-18
Lab Sample ID: L2087686-3

Matrix: GW

PAGE 6 of 17

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ	guidelines on cor Iter Quality	ventional treatm	ent and slow sand	N.D. = less than del d or diatomaceous e	ection limit. arth filtration plea	se see
Approved by Hua Wo Account Manager						

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087686
Project Ref: 16-0300-002
Sample ID: K11-12016
Sampled By: ATM + ACM
Date Collected: 01-MAY-18
Lab Sample ID: L2087686-4

Matrix: GW

PAGE 7 of 17

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Disso	olved Floodway						
	Bicarbonate (HCO3)	375		mg/L			03-MAY-1
	Carbonate (CO3)	<0.60		mg/L			03-MAY-1
	Hydroxide (OH)	<0.34		mg/L			03-MAY-1
	*Nitrate and Nitrite as N	<0.0051		mg/L	10		03-MAY-1
рН							
	рН	7.52		pH units			02-MAY-1
Turbidity							
	*Turbidity	1.04		NTU			02-MAY-1
TDS calcula	ted						
	TDS (Calculated)	641		mg/L		500	04-MAY-1
Sulfate in W	ater by IC						
	Sulfate (SO4)	230		mg/L		500	02-MAY-1
Nitrite in Wa	ater by IC (Low Level)						
	*Nitrite (as N)	<0.0010		mg/L	1		02-MAY-1
Nitrate in Wa	ater by IC (Low Level)						
	*Nitrate (as N)	<0.0050		mg/L	10		02-MAY-1
Ion Balance	Calculation						
	Ion Balance	106		%			04-MAY-
	Cation - Anion Balance	2.8		%			04-MAY-
	Anion Sum	11.5		me/L			04-MAY-
	Cation Sum	12.2		me/L			04-MAY-
Hardness Ca							
	Hardness (as CaCO3)	519	1	mg/L		500	04-MAY-
Dissolved M	letals by ICP-MS						
	Dissolved Metals	LAB					03-MAY-
	Filtration Location Calcium (Ca)-Dissolved	88.7		mg/L			03-MAY-
	Magnesium (Mg)-	72.2		mg/L			03-MAY-
	Dissolved	4.70					
	Potassium (K)-Dissolved Sodium (Na)-Dissolved	4.73 39.2		mg/L		200	03-MAY-
Conductivity	` ,	39.2		mg/L		200	OO WIA I
Conductivity	y Conductivity	967		umboo/om			02-MAY-
Oblesti	•	907		umhos/cm			02-10174 1-
Chloride in \	-	21.5				050	02-MAY-1
AII II II -	Chloride (CI)	21.5		mg/L		250	UZ-IVIA Y -
Alkalinity, To	otal (as CaCO3)	007					00 14434
	Alkalinity, Total (as CaCO3)	307		mg/L			02-MAY-1

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087686
Project Ref: 16-0300-002
Sample ID: K11-12016
Sampled By: ATM + ACM
Date Collected: 01-MAY-18
Lab Sample ID: L2087686-4

Matrix: GW

PAGE 8 of 17

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ	guidelines on con Iter Quality	ventional treatm	ent and slow sand	N.D. = less than dei for diatomaceous e	tection limit. arth filtration plea	se see
Approved byHua Wo Account Manager						

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087686
Project Ref: 16-0300-002
Sample ID: K11-12014
Sampled By: ATM + ACM
Date Collected: 01-MAY-18
Lab Sample ID: L2087686-5

Matrix: GW

PAGE 9 of 17

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissol	ved Floodway						
	Bicarbonate (HCO3)	332		mg/L			03-MAY-18
	Carbonate (CO3)	<0.60		mg/L			03-MAY-18
	Hydroxide (OH)	<0.34		mg/L			03-MAY-18
	*Nitrate and Nitrite as N	0.100		mg/L	10		03-MAY-18
рН							
	рН	7.63		pH units			02-MAY-18
Turbidity				·			
_	*Turbidity	0.76		NTU			02-MAY-18
TDS calculate	ed						
	TDS (Calculated)	350		mg/L		500	04-MAY-18
Sulfate in Wa	ater by IC						
	Sulfate (SO4)	52.1		mg/L		500	02-MAY-18
Nitrite in Wat	ter by IC (Low Level)						
	*Nitrite (as N)	0.0012		mg/L	1		02-MAY-18
Nitrate in Wa	iter by IC (Low Level)			9	•		
Miliate III Wa	*Nitrate (as N)	0.0990		mg/L	10		02-MAY-18
Ion Balance		0.000		iiig/L	10		02
ion balance	Ion Balance	104		%			04-MAY-18
	Cation - Anion Balance	1.8		% %			04-MAY-18
	Anion Sum	6.97		me/L			04-MAY-18
	Cation Sum	7.23		me/L			04-MAY-18
Hardness Ca	lculated						
	Hardness (as CaCO3)	338		mg/L		500	04-MAY-18
Dissolved Me	etals by ICP-MS						
	Dissolved Metals	LAB					03-MAY-18
	Filtration Location	60.0					03-MAY-18
	Calcium (Ca)-Dissolved Magnesium (Mg)-	60.0 45.8		mg/L mg/L			03-MAY-18
	Dissolved	40.0		IIIg/L			00 10777 10
	Potassium (K)-Dissolved	4.46		mg/L			03-MAY-18
	Sodium (Na)-Dissolved	8.09		mg/L		200	03-MAY-18
Conductivity							
	Conductivity	600		umhos/cm			02-MAY-18
Chloride in V	Vater by IC						
	Chloride (CI)	15.6		mg/L		250	02-MAY-18
Alkalinity, To	otal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	272		mg/L			02-MAY-18

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087686
Project Ref: 16-0300-002
Sample ID: K11-12014
Sampled By: ATM + ACM
Date Collected: 01-MAY-18
Lab Sample ID: L2087686-5

Matrix: GW

PAGE 10 of 17

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Californ and E cali by MDN 0707						
Total Coliform and E.coli by MPN QT97	.4		MDN/400I	_		02 MAY 10
Total Coliforms Escherichia Coli	<1 <1		MPN/100mL	0		02-MAY-18 02-MAY-18
			MPN/100mL	0		02-IVIA 1-10
CDWQG = Health Canada Guideline Limits updated	DECEMBER					
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration pleរ	ase see
Approved by Africa						
Approved by						
Hua Wo Account Manager						
Account Manager						

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087686
Project Ref: 16-0300-002
Sample ID: K11-12015
Sampled By: ATM + ACM
Date Collected: 01-MAY-18
Lab Sample ID: L2087686-6

Matrix: GW

PAGE 11 of 17

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissol	lved Floodway						
	Bicarbonate (HCO3)	307		mg/L			03-MAY-18
	Carbonate (CO3)	<0.60		mg/L			03-MAY-18
	Hydroxide (OH)	<0.34		mg/L			03-MAY-18
	*Nitrate and Nitrite as N	0.0527		mg/L	10		03-MAY-18
рН							
•	рН	7.62		pH units			02-MAY-18
Turbidity				-			
-	*Turbidity	0.56		NTU			02-MAY-18
TDS calculat	ed						
	TDS (Calculated)	334		mg/L		500	04-MAY-18
Sulfate in Wa	ater by IC						
	Sulfate (SO4)	54.0		mg/L		500	02-MAY-18
Nitrite in Wat	ter by IC (Low Level)						
	*Nitrite (as N)	<0.0010		mg/L	1		02-MAY-18
Nitrate in Wa	ater by IC (Low Level)						
	*Nitrate (as N)	0.0527		mg/L	10		02-MAY-18
Ion Balance							
ion Balance	Ion Balance	99.2		%			04-MAY-18
	Cation - Anion Balance	-0.4		%			04-MAY-18
	Anion Sum	6.69		me/L			04-MAY-18
	Cation Sum	6.63		me/L			04-MAY-18
Hardness Ca	alculated						
	Hardness (as CaCO3)	310		mg/L		500	04-MAY-18
Dissolved Me	etals by ICP-MS						
	Dissolved Metals	LAB					03-MAY-18
	Filtration Location Calcium (Ca)-Dissolved	59.7		mg/L			03-MAY-18
	Magnesium (Mg)-	39.1		mg/L			03-MAY-18
	Dissolved						
	Potassium (K)-Dissolved	4.13		mg/L			03-MAY-18
	Sodium (Na)-Dissolved	7.56		mg/L		200	03-MAY-18
Conductivity							
	Conductivity	590		umhos/cm			02-MAY-18
Chloride in V	•						
	Chloride (CI)	18.7		mg/L		250	02-MAY-18
Alkalinity, To	otal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	252		mg/L			02-MAY-18

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087686
Project Ref: 16-0300-002
Sample ID: K11-12015
Sampled By: ATM + ACM
Date Collected: 01-MAY-18
Lab Sample ID: L2087686-6

Matrix: GW

PAGE 12 of 17

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Californ and E cali by MDN 0707						
Total Coliform and E.coli by MPN QT97	.4		MDN/400I	_		02 MAY 10
Total Coliforms Escherichia Coli	<1 <1		MPN/100mL	0		02-MAY-18 02-MAY-18
			MPN/100mL	0		02-IVIA 1-10
CDWQG = Health Canada Guideline Limits updated	DECEMBER					
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration pleរ	ase see
Approved by Africa						
Approved by						
Hua Wo Account Manager						
Account Manager						

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087686
Project Ref: 16-0300-002
Sample ID: MW-100
Sampled By: ATM + ACM
Date Collected: 01-MAY-18
Lab Sample ID: L2087686-7

Matrix: GW

PAGE 13 of 17

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissol	lved Floodway						
	Bicarbonate (HCO3)	329		mg/L			03-MAY-18
	Carbonate (CO3)	<0.60		mg/L			03-MAY-18
	Hydroxide (OH)	<0.34		mg/L			03-MAY-18
	*Nitrate and Nitrite as N	0.0954		mg/L	10		03-MAY-18
рН							
·	рН	7.64		pH units			02-MAY-18
Turbidity				·			
-	*Turbidity	1.13		NTU			02-MAY-18
TDS calculat	ed						
	TDS (Calculated)	346		mg/L		500	04-MAY-18
Sulfate in Wa	ater by IC						
	Sulfate (SO4)	51.4		mg/L		500	02-MAY-18
Nitrite in Wat	ter by IC (Low Level)						
	*Nitrite (as N)	<0.0010		mg/L	1		02-MAY-18
Nitrate in Wa	iter by IC (Low Level)				·		
	*Nitrate (as N)	0.0954		mg/L	10		02-MAY-18
Ion Balance							
ion Balance	Ion Balance	102		%			04-MAY-18
	Cation - Anion Balance	1.0		%			04-MAY-18
	Anion Sum	6.92		me/L			04-MAY-18
	Cation Sum	7.06		me/L			04-MAY-18
Hardness Ca	lculated						
	Hardness (as CaCO3)	332		mg/L		500	04-MAY-18
Dissolved Me	etals by ICP-MS						
	Dissolved Metals	LAB					03-MAY-18
	Filtration Location Calcium (Ca)-Dissolved	60.8		mg/L			03-MAY-18
	Magnesium (Mg)-	43.7		mg/L			03-MAY-18
	Dissolved						
	Potassium (K)-Dissolved	4.16		mg/L			03-MAY-18
	Sodium (Na)-Dissolved	7.52		mg/L		200	03-MAY-18
Conductivity							
	Conductivity	599		umhos/cm			02-MAY-18
Chloride in V	•						
	Chloride (CI)	16.0		mg/L		250	02-MAY-18
Alkalinity, To	otal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	269		mg/L			02-MAY-18

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087686
Project Ref: 16-0300-002
Sample ID: MW-100
Sampled By: ATM + ACM
Date Collected: 01-MAY-18
Lab Sample ID: L2087686-7

Matrix: GW

PAGE 14 of 17

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97						
Total Coliforms	<1		MPN/100mL	0		02-MAY-18
Escherichia Coli	<1		MPN/100mL	0		02-MAY-18
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWC	guidelines on cor ater Quality	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration plea	ase see
Approved by Hua Wo Account Manager						

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087686
Project Ref: 16-0300-002
Sample ID: SW-PTH59N
Sampled By: ATM + ACM
Date Collected: 01-MAY-18
Lab Sample ID: L2087686-8

Matrix: SW

PAGE 15 of 17

Test Description		Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Total Floodway							
Bicarbonate (HC	O3)	239		mg/L			03-MAY-18
Carbonate (CO3)	ı	7.44		mg/L			03-MAY-18
Hydroxide (OH)		<0.34		mg/L			03-MAY-18
*Nitrate and Nitrite	as N	0.0156		mg/L	10		03-MAY-18
рН							
pH		8.42		pH units			02-MAY-18
Turbidity							
*Turbidity		42.7		NTU			02-MAY-18
Total Metals by ICP-MS							
Calcium (Ca)-Tot	al	51.8		mg/L			03-MAY-18
Magnesium (Mg)	-Total	29.5		mg/L			03-MAY-18
Potassium (K)-To		6.21		mg/L			03-MAY-18
Sodium (Na)-Tota	al	23.7		mg/L		200	03-MAY-18
TDS calculated							
TDS (Calculated))	343		mg/L		500	04-MAY-18
Sulfate in Water by IC							
Sulfate (SO4)		73.4		mg/L		500	02-MAY-18
Nitrite in Water by IC (Low Level)							
*Nitrite (as N)		0.0038		mg/L	1		02-MAY-18
Nitrate in Water by IC (Low Level))						
*Nitrate (as N)		0.0118		mg/L	10		02-MAY-18
Ion Balance Calculation							
Ion Balance		93.6		%			04-MAY-18
Cation - Anion Ba	alance	-3.3		%			04-MAY-18
Anion Sum Cation Sum		6.63 6.21		me/L			04-MAY-18 04-MAY-18
		0.21		me/L			04-IVIA 1 - 10
Hardness Calculated	CO3/	251	нтс	m/l		500	04-MAY-18
Hardness (as Ca	CO3)	251	1110	mg/L		500	04-IVIA 1 - 10
Conductivity		570		. ,			00 MAY 40
Conductivity		578		umhos/cm			02-MAY-18
Chloride in Water by IC							
Chloride (CI)		33.1		mg/L		250	02-MAY-18
Alkalinity, Total (as CaCO3)		0.55					00 14437
Alkalinity, Total (a CaCO3)	as	209		mg/L			02-MAY-18
Phosphorus (P)-	Гotal	0.174		mg/L			03-MAY-18
Ammonia, Total (0.054		mg/L			02-MAY-18

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2087686
Project Ref: 16-0300-002
Sample ID: SW-PTH59N
Sampled By: ATM + ACM
Date Collected: 01-MAY-18
Lab Sample ID: L2087686-8

Matrix: SW

PAGE 16 of 17

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Kjeldahl Nitrogen	0.66		mg/L			04-MAY-18
Total Suspended Solids	24.9		mg/L			04-MAY-18
Total and E. coli to endpoint by QT97						
Total Coliforms	866		MPN/100mL	0		02-MAY-18
Escherichia Coli	94		MPN/100mL	0		02-MAY-18
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ	guidelines on cor ater Quality	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration ple	ase see
Approved by						
Hua Wo						
Account Manager						

Guidelines & Objectives

Sample Parameter Qualifier key listed:

Qualifier Description

HTC Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).

