May 19, 2020

Manitoba Conservation and Climate 1007 Century Street Winnipeg, Manitoba R3H 0W4

Attention: Edwin Yazon

Re: Supplemental Information Request File No. 6046.00: Redonda DGHTA Application

As a leader in environmental and energy services, Tervita Corporation (Tervita) has a strong track record of safety and environmental compliance. We have built our track record on the safe, secure management of industrial and oil and gas wastes through our network of Treatment and Recovery facilities and industrial landfills.

Tervita received questions regarding the Redonda Hazardous Waste and Hazardous Recyclable Processing and Storage Facility (the Facility), Dangerous Goods Handling and Transportation Act (DGHTA) application on May 1st from the Technical Advisory Committee (TAC). Below are the questions with responses:

1) <u>Conditional use order</u>

a) Conditional use order No. 19-18 issued is to establish a "Hazardous waste transport facility". The proposal is for establishing a "Hazardous Waste and Hazardous Recyclable Processing and Storage Facility". Please ensure to a use permit that does not only transport HW, but also process and store HW. This is to prevent issue in the future regarding the intended use of the facility.

Tervita will work with the Rural Municipality (RM) of Springfield to ensure the wording "Hazardous Waste and Hazardous Processing and Storage Facility" is used in the development agreement.

- 2) Exterior Storage
- a) Sea-cans Set back distance from the boundary fence is required.

The sea-cans will be set back approximately 2m from the fence-line.

b) Is there containment within the sea-can storage or spill containment structures used?

The sea-cans have a sealed metal base that are visually inspected on a monthly basis to ensure there are no integrity issues. All the hazardous waste is in Transportation of Dangerous (TDG) certified containers prior to storage in the sea-cans. Tervita will place secondary containment within or below the sea-can prior to storing hazardous waste.

c) What are non-hazardous wastes: Provide a list with estimated quantity stored.

Examples of non-hazardous wastes for 2018 from our former Winnipeg Transfer Station are provided in Table 1. Volumes and types of non-hazardous waste will vary year over depending on projects and economic conditions.

Tervita Corporation 1600, 140 - 10 Avenue SE Calgary, AB, Canada T2G 0R1

Tel:1.403.233.7565Fax:1.403.261.5612

	Physical	Weight
Waste Type	State	(kg/L)
Adhesives	Liquid	7153
Clean Oil	Liquid	402
Glycol Solutions	Liquid	14405
Grease	Liquid	48400
Latex Paint	Liquid	1978
Oil with PCBs <50ppm	Liquid	11000
Absorbents/Rags	Solid	65002
Aluminum Oxide	Solid	2900
Non-Regulated Chemicals	Solid	15908
Cement/Concrete	Solid	9277
Light bulbs	Solid	3807
Oily Debris	Solid	12142
Solids with PCBs <50ppm	Solid	600

Table 1: Examples of Non-Hazardous Waste Types

d) Heavy equipment: what are they and why are they used? [may not be a part of the licence but the emission (air/noise/liquid) from the operations may become an issue].

Yellow iron is stored while waiting to be mobilized to active projects except for maintenance occurring in the shop or minor site maintenance requirements such as snow removal, site grading etc. Equipment working at site is a forklift and transport trucks coming to load supplies and unload waste. An equipment list is in Attachment 1.

e) Truck parking area needs to be marked, e.g. no truck storage of HW allowed.

Please see the parking marked on the site plan (Attachment 2).

f) Why containment curbs are not required for exterior storage area?

There is no permanent storage of waste outside except for what's in the sealed seacans. The area is used for loading and unloading prior to waste being brought inside the transfer station. As per our hazardous waste transportation license, we will only store waste on our trucks for a maximum of 48 hours.

g) Details of surface water drainage plan (collection, testing and discharge protocol) needs to be provided.

The surface water drainage plan is in Attachment 3. The only waste stored outside is the sealed sea-cans, therefore there is a low risk of spills and contact with surface water. All spills are cleaned up immediately. Therefore, at this time, storage and testing of surface water is not planned.

www.tervita.com

Tervita Corporation 1600, 140 - 10 Avenue SE Calgary, AB, Canada T2G 0R1

Tel: 1.403.233.7565 Fax: 1.403.261.5612

3) Interior Storage

a) Interior floor plan with areas marked for HW storage, drum washing, shredding, crushing, sump pit, liquid collection tank, loading/unloading bay, etc. is required.

The interior floor plan with requested markup is in Attachment 4.

b) Process details for crushing /shredding of filters/absorbents are required.

Filters and absorbents can be shredded/crushed to separate solids from liquids. Material deemed suitable for crushing/shredding is sorted first to ensure non-conforming waste such as compressed gas cylinders are not put through the process. Recovered fluids are directed to a container where oil can be skimmed for recycling. Solids are bulked into a large container, where a representative sample is taken. Depending on economic conditions and customer preferences, solids can be sent to locations such as landfill, fuel for power options etc. Wastewater is sampled and sent to a suitable disposal option.

c) Estimated number of drums washed, and estimated quantity of filters/absorbents crushed or shredded.

The number of drums washed, and filters processed is dependent on the number of projects available to Tervita. Drums washed on an annual basis may vary from 100-1000 and filters processed could range from 10,000kg to 75,000kg.

d) Does the filters/absorbents crushing/ shredding process generate air emission? If yes, please provide mitigation measures.

When operational, the press would be tied into the electrical power grid and not have associated air emissions. The shredder would only be operated if projects became available for its use.

e) Will Tervita use the mechanical shop for a different purpose other than storing and servicing heavy equipment, e.g. to cater to outside clients?

At this time, Tervita only services our own yellow iron. If this change, Tervita will work with the RM of Springfield to ensure our business license, zoning etc. is accurately reflected by our operations.

f) Containerized processing involves consolidation and repacking of hazardous waste. Materials could include highly flammable and volatile types. Materials may also generate dust (asbestos impacted materials). Identify possible emission sources with methods of abatement.

Tervita will not be repacking asbestos waste unless packaging is damaged. It will remain in 6mm double wrapped poly if it's being consolidated. Bulking of flammable and volatile waste streams to make full containers is minimal at the facility and is primarily performed at the customers site. Flammable liquids are stored in tight-head drums

www.tervita.com

Tervita Corporation 1600, 140 - 10 Avenue SE Calgary, AB, Canada T2G 0R1

therefore, when bulking is being performed there are only a 2" diameter and $\frac{3}{4}$ " diameter bung open on the drum. This minimizes surface area and volatiles being able to escape. As soon as bulking is done, the bungs are sealed again to prevent volatile loss.

Tervita has deemed the following materials are not suitable for bulking:

- Chlorinated solvents
- Isocyanates
- Peroxide forming compounds
- High odour compounds (thiols, amines, mercaptans)
- 4) General
- a) Copies of Standard Operating Procedures (SOPs) identified in the proposal need to be provided.

All SOP's can be provided to MCC during an inspection of the facility when operational.

b) Non-conforming waste receipt: this needs to follow the Hazardous waste regulatory requirements - <u>Section 20</u>, Duty of consignee on discrepancy or refusal to accept waste and <u>Section 24(1)</u> Duties when consignee does not accept hazardous waste.

When accepting movement documents, Tervita will ensure Part C is completed, which details whether the shipment was accepted or refused. If waste is refused, Tervita will provide the paperwork back to the carrier for delivery back to the consignor.

c) A copy of the baseline environmental site assessment report (already available) needs to be submitted

A copy of the report is in Attachment 5.

d) Generator registration form do not reflect all types of waste generated/stored in the proposed development. The form needs to be revised and re-submitted.

Tervita will update the generator registration form and resubmit it.

e) A contingency or an emergency response plan, and the details of fire safety equipment needs to be provided.

Tervita's Corporate ERP is in Attachment 6 and the Fire Safety Plan is in Attachment 7. Tervita is still working with the Fire Chief to finalize all the details in the Fire Plan. A finalized version can be provided once complete. The site-specific ERP will be finalized once the site is operational. The site-specific ERP will contain the following details:

- General worksite information
- Common Response Procedures
- Incident Assessment Procedures
- Emergency Classification
- Emergency Response Actions
- Incident Management Team
- Plot Plan
- Hazardous Substances
- Medical Facility Route

www.tervita.com

Tervita Corporation 1600, 140 - 10 Avenue SE Calgary, AB, Canada T2G 0R1

Tel: 1.403.233.7565 Fax: 1.403.261.5612

- Emergency Contact Numbers ٠
- ٠
- Agency and Priority Contacts Industrial Operators Within Immediate Area Support Services (Safety Contractors etc.) Incident Command System ٠
- •
- ٠

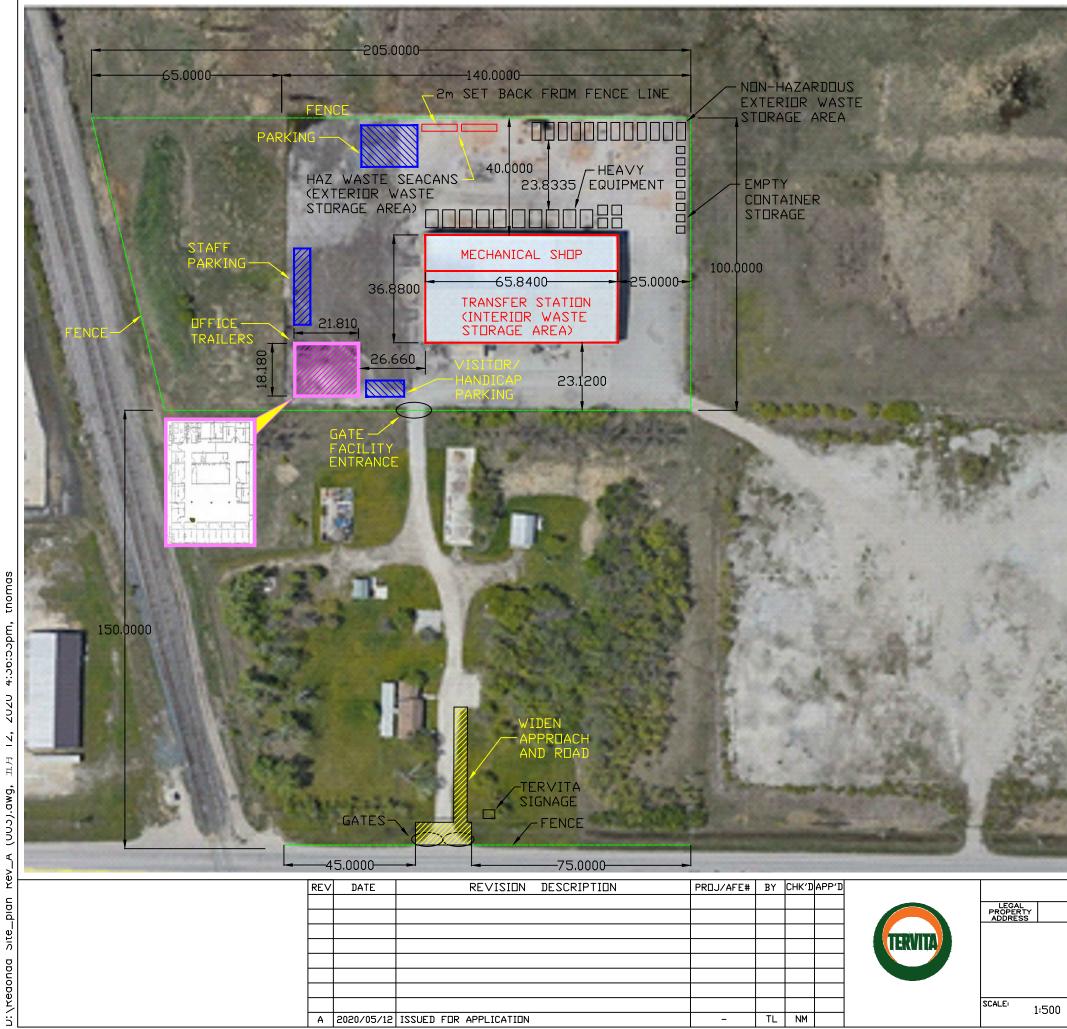
Sincerely,

Tervita Corporation

Peter Nelson Advisor, Environment & Regulatory pnelson@tervita.com

> Tervita Corporation 1600, 140 - 10 Avenue SE Calgary, AB, Canada T2G 0R1

Tel: 1.403.233.7565 1.403.261.5612 Fax:


Attachment 1 Equipment List

Equipment

Excavators 1 EX137 JD 200DLC 1 EX345 Cat 336EL 1 EX346 Cat 336EL 1 EX409 Kom 450LC-8 1 EX411 Cat 345DL 1 EX4-028-ES Kom 450LC Dozers 1 CT244 Cat D6TXW w/Ripper (GPS) 1 CT6-252-ES Cat D6TSW 1 CT6-053-ES Cat D6T LGP (wide)	9 3	Highway Units Ford F550 Kenworth T800 Peterbilt 378 Kenworth T370 Kenworth T800 Peterbilt 365 Freight M2 112 GMC 5500 Int'l Workstar 7500 Hino 268 Freight M2 112	Mechinc Truck highway tractor highway tractor roll off roll off roll off small dump truck cube van cube van picker truck
Rock Trucks	4		
1 AT204 Cat 730 1 AT221 Vlv A30F 1 AT227 Cat 730 1 AT228 Cat 730			
Loaders 1 LD130 Cat 803 1 LD124 Cat 966	2		
Forklifts	3		
1 FL146 Cat DP70 1 FL147 Doo D30S			
Skid Steers	1		
1 SS3-006-ES JD Skid Steer			
Light Plants / Trailers TR253 (CLD 426)* TR264 (CVL 932) Cargo no ins TR272 (CVL 935) Cargo TR278 (991 JRG - SK) TR279 (CYL 318) Cargo TR355 (CYL 327)* Maxim	7		

TR356 (CLD 417) Cargo

Attachment 2 Plot Plan

の見	CERTIFICATE OF TITLE: 2005569/1 W.L.T.O. (SEARCH DATE: NOV. 14, 2019)
	LEGAL DESCRIPTION: LOT 1, PLAN 29953 WLTO IN E.1/2 16-11-4 E.P.M.
in a	CIVIC ADDRESS: 999 REDONDA STREET R.M. OF SPRINGFIELD MANITOBA
Chart Bar	20 10 0 20 METRES
RED	ONDA
E. 1/2 16-	11-04 E.P.M.
SPRINGFIEL	D MANITOBA
SITE	FACILITY PLAN
0 ^{Dwg. No.} TEF	R-RDA-SK-002
I	1

Attachment 3 Site Drainage Plan

999 Redonda Existing Commercial STORM WATER RUNOFF ANALYSIS

Date:	March 9, 2020	Project:	999 Redonda Street
By:	Brett Carels, P.Eng.	Project Number:	19-1234

This drainage brief has been prepared on behalf of Wood Group PLC for the existing commercial site located at 999 Redonda Street in the Rural Municipality (RM) of Springfield. This brief has been prepared to support the grading plan for the developed area of the site, in order to be reviewed and approved by the client (Tervita), the RM and Manitoba Conservation and Climate (MCC). The total area of the site is approximately 31.2 Ha (312,022m²) and the majority of the land is old farm field with the south east portion being the most developed. The 46,120m² developed part of the site in the SE corner is the primary area of interest for this analysis.

As the site is already developed the primary reason for this brief is to document how the site will decrease its current runoff while capturing and controlling more of the developed site than is currently draining to the Redonda Street ditch network. The RM of Springfield does not have a previous drainage plan on record for this site and required that one be prepared. As the site is already developed and no new structures are being proposed, the RM of Springfield did not stipulate that storm runoff needed to be captured, controlled and if required temporarily stored onsite, however the project has done this in order for the site to comply with the RM of Springfield's requirements for new commercial sites, to comply with MCC and Manitoba Infrastructure (MI) requirements to control the runoff from a 25yr post development event to that of a 5yr pre-development.

Figure 1. Google Maps Aerial View

Page 2 of 6

Existing Site

The site currently has a large commercial/industrial building surrounded by an asphalt apron. There is a centre gravel drive aisle connecting the various buildings and sheds on the property. There is an existing swale north of the asphalt apron and to the south of the developed portion of the site is a gravel drive aisle that offers as a support/access road for the adjacent rail line. The asphalt apron next to the larger shop is about the same elevation as the centre of Redonda Street. The area of the site that currently drains to the fronting Redonda Street ditch network is about **22,909m²** (1750m² of building, 1965m² of asphalt/conc, 976m² of gravel, 7481m² heavily treed, 10737m² of grass).

Runoff Analysis

Stormwater management designed as follows: All Pre-Development Rational Formula runoff calculations are to be based on a 5 year storm event, with "t" (time) = 20 minutes and "i" (intensity) – 81.25 mm/hr. The total allowable runoff from the site during a 25-year storm event will be restricted to the 5-year storm event.

C values for buildings, concrete, or asphalt paving are 0.90m, gravel areas are 0.50, heavily treed areas are 0.20, and landscaping or grassed areas are 0.10.

Pre-Development Allowable Flow:

·	Q5=kCiA	
Where,		
C = Weighted runoff coefficien	t i = peak rainfall intensity (mm/hr)	A = catchment area (m²)
Q₅ = 1 in 5-year runoff (L/s)	k = conversion constant = 1/3600	

Q₅=k* 0.28* 81.25mm/hr* 22,909m²

Allowable Q₅ = 144.8 L/s

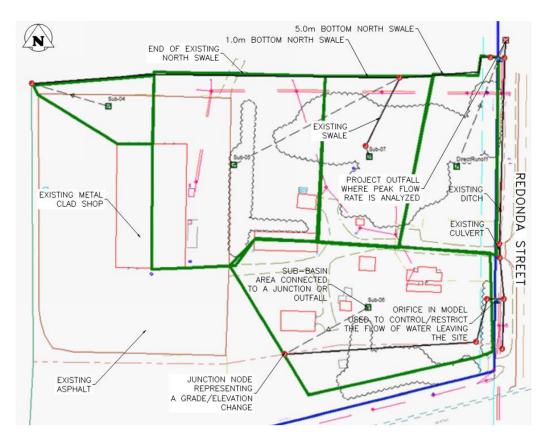
Post Development:

The site design includes extending and widening the north swale further west to capture and control more of the asphalt apron, constructing a new swale on the south of the site and installing control culverts prior to either swale discharging to the Redonda Street ditch network. There will still be some portion of the west asphalt apron that will continue to drain into the site's farm field to the west. The field is at or below the existing Redonda Street ditch and has a natural gradient to continue west away from the buildings. The total post development area flowing to the Redonda Street ditch network is **27,323m**² (or an additional 4,414m²). The 25yr controlled flow and storage volumes were modelled and calculated in Autodesk Storm and Sanitary Analysis (SSA) using the SCS TR-20 hydrologic method and a 25yr generated storm. The volume calculation was checked using the SSA software and the Isochrone Method.

Controlled Runoff:

The 25yr controlled runoff from the development flowing out of the 275mm culvert end cap on the north swale will be controlled to 83.0 L/s with a 25yr High Water Level (HWL) of 235.09 at the control culvert. The 25yr controlled runoff from the development flowing out of the 275mm culvert end cap on the south

Page 3 of 6


swale will be controlled to 44.8 L/s with a 25yr HWL of 235.53 at the control culvert. The storage required to account for the flow reduction was determined to be 385m³ (Figure 6). The primary storage node for the site is a 245m long swale on the north, 45m of which has an oversized 5m bottom. The site also has a 130m long swale with a 1m bottom on the south side of the site.

The peak 25yr flow to the Redonda Street ditch is 139.2 L/s (Figure 5).

Figure 2 to Figure 7 are summaries from the model.

Subb	asins					1
	Subbasin ID	Area	Wt. CN	TOC	Rain Gage ∏D	
1	Sub-07	4540.2700	74.00	20.00	×	-
2	Sub-06	8466.5800	72.00	20.00	×	
3	Sub-05	8626.4900	90.00	15.00	×	
4	Sub-04	1529.7700	91.00	10.00	×	
5	DirectRunoff	4160.3900	72.00	15.00	×	Close
						Help

Figure 2. Sub-basin areas, weighted curve number and time of concentration used in the model for each sub-basin.

Page 4 of 6

Time Series \times General Add Time Series Plot Time series ID: 25yr Springfield Delete Description: 25yr Sprinfield Storm. 5hr event with 81.1mm of rainfall using a chicago/springfield distribution. (Provided by the RM) 80 Load. Save. Time series data Data type 70 User defined 🔘 Standard rainfall Rainfall Designer... 60 Date Value ٨ Time (MM/DD/YYYY) (H:MM) 4:30 79.75833333 50 4:35 80 an Aalue 80.23333333 4:40 4:45 80.45833333 4:50 80.68333333 4:55 80.9 30 5:00 81.10833333 v Time series curves 20 ID / Number of Description Points 1 25yr Springfield Sur Sprinfield Storm, 5hr 10 2 5yr Springfield 49 0 ż Elapsed Time (hours) Close Help

Figure 3. Sketch of the SSA model showing sub-basins, junctions, swales, orifice and outfall.

Figure 4. Rainfall 25 year time series event in the model.

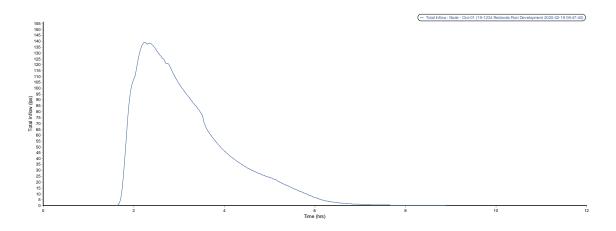


Figure 5. Peak outflow from the model's outlet (Peak 139.2 L/s).