Health Canada MAC Health Related Criteria Limits

Nitrate/Nitrite-N* Criteria limit is 10 mg/L (1.0 mg/L if present as all Nitrite-N). High concentrations may contribute to blue baby syndrome in infants.

Lead* A cumulative body poison, uncommon in naturally occurring hard waters.

Fluoride* Present in fluoridated water supplies at 0.8 mg/L to reduce dental caries. Elevated levels causes fluorosis (mottling of teeth).

Total Coliforms* Criteria is 0 CFU/100mL. Adverse health effects.

E. Coli* Criteria is 0 CFU/100 mL. Certain E. Coli bacteria can be life threatening.

*Health Canada Canadian Drinking Water Quality Guidelines (MAC limit)

Aesthetic Objective Concentration Levels

Alkalinity Acid neutralizing capacity. Usually a measure of carbonate and bicarbonates and calculated and reported as calcium carbonate.

Balance Quality control parameter ratioing cations to anions
Bicarbonate See Alkalinity. Report as the anion HCO3-1
Carbonate See Alkalinity. Reported at the anion CO3-2

Calcium See Hardness. Common major cation of water chemistry.

Chloride Common major anion of water chemistry.

Conductance Physical test measuring water salinity (dissolved ions or solids)

Hardness Classical measure or capacity of water to precipitate soap (chiefly calcium and magnesium ions). Causes scaling tendency in

water if carbonates/bicarbonates are present (if >200 mg/L). For drinking water purposes waters with results <200 mg/L are considered acceptable, results >200 mg/L are considered poor but can be tolerated. Results >500 mg/L are unacceptable.

Hydroxide See alkalinity

Magnesium See hardness. Common major cation of water chemistry. Elevated levels (>125 mg/L) may exert a cathartic or diuretic action.

Measure of water acidity/alkalinity. Normal range is 7.0-8.5.

Potassium Common major cation of water chemistry.

Sodium Common major cation of water chemistry. Measure of salinity (saltiness). The aesthetic objective (not related to health) for

sodium in drinking water is 200 mg/L. However, where sodium concentration of the drinking water exceeds 20 mg/L, it is recommended that any person on a sodium restricted diet consult with his/her physician or Medical Officer of Health

concerning the use of that water.

Sulphate Common major anion of water chemistry. Elevated levels may exert a cathartic or diuretic action.

Total Dissolved Solids A measure of water salinity.

Iron Causes staining to laundry and porcelain and astringent taste. Oxidizes to red-brown precipitate on exposure to air.

Manganese Elevated levels may cause staining of laundry and porcelain. Heterotrophic

Plate Count Criteria is 500 cfu/mL Measure of heterotrophic bacteria present.

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million.

< - Less than.

nН

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L2087686 Report Date: 08-MAY-18 Page 1 of 6

Client: KGS Group Consultants (Winnipeg)

865 Waverly Street - 3rd Floor

Winnipeg MB R3T 5P4

Contact: Marci Friedman Hamm

Test N	/latrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-TITR-WP \	Nater							
Batch R4031307								
WG2763726-15 DUP Alkalinity, Total (as CaCO3	3)	L2087686-8 209	206		mg/L	1.3	20	02-MAY-18
WG2763726-14 LCS Alkalinity, Total (as CaCO3	3)		102.2		%		85-115	02-MAY-18
WG2763726-9 LCS Alkalinity, Total (as CaCO3	3)		99.9		%		85-115	02-MAY-18
WG2763726-11 MB Alkalinity, Total (as CaCO3	3)		<1.0		mg/L		1	02-MAY-18
WG2763726-6 MB Alkalinity, Total (as CaCO3	3)		<1.0		mg/L		1	02-MAY-18
CL-IC-N-WP \	N ater							
Batch R4031664								
WG2763269-10 LCS Chloride (Cl)			100.0		%		90-110	02-MAY-18
WG2763269-6 LCS Chloride (Cl)			100.8		%		90-110	02-MAY-18
WG2763269-5 MB Chloride (Cl)			<0.50		mg/L		0.5	02-MAY-18
WG2763269-9 MB Chloride (Cl)			<0.50		mg/L		0.5	02-MAY-18
EC-WP \	Nater							
Batch R4031307								
WG2763726-15 DUP Conductivity		L2087686-8 578	576		umhos/cm	0.3	10	02-MAY-18
WG2763726-13 LCS Conductivity			97.0		%		90-110	02-MAY-18
WG2763726-8 LCS Conductivity			97.2		%		90-110	02-MAY-18
WG2763726-11 MB Conductivity			<1.0		umhos/cm		1	02-MAY-18
WG2763726-6 MB Conductivity			<1.0		umhos/cm		1	02-MAY-18
MET-D-MS-WP	N ater							
Batch R4032905								
WG2764087-2 LCS								
Calcium (Ca)-Dissolved			96.3		%		80-120	03-MAY-18
Magnesium (Mg)-Dissolved	d		102.0		%		80-120	03-MAY-18
Potassium (K)-Dissolved			101.7		%		80-120	03-MAY-18

Workorder: L2087686

Report Date: 08-MAY-18

Page 2 of 6

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-MS-WP	Water							
Batch R4032905								
WG2764087-2 LCS Sodium (Na)-Dissolved			101.9		%		80-120	03-MAY-18
WG2764087-1 MB Calcium (Ca)-Dissolved			<0.50		mg/L		0.5	03-MAY-18
Magnesium (Mg)-Dissol	ved		<0.050		mg/L		0.05	03-MAY-18
Potassium (K)-Dissolved	d		< 0.50		mg/L		0.5	03-MAY-18
Sodium (Na)-Dissolved			<0.50		mg/L		0.5	03-MAY-18
MET-T-MS-WP	Water							
Batch R4032905								
WG2764082-2 LCS								
Calcium (Ca)-Total			100.5		%		80-120	03-MAY-18
Magnesium (Mg)-Total			103.9		%		80-120	03-MAY-18
Potassium (K)-Total Sodium (Na)-Total			103.6 104.8		%		80-120	03-MAY-18
, ,			104.0		70		80-120	03-MAY-18
WG2764082-1 MB Calcium (Ca)-Total			<0.50		mg/L		0.5	03-MAY-18
Magnesium (Mg)-Total			< 0.050		mg/L		0.05	03-MAY-18
Potassium (K)-Total			<0.50		mg/L		0.5	03-MAY-18
Sodium (Na)-Total			<0.50		mg/L		0.5	03-MAY-18
N-TOTKJ-WP	Water							
Batch R4033470								
WG2761420-14 LCS Total Kjeldahl Nitrogen			98.7		%		75-125	04-MAY-18
WG2761420-13 MB Total Kjeldahl Nitrogen			<0.20		mg/L		0.2	04-MAY-18
NH3-COL-WP	Water				_			
Batch R4031908	Trato.							
WG2763944-2 LCS								
Ammonia, Total (as N)			99.7		%		85-115	02-MAY-18
WG2763944-1 MB Ammonia, Total (as N)			<0.010		mg/L		0.01	02-MAY-18
NO2-L-IC-N-WP	Water							
Batch R4031664								
WG2763269-10 LCS Nitrite (as N)			98.1		%		90-110	02-MAY-18
WG2763269-6 LCS								

Workorder: L2087686

Report Date: 08-MAY-18

Page 3 of 6

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO2-L-IC-N-WP		Water							
	031664								
WG2763269-6 Nitrite (as N)	LCS			97.6		%		90-110	02-MAY-18
WG2763269-5 Nitrite (as N)	MB			<0.0010		mg/L		0.001	02-MAY-18
WG2763269-9 Nitrite (as N)	MB			<0.0010		mg/L		0.001	02-MAY-18
NO3-L-IC-N-WP		Water							
Batch R4	031664								
WG2763269-10 Nitrate (as N)	LCS			100.4		%		90-110	02-MAY-18
WG2763269-6 Nitrate (as N)	LCS			99.5		%		90-110	02-MAY-18
WG2763269-5 Nitrate (as N)	МВ			<0.0050		mg/L		0.005	02-MAY-18
WG2763269-9 Nitrate (as N)	MB			<0.0050		mg/L		0.005	02-MAY-18
P-T-L-COL-WP		Water							
Batch R40	033256								
WG2764646-14 Phosphorus (P)				101.1		%		80-120	03-MAY-18
WG2764646-13 Phosphorus (P)				<0.0010		mg/L		0.001	03-MAY-18
PH-WP		Water							
Batch R40	031307								
WG2763726-15 pH	DUP		L2087686-8 8.42	8.41	J	pH units	0.01	0.2	02-MAY-18
WG2763726-12 pH	LCS			7.38		pH units		7.3-7.5	02-MAY-18
WG2763726-7 pH	LCS			7.39		pH units		7.3-7.5	02-MAY-18
SO4-IC-N-WP		Water							
	031664								
WG2763269-10 Sulfate (SO4)				101.3		%		90-110	02-MAY-18
WG2763269-6 Sulfate (SO4)	LCS			101.1		%		90-110	02-MAY-18
WG2763269-5	МВ								

Workorder: L2087686 Report Date: 08-MAY-18 Page 4 of 6

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SO4-IC-N-WP	Water							
Batch R4031664 WG2763269-5 MB Sulfate (SO4)			<0.30		mg/L		0.3	02-MAY-18
WG2763269-9 MB Sulfate (SO4)			<0.30		mg/L		0.3	02-MAY-18
SOLIDS-TOTSUS-WP	Water							
Batch R4035288 WG2764707-10 LCS Total Suspended Solids			92.0		%		85-115	04-MAY-18
WG2764707-9 MB Total Suspended Solids			<2.0		mg/L		2	04-MAY-18
TC,EC-QT97-ENDPT-WP	Water							
Batch R4031710 WG2763335-2 DUP		L2087686-8	F70		MDN/400 at			
Total Coliforms Escherichia Coli		866 94	579 72		MPN/100mL MPN/100mL	40 26	65 65	02-MAY-18
WG2763335-1 MB		94	12		WIF IN/ TOOTTIL	20	65	02-MAY-18
Total Coliforms			<1		MPN/100mL		1	02-MAY-18
Escherichia Coli			<1		MPN/100mL		1	02-MAY-18
TC,EC-QT97-WP	Water							
Batch R4031567								
WG2763333-2 DUP Total Coliforms		L2087686-1 <1	<1	RPD-NA	MPN/100mL	N/A	65	02-MAY-18
Escherichia Coli		<1	<1	RPD-NA	MPN/100mL	N/A	65	02-MAY-18
WG2763333-1 MB Total Coliforms			<1		MPN/100mL		4	
Escherichia Coli			<1		MPN/100mL		1 1	02-MAY-18 02-MAY-18
TURBIDITY-WP	Water						·	02 1/1/(1-10
Batch R4031688	Water							
WG2763322-2 LCS Turbidity			98.5		%		85-115	02-MAY-18
WG2763322-1 MB Turbidity			<0.10		NTU		0.1	02-MAY-18

Workorder: L2087686 Report Date: 08-MAY-18 Page 5 of 6

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2087686 Report Date: 08-MAY-18 Page 6 of 6

Hold Time Exceedances:

ALS Product Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests		, <u>J</u>					
рН							
	1	01-MAY-18 09:40	02-MAY-18 12:00	0.25	26	hours	EHTR-FM
	2	01-MAY-18 10:40	02-MAY-18 12:00	0.25	25	hours	EHTR-FM
	3	01-MAY-18 11:45	02-MAY-18 12:00	0.25	24	hours	EHTR-FN
	4	01-MAY-18 12:55	02-MAY-18 12:00	0.25	23	hours	EHTR-FN
	5	01-MAY-18 14:35	02-MAY-18 12:00	0.25	21	hours	EHTR-FN
	6	01-MAY-18 15:45	02-MAY-18 12:00	0.25	20	hours	EHTR-FN
	7	01-MAY-18 16:30	02-MAY-18 12:00	0.25	19	hours	EHTR-FN
	8	01-MAY-18 16:10	02-MAY-18 12:00	0.25	20	hours	EHTR-FM