Page 5 of 6

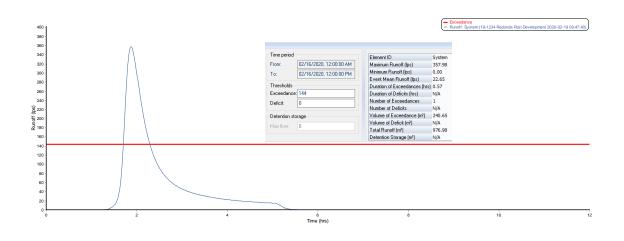


Figure 6. Peak 25yr runoff from the site if it was not controlled (358 L/s) and the estimate storage from the model to control the runoff to a peak of 144 L/s.

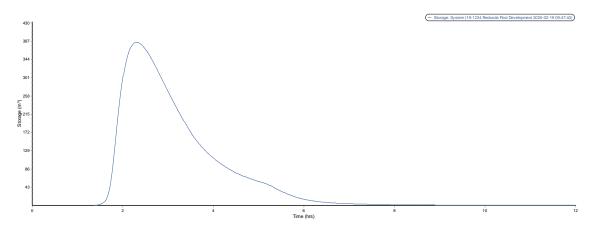
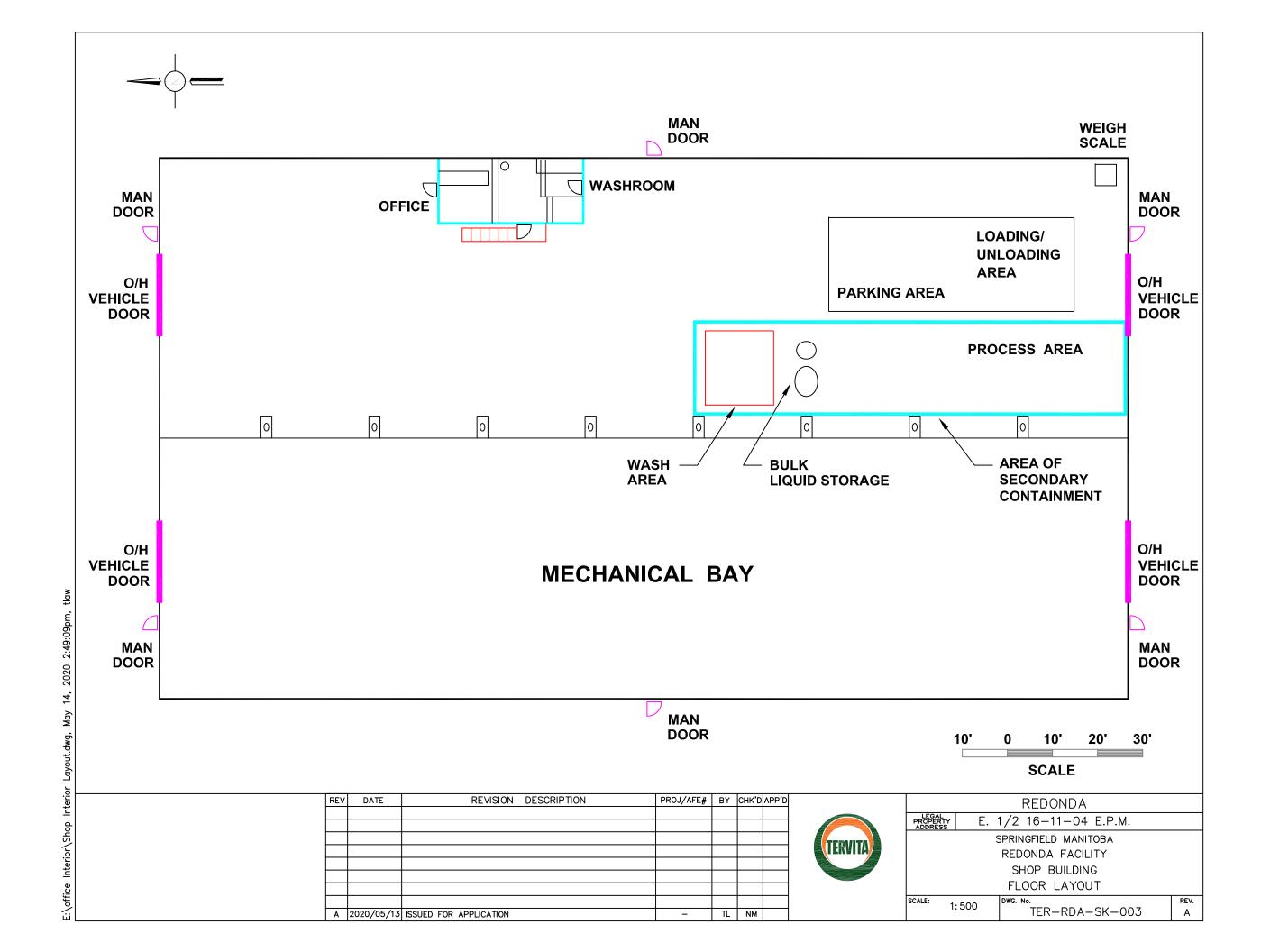


Figure 7. Peak volume stored onsite during the analysis (385m³).



Page 6 of 6

Summary

Based on this analysis it can be concluded that the proposed site drainage will comply with the RM and MCC requirements where the post development 25yr peak release rate of 139.2 L/s will be controlled to less than the existing 5yr peak rate of 144.8 L/s. The design has restricted the flow leaving the site by having two 275mm orifice restricting end caps on the inlets of the 450mm culverts flowing to Redonda Street and the associated storage required to assist the restriction of the flow is in the onsite swales. It has been determined the site is able to manage its stormwater requirements without the need for an onsite pond or similar water feature. This brief and the associated Drainage Plan prepared by Barnes & Duncan demonstrate how the site complies will all provincial and RM drainage requirements including condition 6 of the Conditional Use Order No. 19-18 issued by the RM.

Brett Carels, P. Eng. Municipal Engineer Barnes & Duncan 204-284-5999 brett@barnesduncan.com Attachment 4 Shop Layout

Attachment 5 Environmental Assessment

Phase II Environmental Site Assessment

999 Redonda Street, Rural Municipality of Springfield Oakbank, Manitoba

15 May 2020

	440 Dovercourt Drive, W Phon	& Infrastructure Solutions Vinnipeg Manitoba, Canada R3Y 1 Ie: (204) 488-2997 W.Woodplc.com	N4
	Dhace II Environ	mental Site Assessme	ant
_	londa Street, R	ural Municipality of S t Number – WX18979	
Prepared for:	Tervita Corporation 1600, 160 10 th Avenue Calgary, AB	e SE	
Contact:			
Report Distribution:			
Red River Co-operative Limited:	Electronic Copy		
Wood:	Electronic Copy		
	Name	Job Title	Signature
Prepared by:	Angie Cerilli, M.Sc.	Environmental Technician	ACerilli
Reviewed by:	Justin Huberdeau C.E.T.	Senior Environmental Technologist	A Carilli Huberdeau
Project Manager:	Kevin Beechinor, B.Sc.	Senior Environmental Scientist	KB
Other Technical Contributors			
Rev. Date		Revision Notes	
15 May 2020		FINAL	

WX18979| May 2020

Page i of vi

Executive Summary

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited (Wood), conducted a Phase II Environmental Site Assessment (ESA) at 999 Redonda Street as part of the development of a new hazardous waste collection and storage facility in Oakbank, Manitoba (Site).

The purpose of the Phase II ESA was to assess areas of potential environmental concern (APECs) identified during a Phase I ESA completed at the Site by Wood in December 2019, as well as to collect soil and groundwater quality information in order to provide an assessment of the baseline conditions at the Site prior to Tervita operations.

APECs previously identified at the Site are related to historical fires which have occurred at the Site (APEC 1) as well as the presence of a 1,900 L fuel aboveground storage tank (AST) (APEC 2).

To address the APECs and provide further baseline assessment of the Site, 11 test holes were advanced at the Site (TH19-01 through TH19-11). As well, six groundwater monitoring wells were installed in order to characterize shallow soil and groundwater at the Site (i.e., depths up to 4.5 m below grade level).

Selected soil samples were submitted for laboratory analysis for petroleum hydrocarbon (PHC) fractions F1 to F4, Polychlorinated Biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), metals and extractable organic halides (EOX). Six groundwater samples were collected from the newly installed monitoring wells and submitted for laboratory analysis of PHC fractions F1 to F4, PAHs, VOCs, total organic halides (TOX), and metals. In addition, one sample, considered representative of the water supply well at the Site was submitted for the same groundwater chemical analysis additionally including dioxins and furans.

Soil and groundwater sample analysis indicate the concentrations of potential contaminants of concern were below the applicable guideline criteria for all soil and groundwater samples. Soil and groundwater concentrations do indicate some spatial trends in concentrations of PHCs, PAHs and EOX/TOX. Soil and groundwater samples collected near to the areas where historical fires occurred, or where run-off would accumulate (around the edges of the concrete apron surrounding the warehouse), indicate relatively higher concentrations in comparison to background (TH19-01). Concentrations of analytical parameters in the groundwater sample collected from the water well were relatively lower in comparison to shallow groundwater, or less than detection limits, indicating residual impact from historical fires is low and shallow and not in the deeper bedrock aquifer.

Based on the results of the Phase II ESA completed at the Site, there is no evidence to suggest that the Site has been negatively impacted by the historical fire events that took place on-Site to a degree that would represent a potential risk to human health and the environment. The Site is considered to be suitable for continued industrial use.

Based on the results of the current assessment, no further investigation at the Site is warranted at this time. However, if impacts are identified during the scheduled redevelopment of the Site, additional investigation may be required at that time.

WX18979| May 2020

Page ii of vi

• • •

Table of Contents

1.0	Introduction	1
1.1 1.2 1.3	2 Site Location and Surrounding Land Use	1
2.0	Scope of Work	2
3.0	Investigative Methodology	3
3.1 3.2 3.3 3.4	 Test Hole Drilling and Soil Sampling Groundwater Monitoring and Sampling 	3 4
4.0	Site Setting	5
4.1	Regional Conditions	5
4.	.1.1 Regional Geology	5
4.2	2 Site Characterization	6
	.2.1 Topography	
	.2.2 Stratigraphy .2.3 Grain Size Designation	
5.0	Assessment Criteria	7
5.1	Applicable Guidelines	7
5.2		
6.0	Assessment Results	9
6.1	Soil Conditions	9
	1.1 Field Observations 1.2 Soil Laboratory Results	
6.2	2 Groundwater Conditions	9

WX18979| May 2020

	2.1 Groundwater Monitoirng2.2 Groundwater Laboratory Results	9
6.3		
	3.1 Laboratory Accreditation3.2 Data Validation	
7.0	Discussion	12
7.1 7.2 7.3		13
8.0	Conclusions and Recommendations	13
8.0 9.0	Conclusions and Recommendations	
9.0		14
9.0 10.0	Project Limitations	14 14
9.0 10.0 11.0	Project Limitations	14 14 15

List of Figures

Figure 1: Site and Surrounding Land Use Plan
Figure 2: Test Hole and Monitoring Well Location Plan
Figure 3: Soil Analytical Results (PHCs)
Figure 4: Soil Analytical Results (Metals)
Figure 5: Soil Analytical Results (PAHs)
Figure 6: Soil Analytical Results (VOCs)
Figure 7: Soil Analytical Results (PCBs)
Figure 8: Groundwater Elevations
Figure 9: Groundwater Analytical Results (PHCs)
Figure 10: Groundwater Analytical Results (Metals)
Figure 11: Groundwater Analytical Results (VOCs)
Figure 12: Groundwater Analytical Results (PAHs)
Figure 13: Analytical Results – EOX, TOX, Dioxins, Furans

WX18979| May 2020

Page iv of vi

List of Tables

Table 1: Site and Surrounding Land Use Table 2: Field Observations and Soil Vapour Testing Table 3: Soil Analytical Results – PHCs Table 4: Soil Analytical Results – Metals Table 5: Soil Analytical Results – PAHs Table 6: Soil Analytical Results – VOCs Table 7: Soil Analytical Results – PCBs Table 8: Soil Analytical Results – EOX Table 9: Groundwater Monitoring Well Data Table 10: Groundwater Analytical Results – PHCs Table 11: Groundwater Analytical Results – PHCs Table 12: Groundwater Analytical Results – PAHs Table 13: Groundwater Analytical Results – VOCs Table 13: Groundwater Analytical Results – Dioxins and Furans Table 14: Groundwater Analytical Results – TOX

List of Appendicies

Appendix A

Site Photographs

Appendix B

Test Hole Logs

Appendix C

Water Wells Records

Appendix D

Topographic Plan

Appendix E

Assessment Criteria

Appendix F

Laboratory Reports

Appendix G

Limitations

WX18979| May 2020

Glossary of Commonly Used Abbreviations

AEP	Alberta Environment and Parks
APEC	Areas of potential concern
CCME	Canadian Council of Ministers of the Environment
cm/s	centimetres per second
CSRA	Contaminated Sites Remediation Act
CSRR	Contaminated Sites Remediation Regulation
EDL	Estimated Detection Limit
EOX	Total Extractable Organic Halides
ESA	Environmental Site Assessment
m bgl	metres below ground level
NAPL	non-aqueous phase liquid
NCSCS	National Classification System for Contaminated Sites
PAH	Polycyclic Aromatic Hydrocarbons
РСВ	Polychlorinated Biphenyl
PHC	petroleum hydrocarbon
ppmv	parts per million organic vapour
QA/QC	quality assurance/quality control
RPD	relative percent difference
ТОХ	Total Organic Halides
VOC	Volatile Organic Compounds

1.0 Introduction

Wood Environment & Infrastructure Solutions, a division of Wood Canada Limited (Wood), conducted a Phase II Environmental Site Assessment (ESA) at 999 Redonda Street as part of the development of a new hazardous waste collection and storage facility in Oakbank, Manitoba (Site). The purpose of the Phase II ESA was to assess the areas of potential environmental concern (APECs) identified during a Phase I ESA completed at the Site by Wood on 20 December 2019. As well, to collect soil and groundwater quality information in order to provide an assessment of the baseline conditions at the Site prior to Tervita operations.

1.1 Background

1.2 Site Location and Surrounding Land Use

The Site is located in the Rural Municipality of Springfield (RM of Springfield), Manitoba, in an industrial subdivision located near the eastern limits of the City of Winnipeg. A map showing the location of the Site in relation to the surrounding area is shown in Figure 1. A plan showing the layout of the Site and the neighbouring properties is provided in Figure 2.

According to the RM of Springfield, the Site and surrounding area is zones as "MG", defined as Industrial General Zoning.

The Site currently consists of a residential dwelling with a modular office trailer attached to the south exterior wall, a warehouse building surrounded by a large concrete pad, a metal clad garage and a wooden storage shed. Two concrete slabs were also observed in the central portion of the Site.

The Site is industrial land use and will likely remain so for the foreseeable future. Surrounding land use consisted of commercial land use adjacent to the northeast and vacant land to the northwest, commercial land use to the east, a rail line followed by commercial land use to the south side, and vacant undeveloped grassland adjacent to the west side.

Land use is summarized in Table 1 and shown on Figure 1. The layout of the Site is shown on Figure 2. Photos of the Site and surrounding areas taken during the 2019 investigation are presented in Appendix A.

1.3 Previous Investigations

A Phase I ESA was conducted by Wood at the Site, the results of which were presented in the report entitled "*Phase I Environmental Site Assessment, 999 Redonda Street, Oakbank, Manitoba, WX18979*" dated 20 December 2019. As a part of the Phase I ESA, previous historical environmental information was reviewed for the Site, in addition conducting a Site visit, in order to observe the current conditions at the Site. The APECs identified in the report are discussed below.

- **APEC 1** Several fires have occurred at the Site. Based on information reviewed, the fires potentially involved the burning of plastic, metals or other products and wastes stored on Site. Run-off from water used during fire suppression could potentially impact soil and groundwater at the Site by migrating combustion byproducts, chemicals and wastes from the fire to soil and groundwater locations at low areas, and at the edges of the concreate aprons and slabs at the Site. Specifically, the area south and south west of the existing concrete pad surrounding the warehouse, as historical storage of plastics along the south and west portions of the concrete pad may have been consumed during a 2006 fire. Based on aerial photographs runoff from water used to suppress the fire may have flowed off the pad and into the adjacent vegetated area. Additionally, runoff from water used to suppress the fires which damaged/destroyed the buildings east of the warehouse could potentially impact soil and groundwater near these buildings by migrating combustion byproducts, chemicals and wastes from the fire to soil and groundwater. As such the potential for impacts to soil and groundwater in these areas of the Site cannot be discounted.
- **APEC 2** An approximate 1,900 L, steel, single walled diesel fuel AST was observed outside adjacent to the north exterior wall of the garage. The tank was situated on a concrete pad; however, no secondary containment was present. Based on the presence of the tank, the single walled construction and the lack of secondary containment potential for impacts to the Site cannot be discounted.

2.0 Scope of Work

Wood submitted a proposed scope of work with the original proposal for the project (WPG2019.621) detailing an assumed scope of work for assessing the Site based on the project objectives. The scope of work for the Phase II ESA was revised based on the results of the Phase I ESA conducted initially at the Site by Wood in order to assess APECs identified in the 2019 Wood Phase I ESA as well based on discussions with Tervita. The environmental scope of work proposed by Wood included the following general tasks:

- Advance 11 test holes at the Site, six of which were to be completed as monitoring wells.
- Complete logging, field screening and soil sampling during test hole advancement.
- Submit selected soil samples for analytical laboratory analysis for petroleum hydrocarbon (PHC) fractions F1 to F4, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), metals and total extractable organic halides (EOX).
- Conduct groundwater monitoring and sampling of newly installed monitoring wells as well as one on-Site water well.
- Submit groundwater samples for laboratory analysis of PHC fractions F1 to F4, PAHs, VOCs, metals total organic halides (TOX), and dioxins and furans.
- Prepare a report summarizing results of the assessment.

3.0 Investigative Methodology

3.1 Hazard Assessment and Service Locations

Prior to the start of the intrusive investigations, Wood completed a site-specific health and safety plan to identify hazards, project health and safety requirements, work site classification, and personal protective equipment requirements.

As part of standard ground disturbance procedures prior to commencing drilling, the locations of buried and overhead services were identified. The Manitoba Click Before You Dig program was contacted, which notified BellMTS, Manitoba Hydro, and Shaw Cable. Additionally, Wood contacted the RM of Springfield and a private locator to identify and mark respective underground utility locations.

3.2 Test Hole Drilling and Soil Sampling

The Phase II ESA drilling program was initiated on 3 December 2019, and continued on the 16 and 20 December 2019. The drilling program consisted of advancing 11 test holes (TH19-01 through TH19-11) using a track mounted drill rig operated by Maple Leaf Drilling Ltd. Six test holes were completed as groundwater monitoring wells. Test hole and monitoring well locations are shown on Figure 2.

During test hole advancement, soil samples were recovered at regular 0.8 m depth intervals, or more frequently when evidence of impacts or change in stratigraphy was noted. Soil samples were classified according to the Modified Unified Soil Classification system and visually assessed for evidence of impact.

The soil samples were split into two portions: one portion was placed in disposable soil bags (for field screening) and the other portion was placed in laboratory-prepared 40 mL vials (pre-charged with methanol) and 120 mL glass jars (for possible laboratory analyses).

Soil samples were field screened for combustible organic vapours using ambient temperature headspace (ATH) techniques and an RKI[™] Eagle combustible vapour analyzer set in the no methane response mode. The ATH method involved partially filling and sealing disposable soil bag with soil and allowing vapours to accumulate prior to analyzing the headspace. Accumulated vapours were measured in parts per million total organic vapours (ppm_v).

Soil samples were stored in an insulated cooler that contained ice packs while on-Site and during transport to the laboratory. Field protocols and quality assurance/quality control (QA/QC) procedures utilized by Wood were in accordance with industry standard protocols.

The location and elevation of all newly installed and existing monitoring wells were collected using a survey grade GPS system consisting of a Trimble TSC3 controller and R8 receiver. Northings and eastings, as well as top of casing and ground level elevations, were measured and recorded for all points. In addition to the monitoring well/test hole locations, the corners of buildings and other permanent structures and any identified utility locations were surveyed in, where possible.

Page 3 of 15

3.3 Groundwater Monitoring and Sampling

Six test holes (TH19-01, TH19-03, TH19-04, TH19-07, TH19-08, and TH19-10) were completed as groundwater monitoring wells in order to measure subsurface vapour levels, establish groundwater conditions at the Site, and to allow for groundwater sampling. Monitoring wells were completed with a section of 0.010" slot screened interval with a solid PVC riser extending from the well screen to the ground surface. The borehole annulus around the screened interval was filled with 10/20 filter sand to a depth of approximately 0.15 m above the top of screen. Above the sand pack, the borehole annulus around the solid PVC casing was sealed with hydrated bentonite chips to ground's surface. Each of the monitoring wells installed was completed with a protective casing at surface and in general accordance with provincial regulations for environmental monitoring wells. The monitoring well construction details are shown on the applicable test hole logs (Appendix B).

The initial visit to the Site for groundwater monitoring and sampling was conducted on 20 December 2019. However, due to low water levels, and slow groundwater accumulation within monitoring well TH19-01 a second visit was conducted on 08 January 2020. Groundwater monitoring and sampling included the following:

- Inspection of groundwater monitoring well conditions;
- Measurement of groundwater monitoring well vapour concentrations;
- Determination of the presence and thickness of NAPL;
- Determination of groundwater levels; and
- Collection of groundwater samples.

Monitoring well vapour concentrations were measured with an RKI Eagle set in the no methane response mode and groundwater levels were measured with an electronic interface probe.