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2087686 were received on 02-MAY-18 09:10.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody (COC) / Analytical **Request Form**

coc Number: 14 - 450380

Environmental www.alsglobal.com

Canada Toll Free: 1 800 668 9878

Report To		Report Format	<u> </u>			Se	lect Service	Level Be	low (Rush	Turnaro	und Time	e (TAT) is	not availat	ole for all tes	is)
Company: KGS Group	Select Report Fo	ormat: 🔽 PC	F EXCEL		R	Reg	jular (Standa	ırd TAT if ı	received by	y 3pm)		j	11 ,		
Contact: Marci Friedman-Hamm	Quality Control (QC) Report with Rep	ort 🗹 Yes	No No	P		ority (2-4 bus					T.			
Address: 3rd Floor - 865 Waverley St.	_	eport - provide details bal		_	E	Em	ergency (1-2	business (days if rec	eived by	3pm)		r::	1 .	
Winniped, MB R3T SP4	Select Distribution			FAX	E2	San	ne day or we	ekend em	ergency If	received	d by 10a	nn – conta	ct ALS for	surcharge.	_
Phone: (804) 896-1209	Email 1 or Fax	mfhamm@	Kgsgroup	com	Specify	/ Date R	e Required for E2,E or P:								
<u></u>	Email 2 P	<u>indell@K</u>	<u>asaroud.</u>	COM	<u> </u>			11.100				est		7,7730	
Invoice To Same as Report To ☐ Yes V No		Invoice Di			L.,	Indi	cate Filtered	(F), Prese	rved (P) o	r Filtered	and Pre	eserved (F	/P) below		
Copy of Invoice with Report 🔲 Yes 🗔 No	Select Invoice D		EMAIL MAI				}	. 19.5		,e- ;	لم		Α	ite	
Company: KGS	Emali 1 or Fax	mwacdin	amie@kq	<u>sgroup.com</u>	3		3		14	93	골	<u>a</u>	naan .	r i ea. Jn i ⊃ .	
Contact: Bill MacQuarrie	Email 2		<u>J</u>	· U ·	1	3	30-75-02			٦	A-1900A-	3		ر جرا اور 10 في الاي	્યું ક
Project Information		il and Gas Require	· ·	ie)	FLOW.	1 [3 7		43	ώl	2	1 6.		्य आधि	Number of Containers
ALS Quote #: 0.56271		<u>otz</u> odposóg s	Cost Center:	and the state of	4	14	3	3	3	.공	P)	اح	۱۱۱۰ الانت		i i
Job#: 16-0300-002	GL Account:		Routing Code:		4	6	3	3	I	KI.	<u> </u>	9.		iek kaj" ⊁ti:∵na	a C
PO/AFE:	Activity Code:	<u></u>		<u>a da sa disebuah a</u>	15	क्रम्	તે તે	l h	ᅰ	TOTSUS	σ	w		360 254 Q	je je
LSD:	Location:			Section 1985	3	9	3 3	Y	3	- 1	.!!	ま '	10: 35	nar i i i	
ALS Lab Work Order # (lab use only)	ALS Contact:	Judy	Sampler: AT J	4 ACM	Roc	\mathcal{L}	S 1	TOTAG	1	SOLIDS	8	1			
ALS Sample # Sample Identification and/or Coordinates (lab use only) (This description will appear on the report)	•	Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	8	5	7-7 7-7	2	17	Z	힏	EC &			
3 (This description will appear of the report)		1	· · · · · · · · · · · · · · · · · · ·	GUN				1 -		- ,		30	-+-		
1200 - 13013		01-MAY-18		GW		<u> </u>	_				_		_		3
K09-12011		i	10:40	 	$ \times $			\sqcup					_	_	3 2 3
KII - 12017			11:45		$ \mathbf{x} $.				6
KII - 12016			1a:55		$ \times $										2
KII- 12014	- •		14:35		X	\times									3
KII - 12015	-		15:45		X	\mathbf{z}					\neg				3
MW-100			16:30	17	X.	\supset	-								3
	· 	- 1		6113			₹ ×			 ,		$\overline{}$	-		5
		V	16:10	ടയ			<u> </u>		\times	~ /	<u> </u>	~			3
						-							<u> </u>		
				L	L						_			_	
				<u> </u>											
Drinkle Mater (DM) General 1/200	netructions / Sec	cify Criteria to add on	report (client Hea)		\$0.000°	UNATO E	SAN	PLE CC	NDITIO	N AS	RECEI	IVED (la	b use o	πly) 🕢 🖊	A) A Port a rough
Training states (211) Samples (Shell 200)	-	_	Teport (chant day)		Frozen	1000000		west.	er en er stegge i	Section of the second		ons	e de la companya de	☐ No	Asset to the second
Are samples taken from a Regulated DW System?	or filte	ered.					es 🔲	No		Sustody	seal :	ntact	Yes	☐ No	
Ti Yes Ti No Groundwate	or sample	s not pre	served.			j Initiated				X (3.7)					
Are samples for human drinking water use? Surface W8	ater sam	ple prėse	rved.		SINII Z	TIAL COO	LER TEMPE	RATURES	*C : (: [*]	galler 18.	g Sto Fil	NAL COO	LER TEM	PERATURES	Cymae 7.
Figure 1 No Are samples for human drinking water use? Figure 1 No Please Filter	x 4/0r p	reserve in	lab.		5	2	<u> </u>	138.46		300 m	1 kg 2			30% 90°	
SHIPMENT DELEASE (client use)	NITIAL:	SHIPMENT RECEPT	ION (lab use only)		9340		eggiveen F	INAL SI	HIPMEN			DN (lab ι		president of a	uu saa aya s
Released by Mallong Date: Hay 2/18 4:00 Receive	1 by: MAL		3105119		0.585.8	ed by:				_ ^D	ate;		Time:		
REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION		WHI	E - LABORATORY		V - CLIEI	VT COPY					NA-P)	N-0326a v08 Fi	onl(03 Calaber :	9013	

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2088204

Project Ref: 16-0300-002.1200.16A

Sample ID: GO5OCOO6
Sampled By: ATM AND ACM
Date Collected: 02-MAY-18
Lab Sample ID: L2088204-1

Matrix: DOMESTIC WELL

PAGE 1 of 5

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU4W Total Floodway						
Bicarbonate (HCO3)	272		mg/L			04-MAY-18
Carbonate (CO3)	<0.60		mg/L			04-MAY-18
Hydroxide (OH)	<0.34		mg/L			04-MAY-18
*Nitrate and Nitrite as N	<0.025		mg/L	10		08-MAY-18
рН						
pH	7.84		pH units			03-MAY-18
Turbidity						
*Turbidity	38.8		NTU			03-MAY-18
Total Metals by ICP-MS						
Calcium (Ca)-Total	91.5		mg/L			04-MAY-18
Iron (Fe)-Total	2.37	í	mg/L		0.3	04-MAY-18
Magnesium (Mg)-Total	56.0		mg/L			04-MAY-18
Manganese (Mn)-Total	0.0355		mg/L		0.05	04-MAY-18
Potassium (K)-Total	12.0		mg/L			04-MAY-18
Sodium (Na)-Total	326		mg/L		200	04-MAY-18
TDS calculated						
Sulfate in Water by IC						
Sulfate (SO4)	278		mg/L		500	04-MAY-18
Nitrite in Water by IC (Low Level)						
*Nitrite (as N)	<0.0050	DLM	mg/L	1		04-MAY-18
Nitrate in Water by IC (Low Level)						
*Nitrate (as N)	<0.025	DLM	mg/L	10		04-MAY-18
Ion Balance Calculation						
Ion Balance	103		%			08-MAY-18
Cation - Anion Balance	1.4		%			08-MAY-18
TDS (Calculated)	1350	į.	mg/L		500	08-MAY-18
Anion Sum	23.0		me/L			08-MAY-18
Cation Sum Hardness (as CaCO3)	23.7 459		me/L		500	08-MAY-18 08-MAY-18
· · · ·	439		mg/L		500	00-WAT-10
Hardness Calculated						
Fluoride in Water by IC						0.4.84837.40
Fluoride (F)	0.49		mg/L	1.5		04-MAY-18
Conductivity						
Conductivity	2230		umhos/cm			03-MAY-18
Chloride in Water by IC						
Chloride (CI)	451	(mg/L		250	04-MAY-18
Alkalinity, Total (as CaCO3)						
Alkalinity, Total (as	223		mg/L			03-MAY-18

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2088204

Project Ref: 16-0300-002.1200.16A

Sample ID: GO5OCOO6
Sampled By: ATM AND ACM
Date Collected: 02-MAY-18
Lab Sample ID: L2088204-1

Matrix: DOMESTIC WELL

PAGE 2 of 5

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU4W Total Floodway						
Alkalinity, Total (as CaCO3)						
CaCO3)						
Total Coliform and E.coli						
Total Coliforms	3		MPN/100mL	0		02-MAY-1
Escherichia Coli	0		MPN/100mL	0		02-MAY-1
CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration plea	se see
Approved by While						
Hua Wo						
Account Manager						

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2088204

Project Ref: 16-0300-002.1200.16A

Sample ID: K13-12322
Sampled By: ATM AND ACM
Date Collected: 02-MAY-18
Lab Sample ID: L2088204-2

Matrix: GROUND WATER

PAGE 3 of 5

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissolved Floodway						
Bicarbonate (HCO3)	318		mg/L			04-MAY-1
Carbonate (CO3)	<0.60		mg/L			04-MAY-1
Hydroxide (OH)	<0.34		mg/L			04-MAY-1
*Nitrate and Nitrite as N	<0.0051		mg/L	10		08-MAY-1
рН						
pH	7.67		pH units			03-MAY-1
Turbidity						
*Turbidity	1.50		NTU			03-MAY-1
TDS calculated						
TDS (Calculated)	519		mg/L		500	04-MAY-1
Sulfate in Water by IC						
Sulfate (SO4)	184		mg/L		500	04-MAY-1
Nitrite in Water by IC (Low Level)						
*Nitrite (as N)	<0.0010		mg/L	1		04-MAY-1
Nitrate in Water by IC (Low Level)			9/ =			
*Nitrate (as N)	<0.0050		mg/L	10		04-MAY-1
Ion Balance Calculation	10.000		IIIg/L	10		
Ion Balance	102		%			08-MAY-1
Cation - Anion Balance	0.7		%			08-MAY-1
Anion Sum	9.52		me/L			08-MAY-1
Cation Sum	9.66		me/L			08-MAY-1
Hardness Calculated						
Hardness (as CaCO3)	416		mg/L		500	04-MAY-1
Dissolved Metals by ICP-MS						
Dissolved Metals	LAB					03-MAY-1
Filtration Location Calcium (Ca)-Dissolved	71.5		m a/l			03-MAY-1
Magnesium (Mg)-	57.6		mg/L mg/L			03-MAY-1
Dissolved			mg/L			
Potassium (K)-Dissolved	3.80		mg/L			03-MAY-1
Sodium (Na)-Dissolved	28.9		mg/L		200	03-MAY-1
Conductivity						
Conductivity	816		umhos/cm			03-MAY-1
Chloride in Water by IC						
Chloride (CI)	16.9		mg/L		250	04-MAY-1
Alkalinity, Total (as CaCO3)						
Alkalinity, Total (as CaCO3)	261		mg/L			03-MAY-1

ATTN: Marci Friedman Hamm

Date: 08-MAY-18

PO No.:

WO No.: L2088204

Project Ref: 16-0300-002.1200.16A

Sample ID: K13-12322
Sampled By: ATM AND ACM
Date Collected: 02-MAY-18
Lab Sample ID: L2088204-2

Matrix: GROUND WATER PAGE 4 of 5

CDWQG = Health Canada Guideline Limits updated CDWQG for Nitrate+Nitrite-N is the limit for nitrate only. If present as Nitrate then the limit is 10mg/L < or N.D. = less than detection limit. Turbidly guideline based on membrane filtration. For guidelines on conventional treatment and slow sand or diatomaceous earth litration please ser Summary Table of Guidelines for Canadian Diriking Water Quality A blank entry designates no known limit. A shaded value in the Results column exceeds CDWQ G MAC and/ or Aesthetic Objective. Approved by Hua Wo Account Manager	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
* Turbidity guideline based on membrane filtration. For guidelines on conventional treatment and slow sand or diatomaceous earth filtration please see Summary Table of Guidelines for Canadian Drinking Water Quality - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDWQG MAC and/ or Aesthetic Objective. Approved by Hua Wo	CDWQG = Health Canada Guideline Limits updated	DECEMBER	2015				
Hua Wo	 * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit. 	guidelines on con iter Quality	ventional treatm	nent and slow sand	N.D. = less than de f or diatomaceous e	tection limit. arth filtration plea	se see
	Approved by						

Guidelines & Objectives

Sample Parameter Qualifier key listed:

Qualifier Description

DLM

nН

Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

Health Canada MAC Health Related Criteria Limits

Nitrate/Nitrite-N* Criteria limit is 10 mg/L (1.0 mg/L if present as all Nitrite-N). High concentrations may contribute to blue baby syndrome in infants.

Lead* A cumulative body poison, uncommon in naturally occurring hard waters.

Fluoride* Present in fluoridated water supplies at 0.8 mg/L to reduce dental caries. Elevated levels causes fluorosis (mottling of teeth).

Total Coliforms* Criteria is 0 CFU/100mL. Adverse health effects.

E. Coli* Criteria is 0 CFU/100 mL. Certain E. Coli bacteria can be life threatening.

*Health Canada Canadian Drinking Water Quality Guidelines (MAC limit)

Aesthetic Objective Concentration Levels

Alkalinity Acid neutralizing capacity. Usually a measure of carbonate and bicarbonates and calculated and reported as calcium carbonate.

Balance Quality control parameter ratioing cations to anions
Bicarbonate See Alkalinity. Report as the anion HCO3-1
Carbonate See Alkalinity. Reported at the anion CO3-2

Calcium See Hardness. Common major cation of water chemistry.

Chloride Common major anion of water chemistry.

Conductance Physical test measuring water salinity (dissolved ions or solids)

Hardness Classical measure or capacity of water to precipitate soap (chiefly calcium and magnesium ions). Causes scaling tendency in

water if carbonates/bicarbonates are present (if >200 mg/L). For drinking water purposes waters with results <200 mg/L are considered acceptable, results >200 mg/L are considered poor but can be tolerated. Results >500 mg/L are unacceptable.

Hydroxide See alkalinity

Magnesium See hardness. Common major cation of water chemistry. Elevated levels (>125 mg/L) may exert a cathartic or diuretic action.

Measure of water acidity/alkalinity. Normal range is 7.0-8.5.

Potassium Common major cation of water chemistry.

Sodium Common major cation of water chemistry. Measure of salinity (saltiness). The aesthetic objective (not related to health) for

sodium in drinking water is 200 mg/L. However, where sodium concentration of the drinking water exceeds 20 mg/L, it is recommended that any person on a sodium restricted diet consult with his/her physician or Medical Officer of Health

concerning the use of that water.

Sulphate Common major anion of water chemistry. Elevated levels may exert a cathartic or diuretic action.

Total Dissolved Solids A measure of water salinity.

Iron Causes staining to laundry and porcelain and astringent taste. Oxidizes to red-brown precipitate on exposure to air.

Manganese Elevated levels may cause staining of laundry and porcelain. Heterotrophic

Plate Count Criteria is 500 cfu/mL Measure of heterotrophic bacteria present.

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L2088204 Report Date: 08-MAY-18 Page 1 of 5

Client: KGS Group Consultants (Winnipeg)

865 Waverly Street - 3rd Floor

Winnipeg MB R3T 5P4

Contact: Marci Friedman Hamm

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-TITR-WP	Water							
Batch R4032930 WG2764672-4 LCS Alkalinity, Total (as CaC	O3)		103.9		%		85-115	03-MAY-18
WG2764672-1 MB Alkalinity, Total (as CaC	O3)		<1.0		mg/L		1	03-MAY-18
CL-IC-N-WP	Water							
Batch R4034953 WG2764092-2 LCS Chloride (CI)			99.9		%		90-110	04-MAY-18
WG2764092-1 MB Chloride (CI)			<0.50		mg/L		0.5	04-MAY-18
EC-WP	Water							
Batch R4032930 WG2764672-3 LCS Conductivity			96.6		%		90-110	03-MAY-18
WG2764672-1 MB Conductivity			<1.0		umhos/cm		1	03-MAY-18
F-IC-N-WP	Water							
Batch R4034953								
WG2764092-2 LCS Fluoride (F)			101.3		%		90-110	04-MAY-18
WG2764092-1 MB Fluoride (F)			<0.020		mg/L		0.02	04-MAY-18
MET-D-MS-WP	Water							
Batch R4032905								
WG2764087-2 LCS Calcium (Ca)-Dissolved			96.3		%		80-120	03-MAY-18
Magnesium (Mg)-Dissol	ved		102.0		%		80-120	03-MAY-18
Potassium (K)-Dissolved	t		101.7		%		80-120	03-MAY-18
Sodium (Na)-Dissolved			101.9		%		80-120	03-MAY-18
WG2764087-1 MB Calcium (Ca)-Dissolved			<0.50		mg/L		0.5	03-MAY-18
Magnesium (Mg)-Dissol	ved		<0.050		mg/L		0.05	03-MAY-18
Potassium (K)-Dissolved	d		< 0.50		mg/L		0.5	03-MAY-18
Sodium (Na)-Dissolved			<0.50		mg/L		0.5	03-MAY-18
MET-T-MS-WP	Water							

Workorder: L2088204

Report Date: 08-MAY-18

Page 2 of 5

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WP	Water							
Batch R4034012								
WG2764769-2 LCS Calcium (Ca)-Total			100.6		%		80-120	04-MAY-18
Iron (Fe)-Total			99.4		%		80-120	04-MAY-18
Magnesium (Mg)-Total			102.2		%		80-120	04-MAY-18
Manganese (Mn)-Total			98.6		%		80-120	04-MAY-18
Potassium (K)-Total			100.9		%		80-120	04-MAY-18
Sodium (Na)-Total			104.3		%		80-120	04-MAY-18
WG2764769-1 MB								
Calcium (Ca)-Total			<0.50		mg/L		0.5	04-MAY-18
Iron (Fe)-Total			<0.10		mg/L		0.1	04-MAY-18
Magnesium (Mg)-Total			< 0.050		mg/L		0.05	04-MAY-18
Manganese (Mn)-Total			<0.0010		mg/L		0.001	04-MAY-18
Potassium (K)-Total			< 0.50		mg/L		0.5	04-MAY-18
Sodium (Na)-Total			<0.50		mg/L		0.5	04-MAY-18
NO2-L-IC-N-WP	Water							
Batch R4034953								
WG2764092-2 LCS Nitrite (as N)			99.9		%		90-110	04-MAY-18
WG2764092-1 MB Nitrite (as N)			<0.0010		mg/L		0.001	04-MAY-18
NO3-L-IC-N-WP	Water							
Batch R4034953								
WG2764092-2 LCS								
Nitrate (as N)			99.3		%		90-110	04-MAY-18
WG2764092-1 MB Nitrate (as N)			<0.0050		mg/L		0.005	04-MAY-18
PH-WP	Water							
Batch R4032930	ı							
WG2764672-2 LCS pH			7.42		pH units		7.3-7.5	03-MAY-18
SO4-IC-N-WP	Water							
Batch R4034953								
WG2764092-2 LCS Sulfate (SO4)			100.8		%		90-110	04-MAY-18
WG2764092-1 MB								

Workorder: L2088204

Report Date: 08-MAY-18 Page 3 of 5

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SO4-IC-N-WP	Water							
Batch R4034953								
WG2764092-1 MB Sulfate (SO4)			<0.30		mg/L		0.3	04-MAY-18
TC,EC-QT51-WP	Water							
Batch R4032268								
WG2763493-4 DUP		L2088204-1						
Total Coliforms		3	1	DUPM	MPN/100mL	2	2	02-MAY-18
Escherichia Coli		0	0		MPN/100mL	0.0	65	02-MAY-18
WG2763493-1 MB								
Total Coliforms			0		MPN/100mL		1	02-MAY-18
Escherichia Coli			0		MPN/100mL		1	02-MAY-18
WG2763493-2 MB								
Total Coliforms			0		MPN/100mL		1	02-MAY-18
Escherichia Coli			0		MPN/100mL		1	02-MAY-18
TURBIDITY-WP	Water							
Batch R4034473								
WG2766106-2 LCS Turbidity			101.0		%		85-115	03-MAY-18
WG2766106-1 MB Turbidity			<0.10		NTU		0.1	03-MAY-18

Workorder: L2088204 Report Date: 08-MAY-18 Page 4 of 5

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
DUPM	MPN duplicate results were outside default ALS Data Quality Objective, but within 95% confidence interval for MPN reference method. Sample results are reliable.

Workorder: L2088204 Report Date: 08-MAY-18 Page 5 of 5

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
рН							
	1	02-MAY-18 10:40	03-MAY-18 12:00	0.25	25	hours	EHTR-FM
	2	02-MAY-18 13:00	03-MAY-18 12:00	0.25	23	hours	EHTR-FM

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2088204 were received on 02-MAY-18 15:15.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

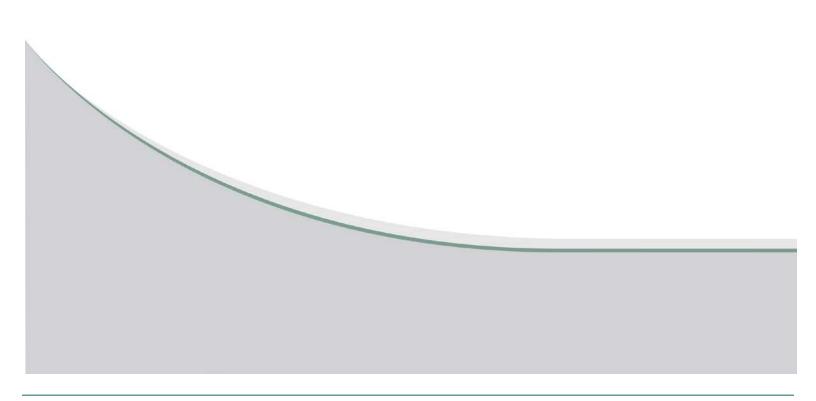
Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS	Enviro	nmen	tal

Chain of Custody/ Reque:

code label here

coc Number: 15 - 550880


19088321	
our AM - surcharges will apply	
our AM - surcharges will apply	

(, , , , , , , , , , , , , , , , , , ,	www.alsglobal.com	Canada To	ll Fre	L208820		11 1									la	DE 5	≥⊋	57		
Report To	Contact and company name below will appe	ear on the final report					Select S	ervice Le	vel Below	Please	confirm a	all E&P T	ATs with	your Al	M - surci	arges wi	l apply			<u> </u>
Company:	KGS Group		Select Report to	amat: אטא דין	V TEXCELT TI	TEUU'(DIGITAE)	厂	Re	gular [F	₹] [S	itandard	TAT if	eceived	d by 3 p	m - busir	ess day	s - no sui	charge:	apply
Contact;	Marci Friedman- H	amm		QC) Report with Rep		NO NO	Y (sys)	4	day [P4]			ς	1	Buşi	ness d	ay [E1]		
Phone:	204-896-1209		Compare Res	ults to Criteria on Report	provide details below i	f box checked	JORIT Pess 0	3	day [P3]			RGEN	Sam	e Dav	Week	end or	r Statut	orv	_
	Company address below will appear on the final re		Select Distribution	on: EMAIL	MAIL	FAX	PR (Buşir	2	day [P2	1			EME		,	holida	y [E0]			Ш.
Street:	3'0 Floor - 865 Wav	erley St.	Email 1 or Fax	wt hamm	3 Kasarou	prcom		Date	and Time	Requir	ed for al	II E&P T	ATs:				ोत-च्य	r r ,y	i m	
City/Province:	Winnipea, MB	<u></u>	Email 2	~12 11 @ KC	SOFOMO.	ĊOM	For tests	s that can	not be pe	formed	according	g to the s	service l	vel sele	ected, ya	u will be	contacte	d.		
Postal Code:	R3T 5P40		Email 3 (5)ma	Noru@Kase	drovo co	<u>~</u>							Analy	sis R	eques	t				
Invoice To	Same as Report To YES	NO		Invoice Di					ndicate F	ltered (i	F), Prese	erved (P)	or Filte	red and	i Presen	ved (F/P)	below			
	Copy of Invoice with Report YES	NO	Select Invoice Di	istribution:	EMAIL MAIL	FAX								-						
Company:	KGS Grove		Email 1 or Fax	wnacqua	mice/so	Saroup.Com	ďζ		3				2	8	₽	Λ	ŀ			
Contact:	BIII Mac Quarrie		Email 2		U) 1	ر س-′	A	ᇫ			E	\mathcal{Z}	72	2	3	1			
	Project Information			Dil and Gas Require	d Fields (client u	se)	اخِ [Z	ă		2	<u></u>	75	笠	受	3				<u>a</u>
ALS Account # /			AFE/Cost Center:		PO#		占	₹	7.	12	Z	₹	\ S '	1	3		1			onts
Job#: 16-0	300-062-1200.16A		Major/Minor Code:		Routing Code:] L	4	1	1	4	4	4	7	1/2	M				Ž.
PO / AFE:			Requisitioner:] À		为	2	₩ (8	18	2	13	QTSI				ĕ
LSD:			Location:				lά	厌	₹	8	22	Z	3	7	1	Y				Number of Containers
ALS Lab Wo	rk Order # (lab use only)		ALS Contact:	Judy	Sampler: AT	M 4ACM	KGS-ROUIM-D-FIDWY	LANNABONO BUNDANA	KGS-ROCKW-T-FLOWY-W	ANNIKATINGO PO	MONTENAS	bourdanewa	BOUNGARAGOUNA	DELICATION OF THE PARTY OF THE	tackorson anothers	EC				z
ALS Sample #	Sample Identification	and/or Coordinates		Date	Time		1 /4	2	15	1	2	₹	9	Z	2	رز از				
(lab use only)	(This description will	appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	12	X	交	12	4	Z	32	#	2	1				
	G050C006			02-MAY-18	10:40	SW			\times	29.0						X	T		-	Ž,
	K13-12322			02-NAY-18	13:00	GW	×												1	a
	NO INJUG			D2 1111 10	13 -0															
						·							-		\vdash	-+	$\neg +$		\dashv	
							+								 	-+			-	
	2V. D			ļ											\sqcup	\rightarrow	_		-	
913	a 192																			
10 -	يهونك بورثا ياوي																			
936	1 NO SECULATION NAMES	1															.			
	CAD ALL TAMES																			
·	· · · · · · · · · · · · · · · · · · ·																		一	
.2.,/	7 17 1 1989 OF A			 		 	 												\dashv	
,**.**	2 4 3035 ALB									_					\vdash				\dashv	
	<u> </u>		0 16 0 10 1					2 04 16	- 1	SAN	API E C	ONDI	TION	AS PI	ECEN	ED (lat	1156	only)		
Drinkin	g Water (DW) Samples' (client use)	Special Instructions /		add on report by CHC ctronic COC only)	ang on the arop-a	own list below	Froze	n							vations				No	
Are samples take	n from a Regulated DW System? , "	Samples not	Filteror	1			Ice Pa				ubes		-		al inta			=	No	
YES	Bq ≥. ON	المادا في المادي	Yampe.	é not pres	served.			ng Initia		П		_		.,		-			•	_
Are samples for h	ເພື່ອການ ທີ່ສຸກ ການ ທີ່ສຸກ ທີ່ ຂ້ອງ ທີ່	Surface water	er samol	e preserv	ed.		X 1, 1	INI	TIAL COC	_	EMPERA	TURES	°C	41 5.	100	FINA	L COOL	ER TEMP	ERATU	RES °C
I	5	Groundwater Surface water Please filter	+ for or	eserve in	lab-															
	SHIPMENT RELEASE (client use)	1,000	× 2 3 4 4	INITIAL SHIPMEN	IT RECEPTION (ab use only)	8 1 83.81	, in	1 1 1	, 41	<u>ا</u> F. د	INAL :	SHIPN	ENT	RECE	PTION	(lab u	se only	}	
Released by	- OO Date	Time:	Received by:		Date:	7. 11	Time:	_	Receiv	ed by	,			 -	Date	:]	. [,		Τ Τ	ime:
Luce	Mallong 02-MAY-						<u> </u>				<u> </u>				<u></u> '	02 0	4 1	<u> </u>		3:12 DM
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING IN	FORMATION		WHI	E - LABORATORY	COPY YELLO	N - CLIE	NT CO	PY								1			OCTOBER 2015 FRONT

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY, By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW). System, please submit using an Authorized DW COC form.