One water sample was collected from a faucet inside the warehouse building in order to characterize the groundwater quality from the water well. During sample collection, the water faucet was run for approximately 5 min, in order to collect a sample representative of well water. It is understood that the water from the faucet was from the water well located 3 m south of the warehouse building and did not undergo water treatment.

The collected groundwater samples were placed in clean certified bottles provided by the laboratory, stored in an insulated cooler with ice while on Site and during transport to the laboratory. The field protocols and QA/QC procedures utilized by Wood during Site monitoring were in accordance with standard industry protocols.

3.4 Laboratory Analysis

Potential contaminants of concern associated with the Site were related to the APECs identified in the Wood December 2019 Phase I ESA conducted at the Site, as well as the project objective of characterizing baseline conditions at the Site, prior to Tervita's planned operations. Samples were submitted for laboratory analysis to ALS Environmental in Winnipeg, Manitoba which is accredited by the Canadian Association Laboratory Accreditation Inc. (CALA) for testing in accordance with the International Standard ISO/IEC 17025.

Soil samples were submitted for chemical analysis for PHC fractions F1 to F4, metals and PAHs from each

of the 11 test hole locations. Soil samples from select test holes were also submitted for chemical analysis of VOCs (nine samples), PCBs (eight samples), and EOX (eight samples). Soil samples were selected based on location in relation to identified APECs, depth, and observations. Additionally, one soil sample was also submitted for grain size analysis.

Groundwater samples from each of the six monitoring wells were submitted for PHCs, VOCs, PAHs metals and TOX.

In addition, one water sample was collected from the on-Site water well located 5 m south of the warehouse building. The water sample was designated "Tap" and submitted for PHCs, VOCs, PAHs metals TOX and dioxins and furans

4.0 Site Setting

4.1 Regional Conditions

4.1.1 Regional Geology

Based on available geological maps, the subsurface stratigraphy in this area of the RM of Springfield normally consists of topsoil and fill materials underlain by glacio-lacustrine silt and clay to a depth of approximately 12 to 15 m from grade. The silt and clay deposits are low in hydraulic conductivity (in the order of 10⁻⁸ cm/s), with some secondary fracturing (Render 1970). A deposit of silty till, typically a few metres or more in thickness, occurs between the clay and the underlying bedrock. The bedrock in this area consists of dolomitic limestone with abundant chert nodules in the upper limestone layer and is of the Selkirk Member (Baracos et al., 1983). Bedrock is estimated to occur between 12 and 18 m below grade.

Fractured zones in the bedrock comprise the major aquifer in the area (Betcher et al. 1995). The overlying low conductivity silt and clay deposits do not support a useable source of groundwater, and as such are not utilized. In addition, the thickness and low conductivity deposits limit vertical migration and recharge to the underlaying aquifers (Render 1970).

4.1.1.1 Domestic Groundwater Use

The Site and surrounding properties are part of the RM of Springfield and are not connected to the City of Winnipeg's water distribution system. The RM does not provide a municipal water service to this area. Two water wells were observed on-Site. A total of 13 water well records were identified on Site in MCC's GW Drill (2018) water well database. Of the records, five were classified as test wells and abandoned, five were well records for recharge wells, two well records for 12-inch supply wells, and one domestic well record. The water well records for the Site were either identified as "X-Potential" or as 999 Redonda. All wells were completed to approximately 15 m depth. Water well records for the Site are provided in Appendix C.

Water well records for wells identified within the same quarter section as the Site (NE16-11-4E1) and the surrounding quarter sections within 500 m of the Site (NW15-11-4E1, SW15-11-4E1, SE16-11-4E1) were reviewed. From this, the majority of the records indicated domestic use and in general all records indicate wells installed into the bedrock aquifer.

WX18979 | May 2020

Page 5 of 15

• • •

4.2 Site Characterization

4.2.1 Topography

The western portion of the Site includes a large warehouse building surrounded by a concrete pad, with the eastern portion comprised of several buildings and sheds. A topographic survey was conducted at the Site as a part of the project which indicated that the highest elevations at the Site are near the former building foundations in the central portion of the Site and the lowest Site elevations wat the western edge of the Site. Elevations indicate, surface water run-off flows outward away from the large warehouse in the western portion of the Site. The eastern portion of the Site is includes a central gravel access road. Topography north of the road generally gently slopes to the north and east, and areas to the south, gently slope to the south and west. There is an existing swale in the northern portion of the Site that drains to the east. A topographic plan for the Site is included in Appendix D.

4.2.2 Stratigraphy

Stratigraphy at the test hole locations generally consisted of the following soil strata, in descending order:

- Organic matter;
- Gravel Fill;
- Clay;
- Silt (TH19-01, TH19-02 and TH19-06); and
- Clay.

A brief description of each of the soil strata is presented in the following paragraphs:

Organic Matter

Organic matter was encountered below the grass surface at six test holes (TH19-01, TH19-02, TH19-03, TH19-05, TH19-06 and TH19-09) and was approximately 9 cm in thickness.

Gravel Fill

Gravel fill was encountered at the ground surface of five test holes located around the perimeter of the concrete slab (TH19-04, TH19-07, TH19-08, TH19-10) and within the footprint of the warehouse building (TH19-11) and was approximately 75 cm in thickness.

Clay

Clay was encountered at all test hole locations and extended to the maximum explored depth of 4.6 meters below grade level (bgl). The clay was generally, medium or high plastic, medium to firm, damp, black/brown in colour and contained trace sand and trace mica.

Silt

Silt was encountered within the clay layer at test holes TH19-01 and TH19-02 and below the organic matter layer at TH19-06. The silt layer was 0.3 m, 0.5 m and 0.8 m thick, respectively. The silt was generally low plastic, damp to moist, soft and tan in colour. Plastic and organic debris was observed within the silt layer at TH19-06.

WX18979 | May 2020

Page 6 of 15

The subsurface soil stratigraphy encountered at each test hole location completed in 2019 is summarized in detail on the test hole logs in Appendix B.

4.2.3 Grain Size Designation

Grain size analysis was completed on soil sample collected from TH19-01 at 0.8 m bgl as part of the current assessment. The following grain size result was reported:

• TH19-01 – 0.8 m bgl (clay) – 2 %>75 μm – Fine

Based on the results of the grain size analysis, native soils at the Site are predominantly fine-grained in nature. In general medium to high plastic clay was observed below the surface soil layer and extended to the maximum depth explored at each test hole. Based on the above, the Site is characterized as fine-grained for the purpose of this assessment.

5.0 Assessment Criteria

5.1 Applicable Guidelines

MCC has adopted the principles established by the CCME for environmental management and assessment of sites in Manitoba, in addition to the requirements of the Manitoba Contaminated Sites Remediation Act (CSRA) and the Manitoba Contaminated Sites Remediation Regulation (CSRR), M.R. 105/97. The ESA process in Manitoba is outlined in the MCC June 2016 Guideline document "Environmental Site Assessments in Manitoba" which discusses the derivation process to determine the applicable Assessment Guidelines and Reporting Standards for potentially contaminated soil, groundwater, surface water or sediment.

The Assessment Guidelines for the Site are used to determine the significance of risk to human health and the environment associated with the contamination discovered by an ESA and what future action is recommended to address the risk for the site. The Assessment Guidelines can be derived primarily from the Environmental Quality Guidelines (EQGs) published by CCME; however, should the CCME not provide adequate information or guidance, documents from other jurisdictions such as Ontario Ministry of Environment (MOE) and Alberta Environment and Parks (AEP) may be used, provided they are supported as the most scientifically valid Assessment Guidelines for the Site. The following documents produced by CCME were selected as being applicable for assessment of the Site dependent on the contaminants of concern, pathways and receptors:

- CCME 1999 (updates to 2019). Canadian Environmental Quality Guidelines (EQGs).
- CCME 2001 (revised 2008). Canada-Wide Standards (CWS) for Petroleum Hydrocarbons in Soil.
- Health Canada Guidelines for Canadian Drinking Water Quality (GCDWQ 2019).

Based on the conditions present at the Site, the following documents may be used for groundwater assessment:

- Government of Alberta, Alberta Tier 1 and Tier 2 Soil and Groundwater Remediation Guidelines January 2019 (AEP 2019).
- Ontario Ministry of the Environment. (MOE, 2011). Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act.

Page 7 of 15

The document and exposure pathway selection and determination of assessment criteria for the Site is described in detail in Appendix E.

5.2 Soil and Groundwater

In consideration of the current and inferred future industrial land use of the Site, the fine-grained nature of the soil and the applicable exposure pathways (as outlined in Appendix E), assessment guidelines for each contaminant of concern in surface soil, subsoil, and groundwater were selected.

Based on the Site setting and above considerations, the limiting exposure pathways that are the most stringent for management of the Site impacts are:

- vapour inhalation (slab-on-grade);
- ecological contact;
- off-site migration check;
- management limits.

The groundwater sample taken from the indoor water supply tap located in the on-Site shop will be compared to GCDWQ 2019.

The limiting exposure pathways and associated applicable exposure pathways are presented in Appendix E and Table E-1.

6.0 Assessment Results

6.1 Soil Conditions

6.1.1 Field Observations

The vapour concentrations encountered during the drilling program were less than the instruments detectable limit (<5 ppm_v) in all of the soil samples collected.

Soil vapour concentrations measured and field observations made during the drilling program are summarized in Table 2 and detailed on the test hole logs (Appendix B).

6.1.2 Soil Laboratory Results

Following the drilling program, a total of 12 soil samples were submitted to ALS Canada Ltd. (ALS) laboratory in Winnipeg, Manitoba. All soil samples were submitted for analysis of BTEX and PHC fractions F1 to F4; 11 samples were submitted for metals and PAHs analysis; nine samples were submitted for VOCs analysis, eight samples were submitted for PCBs analysis; four samples were submitted for EOX analysis; and one samples was submitted for grain size designation. There were no exceedances over the applicable criteria in the samples submitted for analysis.

Soil laboratory results for parameters of PHCs, metals, PAHs, VOCs, PCBs and EOX are presented in Table 3 through Table 8 and on Figure 3 through Figure 7 and Figure 13 (EOX). Copies of the detailed analytical reports are provided in Appendix F.

6.2 Groundwater Conditions

6.2.1 Groundwater Monitoirng

During the monitoring event, the water level at monitoring well TH19-01 was deemed insufficient for sampling, as such, a return visit for sampling TH19-01 was scheduled and conducted on 08 January 2020. During this Site visit, a water sample from the indoor water supply tap in the warehouse building located on Site was also collected. Results of the Site monitoring program are summarized in Table 9. Monitoring well construction details are shown on the test hole logs (Appendix B).

The depth to groundwater measured at the Site during the current assessment ranged from 1.84 m bgl (TH19-03) to 4.52 m bgl (TH19-02).

Groundwater elevations suggest that shallow groundwater elevations follow site topography with flow generally to the south, southwest. However, given the low conductivity soils, it is possible that groundwater levels within the monitoring wells had not stabilized at the time of measurement.

6.2.1.1 Well Headspace Vapour Concentrations

The in-well headspace vapour concentration was less than the equipment's detectable limit at all monitoring well locations ($<5 \text{ ppm}_v$).

6.2.1.2 Non-Aqueous Phase Liquids

NAPL was not detected in any of the monitoring wells during the 2019 monitoring event.

6.2.2 Groundwater Laboratory Results

6.2.2.1 Groundwater Laboratory Results

A total of eight groundwater samples were submitted for laboratory analysis, including one sample from each of the six groundwater monitoring wells installed at the Site, as well as one blind field duplicate sample and one groundwater sample collected from the warehouse building, representative of the water well.

Samples were submitted for analysis of PHC fractions F1 to F4, VOCs, PAHs, metals, TOX, dioxins and furans. The results of all analysis indicated that the constituent concentrations were below the applicable guidelines for the assessment of the Site. Groundwater laboratory results for parameters of PHCs, metals, PAHs, VOCs, TOX and dioxins and furans are presented in Tables 10 through Table 15. Results are also summarized on Figures 9 through Figure 13 (TOX). Copies of the detailed analytical reports are provided in Appendix F.

Exceedances of aesthetic objectives for drinking water were noted for iron and manganese in the water sample collected from the tap in the warehouse. These iron and manganese concentrations in shallow groundwater are likely indicative of background conditions. Iron and manganese are aesthetic parameters, which relates to the palatability of potable water and the cause of staining on plumbing fixtures and laundry and, as indicated by Health Canada, it is not considered a risk to human health (Health Canada 2017).

6.3 Quality Assurance/Quality Control

6.3.1 Laboratory Accreditation

The Canadian Association Laboratory Accreditation Inc. (CALA) has accredited ALS Environmental in Winnipeg, MB for testing in accordance with the International Standard ISO/IEC 17025:2017.

6.3.2 Data Validation

6.3.2.1 Laboratory QA/QC

The laboratory incorporates various QA/QC procedures to ensure the accuracy of the laboratory results and assess the possibility of false positives attributable to analytical equipment contributions and laboratory control samples. The laboratory QA/QC includes the completion of laboratory blanks, blank

• • •

spikes and blank spike recovery. A summary of QA/QC findings is presented in the attached laboratory results.

6.3.2.2 Field QA/QC

One duplicate groundwater sample set was submitted as part of the field program. Relative percent difference (RPD) was calculated for parameters containing detectable concentrations at least five times the laboratory detection limit. The relative percent difference (RPD) approach can be used as a means of assessing the accuracy of the duplicate analytical results. The RPD is calculated for specific parameters using the following equation:

Field Duplicate RPD (%) =
$$\frac{|C_1 - C_2|}{(C_1 + C_2)/2} \times 100$$

where: RPD = relative percent difference

C1= first of two observed values from the field duplicate analysis

C2 = second of two observed values from the field duplicate analysis

RPD values can be calculated for parameters that contain detectable concentrations at least five times greater than the laboratory method detection limit.

One duplicate soil sample set and one duplicate groundwater sample set were submitted as part of the field program. Due to low concentrations the RPDs could not be calculated for the soil blind field duplicate.

One duplicate groundwater sample (TH19-03/DUP1) was collected and submitted for analysis. Based on the low concentrations the RPD could not be calculated for the sample. RPDs were calculated for metals which ranged from 15% to 200%. The wide range in concentrations is likely due to sediment entrainment during sample collection.

6.3.2.3 Data Validation Summary

Based on the laboratory analysis, sample collection, sample storage, sample bottles and transportation of the samples to the laboratory, there was no material effect on the quality of the data collected as part of this assessment. The laboratory results for soil and groundwater samples obtained during Wood's investigation are considered to be valid.

7.0 Discussion

The purpose of the Phase II ESA was to further assess the two APECs identified during the Phase I ESA, as well as establish baseline conditions at the Site prior to Tervita's operation at the Site.

7.1 APEC 1 - Historical Fires

Several fires have historically occurred at the Site, generally located on the concrete apron surrounding the warehouse building, but also near former storage areas in the southern portion of the Site. Seven test holes were advanced in the areas where the fires occurred and in downgradient areas where run-off water may have accumulated. TH19-03 was located near a former storage Quonset where a fire occurred, as well as TH19-04 through TH19-09 were drilled in areas near the large concrete apron surrounding the current warehouse building. Soil samples from these test holes indicated generally low-level detections of PAHs in soil samples from test holes TH19-04, TH19-05 and TH19-06 and EOX at TH19-06. However, all concentrations were below applicable assessment criteria. Otherwise no discernable pattern in soil chemical concentrations were noted related to APEC 1.

Chemical analytical results from the groundwater samples collected at the Site indicate that groundwater concentrations are below the applicable groundwater quality guidelines for the Site. Based on the exposure pathways identified for groundwater, no risks to human or environmental health have been identified.

Based on a review of the relative soil groundwater concentrations of potential contaminants of concern, concentrations were noted to be generally higher in the southeast areas of the Site in the areas surrounding the warehouse and associated concrete pads. TH19-01 was positioned in a generally upgradient area of the Site in order to provide a location potentially representative of background conditions. The highest concentrations of PAHs were noted at TH19-04. This test hole and monitoring well was located at the south edge of the large concrete apron, where run-off may accumulate. These elevated concentrations may be indicative of the presence of impacts related to historical fires, however, are not at a concentration that would be considered a concern for future industrial use.

The water well, located 5 m south of the warehouse, is located in the central portion of the apron where the historical fires have occurred. Groundwater samples collected from the water well had concentrations of analytical parameters that were generally less that samples collected from other monitoring wells at the Site. Specifically concentrations of PAHs, and groundwater dioxins and furans were low or less than detection limits, indicating residual impact from historical fires is low and shallow and not in the bedrock aquifer.

The parameters for total extractable organic halides (EOX) for soil and total organic halides (TOX) for groundwater are parameters for describing the total organic halogen compounds present in soil or groundwater. The parameter can be used to screen samples for the presence of a range of substances, including volatile compounds, and persistent organic pollutants, some of which are produced during combustion. Soil and groundwater analysis for these compounds was conducted on samples collected from test holes and monitoring wells near the area of the edge of the apron where the fire occurred as well as a background sample and water well sample. The results indicated the highest (and only detectable) concentrations in soil were at TH19-07, located southwest of the apron. The highest concentration in groundwater was reported at TH19-10, located on the north side of the apron. Detectable concentrations were also reported for groundwater three other locations near the south edge

WX18979 | May 2020

Page 12 of 15

• • •

of the apron (TH19-03, TH19-04, and TH19-07). Concentrations at TH19-01, and the water well were less than detection limits, further supporting the conclusion that residual impact from historical operations and fires is low and shallow and not impacting the bedrock aquifer. TOX as well as dioxins and furans results are presented on Figure 13.

7.2 APEC 2 – On-Site AST

An on-Site AST was observed near the metal clad garage building. One test hole (TH19-02) was advanced in the vicinity of the AST in order to assess soil conditions related to potential petroleum hydrocarbon impacts from the fuel storage. Soil sample results indicate that concentrations of PHC constituents were below detection limits. These results indicate that impacts related to the use of the AST are either not present or limited in extent and do not pose a signification risk for continued use of the Site.

7.3 Baseline Conditions

As noted above, TH19-01 was positioned in a generally upgradient area of the Site in order to provide a location potentially representative of background conditions. With some exceptions, soil and groundwater concentrations of the chemical constituents analyzed were generally lower in this area of the Site. As noted above, the higher concentrations of PHCs, PAHs, and EOX and TOX were noted in the soil and groundwater samples collected from the area south of the warehouse and concrete apron. These concentrations are not considered a human or environmental risk, and do not exceed applicable environmental quality criteria. These concentrations should be utilized for comparison to future soil and groundwater monitoring data collected at the Site in order to determine if changes related to Tervita's operations are occurring at the Site.

8.0 Conclusions and Recommendations

The purpose of the Phase II ESA was to further assess APECs identified at the Site and to collect baseline soil and groundwater data prior to Tervita operations at the Site. Soil and groundwater concentrations do indicate some spatial trends in concentrations of PHCs, PAHs, and EOX/TOX. Soil and groundwater samples collected near to the areas where historical fires occurred, or where run-off would accumulate, indicate relatively higher concentrations in comparison to background (TH19-01). Concentrations of analytical parameters in the groundwater sample collected from the water well were low or less than detection limits, indicating residual impact from historical fires is low and shallow and not in the deeper bedrock aquifer.

Based on the results of the Phase II ESA completed at the Site, there is no evidence to suggest that the Site has been negatively impacted by the historical fire events that took place on-Site to a degree that would represent a potential risk to human health and the environment. The Site is considered to be suitable for continued industrial use.

Based on the results of the current assessment, no further investigation at the Site is warranted at this time. However, if impacts are identified during the scheduled redevelopment of the Site, additional investigation may be required at that time.

As exceedances of the applicable Reporting Standards were not identified, the report is not required to be submitted to MCC for review.

WX18979 | May 2020

Page 13 of 15

9.0 **Project Limitations**

The American Society for Testing and Materials Standard of Practice notes that no environmental site assessment can wholly eliminate uncertainty regarding the potential for recognized environmental conditions in the connection with a property. Performance of a standardized environmental site assessment protocol is intended to reduce, but not eliminate, uncertainty regarding the potential for recognized environmental conditions in connection with the property, given reasonable limits of time and costs. The findings of this investigation are based on the interpretation of a limited number of analytical results pertaining to specific samples. The evaluation and interpretations do not preclude the existence of chemical substances other than those identified herein, or the possibility that contamination levels can vary between the areas of the investigation.

This report is based on, and limited by, the interpretation of data, circumstances, and conditions available at the time of completion of the work as referenced throughout the report. It has been prepared in accordance with generally accepted engineering practices.

10.0 Closure

We trust that the information presented in this report meets your current requirements. Should you have any questions, or concerns, please do not hesitate to contact Wood.

Further general limitations are provided in Appendix G.

11.0 References

Baracos, A., Shields, D. and Kjartanson, B. 1983. Geological Engineering Maps & Report for Urban Development of Winnipeg. The University of Manitoba, Department of Geological Engineering. Winnipeg, MB.

Betcher, R., Grove, G., and Pupp, C. 1995. Groundwater in Manitoba: hydrogeology, quality concerns, management. National Hydrology Research Institute, Contribution No. CS-93017.

Canadian Council of Ministers of the Environment (CCME). 1999, updates to 2018. Canadian Environmental Quality Guidelines (EQGs).

CCME. (2001, revised 2008). Canada-Wide Standards (CWS) for Petroleum Hydrocarbons in Soil.

Federal Contaminated Sites Action Plan (FCSAP). November 2012. Guidance Document on Federal Interim

Groundwater Quality Guidelines for Federal Contaminated Sites.

Government of Manitoba. 2014. The Contaminated Sites Remediation Act.

Government of Manitoba. 1997. The Contaminated Sites Remediation Regulation M.R. 105/97 (CSRR).

Manitoba Energy and Mines. 1990. Bedrock Geology Compilation Series, Winnipeg, NTS 62H, 1: 250,000.

Manitoba Sustainable Development Guideline June 2016. Environmental Site Assessments in Manitoba.

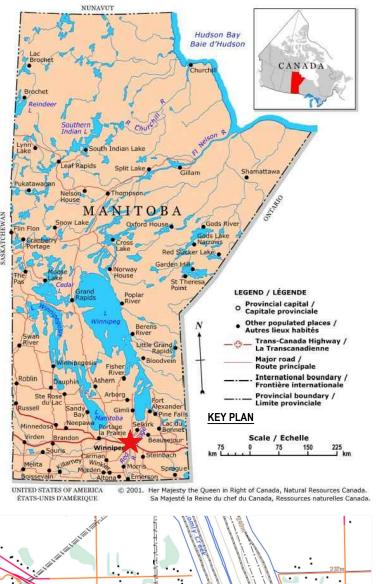
Manitoba Sustainable Development Guideline June 2016. Manitoba Criteria for BTEX in Investigation Results.

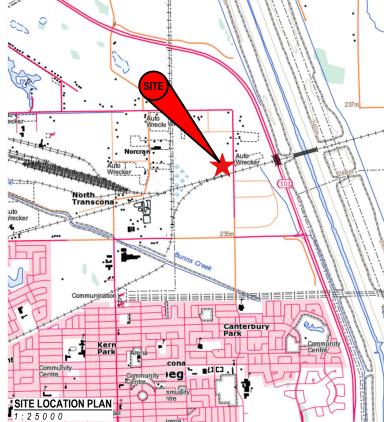
Manitoba Sustainable Development *Contaminated Sites Remediation Act* (CSRA) C205 Updated 1 April 2014.

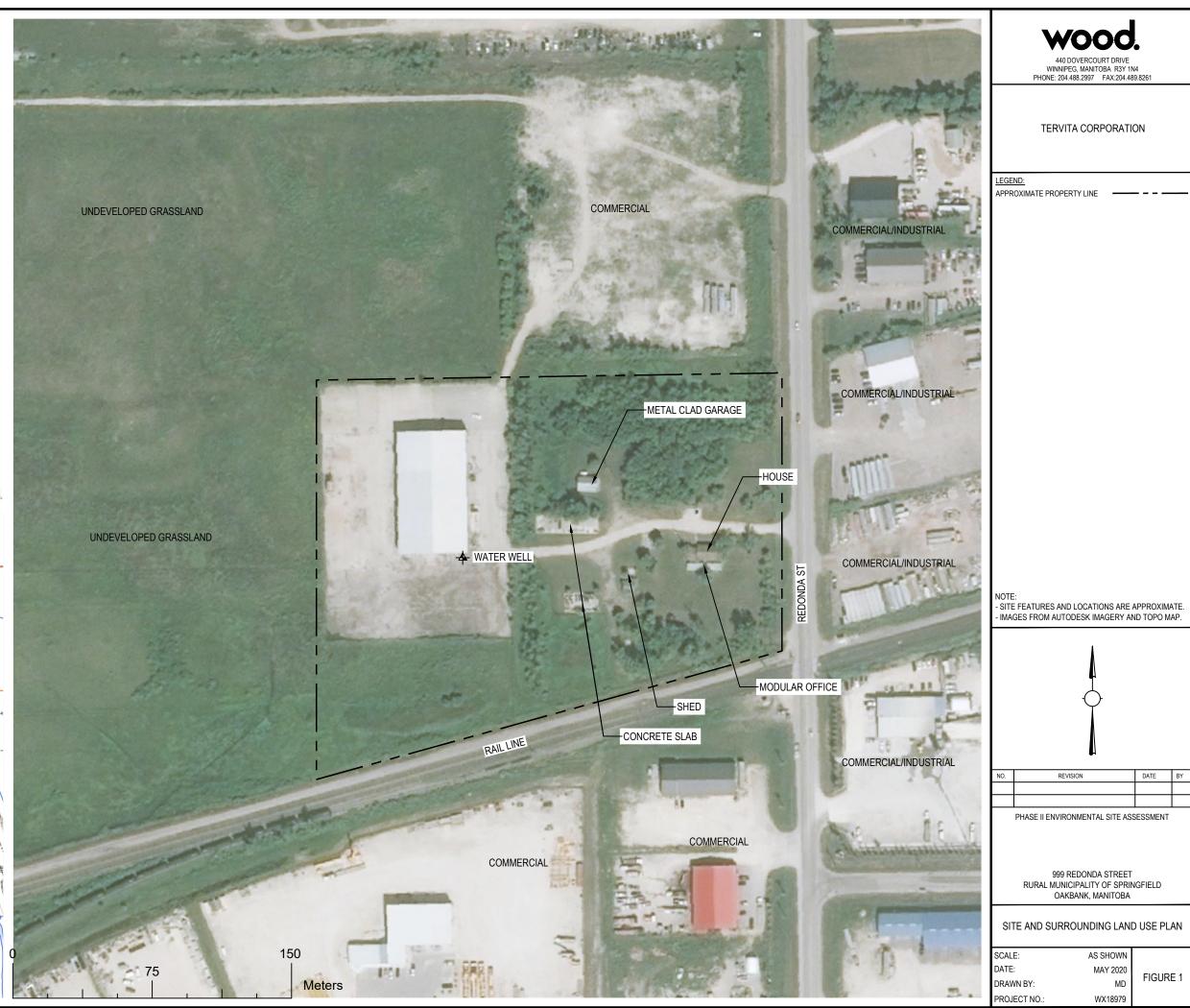
Ontario Ministry of the Environment (MOE). 2011. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act.

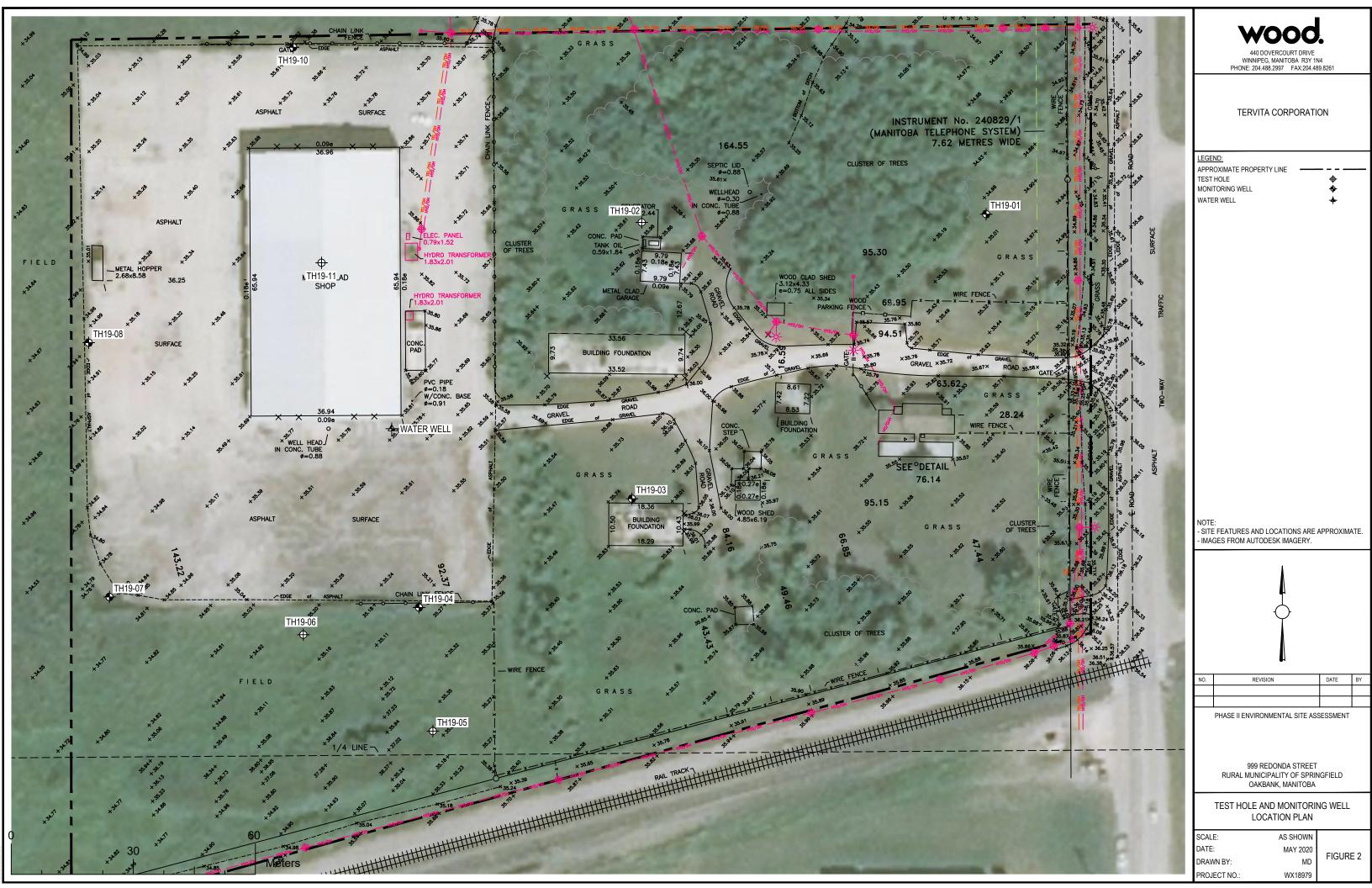
Phase I Environmental Site Assessment, 999 Redonda Street, Rural Municipality of Springfield, Manitoba, dated 27 November 2019. Wood.

Render, F.W., 1970. Geohydrology of the metropolitan Winnipeg area as related to groundwater supply and construction. Canadian Geotechnical Journal, 7(3): 243-274



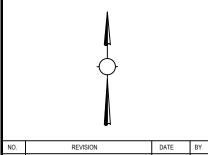

Figures


Figure 1: Site and Surrounding Land Use Plan Figure 2: Test Hole and Monitoring Well Location Plan Figure 3: Soil Analytical Results (PHCs) Figure 4: Soil Analytical Results (Metals) Figure 5: Soil Analytical Results (PAHs) Figure 6: Soil Analytical Results (VOCs) Figure 7: Soil Analytical Results (PCBs) Figure 8: Groundwater Elevations Figure 9: Groundwater Analytical Results (PHCs) Figure 10: Groundwater Analytical Results (Metals) Figure 11: Groundwater Analytical Results (VOCs) Figure 12: Groundwater Analytical Results (PAHs) Figure 13: Analytical Results – EOX, TOX, Dioxins, Furans


WX18979 | May 2020

TH19-08 Date 3-Dec-19 Depth (m) 0.8 V.L. (ppm) <5 B (mgkg) <0.0050	TH19-10 Date 3-Dec-19 Depth (m) 0.8 V.L. (pm) <5 B (mg/kg) <0.0050 T (mg/kg) <0.015 X (mg/kg) <0.071 F1 (mg/kg) <10 F2 (mg/kg) <25 F3 (mg/kg) <50	TH19-11 Date 16-Dec- Depth (m) 1.5 V.L. (ppm) <5 B (mg/kg) <0.005 T (mg/kg) <0.01 X (mg/kg) <0.07 F1 (mg/kg) <10 F2 (mg/kg) <10 F2 (mg/kg) <50 H19-10 F4 (mg/kg) <50	50 0 50 0 51 0 52 0 53 0 54 0 55 0 56 0 57 0 58 (mg/kg) 71 (mg/kg) 10 0 57 0 58 (mg/kg) 10 0 11 0 12 0 13 0 14 0 14 0 15 0 16 0 17 0 18 0 19 0 10 0 11 0 12 0 13 0 14 0 14 0 15 0 16 0 17 0 18 0 19 0 10 0 10 0 10 0 11 0 12 0 13 0 14 0 15 0	16-Dec-19 0.8 <5 <0.0050 <0.050 <0.071 <10 <25 <50	S I IN MIL
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TH19-08	TH19-06	Date Depth	TH19-01 19-03 19-03 19-03 10 0.8 10 0.7	TH Date Depth V.L. (i) T (ii) E (ii) F1 (ii) F3 (ii) F4 (ii)
TH19-09 Date 16-Dec-19 Depth (m) 0.8 V.L. (ppm) <5	TH19-06 Date 3-Dec-19 Depth (m) 0.8 V.L. (pp) <5	TH19-05 ate 16-Dec-19 n (m) 0.8 (ppm) <5	TH19-04 B (// Date 3-Dec-19 T (// Depth (m) 0.8 E (// V.L. (ppm) <5	(ppm) <5	Turninan 1

Meters



TERVITA CORPORATION

LEGEND: APPROXIMATE PROPERTY LINE TEST HOLE MONITORING WELL WATER WELL BELOW CRITERIA ABOVE CRITERIA

-	-	-
÷	₽	
•	Þ	
4	►	
•	•	₽
-	Þ	₽

NOTE: - SITE FEATURES AND LOCATIONS ARE APPROXIMATE. - IMAGES FROM AUTODESK IMAGERY.

NO.	REVISION	DATE	BY

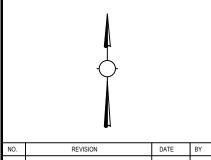
PHASE II ENVIRONMENTAL SITE ASSESSMENT

999 REDONDA STREET RURAL MUNICIPALITY OF SPRINGFIELD OAKBANK, MANITOBA

SOIL ANALYTICAL RESULTS - PHCs

SCALE: AS SHOWN DATE: MAY 2020 DRAWN BY: MD PROJECT NO.: WX18979

TH19-10		All and the second second		and the second se	Careful and a second	And	1100 C 10 C 10	and the second s
	11 11 11 11 11 11 11 11 11 11 11 11 11			and the second second	Martin Andrewson in the	A CONTRACTOR OF	and the second second	TH19-01
				and the second s	CONTRACTOR OF THE REAL	Bradel advantage of the	And a lot	Depth (m) 0.8
,				Contraction Contractory	and and the second			Antimony (mg/kg) 0.31
Aluminum (mg/kg) 23900		5		CONTRACT ADDRESS			1 2 4	Aluminum (mg/kg) 31500
Arsenic (mg/kg) 5.22		2		ANTIPATE CARE	STREET PRAIN	And I have been	5 2	Arsenic (mg/kg) 9.34
Barium (mg/kg) 176			TH19-10	122.000000		CONTRACTOR CONTRACTOR		Barium (mg/kg) 195
Beryllium (mg/kg) 1.04			1	The second second		1 1 13 PROF 4	HILL R	Beryllium (mg/kg) 1.34
Cadmium (mg/kg) 0.441	Barium (mg/kg) 10		the second s		And I have been been been been been been been be	CASH AND		Cadmium (mg/kg) 0.164
Calcium (mg/kg) 66000	Benyllium (mg/kg) 0.0		and the second se	And the state	F-Part - Charles and -	All and a second second		Calcium (mg/kg) 7110
Chromium (mg/kg) 38.3			and the second s	200000		Canada and a state of the state of the		Chromium (mg/kg) 53.3
Cobalt (mg/kg) 11.7	Calaium (mg/kg) 595		and the second se	TACTAR STREET	Real Property of the second	Karte		Cobalt (mg/kg) 16
Copper (mg/kg) 34.9				TH19-02	a second	TH19-01	and the second	Copper (mg/kg) 31.8
Iron (mg/kg) 25000	Cobalt (mg/kg) 12			A CALL STORE	•		- MARTIN	Iron (mg/kg) 35600
Lead (mg/kg) 44.8			1	Careful Carefu	Free Property parts	100		Lead (mg/kg) 16
Magnesium (mg/kg) 44500	0 Iron (mg/kg) 276			· ····································	Without Long	a second second	TH19-03	Magnesium (mg/kg) 15600
Manganese (mg/kg) 748	Lead (mg/kg) 12		TH19-11	POLICE AND	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE	and a star	Depth (m) 0.8	Manganese (mg/kg) 848
Molybdenum (mg/kg) 0.42				·	A AN I MANUTATION	C.F. 63	Antimony (mg/kg) 0.5	Molybdenum (mg/kg) 0.32
Nickel (mg/kg) 32.8			TH19-08		ARC IN CONTRACTOR		Aluminum (mg/kg) 27200	Nickel (mg/kg) 48.2
Phosphorus (mg/kg) 450				States of the second se	TO BE CAME	and the second s	Arsenic (mg/kg) 9.15	Phosphorus (mg/kg) 542
Potassium (mg/kg) 4010	Molybdenum (mg/kg) 0.2			W. CORPUT-	and a state of the	The summer of the second second	Barium (mg/kg) 196	Potassium (mg/kg) 5850
Selenium (mg/kg) <0.20	Nickel (mg/kg) 36			The second second	and the second		Beryllium (mg/kg) 1.03	Selenium (mg/kg) <0.20
Sodium (mg/kg) 327	Phosphorus (mg/kg) 51		The factor and	+ WATER WELL	A COLORED AND A	No. A CARLE	Cadmium (mg/kg) 0.365	Sodium (mg/kg) 719
Silver (mg/kg) 0.12	Potassium (mg/kg) 41		the superior is the		the second second		Calcium (mg/kg) 63800	Silver (mg/kg) 0.13
Thallium (mg/kg) 0.258	Selenium (mg/kg) 0.2		A TRADE TRADE	THE REAL PROPERTY OF		34 10 24	Chromium (mg/kg) 43.3	Thallium (mg/kg) 0.429
Tin (mg/kg) 2.1	Sodium (mg/kg) 39		and the second states	and the second second	TH19-03	Re La	Cobalt (mg/kg) 12.3	Tin (mg/kg) <2.0
Vanadium (mg/kg) 59.2	Silver (mg/kg) 0.7		and the second second second		100	and the second second	Copper (mg/kg) 29.9	Vanadium (mg/kg) 86
Uranium (mg/kg) 0.79	I hallium (mg/kg) 0.3		and a start of the second of the	And the second second	and a CP	States - Car	Iron (mg/kg) 28100	Uranium (mg/kg) 3.54
Zinc (mg/kg) 142	I in (mg/kg) <2		and the second second	A STATE OF THE OWNER	To The Art wat	The state of the	Lead (mg/kg) 13.2	Zinc (mg/kg) 113
and the second se	Vanadium (mg/kg) 66		TH19-07	THACA	A 1994 74 & 1994	BAR TOPAL	Magnesium (mg/kg) 26900	
- Friend States - States	Uranium (mg/kg) 2.6			TH19-04	and the second	TH19-04	Manganese (mg/kg) 630	and the second second
	Zinc (mg/kg) 80	.5 TH19-09	TH19-06	State of the state	a state of the second	Depth (m) 0.8	Molybdenum (mg/kg) 0.54	and the second second
and the second second second second				Constant of the Part of the		Antimony (mg/kg) 1.98	Nickel (mg/kg) 35.4	and the second
The Association of the Real					1000	Aluminum (mg/kg) 1400	Phosphorus (mg/kg) 610	COLUMN TIME
Constant of the second second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/ /		and a second of the second	and the second second	Arsenic (mg/kg) 1.24	Potassium (mg/kg) 4760	(ME)
				TH19-05		Barium (mg/kg) 69.8	Selenium (mg/kg) <0.20	CA. 11 12
And the second sec	TH19-08					Beryllium (mg/kg) <0.10	Sodium (mg/kg) 148	and the second s
and the second	Depth (m) 0.8					Cadmium (mg/kg) 0.552	Silver (mg/kg) 0.12	
	Antimony (mg/kg) 0.46					Calcium (mg/kg) 147000	Thallium (mg/kg) 0.12	- Frankling
	Aluminum (mg/kg) 15700				TH19-05	Chromium (mg/kg) 7.64		R
	Arsenic (mg/kg) 5.52	TH19-09			Depth (m) 0.8	Cobalt (mg/kg) 1.72	Tin (mg/kg) <2.0 Vanadium (mg/kg) 78.1	and the second
Contract Contract Contractor	Barium (mg/kg) 311	Depth (m) 0.8		RAILLINE	Antimony (mg/kg) 0.43	Copper (mg/kg) 28.9	Uranium (mg/kg) 0.999	and the second second
	Beryllium (mg/kg) 0.82	Antimony (mg/kg) 0.52			Aluminum (mg/kg) 26400	Iron (mg/kg) 5160	Zinc (mg/kg) 80	AND SALE (PT)
	Cadmium (mg/kg) 0.213	Aluminum (mg/kg) 26900	TH19-07	TH19-06	Arsenic (mg/kg) 8.46	Lead (mg/kg) 40.3		
	Calcium (mg/kg) 98200	Arsenic (mg/kg) 9.35	Depth (m) 0.8 1.5	Depth (m) 0.8	Barium (mg/kg) 193	Magnesium (mg/kg) 86100	1 1 1 1 1 1	2
and the second	Chromium (mg/kg) 26.6	Barium (mg/kg) 199	Antimony (mg/kg) <0.10 0.52	Antimony (mg/kg) 0.42	Beryllium (mg/kg) 1.12	Manganese (mg/kg) 155		1 7
Contraction of the second	Cobalt (mg/kg) 9.89	Beryllium (mg/kg) 1.34	Aluminum (mg/kg) 971 13800	Aluminum (mg/kg) 22900	Cadmium (mg/kg) 0.497	Molybdenum (mg/kg) 1.7		1 24
and the state of the	Copper (mg/kg) 23	Cadmium (mg/kg) 0.077	Arsenic (mg/kg) 0.61 9.03	Arsenic (mg/kg) 7.24	Calcium (mg/kg) 15800	Nickel (mg/kg) 19.1		c) cc
and a summer to get	Iron (mg/kg) 20100	Calcium (mg/kg) 9990	Barium (mg/kg) 7.36 172	Barium (mg/kg) 212	Chromium (mg/kg) 44.7	Phosphorus (mg/kg) 132	1 Parcel	HC C
	Lead (mg/kg) 11	Chromium (mg/kg) 48	Beryllium (mg/kg) <0.10 0.66	Beryllium (mg/kg) 0.89	Cobalt (mg/kg) 13.7	Potassium (mg/kg) 370	Charles C	FE FE
the second second	Magnesium (mg/kg) 59300	Cobalt (mg/kg) 15.3	Cadmium (mg/kg) 0.02 0.286	Cadmium (mg/kg) 0.318	Copper (mg/kg) 35.4	Selenium (mg/kg) <0.20	1 2 4 4	and the second second
and the second second	Manganese (mg/kg) 430	Copper (mg/kg) 33.1	Calcium (mg/kg) 200000 74900	Calcium (mg/kg) 65600	Iron (mg/kg) 28300	Sodium (mg/kg) 59	alacter (17 m)	A less seal and seal of
and the second second	Molybdenum (mg/kg) 1.08	Iron (mg/kg) 32800	Chromium (mg/kg) 2.39 20.9	Chromium (mg/kg) 38.7	Lead (mg/kg) 21.9	Silver (mg/kg) 0.1		and the second se
and the second s	Nickel (mg/kg) 27.4	Lead (mg/kg) 16	Cobalt (mg/kg) 1.04 8.22	Cobalt (mg/kg) 12	Magnesium (mg/kg) 15000	Silver (ing/kg) 0.1 Thallium (mg/kg) <0.050	The supervised in the supervis	
and the share	Phosphorus (mg/kg) 398	Magnesium (mg/kg) 14200	Copper (mg/kg) 2.83 21.3	Copper (mg/kg) 27.9	Manganese (mg/kg) 743	Tin (mg/kg) 2.7		and the second sec
and and all all	Potassium (mg/kg) 2840	Manganese (mg/kg) 496	Iron (mg/kg) 2390 20900	Iron (mg/kg) 25500	Molybdenum (mg/kg) 0.55	Vanadium (mg/kg) 9.55		and the second se
and the second	Selenium (mg/kg) 0.36	Molybdenum (mg/kg) 0.44	Lead (mg/kg) 1.48 10.1	Lead (mg/kg) 18.7	Nickel (mg/kg) 38.1	Uranium (mg/kg) 0.263		and the second s
the second second	Sodium (mg/kg) 344	Nickel (mg/kg) 46.1	Magnesium (mg/kg) 128000 28300	Magnesium (mg/kg) 27800	Phosphorus (mg/kg) 954	Zinc (mg/kg) 335	CONSIST OF STREET, STR	Contraction of the local division of the loc
100 - 100	Silver (mg/kg) <0.10	Phosphorus (mg/kg) 511	Manganese (mg/kg) 142 580	Manganese (mg/kg) 581	Potassium (mg/kg) 6480		NO. BRANCHTON	
	Thallium (mg/kg) 0.214	Potassium (mg/kg) 5430	Molybdenum (mg/kg) 0.24 0.8	Molybdenum (mg/kg) 0.49	Selenium (mg/kg) 0.47	and the second of the second s	THE PARTY OF	
	Tin (mg/kg) <2.0	Selenium (mg/kg) <0.20	Nickel (mg/kg) 2.21 24.2	Nickel (mg/kg) 34.6	Sodium (mg/kg) 626	A CARAGE AND		
1	Vanadium (mg/kg) 43.9	Sodium (mg/kg) 580	Phosphorus (mg/kg) 56 578	Phosphorus (mg/kg) 537	Silver (mg/kg) 0.14	Carlos Contraction		A STATISTICS AND A STATISTICS
100 m 10 2 m 2	Uranium (mg/kg) 1.26	Silver (mg/kg) 0.15	Potassium (mg/kg) 350 1530	Potassium (mg/kg) 4060	Thallium (mg/kg) 0.34	the second		and the second s
	Zinc (mg/kg) 72.5	Thallium (mg/kg) 0.405	Selenium (mg/kg) <0.20 <0.20	Selenium (mg/kg) 0.25	Tin (mg/kg) <2.0	and the second		Er.
A		Tin (mg/kg) <2.0	Sodium (mg/kg) 61 493	Sodium (mg/kg) 279	Vanadium (mg/kg) 72.8	the the		
A A A A A A A A A A A A A A A A A A A		Vanadium (mg/kg) 76.9	Silver (mg/kg) <0.10 0.11	Silver (mg/kg) 0.12	Uranium (mg/kg) 1.61	IS ST JOB MILL	A State	
20	30 22	Uranium (mg/kg) 1.79	Thallium (mg/kg) <0.050 0.232	Thallium (mg/kg) 0.285	Zinc (mg/kg) 123	and the literal		
C 11	100	Zinc (mg/kg) 84.1	Tin (mg/kg) <2.0 <2.0	Tin (mg/kg) <2.0		and a Billing	Aller and	
	100	A BARRIER	Vanadium (mg/kg) 5.14 40	Vanadium (mg/kg) 65.6	A P S A PARA	- 4. Mar	A Carlow and	
	0		Uranium (mg/kg) 0.236 1.86	Uranium (mg/kg) 1.3	a company	and the second s	2 1 1 1 T	A A A A A A A A A A A A A A A A A A A
	M	eters	Zinc (mg/kg) 6 60.1	Zinc (mg/kg) 90.3	The state of the s	5 155 555 -	State and the second	A A A A A A A A A A A A A A A A A A A
		A State of the second	the last	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second second second second	A MARKET AND A MARKET	A DECEMBER OF	