APPENDIX D6-E-3 POST MELT

ATTN: Marci Friedman Hamm

Date: 14-JUN-18

PO No.:

WO No.: L2108732

Project Ref: 16-0300-002

Sample ID: K11-12015

Sampled By:

Date Collected: 07-JUN-18 Lab Sample ID: L2108732-1

Matrix: GROUNDWATER

PAGE 1 of 19

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissolved Floodway						
Bicarbonate (HCO3)	338		mg/L			12-JUN-18
Carbonate (CO3)	<0.60		mg/L			12-JUN-18
Hydroxide (OH)	<0.34		mg/L			12-JUN-18
*Nitrate and Nitrite as N	0.042		mg/L	10		11-JUN-18
рН				.0		
pH	7.64		pH units			12-JUN-18
Turbidity			p ae			
*Turbidity	0.23		NTU			08-JUN-18
TDS calculated	0.20					
TDS (Calculated)	396		mg/L		500	12-JUN-18
,	000		IIIg/L		300	12 0011 10
Sulfate in Water by IC	77.5		m a/l		500	08-JUN-18
Sulfate (SO4)	17.5		mg/L		500	00-3014-10
Nitrite in Water by IC (Low Level)	0.0000	514	,,			00 11 151 47
*Nitrite (as N)	<0.0020	DLM	mg/L	1		08-JUN-18
Nitrate in Water by IC (Low Level)						
*Nitrate (as N)	0.042		mg/L	10		08-JUN-18
Ion Balance Calculation						
Ion Balance	107		%			12-JUN-18
Cation - Anion Balance Anion Sum	3.2 7.61		%			12-JUN-18
Cation Sum	8.11		me/L me/L			12-JUN-18 12-JUN-18
Hardness Calculated	0.11		IIIC/L			12 0011 11
Hardness (as CaCO3)	382		mg/L		500	12-JUN-18
	002		IIIg/L		300	12 0011
Dissolved Metals by ICP-MS Dissolved Metals	LAB					11-JUN-18
Filtration Location	LAD					11-30N-10
Calcium (Ca)-Dissolved	77.2		mg/L			11-JUN-18
Magnesium (Mg)-	46.0		mg/L			11-JUN-18
Dissolved Potassium (K)-Dissolved	4.15		mg/L			11-JUN-18
Sodium (Na)-Dissolved	8.43		mg/L		200	11-JUN-18
Conductivity						
Conductivity	677		umhos/cm			12-JUN-18
Chloride in Water by IC			355, 5.11			
Chloride III Water by IC Chloride (CI)	16.0		mg/L		250	08-JUN-18
	10.0		1119/1		230	
Alkalinity, Total (as CaCO3)	277		//			12 11 11 14
Alkalinity, Total (as CaCO3)	277		mg/L			12-JUN-18
,						

ATTN: Marci Friedman Hamm

Date: 14-JUN-18

PO No.:

WO No.: L2108732

Project Ref: 16-0300-002

Sample ID: K11-12015

Sampled By:

Date Collected: 07-JUN-18 Lab Sample ID: L2108732-1

Matrix: GROUNDWATER

PAGE 2 of 19

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total California and E agli by MDN CT07						
Total Coliform and E.coli by MPN QT97 Total Coliforms	<1		MPN/100mL	0		08-JUN-18
Escherichia Coli	<1		MPN/100mL	0		08-JUN-18
CDWQG = Health Canada Guideline Limits updated	MAY 2018					
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ	 If present as N guidelines on cor ter Quality 	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration plea	ase see
Approved by Hua Wo Account Manager						

ATTN: Marci Friedman Hamm

Date: 14-JUN-18

PO No.:

WO No.: L2108732

Project Ref: 16-0300-002

Sample ID: K09-12012

Sampled By:

Date Collected: 07-JUN-18 Lab Sample ID: L2108732-2

Matrix: GROUNDWATER

PAGE 3 of 19

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissol	lved Floodway						
	Bicarbonate (HCO3)	415		mg/L			12-JUN-18
	Carbonate (CO3)	<0.60		mg/L			12-JUN-18
	Hydroxide (OH)	<0.34		mg/L			12-JUN-18
	*Nitrate and Nitrite as N	<0.010		mg/L	10		11-JUN-18
pН							
-	рН	7.66		pH units			12-JUN-1
Turbidity							
-	*Turbidity	0.14		NTU			08-JUN-1
TDS calculat	ted						
	TDS (Calculated)	610		mg/L		500	12-JUN-1
Sulfate in Wa	ater by IC						
	Sulfate (SO4)	175		mg/L		500	08-JUN-1
Nitrite in Wat	ter by IC (Low Level)						
	*Nitrite (as N)	<0.0020	DLM	mg/L	1		08-JUN-1
Nitrate in Wa	ater by IC (Low Level)				·		
	*Nitrate (as N)	<0.010	DLM	mg/L	10		08-JUN-1
Ion Balance							
1011 24141100	Ion Balance	112		%			12-JUN-1
	Cation - Anion Balance	5.6		%			12-JUN-1
	Anion Sum	11.1		me/L			12-JUN-1
	Cation Sum	12.4		me/L			12-JUN-1
Hardness Ca	alculated						
	Hardness (as CaCO3)	510		mg/L		500	12-JUN-1
Dissolved Me	etals by ICP-MS						
	Dissolved Metals	LAB					11-JUN-1
	Filtration Location Calcium (Ca)-Dissolved	82.8		mg/L			11-JUN-1
	Magnesium (Mg)-	73.6		mg/L			11-JUN-1
	Dissolved						
	Potassium (K)-Dissolved	4.45		mg/L			11-JUN-1
	Sodium (Na)-Dissolved	48.0		mg/L		200	11-JUN-1
Conductivity							
	Conductivity	987		umhos/cm			12-JUN-1
Chloride in V	•						
	Chloride (CI)	22.8		mg/L		250	08-JUN-1
Alkalinity, To	otal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	340		mg/L			12-JUN-1

ATTN: Marci Friedman Hamm

Date: 14-JUN-18

PO No.:

WO No.: L2108732
Project Ref: 16-0300-002
Sample ID: K09-12012

Sampled By:

Date Collected: 07-JUN-18 Lab Sample ID: L2108732-2

Matrix: GROUNDWATER

PAGE 4 of 19

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total California and E agli by MDN CT07						
Total Coliform and E.coli by MPN QT97 Total Coliforms	<1		MPN/100mL	0		08-JUN-18
Escherichia Coli	<1		MPN/100mL	0		08-JUN-18
CDWQG = Health Canada Guideline Limits updated	MAY 2018					
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ	 If present as N guidelines on cor ter Quality 	ventional treatm	ent and slow sand	N.D. = less than de or diatomaceous e	tection limit. arth filtration plea	ase see
Approved by Hua Wo Account Manager						

ATTN: Marci Friedman Hamm

Date: 14-JUN-18

PO No.:

WO No.: L2108732
Project Ref: 16-0300-002
Sample ID: K11-100

Sampled By:

Date Collected: 07-JUN-18 Lab Sample ID: L2108732-3

Matrix: GROUNDWATER

PAGE 5 of 19

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissol	ved Floodway						
	Bicarbonate (HCO3)	345		mg/L			12-JUN-18
	Carbonate (CO3)	<0.60		mg/L			12-JUN-18
	Hydroxide (OH)	<0.34		mg/L			12-JUN-18
	*Nitrate and Nitrite as N	0.0348		mg/L	10		11-JUN-18
рН							
	рН	7.71		pH units			12-JUN-18
Turbidity							
	*Turbidity	0.22		NTU			08-JUN-18
TDS calculate	ed						
	TDS (Calculated)	401		mg/L		500	12-JUN-18
Sulfate in Wa	ater by IC						
	Sulfate (SO4)	78.0		mg/L		500	08-JUN-18
Nitrite in Wat	ter by IC (Low Level)						
	*Nitrite (as N)	<0.0010		mg/L	1		08-JUN-18
Nitrate in Wa	iter by IC (Low Level)						
	*Nitrate (as N)	0.0348		mg/L	10		08-JUN-1
Ion Balance							
	Ion Balance	106		%			12-JUN-1
	Cation - Anion Balance	3.0		%			12-JUN-1
	Anion Sum	7.73		me/L			12-JUN-1
	Cation Sum	8.22		me/L			12-JUN-1
Hardness Ca	lculated						
	Hardness (as CaCO3)	387		mg/L		500	12-JUN-1
Dissolved Me	etals by ICP-MS						
	Dissolved Metals	LAB					11-JUN-1
	Filtration Location Calcium (Ca)-Dissolved	78.7		mg/L			11-JUN-1
	Magnesium (Mg)-	46.3		mg/L			11-JUN-1
	Dissolved						
	Potassium (K)-Dissolved	4.25		mg/L			11-JUN-1
	Sodium (Na)-Dissolved	8.48		mg/L		200	11-JUN-1
Conductivity							
	Conductivity	673		umhos/cm			12-JUN-1
Chloride in V	•						
	Chloride (CI)	16.0		mg/L		250	08-JUN-1
Alkalinity, To	otal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	283		mg/L			12-JUN-18

ATTN: Marci Friedman Hamm

Date: 14-JUN-18

PO No.:

WO No.: L2108732
Project Ref: 16-0300-002
Sample ID: K11-100

Sampled By:

Date Collected: 07-JUN-18 Lab Sample ID: L2108732-3

Matrix: GROUNDWATER

PAGE 6 of 19

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97						
Total Coliforms	<1		MPN/100mL	0		08-JUN-18
Escherichia Coli	<1		MPN/100mL	0		08-JUN-18
CDWQG = Health Canada Guideline Limits updated	MAY 2018					
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ	guidelines on cor Iter Quality	ventional treatm	ent and slow sand	N.D. = less than de f or diatomaceous e	ection limit. arth filtration plea	se see
Approved by Hua Wo Account Manager	_					

ATTN: Marci Friedman Hamm

Date: 14-JUN-18

PO No.:

WO No.: L2108732

Project Ref: 16-0300-002

Sample ID: K13-12321

Sampled By:

Date Collected: 07-JUN-18 Lab Sample ID: L2108732-4

Matrix: GROUNDWATER

PAGE 7 of 19

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissolved Floodway						
Bicarbonate (HCO3)	622		mg/L			12-JUN-18
Carbonate (CO3)	<0.60		mg/L			12-JUN-18
Hydroxide (OH)	<0.34		mg/L			12-JUN-18
*Nitrate and Nitrite as N	5.55		mg/L	10		11-JUN-18
рН						
, pH	7.55		pH units			12-JUN-18
Turbidity						
*Turbidity	4.51		NTU			08-JUN-18
TDS calculated						
TDS (Calculated)	717		mg/L		500	12-JUN-18
Sulfate in Water by IC						
Sulfate (SO4)	98.9		mg/L		500	08-JUN-18
Nitrite in Water by IC (Low Level)						
*Nitrite (as N)	<0.0020	DLM	mg/L	1		08-JUN-18
Nitrate in Water by IC (Low Level)						
*Nitrate (as N)	5.55		mg/L	10		08-JUN-18
Ion Balance Calculation						
Ion Balance	104		%			12-JUN-18
Cation - Anion Balance	1.9		%			12-JUN-18
Anion Sum	14.2		me/L			12-JUN-18
Cation Sum	14.8		me/L			12-JUN-18
Hardness Calculated	070					40 11111 40
Hardness (as CaCO3)	670		mg/L		500	12-JUN-18
Dissolved Metals by ICP-MS	1.45					44 11 15 14
Dissolved Metals Filtration Location	LAB					11-JUN-18
Calcium (Ca)-Dissolved	89.6		mg/L			11-JUN-18
Magnesium (Mg)-	108		mg/L			11-JUN-18
Dissolved Potassium (K)-Dissolved	5.16		mg/L			11-JUN-18
Sodium (Na)-Dissolved	29.4		mg/L		200	11-JUN-18
Conductivity						
Conductivity	1150		umhos/cm			12-JUN-18
Chloride in Water by IC						
Chloride (CI)	55.4		mg/L		250	08-JUN-18
Alkalinity, Total (as CaCO3)						
Alkalinity, Total (as CaCO3)	510		mg/L			12-JUN-18

ATTN: Marci Friedman Hamm

Date: 14-JUN-18

PO No.:

WO No.: L2108732
Project Ref: 16-0300-002
Sample ID: K13-12321

Sampled By:

Date Collected: 07-JUN-18 Lab Sample ID: L2108732-4

Matrix: GROUNDWATER

PAGE 8 of 19

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97						
Total Coliforms	<1		MPN/100mL	0		08-JUN-18
Escherichia Coli	<1		MPN/100mL	0		08-JUN-18
CDWQG = Health Canada Guideline Limits updated	MAY 2018					
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ	guidelines on cor Iter Quality	ventional treatm	ent and slow sand	N.D. = less than de f or diatomaceous e	ection limit. arth filtration plea	se see
Approved by Hua Wo Account Manager	_					

ATTN: Marci Friedman Hamm

Date: 14-JUN-18

PO No.:

WO No.: L2108732
Project Ref: 16-0300-002
Sample ID: K09-12316

Sampled By:

Date Collected: 07-JUN-18 Lab Sample ID: L2108732-5

Matrix: GROUNDWATER

PAGE 9 of 19

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissol	ved Floodway						
	Bicarbonate (HCO3)	505		mg/L			12-JUN-18
	Carbonate (CO3)	<0.60		mg/L			12-JUN-18
	Hydroxide (OH)	<0.34		mg/L			12-JUN-18
	*Nitrate and Nitrite as N	2.29		mg/L	10		11-JUN-18
рН							
	pН	7.53		pH units			12-JUN-18
Turbidity							
	*Turbidity	0.12		NTU			08-JUN-18
TDS calculate	ed						
	TDS (Calculated)	535	ĺ	mg/L		500	12-JUN-18
Sulfate in Wa	ater by IC						
	Sulfate (SO4)	60.8		mg/L		500	08-JUN-18
Nitrite in Wat	ter by IC (Low Level)						
	*Nitrite (as N)	<0.0020	DLM	mg/L	1		08-JUN-18
Nitrate in Wa	iter by IC (Low Level)						
	*Nitrate (as N)	2.29		mg/L	10		08-JUN-18
Ion Balance	Calculation						
	Ion Balance	107		%			12-JUN-18
	Cation - Anion Balance	3.3		%			12-JUN-18
	Anion Sum	10.6		me/L			12-JUN-18
	Cation Sum	11.4		me/L			12-JUN-18
Hardness Ca		512		m/l		500	12-JUN-18
5:	Hardness (as CaCO3)	512		mg/L		500	12-JUN-10
Dissolved Me	etals by ICP-MS Dissolved Metals	LAB					11-JUN-18
	Filtration Location	LAB					11-3011-10
	Calcium (Ca)-Dissolved	78.0		mg/L			11-JUN-18
	Magnesium (Mg)- Dissolved	77.0		mg/L			11-JUN-18
	Potassium (K)-Dissolved	4.26		mg/L			11-JUN-18
	Sodium (Na)-Dissolved	23.5		mg/L		200	11-JUN-18
Conductivity							
	Conductivity	908		umhos/cm			12-JUN-18
Chloride in V	Vater by IC						
	Chloride (CI)	33.0		mg/L		250	08-JUN-18
Alkalinity, To	otal (as CaCO3)						
	Alkalinity, Total (as CaCO3)	414		mg/L			12-JUN-18

ATTN: Marci Friedman Hamm

Date: 14-JUN-18

PO No.:

WO No.: L2108732
Project Ref: 16-0300-002
Sample ID: K09-12316

Sampled By:

Date Collected: 07-JUN-18 Lab Sample ID: L2108732-5

Matrix: GROUNDWATER

PAGE 10 of 19

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97	_					
Total Coliforms	<1		MPN/100mL	0		08-JUN-18
Escherichia Coli	<1		MPN/100mL	0		08-JUN-18
CDWQG = Health Canada Guideline Limits updated	MAY 2018					
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ	guidelines on con iter Quality	ventional treatm	ent and slow sand	N.D. = less than de for diatomaceous e	ection limit. arth filtration plea	se see
Approved by						
Hua Wo						
Account Manager						

ATTN: Marci Friedman Hamm

Date: 14-JUN-18

PO No.:

WO No.: L2108732

Project Ref: 16-0300-002

Sample ID: K11-12014

Sampled By:

Date Collected: 07-JUN-18 **Lab Sample ID:** L2108732-6

Matrix: GROUNDWATER

PAGE 11 of 19

	Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Dissol	lved Floodway						
	Bicarbonate (HCO3)	379		mg/L			12-JUN-18
	Carbonate (CO3)	<0.60		mg/L			12-JUN-18
	Hydroxide (OH)	<0.34		mg/L			12-JUN-18
	*Nitrate and Nitrite as N	0.146		mg/L	10		11-JUN-1
рН							
-	рН	7.61		pH units			12-JUN-1
Turbidity							
-	*Turbidity	0.55		NTU			08-JUN-1
TDS calculat	ted						
	TDS (Calculated)	403		mg/L		500	12-JUN-1
Sulfate in Wa	ater by IC						
	Sulfate (SO4)	61.5		mg/L		500	08-JUN-1
Nitrite in Wat	ter by IC (Low Level)						
	*Nitrite (as N)	0.0010		mg/L	1		08-JUN-1
Nitrate in Wa	ater by IC (Low Level)			9_	·		
Williate III Wa	*Nitrate (as N)	0.145		mg/L	10		08-JUN-1
Ion Balance				9, 2	10		
ion balance	Ion Balance	109		%			12-JUN-1
	Cation - Anion Balance	4.4		%			12-JUN-1
	Anion Sum	7.88		me/L			12-JUN-1
	Cation Sum	8.61		me/L			12-JUN-1
Hardness Ca	alculated						
	Hardness (as CaCO3)	408		mg/L		500	12-JUN-1
Dissolved Me	etals by ICP-MS						
	Dissolved Metals	LAB					11-JUN-1
	Filtration Location	70.0					44 11 15 14
	Calcium (Ca)-Dissolved	76.6 52.7		mg/L			11-JUN-1 11-JUN-1
	Magnesium (Mg)- Dissolved	52.7		mg/L			11-JUN-1
	Potassium (K)-Dissolved	4.39		mg/L			11-JUN-1
	Sodium (Na)-Dissolved	7.73		mg/L		200	11-JUN-1
Conductivity	,						
	Conductivity	689		umhos/cm			12-JUN-1
Chloride in V	Vater by IC						
	Chloride (CI)	13.3		mg/L		250	08-JUN-1
Alkalinity, To	otal (as CaCO3)						
•.	Alkalinity, Total (as CaCO3)	311		mg/L			12-JUN-1

ATTN: Marci Friedman Hamm

Date: 14-JUN-18

PO No.:

WO No.: L2108732

Project Ref: 16-0300-002

Sample ID: K11-12014

Sampled By:

Date Collected: 07-JUN-18 Lab Sample ID: L2108732-6

Matrix: GROUNDWATER

PAGE 12 of 19

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Coliform and E.coli by MPN QT97						
Total Coliforms	1		MPN/100mL	0		08-JUN-18
Escherichia Coli	<1		MPN/100mL	0		08-JUN-18
CDWQG = Health Canada Guideline Limits updated	MAY 2018					
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa - A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ	 If present as N guidelines on cor ter Quality 	ventional treatm	ent and slow sand	N.D. = less than de for diatomaceous e	tection limit. arth filtration plea	ase see
Approved by Hua Wo Account Manager						

ATTN: Marci Friedman Hamm

Date: 14-JUN-18

PO No.:

WO No.: L2108732

Project Ref: 16-0300-002

Sample ID: SW-PTH59N

Sampled By:

Date Collected: 07-JUN-18 Lab Sample ID: L2108732-7

Matrix: SW

PAGE 13 of 19

Bicarbonate (HCO3) 109 mg/L 12-JUN-18 12-JUN		Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Carbonate (CO3) 36.6 mg/L 12-JUN-18 Hydroxide (OH) < 0.34 mg/L 10 11-JUN-18 PH	ROU1W Total F	Floodway						
Hydroxide (OH)		Bicarbonate (HCO3)	109		mg/L			12-JUN-18
Hydroxide (OH)		Carbonate (CO3)	36.6					12-JUN-18
pH pH pH 9.46 pH units 12-JUN-18 Turbidity 1-urbidity 1.31 NTU 08-JUN-18 Total Metals by ICP-MS Calcium (Ca)-Total 41.3 mg/L 12-JUN-18 Magnesium (Mg)-Total 51.3 mg/L 12-JUN-18 Potassium (K)-Total 6.98 mg/L 200 12-JUN-18 Sodium (Na)-Total 105 mg/L 200 12-JUN-18 TDS calculated TDS (Calculated) 590 mg/L 500 13-JUN-18 Sulfate in Water by IC Sulfate (SO4) 140 mg/L 500 08-JUN-18 Nitrite in Water by IC (Low Level) Nitrite in Water by IC (Low Level) Nitrate (as N) -0.010 DLM mg/L 10 08-JUN-18 Ion Balance Calculation Ion Balance Calculation Ion Balance 3.3 % 13-JUN-18 Cation -Anion Balance 3.3 % 13-JUN-18 Lation Sum 10.3 me/L 13-JUN-18 Hardness Calculated Hardness (as CaCO3) 314 HTC mg/L 500 13-JUN-18 Conductivity 983 umhos/cm Conductivity 983 umhos/cm Conductivity 983 umhos/cm Chloride in Water by IC Chloride (Cl) 156 mg/L 250 08-JUN-18 Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3) Phosphorus (P)-Total 0.0531 mg/L 11-JUN-18		Hydroxide (OH)	<0.34		mg/L			12-JUN-18
PH		*Nitrate and Nitrite as N	<0.010		mg/L	10		11-JUN-18
Turbidity	рН							
Turbidity 1.31 NTU 08-JUN-18 Calcium (Ca)-Total 41.3 mg/L 12-JUN-18 Calcium (Ca)-Total 51.3 mg/L 12-JUN-18 Potassium (K)-Total 6.98 mg/L 12-JUN-18 Potassium (K)-Total 105 mg/L 12-JUN-18 Sodium (Na)-Total 105 mg/L 200 12-JUN-18 TDS calculated TDS (Calculated) 590 mg/L 500 13-JUN-18 Sulfate in Water by IC Sulfate (SO4) 140 mg/L 1 08-JUN-18 Nitrite in Water by IC (Low Level) Nitrite (as N) < 0.0020 DLM mg/L 1 08-JUN-18 Nitrate in Water by IC (Low Level) Nitrate (as N) < 0.010 DLM mg/L 10 08-JUN-18 Ion Balance 107 % 13-JUN-18 Cation - Anion Balance 3.3 % 13-JUN-18 Cation - Anion Balance 3.3 % 13-JUN-18 Cation Sum 11.0 me/L 13-JUN-18 Hardness Calculated Hardness (as CaCO3) 314 HTC mg/L 500 13-JUN-18 Conductivity 983 umhos/cm 12-JUN-18 Chloride in Water by IC (Chloride (Cl) 156 mg/L 250 08-JUN-18 Chloride in Water by IC (Chloride (Cl) 156 mg/L 250 08-JUN-18 Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3) 150 mg/L 12-JUN-18 Phosphorus (P)-Total 0.0531 mg/L 11-JUN-18		рН	9.46		pH units			12-JUN-18
Total Metals by ICP-MS	Turbidity							
Calcium (Ca)-Total		*Turbidity	1.31		NTU			08-JUN-18
Magnesium (Mg)-Total	Total Metals	by ICP-MS						
Potassium (K)-Total 6.98 mg/L 200 12-JUN-18 Sodium (Na)-Total 105 mg/L 200 12-JUN-18 12-JUN-	1	Calcium (Ca)-Total	41.3		mg/L			12-JUN-18
Sodium (Na)-Total 105					mg/L			1
TDS calculated TDS (Calculated) TDS (Calculated) TDS (Calculated) Sulfate in Water by IC Sulfate (SO4) Nitrite in Water by IC (Low Level) *Nitrite (as N) *Nitritate (as N) Ion Balance Cation - Anion Balance Anion Sum Anion Sum 11.0 Hardness Calculated Hardness (as CaCO3) Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3) Phosphorus (P)-Total Pisting (S04) 140 mg/L mg/L mg/L mg/L mg/L 10 08-JUN-18 10 mg/L 10 mg/L 10 08-JUN-18 11 08-JUN-18 12-JUN-18 13-JUN-18 13-J								1
TDS (Calculated) 590 mg/L 500 13-JUN-18		Sodium (Na)-Total	105		mg/L		200	12-JUN-18
Sulfate in Water by IC	TDS calculate	ed						
Sulfate (SO4)		TDS (Calculated)	590		mg/L		500	13-JUN-18
Nitrite in Water by IC (Low Level)	Sulfate in Wa	ater by IC						
*Nitrate (as N)		Sulfate (SO4)	140		mg/L		500	08-JUN-18
Nitrate in Water by IC (Low Level) *Nitrate (as N) < 0.010 DLM mg/L 10 08-JUN-18 lon Balance Calculation lon Balance	Nitrite in Wat	er by IC (Low Level)						
*Nitrate (as N)		*Nitrite (as N)	<0.0020	DLM	mg/L	1		08-JUN-18
Ion Balance Calculation	Nitrate in Wa	ter by IC (Low Level)						
Ion Balance		*Nitrate (as N)	<0.010	DLM	mg/L	10		08-JUN-18
Cation - Anion Balance	Ion Balance (Calculation						
Anion Sum		Ion Balance			%			13-JUN-18
Cation Sum 11.0 me/L 13-JUN-18 Hardness Calculated								
Hardness Calculated Hardness (as CaCO3) 314 HTC mg/L 500 13-JUN-18								
Hardness (as CaCO3) 314 HTC mg/L 500 13-JUN-18			11.0		me/L			13-JUN-18
Conductivity 983 umhos/cm 12-JUN-18 Chloride in Water by IC Chloride (CI) 156 mg/L 250 08-JUN-18 Alkalinity, Total (as CaCO3) mg/L 12-JUN-18 12-JUN-18 Phosphorus (P)-Total 0.0531 mg/L 11-JUN-18	Hardness Ca		24.4	што			500	12 11 11 10
Conductivity 983 umhos/cm Chloride in Water by IC Chloride (CI) 156 mg/L 250 08-JUN-18 Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3) Phosphorus (P)-Total 0.0531 mg/L 11-JUN-18			314	піс	mg/L		500	13-JUN-18
Chloride in Water by IC Chloride (CI) 156 mg/L 250 08-JUN-18 Alkalinity, Total (as CaCO3) Mg/L 12-JUN-18 12-JUN-18 12-JUN-18 11-JUN-18 Phosphorus (P)-Total 0.0531 mg/L 11-JUN-18	Conductivity		000					40 11 11 40
Chloride (CI) 156 mg/L 250 08-JUN-18 Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3) CaCO3) mg/L 12-JUN-18 Phosphorus (P)-Total 0.0531 mg/L 11-JUN-18		•	983		umhos/cm			12-JUN-18
Alkalinity, Total (as CaCO3) Alkalinity, Total (as CaCO3) CaCO3) Phosphorus (P)-Total 0.0531 mg/L 12-JUN-18 11-JUN-18	Chloride in W	•						
Alkalinity, Total (as CaCO3)			156		mg/L		250	08-JUN-18
CaCO3) 0.0531 mg/L 11-JUN-18	Alkalinity, To							
			150		mg/L			12-JUN-18
		Phosphorus (P)-Total	0.0531		ma/L			11-JUN-18
		Ammonia, Total (as N)	0.017		mg/L			12-JUN-18