TERVITA CORPORATION

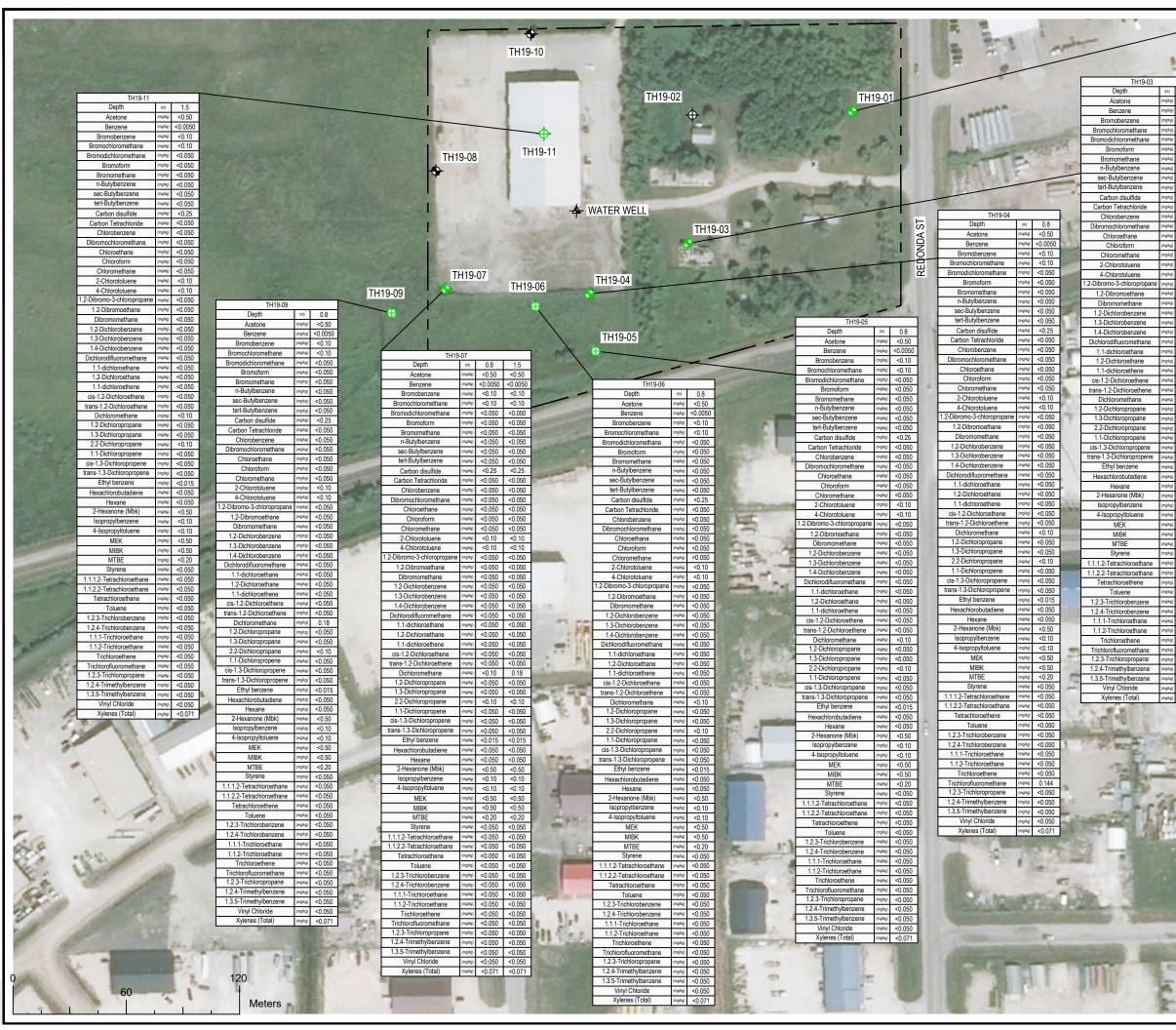
LEGEND: APPROXIMATE PROPERTY LINE -TEST HOLE MONITORING WELL WATER WELL BELOW CRITERIA ABOVE CRITERIA

\$	
.	
+	
+	
+ +	

NOTE: - SITE FEATURES AND LOCATIONS ARE APPROXIMATE. - IMAGES FROM AUTODESK IMAGERY.

<i>J</i> .	INE VISION	DATE	ы

PHASE II ENVIRONMENTAL SITE ASSESSMENT

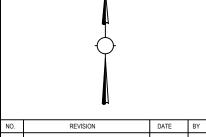

999 REDONDA STREET RURAL MUNICIPALITY OF SPRINGFIELD OAKBANK, MANITOBA

SOIL ANALYTICAL RESULTS - METALS

SCALE:AS SHOWNDATE:MAY 2020DRAWN BY:MDPROJECT NO.:WX18979

Biologilization No. 4000 Biologilization No. 40000 Biologilization No. 40000 Biolo
Histor Decode functionations into discolutionationationationationationationationa
Interaction Provide 33 colleging Provide 34 collegi
TH 9.0 The state The state The st
The Prime The Prime No. 2000 Prime Prim Prim Prime
Admaphtine International Internatera International International
Here Hu 4,000 Hu Hu 4,000 Bercal/shartharea Inv 4,000 Hu 4,000
Bercollogianthacener www 0.00 Domotolia Watter well TH19-03 Dimotolia Watter well TH19-03 Dimotolia TH19-03 Scanaphtoner Fuorener www 0.000 Promoto 0.000 Scanaphtoner Promoto 0.000 Scanaphtoner Promoto www 0.000 Rescolligionanthacener
Berozolapyrene www. C010 Berozolapyrene www. C0100 Berozolapyrene www. C0000 Diberozolapyrene www. C0000 Diberozolapyrene www. C0000 Diberozolapyrene www. C0000 Biopyrene www. C0000 Diberozolapyrene www. C0000 Biopyrene www. C0000 Biopyrene www. C0000 Biopyrene www. C0000 Antracene www. C0000 Antracene www. C0000 Biopyrene www. C0000
Betrackip/Lingery/ene mvs 40.000 Betrackip/Lingery/ene mvs 40.000 Chrysene mvs 40.000 Diberza(a) hindradene mvs 40.000 Fluorane mvs 40.000 Phorene mvs 40.000 Phorene mvs 40.000 Phorene mvs 40.000 Betrackip/machtene mvs 40.000 Phorene mvs 40.000
Betrack(fluorathere imve 0.000 Dbpn / vol 0.000 Chrysne inve 0.000 Acenaphthylene vol 0.000 Dibanz(a h)anthracene inve 0.000 Acenaphthylene vol 0.000 Fluorathere inve 0.000 Acenaphthylene vol 0.000 Puorathere inve 0.000 Acenaphthylene vol 0.000 Puorathere inve 0.000 Acenaphthylene vol 0.000 Puorathere inve 0.000 Acenaphthylene vol 0.000 Persone inve 0.000 Betzac(a)entracene vol 0.000 Persone inve 0.0000 Betzac(a)entracene vol 0.000 Persone inve 0.0000 Betzac(a)entracene vol 0.000 Acenaphthylene vol 0.000 Betzac(a)entracene vol 0.000
Chrysele m/s 4,0,00 Hubranthacen m/s 4,0,00 Bezcolajenthacene m/s 4,0,00 Pyrane m/s 4,0,00 Pyrane m/s 4,0,00 Nettiene m/s 4,0,00 Pyrane m/s 4,0
Deletiol/dat/lefinitiation invite 40000 Fluorene invite 6000 Indenci 12.3.cd/pyrene invite 6000 Procentine invite 6000 Procentin invite 6000 <tr< td=""></tr<>
Fuorene Imposition Revelopmene Imposition Revelopmene
Index (1-2)-3CQ(b)=)flucranthene invise <0.010
2-Methylhalaene wwwis 0,010 Naphthalaene wwwis 0,010 Phenanthrene wwwis 0,010 Pyrene wwwis 0,010 BijajP TPE wwwis 0,010 Depth 119-05 TH19-04 TH19-05 TH19-05 TH19-05 Wetwy is 0,0010 2-Methylnaphthalene wwwis Norte:
Phenanthrene (m/shi) <0.010 Berzo(8/I)ustanthene (m/shi) <0.010 Pyrene (m/shi) <0.010 Chrustene (m/shi) <0.010 BjajP TPE (m/shi) <0.020 TH19-07 TH19-07 TH19-06 Berzo(8/I)ustanthene (m/shi) <0.0050 Fluoranthene (m/shi) <0.0050 Fluoranthene (m/shi) <0.0010 Norte: Norte: <th< td=""></th<>
Image Image Note TH19-04 B[a]P TPE Image 0.002 TH19-11 TH19-05 Depth 1.5 Accenaphthene 100050 Accenaphthene 100050 Actenaphthene 100050 Benzo(a)pyrene 100050 Benzo(a
BigIP TPE Winders CO.020 TH19-03 TH19-06 TH19-11 Fluoranthene Depth (m) 1.5 Acenaphthene (mska) C0.010 Acenaphthylene (mska) C0.010 NAthracene (mska) C0.010 Pyrene (mska) C0.010 Benzo(a)pyrene (mska) C0.010
TH19-11 Indeno(1.2.3-cd)pyrene Indeno(1.2.3-cd)
Depth (m) 1.5 Acenaphthene (mg/kg) <0.010 Acenaphthylene (mg/kg) <0.0050 Acenaphthylene (mg/kg) <0.0050 Acenaphthylene (mg/kg) <0.0010 Phenanthrene (mg/kg) <0.0010 Phenanthrene (mg/kg) <0.010 Benzo(a)anthracene (mg/kg) <0.010 Benzo(a)apyrene (mg/kg) <0.010
Acenaphthylene (mg/m) <0.0050 Anthracene (mg/m) <0.0040 Phenanthrene (mg/m) <0.010 Benzo(a)anthracene (mg/m) <0.010 Benzo(a)apyrene (mg/m) <0.010 Benzo(a)apyrene (mg/m) <0.010 Benzo(a)apyrene (mg/m) <0.010
Anthracene Image: Migrage with anthracene More with anthracene More with anthracene NoTE: Benzo(a)anthracene Image: Migrage with anthracene Image: Migrage with anthracene More with anthracene NOTE: - Site FEATURES AND LOCATIONS ARE APPROXIMATE Benzo(a)pyrene Image: Migrage with anthracene Image: Migrage with anthracene Image: Migrage with anthracene NOTE: - Site FEATURES AND LOCATIONS ARE APPROXIMATE Benzo(a)pyrene Image: Migrage with anthracene Image: Migrage with anthracene Image: Migrage with anthracene - Site FEATURES AND LOCATIONS ARE APPROXIMATE Benzo(a)pyrene Image: Migrage with anthracene Image: Migrage with anthracene - Site FEATURES AND LOCATIONS ARE APPROXIMATE Benzo(a)pyrene Image: Migrage with anthracene Image: Migrage with anthracene - Site FEATURES AND LOCATIONS ARE APPROXIMATE Benzo(a)pyrene Image: Migrage with anthracene - Site FEATURES AND LOCATIONS ARE APPROXIMATE Image: Migrage with anthracene Image: Migrage with anthracene - Site FEATURES AND LOCATIONS ARE APPROXIMATE Image: Migrage with anthracene Image: Migrage with anthracene - Site FEATURES AND LOCATIONS ARE APPROXIMATE Image: Migrage with anthracene Image: Migrage with anthracene - Site FEATURES AND LOCATIONS ARE APPROXIMATE
Benzo(a)anthracene (mg/kg) <0.010 Benzo(a)apyrene (mg/kg) <0.020
Benzo[b+j]fluoranthene (mg/kg) <0.010 TH19-04
Benzo(g.h.i)perylene Implies Control Depth Implies TH19-05 Depth 0.8 0.8 0.8 0.8
Benzo(k)fluoranthene (mg/kg) <0.010 Depth (m) 0.8
Charge (a.b) Construction Accenaphthylene Construction Accenaphthylene Construction Dibenzo(a.b) Accenaphthylene (mg/kg) <0.0050
Fluoranthene (mg/kg) <0.010 Anthracene (mg/kg) <0.010 Anthracene (mg/kg) <0.10
Fluorene Implify <0.010 Benzo(a)anthracene Depth Implify Operation Operation Depth Implify Operation Operati
Indexist(12:0 co/p)rine (mg/m) (0.010 Acceraphthene (mg/m) (0.000 (0.000)
Naphthalene Implify Co.010 Denzo(g h i)pervlene Implify Co.010 Anthracene Implify Co.0040 Co.0040 Accenaphthylene Implify Co.010 Benzo(g h i)pervlene Implify Co.010 Anthracene Implify Co.0040 Co.0040 Accenaphthylene Implify Co.010 Benzo(k)fluoranthene Benzo(k)fluoranthene Implify Co.010
Phenanthrene Imple:/imple
B[a]P TPE (mg/kg) < 0.020 Dibenzo(a, h)anthracene (mg/kg) 0.012 Dibenzo(a, h)anthracene (mg/kg) 0.032
Fluoranthene Implicit antibility Co.010 Co.010 Co.010 Co.010 Co.010 Fluorene Implicit antibility Co.010 Co.010 Fluorene Implicit antibility Co.010 Fluorene Fluorene
Fluorene (mg/kg) <0.010 Benzo(k)itionanthene (mg/kg) <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010
Indeno(1.2.3-cd)pyrene (mg/kg) <0.010 Dibenzo(a.h)anthracene (mg/kg) <0.050 Chrysene (mg/kg) 0.041 2-Methylnaphthalene (mg/kg) 0.015 Naphthalene (mg/kg) 0.014
Naphthalene Imple://www.imple://wwww.imple://www.imple://wwwwwww.imple://wwwwwww
Phenanthrene (mg/kg) < 0.010 Fluorene (mg/kg) < 0.010 Fluorene (mg/kg) < 0.010 Fluorene Fluorene (mg/kg) < 0.010 Pyrene (mg/kg) 0.85 B[a]P TPE (mg/kg) 0.106 OAKBANK, MANITOBA
Pyrene (mg/kg) < 0.010 Indenc(1.2.3-cd)pyrene (mg/kg) 0.021 B[a]P TPE (mg/kg) < 0.020
Naphthalene (mg/kg) <0.010 <0.010 Phenanthrene (mg/kg) <0.010
80 Pyrene (mg/m) 0.018 <0.010 Phenanthrene (mg/m) 0.032
40 B[a]P TPE mg/kg <0.020 <0.020 Pyrene mg/kg 0.057 BfaIP TPE mg/kg 0.057 brunner figure 5 fi
Meters B[a]P IPE Image: MD MD PROJECT NO.: WX18979

SCALE:	AS SHOWN	
DATE:	MAY 2020	
DRAWN BY:	MD	FIGURE 5
PROJECT NO .:	WX18979	


	_	_	TH19-01				
	_		Depth	(m)	0.8	200	
			Acetone	(mg/kg) (mg/kg)	<0.50 <0.0050	- 123	
			Benzene Bromobenzene	(mg/kg)	<0.0050		
		1	Bromochloromethane	(mg/kg)	<0.10	200	
	0.8	16	Bromodichloromethane Bromoform	(mg/kg) (mg/kg)	<0.050 <0.050	1. 1. 1	
	< 0.50	200	Bromomethane	(mg/kg)	<0.050	A 11	
	<0.0050 <0.10	5	n-Butylbenzene	(mg/kg)	< 0.050	8 F	
	<0.10		sec-Butylbenzene tert-Butylbenzene	(mg/kg) (mg/kg)	<0.050 <0.050	The	
	< 0.050	123	Carbon disulfide	(mg/kg)	<0.25	1000	
	<0.050 <0.050	-	Carbon Tetrachloride	(mg/kg) (mg/kg)	<0.050	- 5	
	<0.050		Chlorobenzene Dibromochloromethane	(mg/kg) (mg/kg)	<0.050 <0.050	100	
	<0.050		Chloroethane	(mg/kg)	<0.050	100	LEG
	<0.050 <0.25	1	Chloroform	(mg/kg) (mg/kg)	<0.050 <0.050	1000	APF
	<0.050	Cal	Chloromethane 2-Chlorotoluene	(mg/kg)	<0.050		TES
	<0.050 <0.050	de la	4-Chlorotoluene	(mg/kg)	<0.10	-	MO
	< 0.050	-	1.2-Dibromo-3-chloropropane 1.2-Dibromoethane	(mg/kg) (mg/kg)	<0.050 <0.050	1	WA
	<0.050		Dibromomethane	(mg/kg)	< 0.050	1	BEL
	<0.050 <0.10	1	1.2-Dichlorobenzene	(mg/kg)	<0.050	25	ABC
	<0.10		1.3-Dichlorobenzene 1.4-Dichlorobenzene	(mg/kg) (mg/kg)	<0.050 <0.050	20	
	<0.050		Dichlorodifluoromethane	(mg/kg)	< 0.050	1000	
	<0.050 <0.050	14	1.1-dichloroethane	(mg/kg)	< 0.050		
	< 0.050	-	1.2-Dichloroethane 1.1-dichloroethene	(mg/kg) (mg/kg)	<0.050 <0.050	. H.C.	
	< 0.050		cis-1.2-Dichloroethene	(mg/kg)	< 0.050	1.126	
	<0.050 <0.050	C	trans-1.2-Dichloroethene	(mg/kg)	< 0.050	K	
	<0.050		Dichloromethane 1.2-Dichloropropane	(mg/kg) (mg/kg)	0.14	1. 1.	
	<0.050		1.3-Dichloropropane	(mg/kg) (mg/kg)	<0.050 <0.050	State of the	
	<0.050 <0.050		2.2-Dichloropropane	(mg/kg)	<0.10	32	
	< 0.050		1.1-Dichloropropene cis-1.3-Dichloropropene	(mg/kg) (mg/kg)	<0.050	113	
	<0.10		trans-1.3-Dichloropropene	(mg/kg)	<0.050 <0.050	1	
	< 0.050		Ethyl benzene	(mg/kg)	<0.015	(trees	
	<0.050 <0.10	1	Hexachlorobutadiene	(mg/kg)	< 0.050	and a	
	<0.050		Hexane 2-Hexanone (Mbk)	(mg/kg) (mg/kg)	<0.050 <0.50	TI.	
	< 0.050	87	Isopropylbenzene	(mg/kg)	<0.10		
	<0.050 <0.015	8	4-Isopropyltoluene	(mg/kg)	<0.10	stant".	
	< 0.050	6.	MEK MIBK	(mg/kg) (mg/kg)	<0.50 <0.50	124	
	<0.050	5	MTBE	(mg/kg)	<0.20	124	
	<0.50 <0.10	3.4	Styrene	(mg/kg)	<0.050	3	
	<0.10	1	1.1.1.2-Tetrachloroethane 1.1.2.2-Tetrachloroethane	(mg/kg) (mg/kg)	<0.050 <0.050	1	
	<0.50	200	Tetrachloroethene	(mg/kg)	< 0.050	C. Barrier	
	<0.50 <0.20		Toluene	(mg/kg)	<0.050		
	<0.20	1950	1.2.3-Trichlorobenzene 1.2.4-Trichlorobenzene	(mg/kg) (mg/kg)	<0.050 <0.050	200	
	<0.050	-	1.1.1-Trichloroethane	(mg/kg)	< 0.050	E	
	<0.050		1.1.2-Trichloroethane	(mg/kg)	<0.050	Sec. Card	
	<0.050 <0.050	1.27	Trichloroethene Trichlorofluoromethane	(mg/kg)	<0.050	Se . 0 .	
	<0.050		1.2.3-Trichloropropane	(mg/kg) (mg/kg)	<0.050 <0.050	and the second second	NO.
	<0.050		1.2.4-Trimethylbenzene	(mg/kg)	<0.050	0.811	- SI
	<0.050 <0.050		1.3.5-Trimethylbenzene Vinyl Chloride	(mg/kg)	<0.050	1.1	- IM
	<0.050	٥.	Xylenes (Total)	(mg/kg) (mg/kg)	<0.050 <0.071	1.	
	< 0.050			32	1	15.50	
	<0.050 <0.050	4.17	7		1 2	69.29A	
	<0.050	3	P manual			5 33	
	< 0.050	1	1 Participant		2.	Sec. Links	
	<0.071	J	5	82	1.8	• P.F.2	
			ATT I	40		2 25	
	and a	-	and the second	21	115	1 Acres	
	-6.8		ATTRON C.E.	30	-	D	
		34	Alter At	1	11		
	See.	100	ANALS ANAL	0		2.00	
ļ	-	-		9		A A	NO.
ĺ	1	1	3. Barrow 11	1		1	INU.
	12		The state of the s	1	100	100	
ĺ	518	5	A REAL PROPERTY.			1000	
	2.4.3	21	THE R. LEWIS CO.	12		10.2	
	6.867	5	CONTRACTOR OF THE	1	100		
			Station of Lot o	12	-	1111	
	125	2	1	12	-	C. S. Can	
				F	22	1	
				1	Sec.	C. C.	
		1	Constanting of the second	5		1020	
		-		-	-		
ĺ			1		-		
	1	1	and the second second	12	-	A LOW	
	-	1	18 18 18	1	57	and the second	0.01
			126 3		7		SCA
					0	-	DAT
ĺ	FF	-		4	1	State of the	DR/
							PRO

TERVITA CORPORATION

NOTE: - SITE FEATURES AND LOCATIONS ARE APPROXIMATE. - IMAGES FROM AUTODESK IMAGERY.

O. REVISION DATE BY

PHASE II ENVIRONMENTAL SITE ASSESSMENT

999 REDONDA STREET RURAL MUNICIPALITY OF SPRINGFIELD OAKBANK, MANITOBA

SOIL ANALYTICAL RESULTS - VOCs

SCALE: AS SHOWN DATE: MAY 2020 DRAWN BY: MD PROJECT NO.: WX18979

NU.	REVISION	DATE	вт

SCALE:	AS SHOWN	
DATE:	MAY 2020	
DRAWN BY:	MD	FIGURE 7
PROJECT NO .:	WX18979	

_	-	-	_
	4	₽	
		•	
	4		
(230	.32	m)

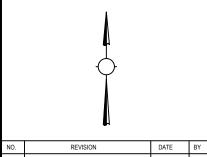
NO.	REVISION	DATE	BY

-	-	-
÷	₽	
•	₽	
4	►	
•		+
-		+

NO.	REVISION	DATE	BY

CALE:	AS SHOWN	
ATE:	MAY 2020	
RAWN BY:	MD	FIGURE 9
ROJECT NO .:	WX18979	

A DECK OF THE OWNER OWNER OWNER O		TU40.40	the state of the second states	Pas a	the second
CALLER AND A REPORT OF A DATA SALES AND A D		TH19-10	TAP (WATER WELL)		
A REAL PROPERTY AND A REAL PROPERTY.		Antimony (mg/L) 0.0016	Antimony (mg/L) <0.000	10	-
		Aluminum (mg/L) 0.302	Aluminum (mg/L) <0.003		375
		Arsenic (mg/L) 0.0011	Arsenic (mg/L) 0.0001		TH19-01
		Barium (mg/L) 0.05			Antimony (mg/L) 0.00026
CONTRACTOR OF A DESCRIPTION OF A		Beryllium (mg/L) <0.0010	Barium (mg/L) 0.018		
			Beryllium (mg/L) <0.000		
		Cadmium (mg/L) 0.0014	Cadmium (mg/L) 0.00001	17	Arsenic (mg/L) 0.00093
Constraints of the second s		Calcium (mg/L) 415	Calcium (mg/L) 42.9	and the second s	Barium (mg/L) 0.0315
		Chromium (mg/L) 0.0015	Chromium (mg/L) <0.000		Beryllium (mg/L) <0.00010
The second se		Cobalt (mg/L) 0.0024	the second se		Cadmium (mg/L) 0.000196
		Copper (mg/L) 0.0312			Calcium (mg/L) 514
TH19-08		Iron (mg/L) 0.76	Copper (mg/L) 0.016		
Antimony (mg/L) <0.0010			Iron (mg/L) 2.26	A CONTRACTOR OF A	Chromium (mg/L) 0.00078
Aluminum (mg/L) 10.9		Lead (mg/L) 0.0207	Lead (mg/L) 0.0027	79	Cobalt (mg/L) 0.00552
	TH19-10	Magnesium (mg/L) 314	Magnesium (mg/L) 46	and the second	Copper (mg/L) 0.00618
	a state a state of the state of the	Manganese (mg/L) 1.17	Manganese (mg/L) 0.055	2	Iron (mg/L) 0.187
Barium (mg/L) 0.187	a contract of the second second second	Molybdenum (mg/L) 0.00296			Lead (mg/L) 0.000404
Beryllium (mg/L) <0.0010		Nickel (mg/L) 0.0302	Molybdenum (mg/L) 0.0006		
Cadmium (mg/L) 0.000406	a second s		Nickel (mg/L) 0.0010		Jene and the second sec
Calcium (mg/L) 469	and the second se		Phosphorus (mg/L) <0.03	0	Manganese (mg/L) 3.56
Chromium (mg/L) 0.0228		Potassium (mg/L) 7.85	Potassium (mg/L) 3.7	and the second se	Molybdenum (mg/L) 0.00339
	and the second se	Selenium (mg/L) <0.00050	Selenium (mg/L) <0.0000	050	Nickel (mg/L) 0.0208
Cobalt (mg/L) 0.0172		Sodium (mg/L) 259	TH19-02 Sodium (mg/L) 25.7		Phosphorus (mg/L) 0.091
Copper (mg/L) 0.0414		Silver (mg/L) <0.00010			Potassium (mg/L) 11.4
Iron (mg/L) 16.6		Thallium (mg/L) <0.00010	Silver (mg/L) <0.0000		
Lead (mg/L) 0.0286	and the second se		Thallium (mg/L) <0.0000		Selenium (mg/L) 0.00214
Magnesium (mg/L) 307	•	Tin (mg/L) 0.0031	Tin (mg/L) <0.000	10	Sodium (mg/L) 291
Magnosan (mg/L) 2.38	TH19-11	Vanadium (mg/L) <0.0050	Vanadium (mg/L) <0.000		Silver (mg/L) 0.000019
	1019-11	Uranium (mg/L) 0.0969	Uranium (mg/L) 0.0010		Thallium (mg/L) 0.00002
Molybdenum (mg/L) 0.00558	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Zinc (mg/L) 0.522			Tin (mg/L) 0.00841
Nickel (mg/L) 0.0401	, TH19-08		Zinc (mg/L) 0.211	The second root of	Vanadium (mg/L) 0.00158
Phosphorus (mg/L) 0.35		2.5 C		A REAL PROPERTY OF A REAL PROPER	
Potassium (mg/L) 7.63		Automation of the second se			Uranium (mg/L) 0.11
Selenium (mg/L) <0.00050			ATTICAL LAND	and a state of the second s	Zinc (mg/L) 0.0217
			Contraction of the local division of the loc	A CONTRACT OF	Mar LA State
Sodium (mg/L) 229			And	and a second	and the second
Silver (mg/L) 0.00018				A DATE OF THE OWNER	
Thallium (mg/L) 0.0002	and the second second second second	+ WATER WELL	Station of Station Park Station	Contraction of the local division of the loc	And
Tin (mg/L) 0.0016		Land Street Williams	and the second	the second se	
Vanadium (mg/L) 0.0365	the second s	included a second		ALC: NOT THE OWNER	and a state of the second
Vanadium (mg/L) 0.0365	A There are and	REAL REAL	THAT		Me in
Uranium (mg/L) 0.0618	B. J. S. martin		TH19-03	A ST	Vi co
			TH19-03	I I I I I I I I I I I I I I I I I I I	11-T
Uranium (mg/L) 0.0618			TH19-03	Donda ST	11-T
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162			TH19-03	REDONDA ST	IT
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162			TH19-03	REDONDA ST	IT
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162 TH19-07			TH19-03	TH19-03 DUF	
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162 TH19-07 Antimony (mg/L) <0.0010	TH19-07	THAA	TH19-03		
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162 TH19-07 Antimony (mg/L) <0.0010 Aluminum (mg/L) 28.2 Arsenic (mg/L) 0.0246	•	TH19-04	PARSE	TH19-03 DUF Antimony (mgL) <0.010	051
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162 TH19-07 Antimony (mg/L) <0.0010	TH19-06	TH19-04	TH19-04	TH19-03 DUF Antimony (mgL) <0.010	4 1
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162 TH19-07 Antimony (mg/L) <0.0010 Aluminum (mg/L) 28.2 Arsenic (mg/L) 0.0246 Barium (mg/L) 0.398 Beryllium (mg/L) 0.0017 TH19-09	TH19-06	TH19-04	TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	051 4 09
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162 TH19-07 Antimony (mg/L) <0.0010 Aluminum (mg/L) 28.2 Arsenic (mg/L) 0.0246 Barium (mg/L) 0.398 Beryllium (mg/L) 0.0017	•	TH19-04	TH19-04 Antimony (mg/L) <0.0010	TH19-03 DUF Antimony (mg/L) <0.010	051 4 09 36
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162 TH19-07 Antimony (mg/L) <0.0010	TH19-06	TH19-04	TH19-04 Antimony (mg/L) <0.0010	TH19-03 DUF Antimony (mg/L) <0.010	051 4 09 36 010
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162 TH19-07 Antimony (mg/L) <0.0010	TH19-06	TH19-04	TH19-04 Antimony (mg/L) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	051 4 09 36 010 133
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162 TH19-07 0.162 Antimony (mg/L) <0.0010	TH19-06	TH19-04	TH19-04 Antimony (mg/L) <0.0010	TH19-03 DUF Antimony (mg/L) <0.010	051 4 09 36 010 133
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162 TH19-07 Antimony (mg/L) <0.0010	TH19-06		TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	251 4 09 36 010 133 2
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162 TH19-07 Antimony (mg/L) <0.0010	TH19-06	TH19-04	TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	2051 4 09 36 0010 133 2 203
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162 TH19-07 Antimony (mg/L) <0.0010	TH19-06		TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mg/L) <0.010	251 4 09 36 010 133 2 203 553
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162 TH19-07 Antimony (mg/L) <0.0010	TH19-06		TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	251 4 09 36 010 133 2 103 553 '86
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162 TH19-07 Antimony (mg/L) <0.0010	TH19-06		TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	251 4 09 36 010 133 2 203 153 786 99
Uranium (mgIL) 0.0618 Zinc (mgIL) 0.162 TH19-07 Antimony (mgIL) <0.0010	TH19-06		TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	251 4 09 36 010 133 2 203 153 786 99 11
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162 TH19-07 Antimony (mg/L) <0.0010	TH19-06		TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	251 4 09 36 010 133 2 203 153 786 99 11
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162 TH19-07 Antimony (mg/L) <0.0010	TH19-06	↓ TH19-05	TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	2051 4 09 36 0010 1133 22 203 553 786 99 11 33
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162 TH19-07 Antimony (mg/L) <0.0010	TH19-06	↓ TH19-05	TH19-04 Antimony (mgl.) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	2051 4 09 36 0010 133 2 203 553 786 99 11 3
Uranium (mglL) 0.0618 Zinc (mglL) 0.162 TH19-07 Antimony (mglL) <0.0010	TH19-06	↓ TH19-05	TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	051 4 09 36 010 133 2 203 353 86 99 11 338
Uranium (mglL) 0.0618 Zinc (mglL) 0.162 TH19-07 Antimony (mglL) <0.0010	TH19-06		TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	2051 4 09 36 010 133 2 203 353 16
Uranium (mgIL) 0.0618 Zinc (mgIL) 0.162 TH19-07 Antimony (mgIL) <0.0010	TH19-06	↓ TH19-05	TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	2051 4 09 36 010 133 2 203 253 786 99 11 38 1338 16 188
Uranium (mgl.) 0.0618 Zinc (mgl.) 0.162 TH19-07 Antimony (mgl.) <0.0010	TH19-06	↓ TH19-05	TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	2051 4 09 36 010 133 2 203 253 786 99 11 38 1338 16 188
Uranium (mgl.) 0.0618 Zinc (mgl.) 0.162 TH19-07 Antimony (mgl.) <0.0010	TH19-06	↓ TH19-05	TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	2051 4 09 36 010 133 2 203 253 786 69 11 3 133 133 133 2 203 153 786 133 133 133 133 133 133 14 153 154 155 155 153
Uranium (mgl.) 0.0618 Zinc (mgl.) 0.162 TH19-07 Antimony (mgl.) <0.0010	TH19-06	↓ TH19-05	TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	2051 4 09 36 010 133 2 203 253 786 69 11 3 133 133 2 203 153 786 69 11 3 133 133 133 133 14 178
Uranium (mgl.) 0.0618 Zinc (mgl.) 0.162 TH19-07 Antimony (mgl.) <0.0010	TH19-06	↓ TH19-05	TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mg/L) <0.010	2051 4 09 36 010 133 2 203 253 786 69 11 3 133 338 16 18 4 118
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162 TH19-07 Antimony (mg/L) <0.0010	TH19-06	↓ TH19-05	TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mg/L) <0.010	2051 4 09 36 010 133 2 203 553 786 69 11 3 133 133 2 203
Uranium (mgl.) 0.0618 Zinc (mgl.) 0.162 TH19-07 Antimony (mgl.) <0.0010	TH19-06	↓ TH19-05	TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	2051 4 09 36 010 133 2 203 553 786 69 11 338 16 18 4 118 0 023 022 023
Uranium (mglL) 0.0618 Zinc (mglL) 0.162 TH19-07 Antimony (mglL) <0.0010	TH19-06	↓ TH19-05	TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	2051 4 09 36 010 133 2 203 553 786 69 11 338 16 88 4 118 0 023 022 023 022 023 023 023 023 024
Uranium (mglL) 0.0618 Zinc (mglL) 0.162 TH19-07 Antimony (mglL) <0.0010	TH19-06	↓ TH19-05	TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	2051 4 09 36 010 133 2 203 553 786 69 11 338 16 88 4 118 0 023 022 023 022 023 023 023 023 024
Uranium (mglL) 0.0618 Zinc (mglL) 0.162 TH19-07 Antimony (mglL) <0.0010	TH19-06	↓ TH19-05	TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	2051 4 09 36 010 133 2 203 553 786 69 11 3 133 16 88 4 118 302 023 028 66 191
Uranium (mglL) 0.0618 Zinc (mglL) 0.162 TH19-07 Antimony (mglL) <0.0010	TH19-06	↓ TH19-05	TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	2051 4 09 36 010 133 2 203 553 786 99 11 3 133 16 88 4 118 302 66 191 1/5
Uranium (mglL) 0.0618 Zinc (mglL) 0.162 TH19-07 Antimony (mglL) 28.2 Arsenic (mglL) 0.0246 Barium (mglL) 0.00117 Cadmium (mglL) 0.0017 TH19-09 Cadmium (mglL) 0.00117 Calcium (mglL) 0.00117 Calcium (mglL) 0.00227 Copper (mglL) 0.0227 Copper (mglL) 0.0227 Copper (mglL) 0.00379 ① ① Magnesium (mglL) 0.00379 Nickel 1.86 Potassium (mglL) 0.00078 Sodium (mglL) 0.00078 Sodium (mglL) 0.00078 Sodium (mglL) 0.0017 Vanadium (mglL) 0.0017 Vanadium (mglL) 0.0017 Vanadium (mglL) 0.00078 Sodium (mglL) 0.0017 Vanadium (mglL) 0.0017 Vanadium (mglL) 0.0017	TH19-06	↓ TH19-05	TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	203 204 205 </td
Uranium (mgl.) 0.0618 Zinc (mgl.) 0.162 TH19-07 Antimony (mgl.) <0.0010	TH19-06	↓ TH19-05	TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	203 204 205 </td
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162 TH19-07 Antimony (mg/L) <0.0010	TH19-06	↓ TH19-05	TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	203 204 205 </td
Uranium (mg/L) 0.0618 Zinc (mg/L) 0.162 TH19-07 Antimony (mg/L) 20.0010 Aluminum (mg/L) 0.0246 0.0398 Barium (mg/L) 0.0017 TH19-09 Cadmium (mg/L) 0.00117 Calcium 659 Chromium (mg/L) 0.00227 Copper (mg/L) 0.0227 Copper (mg/L) 0.0406 Manganese (mg/L) 0.0406 Manganese (mg/L) 0.0841 Potassium (mg/L) 0.00379 Nickel (mg/L) 0.00078 Sodium (mg/L) 0.00078 Sodium (mg/L) 0.00078 Sodium (mg/L) 0.00078 Sodium (mg/L) 0.0017 Vanadium (mg/L) 0.0017 Vanadium (mg/L) 0.0017 Vanadium (mg/L) 0.00078 Sodium (mg/L) 0.0017 Vanadium (mg/L) 0.0017 Vanadium (mg/L) 0.0017 Vanadium (mg/L) 0.0247	TH19-06	↓ TH19-05	TH19-04 Antimony (mgL) <0.0010	TH19-03 DUF Antimony (mgL) <0.010	2051 4 09 36 010 133 2 203 553 786 99 11 3 133 16 88 4 118 302 66 191 1/5


TERVITA CORPORATION

LEGEND: APPROXIMATE PROPERTY LINE TEST HOLE MONITORING WELL WATER WELL

in part of

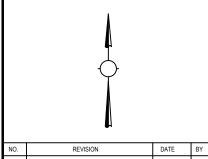
• ÷ +

- NOTE: SITE FEATURES AND LOCATIONS ARE APPROXIMATE. IMAGES FROM AUTODESK IMAGERY. NO AVAILABLE GUIDELINES.