ATTN: Marci Friedman Hamm

Date: 14-JUN-18

PO No.:

WO No.: L2108732

Project Ref: 16-0300-002

Sample ID: SW-PTH59N

Sampled By:

Date Collected: 07-JUN-18 Lab Sample ID: L2108732-7

Matrix: SW

PAGE 14 of 19

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Kjeldahl Nitrogen	0.58		mg/L			12-JUN-18
Total Suspended Solids	<2.0		mg/L			11-JUN-18
Total and E. coli to endpoint by QT97						
Total Coliforms	6200		MPN/100mL	0		08-JUN-18
Escherichia Coli	6		MPN/100mL	0		08-JUN-18
CDWQG = Health Canada Guideline Limits updated	MAY 2018					
 CDWQG for Nitrate+Nitrite-N is the limit for nitrate only Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking Wa-A blank entry designates no known limit. A shaded value in the Results column exceeds CDWQ 	guidelines on cor iter Quality	ventional treatm	ent and slow sand	N.D. = less than de	tection limit. arth filtration plea	ase see
1,11,0						
Approved by						
Hua Wo						
Account Manager						

ATTN: Marci Friedman Hamm

Date: 14-JUN-18

PO No.:

WO No.: L2108732

Project Ref: 16-0300-002

Sample ID: SW44

Sampled By:

Date Collected: 07-JUN-18 Lab Sample ID: L2108732-8

Matrix: SW

PAGE 15 of 19

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Total Floodway						
Bicarbonate (HCO3)	260		mg/L			12-JUN-18
Carbonate (CO3)	13.6		mg/L			12-JUN-18
Hydroxide (OH)	<0.34		mg/L			12-JUN-18
*Nitrate and Nitrite as N	0.046		mg/L	10		11-JUN-18
рН						
рН	8.61		pH units			12-JUN-18
Turbidity						
*Turbidity	1.65		NTU			08-JUN-18
Total Metals by ICP-MS						
Calcium (Ca)-Total	58.3		mg/L			12-JUN-18
Magnesium (Mg)-Total	78.4		mg/L			12-JUN-18
Potassium (K)-Total	7.33		mg/L			12-JUN-18
Sodium (Na)-Total	78.2		mg/L		200	12-JUN-18
TDS calculated						
TDS (Calculated)	694		mg/L		500	13-JUN-18
Sulfate in Water by IC						
Sulfate (SO4)	246		mg/L		500	08-JUN-18
Nitrite in Water by IC (Low Level)						
*Nitrite (as N)	0.0023		mg/L	1		08-JUN-18
Nitrate in Water by IC (Low Level)						
*Nitrate (as N)	0.044		mg/L	10		08-JUN-18
Ion Balance Calculation						
Ion Balance	106		%			13-JUN-18
Cation - Anion Balance	2.9		%			13-JUN-18
Anion Sum Cation Sum	12.2 13.0		me/L			13-JUN-18 13-JUN-18
	13.0		me/L			13-3014-10
Hardness Calculated Hardness (as CaCO3)	468	HTC			500	13-JUN-18
	400	1110	mg/L		500	13-3014-10
Conductivity	1070					12-JUN-18
Conductivity	1070		umhos/cm			12-JUN-10
Chloride in Water by IC	94.0				050	00 11111 40
Chloride (CI)	84.2		mg/L		250	08-JUN-18
Alkalinity, Total (as CaCO3)	000					40 11 11 45
Alkalinity, Total (as CaCO3)	236		mg/L			12-JUN-18
Phosphorus (P)-Total	0.111		mg/L			11-JUN-18
Ammonia, Total (as N)	0.020		mg/L			12-JUN-18

ATTN: Marci Friedman Hamm

Date: 14-JUN-18

PO No.:

WO No.: L2108732

Project Ref: 16-0300-002

Sample ID: SW44

Sampled By:

Date Collected: 07-JUN-18 Lab Sample ID: L2108732-8

Matrix: SW

PAGE 16 of 19

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Kjeldahl Nitrogen	0.60		mg/L			12-JUN-18
Total Suspended Solids	2.9		mg/L			11-JUN-18
Total and E. coli to endpoint by QT97						
Total Coliforms	5900		MPN/100mL	0		08-JUN-18
Escherichia Coli	73		MPN/100mL	0		08-JUN-18
CDWQG = Health Canada Guideline Limits updated	MAY 2018					
* CDWQG for Nitrate+Nitrite-N is the limit for nitrate only * Turbidity guideline based on membrane filtration. For some summary Table of Guidelines for Canadian Drinking Wale - A blank entry designates no known limit A shaded value in the Results column exceeds CDWQ	guidelines on cor Iter Quality	ventional treatm	ent and slow sand	N.D. = less than de	tection limit. arth filtration plea	ase see
Approved by Hua Wo Account Manager						

ATTN: Marci Friedman Hamm

Date: 14-JUN-18

PO No.:

WO No.: L2108732

Project Ref: 16-0300-002

Sample ID: SW100

Sampled By:

Date Collected: 07-JUN-18 Lab Sample ID: L2108732-9

Matrix: SW

PAGE 17 of 19

Test Description	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
ROU1W Total Floodway						
Bicarbonate (HCO3)	263		mg/L			12-JUN-18
Carbonate (CO3)	13.9		mg/L			12-JUN-18
Hydroxide (OH)	<0.34		mg/L			12-JUN-18
*Nitrate and Nitrite as N	0.045		mg/L	10		11-JUN-18
рН						
рН	8.61		pH units			12-JUN-18
Turbidity						
*Turbidity	1.81		NTU			08-JUN-18
Total Metals by ICP-MS						
Calcium (Ca)-Total	59.1		mg/L			12-JUN-18
Magnesium (Mg)-Total	78.5		mg/L			12-JUN-18
Potassium (K)-Total	7.52		mg/L			12-JUN-18
Sodium (Na)-Total	79.9		mg/L		200	12-JUN-18
TDS calculated						
TDS (Calculated)	665		mg/L		500	13-JUN-18
Sulfate in Water by IC						
Sulfate (SO4)	219		mg/L		500	08-JUN-18
Nitrite in Water by IC (Low Level)						
*Nitrite (as N)	<0.0020	DLM	mg/L	1		08-JUN-18
Nitrate in Water by IC (Low Level)						
*Nitrate (as N)	0.045		mg/L	10		08-JUN-18
Ion Balance Calculation						
Ion Balance	113		%			13-JUN-18
Cation - Anion Balance	6.3		%			13-JUN-18
Anion Sum	11.5		me/L			13-JUN-18
Cation Sum	13.1		me/L			13-JUN-18
Hardness Calculated	474	HTC	,,			40 11111 40
Hardness (as CaCO3)	471	HIC	mg/L		500	13-JUN-18
Conductivity						
Conductivity	1070		umhos/cm			12-JUN-18
Chloride in Water by IC						
Chloride (CI)	77.7		mg/L		250	08-JUN-18
Alkalinity, Total (as CaCO3)						
Alkalinity, Total (as CaCO3)	238		mg/L			12-JUN-18
Phosphorus (P)-Total	0.109		mg/L			11-JUN-18
Ammonia, Total (as N)	0.020		mg/L			12-JUN-18

ATTN: Marci Friedman Hamm

Date: 14-JUN-18

PO No.:

WO No.: L2108732

Project Ref: 16-0300-002

Sample ID: SW100

Sampled By:

Date Collected: 07-JUN-18 Lab Sample ID: L2108732-9

Matrix: SW

PAGE 18 of 19

	Result	Qualifier	Units of Measure	CDWQG MAC	Aesthetic Objective	Date Analyzed
Total Kjeldahl Nitrogen	0.62		mg/L			12-JUN-18
Total Suspended Solids	<2.0		mg/L			11-JUN-18
Total and E. coli to endpoint by QT97						
Total Coliforms	2420		MPN/100mL	0		08-JUN-18
Escherichia Coli	66		MPN/100mL	0		08-JUN-18
CDWQG = Health Canada Guideline Limits updated	MAY 2018					
 * CDWQG for Nitrate+Nitrite-N is the limit for nitrate or * Turbidity guideline based on membrane filtration. For Summary Table of Guidelines for Canadian Drinking V - A blank entry designates no known limit. - A shaded value in the Results column exceeds CDW 	or guidelines on cor Vater Quality	ventional treatn	ent and slow sand	N.D. = less than de	tection limit. arth filtration plea	ase see
111 A						
Approved by Hua Wo Account Manager						
, toodan manago						

Guidelines & Objectives

Sample Parameter Qualifier key listed:

Qualifier	Description
HTC	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

Health Canada MAC Health Related Criteria Limits

Nitrate/Nitrite-N* Criteria limit is 10 mg/L (1.0 mg/L if present as all Nitrite-N). High concentrations may contribute to blue baby syndrome in infants.

Lead* A cumulative body poison, uncommon in naturally occurring hard waters.

Fluoride* Present in fluoridated water supplies at 0.8 mg/L to reduce dental caries. Elevated levels causes fluorosis (mottling of teeth).

Total Coliforms* Criteria is 0 CFU/100mL. Adverse health effects.

E. Coli* Criteria is 0 CFU/100 mL. Certain E. Coli bacteria can be life threatening.

*Health Canada Canadian Drinking Water Quality Guidelines (MAC limit)

Aesthetic Objective Concentration Levels

Alkalinity Acid neutralizing capacity. Usually a measure of carbonate and bicarbonates and calculated and reported as calcium carbonate.

Balance Quality control parameter ratioing cations to anions
Bicarbonate See Alkalinity. Report as the anion HCO3-1
Carbonate See Alkalinity. Reported at the anion CO3-2

Calcium See Hardness. Common major cation of water chemistry.

Chloride Common major anion of water chemistry.

Conductance Physical test measuring water salinity (dissolved ions or solids)

Hardness Classical measure or capacity of water to precipitate soap (chiefly calcium and magnesium ions). Causes scaling tendency in water if carbonates/bicarbonates are present (if >200 mg/L). For drinking water purposes waters with results <200 mg/L are

considered acceptable, results >200 mg/L are considered poor but can be tolerated. Results >500 mg/L are unacceptable.

Hydroxide See alkalinity

Magnesium See hardness. Common major cation of water chemistry. Elevated levels (>125 mg/L) may exert a cathartic or diuretic action.

Measure of water acidity/alkalinity. Normal range is 7.0-8.5.

Potassium Common major cation of water chemistry.

Sodium Common major cation of water chemistry. Measure of salinity (saltiness). The aesthetic objective (not related to health) for

sodium in drinking water is 200 mg/L. However, where sodium concentration of the drinking water exceeds 20 mg/L, it is recommended that any person on a sodium restricted diet consult with his/her physician or Medical Officer of Health

concerning the use of that water.

Sulphate Common major anion of water chemistry. Elevated levels may exert a cathartic or diuretic action.

Total Dissolved Solids A measure of water salinity.

Iron Causes staining to laundry and porcelain and astringent taste. Oxidizes to red-brown precipitate on exposure to air.

Manganese Elevated levels may cause staining of laundry and porcelain.

Heterotrophic

Plate Count Criteria is 500 cfu/mL Measure of heterotrophic bacteria present.