NO.	REVISION	DATE	BY

PHASE II ENVIRONMENTAL SITE ASSESSMENT

999 REDONDA STREET RURAL MUNICIPALITY OF SPRINGFIELD OAKBANK, MANITOBA


GROUNDWATER ANALYTICAL RESULTS - METALS

SCALE: AS SHOWN DATE: MAY 2020 FIGURE 10 DRAWN BY: MD PROJECT NO .: WX18979

TH19-10 Acetone (mgL) <0.050	TH19-10			anin-	TH19-01 Acetone (mgL) <0.050	440 DOVERCOURT DRIVE
Bromochloromethane (mpl.) <0.0010		and a stand and a stand		1	Bromobenzene(mg/L)<0.0010	WINNIPEG, MANITOBA R3Y 1N4 PHONE: 204.488.2997 FAX:204.489.8261
Diological income (mgl) Colored (mgl) <t< th=""><th>TH19-08 TH19-11</th><th>TH19-02</th><th>TH19-01</th><th>TH19-03 DUP 1</th><th>Bromodichloromethane (mpL) <0.00050</th> Bromoform (mpL) <0.0010 Bromomethane (mpL) <0.0010 n-Butylbenzene (mpL) <0.0010 sec-Butylbenzene (mpL) <0.0010 tert-Butylbenzene (mpL) <0.0010 Carbon disulfide (mpL) <0.0050 Carbon Tetrachloride (mpL) <0.0050 Chlorobenzene (mpL) <0.0010</t<>	TH19-08 TH19-11	TH19-02	TH19-01	TH19-03 DUP 1	Bromodichloromethane (mpL) <0.00050	TERVITA CORPORATION
Dibromochloromethane (mgL) <0.00050 Bromomethane (mgL) <0.0010 Chloroethane (mgL) <0.0010	I AVATER V	VEL	Acete Benz Bromobe	tene (mg/L) <0.00050 <0.00050	Ohnologingune (mail) <0.00150 Dibromochloromethane (mgL) <0.0010	LEGEND: APPROXIMATE PROPERTY LINE
Chloromethane (mgil) <0.0050 tert-Butylbenzene (mgil) <0.0010 2-Chlorotoluene (mgil) <0.020	1	TH19-03	I IS Bromochlor Bromodichlo	promethane (mgL) <0.00050 <0.00050	Chloromethane (mg/L) <0.0050 2-Chlorotoluene (mg/L) <0.020	MONITORING WELL
4-Chlorotoluene (mgL) <0.0010 Carbon Tetrachloride (mgL) <0.00050 1.2-Dibromo-3-chloropropane (mgL) <0.0010			Bromo Bromom n-Butylb	nethane (mgL) <0.0010 <0.0010 1	4-Chlorotoluene (mg/L) <0.0010	BELOW CRITERIA ABOVE CRITERIA
1.2-Dipromoethane (mgl) <0.0010 Dibromochloromethane (mgl) <0.0050 Dibromothane (mgl) <0.0010	TH19-07 TH19-04	4	TAP (WATER WELL) sec-Butylit Acetone (mg/L) <0.050 tert-Butylit	benzene (mg/L) <0.0010 <0.0010	1.2-Dibromoethane (mgL) <0.0010 Dibromomethane (mgL) <0.0010	
1.3-Dichlorobenzene (mpl) 40.0010 Chloromethane (mpl) 40.0050 1.4-Dichlorobenzene (mpl) 40.0010 Chloromethane (mpl) 40.0020	TH19-09	B. Salar	Benzene (mg/L) <0.00050 Carbon d Bromobenzene (mg/L) <0.0010	disulfide (mg/L) <0.0050 <0.0050	1.2-Dichlorobenzene (mgL) <0.00050	
Dichlorodifluoromethane (mgL) <0.0010 4-Chlorotoluene (mgL) <0.0010 1.1-dichloroethane (mgL) <0.00050	φ		Bromochloromethane (mgL) <0.0010 Chlorobe Bromodichloromethane (mgL) <0.00050 Dibromochlo	enzene (mg/L) <0.0010 <0.0010	1.4-Dichlorobenzene (mgL) <0.0010	
1.2-Dichloroethane (mgL) <0.00050 1.2-Dibromoethane (mgL) <0.0010 1.1-dichloroethene (mgL) <0.00050	TH19-07 Acetone (mgL) <0.050	05 TH19-04 Acetone (mgL) <0.050 Benzene (mgL) <0.00050	Bromoform (mgL) <0.0010 Chloroe Bromomethane (mgL) <0.0010	oform (mg/L) <0.00050 <0.00050	1.2-Dichloroethane (mgL) <0.00050 1.1-dichloroethene (mgL) <0.00050	
cis-1.2-Dichloroethene (mgL) <0.0010 1.2-Dichlorobenzene (mgL) <0.00050 trans-1.2-Dichloroethene (mgL) <0.0010	Benzene (mpL) <0.00050 Bromobenzene (mpL) <0.0010	Bromobenzene (mgL) <0.0000 Bromobenzene (mgL) <0.0010 Bromochloromethane (mgL) <0.0010	n-Butylbenzene (mgL) <0.0010 Chlorom sec-Butylbenzene (mgL) <0.0010	toluene (mg/L) <0.020 <0.020	cis-1.2-Dichloroethene (mgL) <0.0010 trans-1.2-Dichloroethene (mgL) <0.0010	
Dickloromethane (mgU) <0.0050 1.4-Dicklorobenzene (mgU) <0.0010 1.2-Dickloropropane (mgU) <0.0010	Bromochloromethane (mgL) <0.0010 Bromodichloromethane (mgL) <0.00050	Bromodichloromethane (mglL) <0.00050	Carbon disulfide (mg/L) <0.0050 1.2-Dibromo-3-0	chloropropane (mg/L) <0.0010 <0.0010	Dichloromethane (mg/L) <0.0050 1.2-Dichloropropane (mg/L) <0.0010	
1.3-Dichloropropane (mgL) <0.0010 1.1-dichloroethane (mgL) <0.00050 2.2-Dichloropropane (mgL) <0.0010	Bromodichloromethane (mgL) <0.00050 Bromoform (mgL) <0.0010 Bromomethane (mgL) <0.0010	Bromomethane (mg/L) <0.0010	Chlorobenzene (mg/L) <0.0010 Dibromon	methane (mg/L) <0.0010 <0.0010	1.3-Dichloropropane (mg/L) <0.0010 2.2-Dichloropropane (mg/L) <0.0010	
cis-1.3-Dichloropropene (mgL) 0.0010 1.1-1010100Enterne (mgL) 0.0010 cis-1.3-Dichloropropene (mgL) 0.0010 cis-1.2-Dichloroethene (mgL) 0.0010 trans-1.3-Dichloropropene (mgL) 0.0010 trans-1.2-Dichloroethene (mgL) 0.0010	n-Butylbenzene (mgL) <0.0010 sec-Butylbenzene (mgL) <0.0010	sec-Butylbenzene (mgL) <0.0010 tert-Butylbenzene (mgL) <0.0010	Dibromochlorometnane (mill) <0.00030 1.2-Dichloro Chloroethane (mgL) <0.0010	obenzene (mgL) <0.0010 <0.0010	1.1-Dichloropropene (mgL) <0.0010 cis-1.3-Dichloropropene (mgL) <0.0010	
Ethyl benzene (mpl) <0.0050 Dichloromethane (mpl) <0.0050 Hexachlorobutadiene (mpl) <0.0010	tert-Butylbenzene (mgu) <0.0010 Carbon disulfide (mgu) <0.0050	Carbon disulfide (mgL) <0.0050 Carbon Tetrachloride (mgL) <0.00050	Chloromethane (mg/L) <0.0050 Dichlorodifluc 2-Chlorotoluene (mg/L) <0.020	oromethane (mg/L) <0.0010 <0.0010	trans-1.3-Dichloropropene (mgL) <0.0010	
Hexane (mpL) <0.0010 1.3-Dichloropropane (mpL) <0.0010 2-Hexanone (Mbk) (mpL) <0.020	Carbon Tetrachloride (mgL) <0.00050 Chlorobenzene (mgL) <0.0010	Chlorobenzene (mg/L) <0.0010 Dibromochloromethane (mg/L) <0.00050	4-Chlorotoluene (mg/L) <0.0010 1.2-Dichlo 2-Dibromo-3-chloropropane (mg/L) <0.0010	roethane (mgL) <0.00050 <0.00050	Hexachlorobutadiene (mgL) <0.0010 Hexane (mgL) <0.0010	
Isopropylbenzene (mpl) <0.0010 1.1-Dichloropropene (mpl) <0.0010 4-Isopropyltoluene (mpl) <0.0010	Dibromochloromethane (mg/L) <0.00050 Chloroethane (mg/L) <0.0010	Chloroethane (mg/L) <0.0010 Chloroform (mg/L) <0.00050	1.2-Dibromoethane (mgL) <0.0010 cis-1.2-Dich Dibromomethane (mgL) <0.0010	loroethene (mgL) <0.0010 <0.0010	2-Hexanone (Mbk) (mgL) <0.020 Isopropylbenzene (mgL) <0.0010	
MEK (mgL) <0.020 trans-1.3-Dichloropropene (mgL) <0.0010 MIBK (mgL) <0.020	Chloroform (mgL) <0.00050 Chloromethane (mgL) <0.0050	Chloromethane (mgL) <0.0050 2-Chlorotoluene (mgL) <0.020	1.2-Dichlorobenzene (mgL) <0.00050 Dichloron 1.3-Dichlorobenzene (mgL) <0.0010	nethane (mgL) <0.0050 <0.0050	4-Isopropyltoluene (mg/L) <0.0010 MEK (mg/L) <0.020	
MTBE (mgL) <0.00050 Hexachlorobutadiene (mgL) <0.0010 Styrene (mgL) <0.0010	2-Chloroblouene (mgL) 30.020 4.0001 1.2-Dibromo-3-chloropropane (mgL) <0.0010 1.2-Dibromo-3-chloropropane (mgL) <0.0010		1.4-Dichlorobenzene (mgL) <0.0010 1.3-Dichlor Dichlorodifluoromethane (mgL) <0.0010		MIBIC (mgL) <0.020 MTBE (mgL) <0.00050	
1.1.1.2-Tetrachloroethane (mgl.) <0.00050 2-Hexanone (Mbk) (mgl.) <0.020 1.1.2.2-Tetrachloroethane (mgl.) <0.00050	1.2-Dibromoethane (msL) <0.0010 Dibromomthane (msL) <0.0010	1.2-Dibromoethane (mgL) <0.0010 Dibromomethane (mgL) <0.0010	1.1-dichloroethane (mgL) <0.00050 1.1-Dichlor 1.2-Dichloroethane (mgL) <0.00050		1.1.1.2-Tetrachloroethane (mgL) <0.00050 1.1.2.2-Tetrachloroethane (mgL) <0.00050	
Tetrachloroethene (mgL) <0.00050 4-Isopropyltoluene (mgL) <0.0010 Toluene (mgL) <0.00050	1.2-Dichlorobenzene (mgL) <0.00050	1.3-Dichlorobenzene (mg/L) <0.0010	1.1-dichloroethene (mgL) <0.00050	Inloropropene (mg/L) <0.0010 <0.0010 enzene (mg/L) <0.00050	Tetrachloroethene (mg/L) <0.00050 Toluene (mg/L) <0.00050	
1.2.3-Trichlorobenzene (mpL) <0.0010 MIBK (mpL) <0.020 1.2.4-Trichlorobenzene (mpL) <0.0010	1.4-Dichlorobenzene (mgL) <0.0010 Dichlorodifluoromethane (mgL) <0.0010	Dichlorodifluoromethane (mgl) <0.0010 1.1-dichloroethane (mgl) <0.00050	Izans-1.2-Dichloroethene (mgL) <0.0010 Dichloromethane (mgL) <0.0050	ane (mgL) <0.0010 <0.0010	1.2.3-Trichlorobenzene (mg/L) <0.0010 1.2.4-Trichlorobenzene (mg/L) <0.0010	NOTE: - SITE FEATURES AND LOCATIONS ARE APPROXIMATE.
1.1.1-Trichloroethane (mgL) <0.00050 Styrene (mgL) <0.0010 1.1.2-Trichloroethane (mgL) <0.00050	1.1-dichloroethane (mgL) <0.00050 1.2-Dichloroethane (mgL) <0.00050	1.2-Dichloroethane (mgL) <0.00050 1.1-dichloroethene (mgL) <0.00050	1.3-Dichloropropane (mg/L) <0.0010 Isopropylk	benzene (mgL) <0.0010 <0.0010	1.1.1-Trichloroethane (mg/L) <0.00050 1.1.2-Trichloroethane (mg/L) <0.00050	- IMAGES FROM AUTODESK IMAGERY.
Trichloroethene (mgL) <0.00050 1.1.2.2-Tetrachloroethane (mgL) <0.00050 Trichlorofluoromethane (mgL) <0.0010	1.1-dichloroethene (mgL) <0.00050 cis-1.2-Dichloroethene (mgL) <0.0010	cis-1.2-Dichloroethene (mgL) <0.0010 trans-1.2-Dichloroethene (mgL) <0.0010	2.2.2-bichloropropanie (mgL) <0.0010 4-isopropy 1.1-Dichloropropene (mgL) <0.0010	K (mg/L) <0.020 <0.020	Trichloroethene (mgL) <0.00050 Trichlorofluoromethane (mgL) <0.0010	
1.2.4-Trimethylbenzene (mpL) <0.0010 1.2.3-Trichlorobenzene (mpL) <0.0010 1.3.5-Trimethylbenzene (mpL) <0.0010	trans-1.2-Dichloroethene (mgL) <0.0010 Dichloromethane (mgL) <0.0050	1.2-Dichloropropane (mg/L) <0.0010	rans-1.3-Dichloropropene (mgil.) <0.0010 MTE Ethyl benzene (mgil.) <0.00050	BE (mg/L) <0.00050 <0.00050	1.2.3-Trichloropropane (mgL) <0.0010 1.2.4-Trimethylbenzene (mgL) <0.0010	
Vinyl Chloride (mpl) <0.00050 1.1.1-Trichloroethane (mpl) <0.00050 Xylenes (Total) (mpl) <0.00064	1.2-Dichloropropane (mgL) <0.0010	1.3-Dichloropropane (mg/L) <0.0010	Hexachlorobutadiene (mg/L) <0.0010 1.1.2.Tetrac Hexane (mg/L) <0.0010	chloroethane (mg/L) <0.00050 <0.00050	1.3.5-Trimethylbenzene (mgL) <0.0010 Vinyl Chloride (mgL) <0.00050	et di la constante
Trichloroethene (mpL) <0.00050 Trichloroethene (mpL) <0.0010	2.2-Dichloropropane (mgL) <0.0010 1.1-Dichloropropene (mgL) <0.0010	1.1-Dichloropropene (mg/L) <0.0010	2-Hexanone (Mbk) (mg/L) <0.020 Tetrachlor Isopropylbenzene (mg/L) <0.0010 Tolue	roethene (mg/L) <0.00050 <0.00050	Xylenes (Total) (mg/L) <0.00064	Ý
1.2.3-Trichloropropane (mpl) <0.0010 1.2.4-Trimethylbenzene (mpl) <0.0010	trans-1.3-Dichloropropene (mg/L) <0.0010	trans-1.3-Dichloropropene (mg/L) <0.0010 Ethyl benzene (mg/L) <0.00050	4-Isopropyltoluene (mgL) <0.0010 1.2.3-Trichlo MEK (mgL) <0.020	probenzene (mg/L) <0.0010 <0.0010	ATTEND TO	
1.3.5-Trimethylbenzene (mgL) <0.0010 Vinyl Chloride (mgL) <0.00050	Hexachlorobutadiene (mg/L) <0.0010	Hexachlorobutadiene (mgl.) <0.0010 Hexane (mgl.) <0.0010	MIBK (mg/L) <0.020 1.1.1-Trichl MTBE (mg/L) <0.00050	oroethane (mg/L) <0.00050 <0.00050	ARACE PARTY	Δ
Xylenes (Total) (mg/L) <0.00064	Hexane (mgL) <0.0010 2-Hexanone (Mbk) (mgL) <0.020		Styrene (mg/L) <0.0010 Trichloro .1.1.2-Tetrachloroethane (mg/L) <0.00050	bethene (mg/L) <0.00050 <0.00050	11 2	NO. REVISION DATE BY
r All All	4-IsopropyItoliuene (mpL) <0.0010 MEK (mpL) <0.020	4-isopropyltoluene (mgL) <0.0010 1 MEK (mgL) <0.020	1.2.2-Tetrachloroethane (mgL) <0.00050 1.2.3-Trichlo Tetrachloroethene (mgL) <0.00050			
La =	MIBK (mgL) <0.020	MTBE (mg/L) <0.00050	Toluene (mgL) <0.00050 1.3.5-Trimett 1.2.3-Trichlorobenzene (mgL) <0.0010	hloride (mgL) <0.00050 <0.00050		PHASE II ENVIRONMENTAL SITE ASSESSMENT
100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	Mill E (mpL) 20,00050 Styrene (mpL) <0,0010		1.2.4-Trichlorobenzene (mgL) <0.0010 Xylenes 1.1.1-Trichloroethane (mgL) <0.00050	(Total) (mgL) <0.00064 <0.00064		
	1.1.2.2-Tetrachloroethane (mgL) <0.00050	Tetrachloroethene (mgl) <0.00050 Toluene (mgl) <0.00050	1.1.2-Trichloroethane (mgL) <0.00050	e	4 E.	
	Toluene (mpL) 0.00115 1.2.3-Trichlorobenzene (mgL) <0.0010	1.2.3-Trichlorobenzene (mg/L) <0.0010	Inchronolidoolneurane (mill) <0.0010 1.2.3-Trichloropropane (mgL) <0.0010	Charles and the second	antin Elen	999 REDONDA STREET RURAL MUNICIPALITY OF SPRINGFIELD
	1.2.4-Trichlorobenzene (mpL) <0.0010 1.1.1-Trichloroethane (mgL) <0.00050		1.2.4-Trimetry/benzene (mgL) <0.0010 1.3.5-Trimethylbenzene (mgL) <0.0010	Statements Managements		OAKBANK, MANITOBA
A A A A A A A A A A A A A A A A A A A	1.1.2-Trichloroethane (mgL) <0.00050	Trichloroethene (mgL) <0.00050 Trichlorofluoromethane (mgL) <0.0010	Xylenes (Total) (mgL) <0.00064	ALLER STREET,		GROUNDWATER ANALYTICAL RESULTS - VOCs
0 160	1.2.3-Trichloropropane (mpL) <0.0010	1.2.3-Trichloropropane (mgL) <0.0010 1.2.4-Trimethylbenzene (mgL) <0.0010		0	217 2	SCALE: AS SHOWN
80 Meters	1.3.5-Trimethylbenzene (mgL) <0.0010	Vinyl Chloride (mgL) <0.0010 Xylenes (Total) (mgL) <0.00050		10 m	- 1	DATE: MAY 2020 DRAWN BY: MD FIGURE 11
	Xylenes (Total) (mg/L) <0.00064	7,5000 (10kg) (**** (****) *0.00004		2	3	PROJECT NO.: WX18979