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L2108732

Report Date: 14-JUN-18

Page 1 of 6

Client: KGS Group Consultants (Winnipeg)

865 Waverly Street - 3rd Floor

Winnipeg MB R3T 5P4

Contact: Marci Friedman Hamm

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-TITR-WP	Water							
Batch R4081171	I							
WG2795073-5 DUP Alkalinity, Total (as Cat	CO3)	L2108732-1 277	281		mg/L	1.5	20	12-JUN-18
WG2795073-4 LCS Alkalinity, Total (as Ca	CO3)		101.5		%		85-115	12-JUN-18
WG2795073-1 MB Alkalinity, Total (as Ca0	CO3)		<1.0		mg/L		1	12-JUN-18
CL-IC-N-WP	Water							
Batch R4078817	,							
WG2792418-2 LCS Chloride (Cl)			95.0		%		90-110	08-JUN-18
WG2792418-6 LCS Chloride (CI)			104.0		%		90-110	08-JUN-18
WG2792418-1 MB Chloride (CI)			<0.50		mg/L		0.5	08-JUN-18
WG2792418-5 MB Chloride (CI)			<0.50		mg/L		0.5	08-JUN-18
EC-WP	Water							
Batch R4081171								
WG2795073-5 DUP Conductivity		L2108732-1 677	671		umhos/cm	0.9	10	12-JUN-18
WG2795073-3 LCS Conductivity			98.2		%		90-110	12-JUN-18
WG2795073-1 MB Conductivity			<1.0		umhos/cm		1	12-JUN-18
MET-D-MS-WP	Water							
Batch R4079897	,							
WG2793686-2 LCS								
Calcium (Ca)-Dissolved	d		103.2		%		80-120	11-JUN-18
Magnesium (Mg)-Disso	olved		113.4		%		80-120	11-JUN-18
Potassium (K)-Dissolve	ed		102.3		%		80-120	11-JUN-18
Sodium (Na)-Dissolved	i		107.1		%		80-120	11-JUN-18
WG2793686-1 MB Calcium (Ca)-Dissolved	d		<0.50		mg/L		0.5	11-JUN-18
Magnesium (Mg)-Disso	olved		<0.050		mg/L		0.05	11-JUN-18
Potassium (K)-Dissolve	ed		<0.50		mg/L		0.5	11-JUN-18
Sodium (Na)-Dissolved	i		<0.50		mg/L		0.5	11-JUN-18
MET-T-MS-WP	Water							

Workorder: L2108732

Report Date: 14-JUN-18

Page 2 of 6

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-MS-WP	Water							
Batch R4081608 WG2794716-2 LCS Calcium (Ca)-Total			105.8		%		80-120	12-JUN-18
Magnesium (Mg)-Total			109.5		%		80-120	12-JUN-18
Potassium (K)-Total			106.7		%		80-120	12-JUN-18
Sodium (Na)-Total			104.4		%		80-120	12-JUN-18
WG2794716-1 MB Calcium (Ca)-Total			<0.50		mg/L		0.5	12-JUN-18
Magnesium (Mg)-Total			<0.050		mg/L		0.05	12-JUN-18
Potassium (K)-Total			<0.50		mg/L		0.5	12-JUN-18
Sodium (Na)-Total			<0.50		mg/L		0.5	12-JUN-18
N-TOTKJ-WP	Water							
Batch R4080831 WG2791438-10 LCS			97.2		%		75 405	40 1110 40
Total Kjeldahl Nitrogen			97.2		70		75-125	12-JUN-18
WG2791438-9 MB Total Kjeldahl Nitrogen			<0.20		mg/L		0.2	12-JUN-18
NH3-COL-WP	Water							
Batch R4082086								
WG2795243-2 LCS Ammonia, Total (as N)			96.2		%		85-115	12-JUN-18
WG2795243-1 MB Ammonia, Total (as N)			<0.010		mg/L		0.01	12-JUN-18
NO2-L-IC-N-WP	Water							
Batch R4078817								
WG2792418-2 LCS Nitrite (as N)			96.2		%		90-110	08-JUN-18
WG2792418-6 LCS Nitrite (as N)			102.3		%		90-110	08-JUN-18
WG2792418-1 MB Nitrite (as N)			<0.0010		mg/L		0.001	08-JUN-18
WG2792418-5 MB Nitrite (as N)			<0.0010		mg/L		0.001	08-JUN-18
NO3-L-IC-N-WP	Water							
Batch R4078817								
WG2792418-2 LCS Nitrate (as N)			96.2		%		90-110	08-JUN-18
WG2792418-6 LCS								

Workorder: L2108732

Report Date: 14-JUN-18

Page 3 of 6

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO3-L-IC-N-WP	Water							
Batch R4078817 WG2792418-6 LCS Nitrate (as N)			105.1		%		90-110	08-JUN-18
WG2792418-1 MB Nitrate (as N)			<0.0050		mg/L		0.005	08-JUN-18
WG2792418-5 MB Nitrate (as N)			<0.0050		mg/L		0.005	08-JUN-18
P-T-L-COL-WP	Water							
Batch R4081262								
WG2792588-2 LCS Phosphorus (P)-Total			95.3		%		80-120	11-JUN-18
WG2792588-1 MB Phosphorus (P)-Total			<0.0010		mg/L		0.001	11-JUN-18
PH-WP	Water							
Batch R4081171								
WG2795073-5 DUP pH		L2108732-1 7.64	7.64	J	pH units	0.00	0.2	12-JUN-18
WG2795073-2 LCS pH			7.43		pH units		7.3-7.5	12-JUN-18
SO4-IC-N-WP	Water							
Batch R4078817 WG2792418-2 LCS Sulfate (SO4)			93.7		%		90-110	08-JUN-18
WG2792418-6 LCS Sulfate (SO4)			105.4		%		90-110	08-JUN-18
WG2792418-1 MB Sulfate (SO4)			<0.30		mg/L		0.3	08-JUN-18
WG2792418-5 MB Sulfate (SO4)			<0.30		mg/L		0.3	08-JUN-18
SOLIDS-TOTSUS-WP	Water							
Batch R4081675 WG2793839-10 LCS Total Suspended Solids			91.3		%		0E 44E	44 11101 40
WG2793839-9 MB Total Suspended Solids			<2.0		™g/L		85-115 2	11-JUN-18 11-JUN-18
TC,EC-QT97-ENDPT-WP	Water		-		J		_	

Workorder: L2108732 Report Date: 14-JUN-18 Page 4 of 6

		Workerder.	L2 1007 C	,2	port Date. 14	0011 10	1 6	age + or o
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TC,EC-QT97-ENDPT-WP	Water							
Batch R4077998								
WG2792332-2 DUP		L2108732-7						
Total Coliforms		6200	5600		MPN/100mL	9.6	65	08-JUN-18
Escherichia Coli		6	5		MPN/100mL	19	65	08-JUN-18
WG2792332-1 MB			_					
Total Coliforms			<1		MPN/100mL		1	08-JUN-18
Escherichia Coli			<1		MPN/100mL		1	08-JUN-18
TC,EC-QT97-WP	Water							
Batch R4077413								
WG2792328-2 DUP		L2108732-1						
Total Coliforms		<1	<1	RPD-NA	MPN/100mL	N/A	65	08-JUN-18
Escherichia Coli		<1	<1	RPD-NA	MPN/100mL	N/A	65	08-JUN-18
WG2792328-1 MB			_					
Total Coliforms			<1		MPN/100mL		1	08-JUN-18
Escherichia Coli			<1		MPN/100mL		1	08-JUN-18
TURBIDITY-WP	Water							
Batch R4077369)							
WG2792556-6 LCS								
Turbidity			105.0		%		85-115	08-JUN-18
WG2792556-9 LCS								
Turbidity			105.0		%		85-115	08-JUN-18
WG2792556-4 MB			0.40		NITT!			
Turbidity			<0.10		NTU		0.1	08-JUN-18
WG2792556-7 MB			<0.10		NTU		0.4	00 11111 40
Turbidity			<0.10		INTU		0.1	08-JUN-18

Workorder: L2108732 Report Date: 14-JUN-18 Page 5 of 6

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2108732 Report Date: 14-JUN-18 Page 6 of 6

Hold Time Exceedances:

	Sample								
ALS Product Description	ID [.]	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifie		
Physical Tests									
рН									
	1	07-JUN-18 15:00	12-JUN-18 12:00	0.25	117	hours	EHTR-FM		
	2	07-JUN-18 12:45	12-JUN-18 12:00	0.25	119	hours	EHTR-FN		
	3	07-JUN-18 18:30	12-JUN-18 12:00	0.25	114	hours	EHTR-FN		
	4	07-JUN-18 10:10	12-JUN-18 12:00	0.25	122	hours	EHTR-FM		
	5	07-JUN-18 10:55	12-JUN-18 12:00	0.25	121	hours	EHTR-FN		
	6	07-JUN-18 16:00	12-JUN-18 12:00	0.25	116	hours	EHTR-FN		
	7	07-JUN-18 16:55	12-JUN-18 12:00	0.25	115	hours	EHTR-FM		
	8	07-JUN-18 11:20	12-JUN-18 12:00	0.25	121	hours	EHTR-FN		
	9	07-JUN-18 18:00	12-JUN-18 12:00	0.25	114	hours	EHTR-FN		

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2108732 were received on 08-JUN-18 07:45.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Environmental

Chain of Custody (COC) / Analytical Request Form

L2108732-COFC

LZ₁08732 coc Number: 14 - 451148

Page ____ of ____

Canada Toll Free: 1 800 668 9878

Report To	Report Format / Distribution				Select Service Level Below (Rush Turnaround Time (TAT) is not available for all tests)														
						<u> </u>													
Company: KGS Group	ect Report Format: PDF EXCEL EDD (DIGITAL)					The section of the se													
Contact: Marci Friedman Hamm	uality Control (QC) Report with Report Yes No					Definitions. Capit: 1: 4 7:00 (mg by senses days if received by 3) Principle 1: 4 7:00 The Sension A School of the Country of the													
Address: 3rd Floor -865 Waverley St. Chteriac			Criteria on Report - provide details below if box checked					E Emergency (1-2 business days if received by 3pm) #1 \$\$\times \text{1.} \text{3.} \te											
Winniped MB R3T SP4	Select Distribution	_			FAX	E2	_					if receiv	ed by 10	Јатт – сог	tact ALS	for surch	arge		
Phone: 204-896 1209	Email 1 or Fax	mtha	SWW (G)	Kasaroup	COM	Specify Date Required for E2,E or P:													
	Email 2 amallon @kasarow.com: plindelle																		
Invoice To Same as Report To ☐ Yes ☑No	J Invoice Distribution				Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) t									(F/P) bek	pelow at the second second				
			lect Invoice Distribution: D EMAIL MAIL FAX					₽_					· 139	in ex	250%		(ont:		
Company: KGS Group Email 1 or Fa:			nail 1 or Fax wmacquarrie@Kasaroup Com					7-(1		1		9	- F	979	wn.r		a zinde		
Contact: Bill MacQuarte Email 2							a	-TAZDUNY			\sim	<u> </u>	′≾ં	યું ઉજા	UQZ:		73°+ ≈ 11.1810	وان رانداز الاعتاد المحاجد	
Project Information			Oil and Gas Required Fields (client use)				dм	\Im	\sim 1	_	Mβ	1	إ	ENDE	9)0			_ e	
ALS Quote #: \(\beta 5627\) Approver ID:			pprover ID: Cost Center:					4	읫	3		3		$\overline{\mathbb{R}}$				Solution	
Job #: 16-6300 -002 GL Account:			L Account: Routing Code:					Ī	3	≼)		₹	5				ပို့	
PO / AFE: Activity Code:			tivity Code:					3	- 1, [()	7	O_i	7-ENDPHENDE	7				وَّ	
LSD: Location:			ication:					3	റ്	اجا	၁	1	二二	9				Ĭ	
ALS Lab Work Order # (lab use only) ALS Confact:				Sampler:		-ROUTW	3	S-Rouzw-	8-7	TOTK	- 1	Solus-T	P-TB-	0T-				Z	
ALS Sample # Sample Identification and/or Coordinates (lab use only) (This description will appear on the report)			ate nmm-yy)	Time (hh:mm)	Sample Type Gyround	K25-	π,	KGS	d	Z,	NH3	705	72	EC-					
K11-12015		07-5	18 - MUI	1 3 0 0	water	X	\times											3	
K09-12012)	/a 45	ī	X	$\mathbf{\hat{x}}$		T		-						\neg	13	
KII - 100				18:30		攵	$\overline{\mathbf{x}}$											13	
ki3-12321				10:10		×	$\stackrel{\circ}{\times}$											[3	
K09-19316				10:55		Ż												3	
KII- 12014				16:00						1	\dashv							1 🛪	
SW-PTH59N			33.5 (G)		<u>8</u> W	\sim		$\overline{}$	$\overline{\mathbf{v}}$	$\overline{\mathbf{v}}$	~_		 	~	+			$\frac{3}{4}$	
51.144			N-18	16:55	<u> </u>			X	X	X	Č. l	\sim		$\langle \cdot \rangle$		\longrightarrow	\rightarrow		
				11:20		\perp		X,	즤	\times	ᄼ	\times	X	\sim			\dashv	4	
5W100				18:00				X	<u>X</u>	<u>×</u>]	λ	\times	\succeq	<u> </u>				- 4	
										1									
								Q 10.5	SAMP	LE CC	NDITI	ON AS	RECE	IVED (lab use	only)	, .		
	tions / Specify Criteria to add on report (client Use)				Frozen						SIF Observations Yes . No .								
Are samples taken from a Regulated DW System?				VOX	niedo	ice pa	cks	Yes		No		Custo	dy seal	intact	Yes		No		
MYes ENO METAIS NOT	TION I	1110	. W	, press	ر ۳۰۰۰	Coolir	ng Initia	ted		with the second							200		
Are samples taken from a Regulated DW System? The Yes Tho Are samples for human drinking water use? Are samples for human drinking water use? Are samples for human drinking water use?			INITIAL COOLER TEMPERATURES °C FINAL COOLER TEMPERATURES °C																
TYPES INO - NUTRIENTS in SW			an preferred								5								
SHIPMENT RELEASE (client use)	INITIAL	SHIPMEN	IT RECEPT	ION (lab use only)	garana ing ma				्र हो।	NAL S	IIPME	NT RE	CEPT	ON (lat	use or	ıly) 👵		100	
Released by: Mallory Date: Time: 18:15 Received	d by:	1)	JUN	0 8 2018	Time U	Rece	ived by						Date:		Time	> :			
REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION		/	WHIT	E - LABORATORY (COPY YELLON	V - CLIE	NT COL	PV			•		NA.	EU 01284 W	Front/03 Octo	nhar 2013			

WINNIPEG REGINA MISSISSAUGA THUNDER BAY