	Pan B
T140.40	TAP (WATER WELL)
TH19-10	Acenaphthene (mg/L) <0.000020
Acenaphthene (mgL) <0.000020	
Acenaphthylene (mg/L) <0.000020	Acenaphthylene (mg/L) <0.000020
Anthracene (mg/L) <0.000010	Anthracene (mg/L) <0.000010
Benzo(a)anthracene (mgL) <0.00010	Benzo(a)anthracene (mg/L) <0.000010
Benzo(a)pyrene (mgL) <0.0000050	Benzo(a)pyrene (mg/L) <0.0000050 Acenaphther
Benzo[b+j]fluoranthene (mgL) <0.000010	Benzo[b+j]fluoranthene (mg/L) <0.000010 Acenaphthyle
Benzo(g.h.i)perylene (mgL) <0.000020	Benzo(g.h.i)perylene (mg/L) <0.000020 Anthracene
Benzo(k)fluoranthene (mg/L) <0.000020	Benzo(k)fluoranthene (mg/L) <0.000010 Benzo(a)anthra
	Chrysene (mg/L) <0.00020 Benzo(a)pyre
Chrysene (mg/L) <0.00020	
Dibenzo(a.h)anthracene (mgl) <0.0000050	
Fluoranthene (mg/L) <0.000020	
Fluorene (mg/L) <0.000020 TH19-10	
Indeno(1.2.3-cd)pyrene (mgL) <0.000010	Indeno(1.2.3-cd)pyrene (mg/L) <0.000010 Chrysene
2-Methylnaphthalene (mgL) <0.000020	2-Methylnaphthalene (mg/L) <0.000020 Dibenzo(a.h)anth
Naphthalene (mgL) <0.000050	Naphthalene (mg/L) <0.000050 Fluoranthen
Phenanthrene (mg/L) <0.000050	Phenanthrene (m/L) <0.000050 Fluorene
	Pyrene (mg/L) <0.000010 Indeno(1.2.3-cd)p
	B[a]P TPE (mg/L) <0.000030 2-Methylnaphtha
B[a]P TPE (mg/L) <0.000030	Naphthalen
and the second se	TH19-02 TH19-01 Phenanthree
the second se	
TH19-08	B[a]P TPE
Acenaphthene (mgL) <0.000060	TO DESCRIPTION OF THE REAL OF
Acenaphthylene (mgL) <0.000060	
Anthracene (mg/L) <0.000030	the second
Benzo(a)anthracene (mol) <0.000030	DEALER AND
Benzo(a)pyrene (mgL) <0.000015	The second se
Benzo[b+j]fluoranthene (mg/L) <0.000030	
	and the second sec
Benzo(g.h.i)perylene (mgL) <0.000060	and the second sec
Benzo(k)fluoranthene (mg/L) <0.000030	The second
Chrysene (mgL) <0.000060	Contraction of the second seco
Dibenzo(a.h)anthracene (mg/L) <0.000015 WATER WELL	the second se
	and the second
Fluoranthene (mgL) <0.000060	
Fluoranthene (mg/L) <0.000060	ТНИО 03
Fluoranthene (mg/L) <0.000060 Fluorene (mg/L) <0.000060	TH19-03
Fluoranthene (mg/L) <0.000060 Fluorene (mg/L) <0.000060	TH19-03
Fluoranthene (mg/L) <0.000060 Fluorene (mg/L) <0.000060	TH19-03
Fluoranthene (mg/L) <0.000060 Fluorene (mg/L) <0.000060	TH19-03
Fluoranthene (mg/L) <0.000060 Fluorene (mg/L) <0.000060	the second
Fluoranthene (mgL) <0.000060 Fluorene (mgL) <0.000060	TH19-03 DUP
Fluoranthene (mg/L) <0.000060 Fluorene (mg/L) <0.000060	TH19-03 DUP Acenaphthene (mg/L) <0.000020
Fluoranthene (mgl-) <0.000060 Fluorene (mgl-) <0.000060 Indeno(1.2.3-cd)pyrene (mgl-) <0.000060 2-Methylnaphthalene (mgl-) <0.000060 Naphthalene (mgl-) <0.00015 Phenanthrene (mgl-) <0.000030 B[a]P TPE (mgl-) <0.00030 TH19-07 TH19-04	TH19-03 DUP Acenaphthene (mg/L) <0.000020
Fluoranthene (mgl.) <0.000060 Fluorene (mgl.) <0.000060	TH19-03 DUP Acenaphthene (mg/L) <0.000020
Fluoranthene (mgl-) <0.000060 Fluorene (mgl-) <0.000060	TH19-03 DUP Acenaphthene (mg/L) <0.000020
Fluoranthene (mgl-) <0.000060 Fluorene (mgl-) <0.000060	TH19-03 DUP Acenaphthene (mg/L) <0.000020
Fluoranthene (mgl-) <0.000060 Fluorene (mgl-) <0.000060	TH19-03 DUP Acenaphthene (mg/L) <0.000020
Fluoranthene (mgl-) <0.000060 Fluorene (mgl-) <0.000060	TH19-03 DUP Acenaphthene (mg/L) <0.000020
Fluoranthene (mgl.) <0.000060 Fluorene (mgl.) <0.000060	TH19-03 DUP Acenaphthene (mg/L) <0.000020
Fluoranthene (mg/L) <0.000060	TH19-03 DUP Acenaphthene (mg/L) <0.000020
Fluoranthene (mgL) <0.000060	TH19-03 DUP Acenaphthene (mg/L) <0.000020
Fluoranthene (mg/L) <0.000060	TH19-03 DUP Acenaphthene (mg/L) <0.000020
Fluoranthene (mg/L) <0.00060	TH19-03 DUP Acenaphthene (mg/L) <0.000020
Fluoranthene (mgl) <0.000060	TH19-03 DUP Acenaphthene (mg/L) <0.000020
Fluoranthene (mg/L) <0.000060	TH19-03 DUP Acenaphthene (mg/L) <0.000020
Fluoranthene (mgl) <0.000060	TH19-03 DUP Acenaphthene (mg/L) <0.000020
Fluoranthene (mpl) <0.000060	TH19-03 DUP Acenaphthene (mgL) <0.000020
Fluoranthene (mpL) <0.000060	TH19-03 DUP Acenaphthene (mgL) <0.000020
Fluoranthene (mpl) <0.000060	TH19-03 DUP Acenaphthene (mgL) <0.00020
Fluoranthene (mgl) <0.000060	TH19-03 DUP Acenaphthene (mgl.) <0.00020
Fluoranthene (mpL) <0.000060	TH19-03 DUP Acenaphthene (mgL) <0.000020
Fluoranthene (mpt) Fluorene (mpt) <0.000060	TH19-03 DUP Acenaphthene (mgL) <0.000020
Fluoranthene (msl) <0.000060	TH19-03 DUP Acenaphthene (mgL) <0.000020
Fluoranthene (mpL) 40.00060 Fluoranthene (mpL) 40.00060 2.Methylnaphthalene (mpL) 40.000050 Naphthalene (mpL) 40.000030 B[a]P TPE (mpL) 40.00030 TH19-05 TH19-06 Pyrene (mpL) 40.000030 TH19-07 TH19-06 Acenaphthene (mpL) 40.000020 Acenaphthene (mpL) 40.000020 Acenaphthene (mpL) 40.000020 Acenaphthylene (mpL) 40.000020 Anthracene (mpL) 40.000020 Anthracene (mpL) 40.000020 Anthracene (mpL) 40.000020 Benzo(a)hithracene (mpL) 40.000020 Benzo(a)hithracene (mpL) 40.000020 Benzo(b)-jjjjuoranthene (mpL) 40.000020 Benzo(b)-jjjuoranthene (mpL) 40.000020 Dibenzo(a,h)anthracene (mpL) 40.000020 Fluorene (mpL) <td>TH19-03 DUP Acenaphthene (mgL) <0.00020</td> <0.00020	TH19-03 DUP Acenaphthene (mgL) <0.00020
Fluoranthene (mp1) <0.000060 Fluoranthene (mp1) <0.000060	TH19-04 DUP Acenaphthene (mgL) <0.000020
Fluoranthene Impli 0 C0.000060 Pluorene Impli 0 C0.000060 2-Methylnaphthalene Impli 0 C0.000060 Naphthalene Impli 0 C0.000060 Naphthalene Impli 0 C0.000060 BialP TPE Impli 0 C0.000030 BialP TPE Impli 0 C0.000020 TH19-07 TH19-07 Acenaphthene Impli 0 C0.000020 Anthracene Impli 0 C0.000020 Acenaphthylene Impli 0 C0.000020 Acenaphthylene Impli 0 C0.000020 Anthracene Impli 0 C0.000020 Benzo(a)anthracene Impli 0 C0.000020 Benzo(a).hjanthracene Impli 0 C0.000020 Benzo(a).hjanthracene Impli 0 C0.000020 Benzo(bi-jifluoranthene Impli 0 C0.000020 Benzo(k)/ipurshen Impli 0 C0.000020 Benzo(k)/ipurshen Impli 0 C0.000020 Benzo(k)/ipurshen Impl 0 C0.000020	TH19-04 DUP Acenaphthene (mgL) <0.000020
Fluoranthene (mp1) <0.000060 Fluoranthene (mp1) <0.000060	TH19-04 DUP Acenaphthene (mgL) <0.000020
Fluoranthene Image CO.000060 Pident C.0.000060 Co.000060 2-Methylnaphthalene Imad C.0.000060 Naphthalene Imad C.0.000030 BlajP TPE Imad C.0.00030 TH19-07 TH19-07 TH19-07 TH19-07 TH19-07 TH19-07 TH19-08 Device TH19-09 TH19-07 TH19-07 TH19-07 TH19-07 TH19-06 Device TH19-07 Device	TH19-04 DUP Acenaphthene (mgL) <0.000020
Fluoranthene (mp1) <0.000060 Privarene (mp1) <0.000060	TH19-04 DUP Acenaphthene (mgL) <0.000020

0

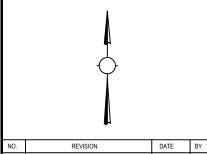
50

Meters

110		111		
TH19-01				
thene	(mg/L)	<0.000020		
hylene	(mg/L)	<0.000020		
ene	(mg/L)	< 0.000010		
hracene	(mg/L)	<0.000010		
byrene	(mg/L)	< 0.0000050		
oranthene	(mg/L)	<0.000010		
perylene	(mg/L)	< 0.000020		
ranthene	(mg/L)	<0.000010		
ene	(mg/L)	< 0.000020		
nthracene	(mg/L)	<0.0000050		
hene	(mg/L)	< 0.000020		
ne	(mg/L)	<0.000020		
cd)pyrene	(mg/L)	<0.000010		
hthalene	(mg/L)	<0.000020		
llene	(mg/L)	<0.000050		
nrene	(mg/L)	<0.000050		
1e	(mg/L)	<0.000010		
PE	(mg/L)	<0.000030		
		The second		

.

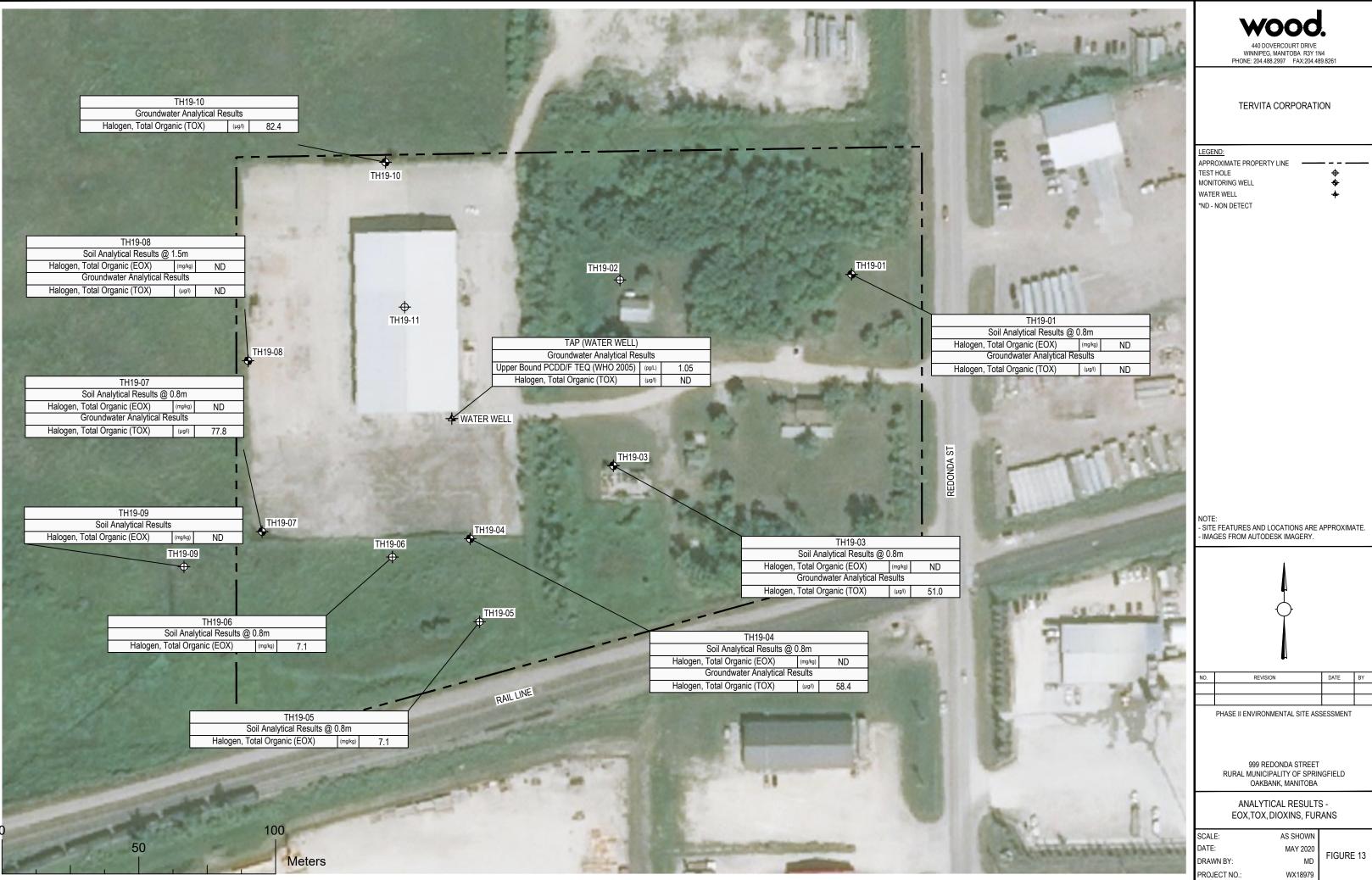
STRUCTURE REALTER


an part of

TERVITA CORPORATION

LEGEND: APPROXIMATE PROPERTY LINE TEST HOLE • MONITORING WELL • WATER WELL + BELOW CRITERIA ABOVE CRITERIA

NOTE: - SITE FEATURES AND LOCATIONS ARE APPROXIMATE. - IMAGES FROM AUTODESK IMAGERY.


NO.	REVISION	DATE	BY

PHASE II ENVIRONMENTAL SITE ASSESSMENT

999 REDONDA STREET RURAL MUNICIPALITY OF SPRINGFIELD OAKBANK, MANITOBA

GROUNDWATER ANALYTICAL RESULTS - PAHs

SCALE:	AS SHOWN	
DATE:	MAY 2020	FIGURE 12
DRAWN BY:	MD	FIGURE 12
PROJECT NO.:	WX18979	

¢	
÷	
✦	

NO.	REVISION	DATE	BY

Tables

Table 1: Site and Surrounding Land Use Table 2: Field Observations and Soil Vapour Testing Table 3: Soil Analytical Results – PHCs Table 4: Soil Analytical Results – Metals Table 5: Soil Analytical Results – PAHs Table 6: Soil Analytical Results – VOCs Table 7: Soil Analytical Results – PCBs Table 8: Soil Analytical Results – EOX Table 9: Groundwater Monitoring Well Data Table 10: Groundwater Analytical Results – PHCs Table 11: Groundwater Analytical Results - Metals Table 12: Groundwater Analytical Results - PAHs Table 13: Groundwater Analytical Results - VOCs Table 14: Groundwater Analytical Results - Dioxins and Furans Table 15: Groundwater Analytical Results – TOX

WX18979 | May 2020

TABLE 1: SITE AND SURROUNDING LAND USE

Direction	Land Use	Approx. Distance (m)
Site	House/office, a warehouse building, and two storage sheds	-
North	Commercial storage yard	Adjacent
East	Redonda Street followed by commercial/industrial property	Adjacent/ 30
South	Rail line followed by commercial property	Adjacent/ 30
West	Vacant, undeveloped grassland	Adjacent

Notes:

• m - metres

TABLE 2: FIELD OBSERVATIONS

	Sample						Test Hole					
Sample Depth	Number	TH19-01	TH19-02	TH19-03	TH19-04	TH19-05	TH19-06	TH19-07	TH19-08	TH19-09	TH19-10	TH19-11
	Number	16-Dec-20	16-Dec-20	03-Dec-19	03-Dec-19	16-Dec-20	16-Dec-20	03-Dec-19	03-Dec-19	16-Dec-20	03-Dec-19	20-Dec-19
0.6 - 0.8	1	<5	<5	<5	<5	45	<5	<5	<5	<5	<5	<5
1.4 - 1.5	2	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
2.1 - 2.3	3	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
2.9 - 3.0	4	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
3.7 - 3.8	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
4.4 - 4.6	6	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5

Notes:

• All vapours in parts per million (ppm)

BOLD indicates staining

Sample submitted for analytical chemistry; no exceedances noted

Sample submitted for analytical chemistry; exceedances noted

TABLE 3: SOIL ANALYTICAL RESULTS - PHCs

			Dete	Soil Vapour	Carrie Cire				Concentra	tion (mg/kg)			
Test Hole	Sample ID	Depth (m)	Date (dd-mmm-yy)	Concentration (ppm _v)	Grain Size (%>75 μm)	Benzene	Toluene	Ethylbenzene	Xylenes	PHC Fraction F1	PHC Fraction F2	PHC Fraction F3	PHC Fraction F4
TH19-01	TH19-01 @ 0.8	0.8	16-Dec-19	<5	2.0	< 0.0050	< 0.050	< 0.015	< 0.071	<10	<25	<50	<50
TH19-02	TH19-02 @ 0.8	0.8	16-Dec-19	<5		< 0.0050	< 0.050	< 0.015	< 0.071	<10	<25	<50	<50
TH19-03	TH19-03 @ 0.8	0.8	03-Dec-19	<5		< 0.0050	< 0.050	< 0.015	< 0.071	<10	<25	<50	<50
TH19-04	TH19-04 @ 0.8	0.8	03-Dec-19	<5		< 0.0050	< 0.050	< 0.015	< 0.071	<10	<250	2260	2500
TH19-05	TH19-05 @ 0.8	0.8	16-Dec-19	<5		< 0.0050	< 0.050	< 0.015	< 0.071	<10	<25	<50	<50
TH19-06	TH19-06 @ 0.8	0.8	03-Dec-19	<5		< 0.0050	< 0.050	< 0.015	< 0.071	<10	<25	<50	<50
TH19-07	TH19-07 @ 0.8	0.8	03-Dec-19	<5		< 0.0050	< 0.050	< 0.015	< 0.071	<10	<130	480	500
1019-07	TH19-07 @ 1.5	1.5	03-Dec-19	<5		< 0.0050	< 0.050	< 0.015	< 0.071	<10	<25	<50	<50
TH19-08	TH19-08 @ 0.8	0.8	03-Dec-19	<5		< 0.0050	< 0.050	< 0.015	< 0.071	<10	<25	<50	52
TH19-09	TH19-09 @ 0.8	0.8	16-Dec-19	<5		< 0.0050	< 0.050	< 0.015	< 0.071	<10	<25	<50	<50
TH19-10	TH19-10 @ 0.8	0.8	03-Dec-19	<5		< 0.0050	< 0.050	< 0.015	< 0.071	<10	<25	<50	<50
TH19-11	TH19-11 @ 1.5	1.5	16-Dec-19	<5		< 0.0050	< 0.050	< 0.015	< 0.071	<10	<25	<50	<50
			EQG -	Surface Soil (≤1	.5 m)	2.8	330	430	230	NG	NG	NG	NG
Applicable	e Industrial Soil G	iuidelines -	CWS -	Surface Soil (≤1	l.5 m)	NG	NG	NG	NG	320	260	2500	6600
	CCME ¹		EC	QG - Subsoil (>1.	5)	2.9	13000	6700	1600	NG	NG	NG	NG
			CV	VS - Subsoil (>1.	5)	NG	NG	NG	NG	800	1,000	5000	10000

Notes:

- mg/kg concentration in milligrams per kilogram
- m metres
- ppmv parts per million organic vapour
- PHC Fraction F1 volatile petroleum hydrocarbons ($C_6 C_{10}$), less BTEX
- PHC Fraction F2 extractable petroleum hydrocarbons (C₁₀ C₁₆)
- PHC Fraction F3 extractable petroleum hydrocarbons (C₁₆ C₃₄)
- PHC Fraction F4 extractable petroleum hydrocarbons (C₃₄ C₅₀)
- NM Not Measured

• See laboratory report for detection limits, testing protocols and QA/QC procedures. Laboratory analysis was performed by ALS Canada Ltd.

• CCME EQG Criteria – industrial land use criteria as outlined in the Canadian Council of the Ministers of the Environment (CCME) "Canadian Environmental Quality Guidelines", 1999 (updates to 2019). The benzene concentration is based on one in

one hundred thousand (10 $^{\text{-5}}$) incremental risk of cancer. See Appendix G.

• CCME CWS PHC Criteria - industrial land use criteria as outlined in the Canadian Council of the Ministers of the Environment (CCME) "Canada-Wide Standards for Hydrocarbons in Soil", 2001, revised 2008. See Appendix G.

¹ As per the Contaminated Sites Remediation Act (CSRA) and the standards for reporting established by regulation (CSRR). In this instance the reporting standards are equal to the guidelines and as such are not represented as a separate line.

ND - not detected

NG - no guideline-- - not analyzed

BOLD exceed

exceeds applicable soil guideline

TABLE 4: SOIL ANALYTICAL RESULTS - METALS

Demonstern	11	TH19-01	TH19-03	TH19-04	TH19-05	TH19-06	TH19-07	TH19-07	TH19-08	TH19-09	TH19-10	TH19-11	Assessment
Parameter	Units	@ 0.8M	@ 1.5M	@ 0.8M	@ 0.8M	@ 0.8M	@ 1.5M	Criteria					
Antimony	mg/kg (ppm)	0.31	0.5	1.98	0.43	0.42	<0.10	0.52	0.46	0.52	0.68	0.32	40
Aluminum	mg/kg (ppm)	31500	27200	1400	26400	22900	971	13800	15700	26900	23900	23600	NG
Arsenic	mg/kg (ppm)	9.34	9.15	1.24	8.46	7.24	0.61	9.03	5.52	9.35	5.22	7.04	12
Barium	mg/kg (ppm)	195	196	69.8	193	212	7.36	172	311	199	176	194	2000
Beryllium	mg/kg (ppm)	1.34	1.03	<0.10	1.12	0.89	<0.10	0.66	0.82	1.34	1.04	0.98	8
Cadmium	mg/kg (ppm)	0.164	0.365	0.552	0.497	0.318	0.02	0.286	0.213	0.077	0.441	0.359	22
Calcium	mg/kg (ppm)	7110	63800	147000	15800	65600	200000	74900	98200	9990	66000	58500	NG
Chromium	mg/kg (ppm)	53.3	43.3	7.64	44.7	38.7	2.39	20.9	26.6	48	38.3	41.1	87
Cobalt	mg/kg (ppm)	16	12.3	1.72	13.7	12	1.04	8.22	9.89	15.3	11.7	12.3	300
Copper	mg/kg (ppm)	31.8	29.9	28.9	35.4	27.9	2.83	21.3	23	33.1	34.9	28	91
Iron	mg/kg (ppm)	35600	28100	5160	28300	25500	2390	20900	20100	32800	25000	27600	NG
Lead	mg/kg (ppm)	16	13.2	40.3	21.9	18.7	1.48	10.1	11	16	44.8	12.2	600
Magnesium	mg/kg (ppm)	15600	26900	86100	15000	27800	128000	28300	59300	14200	44500	25700	NG
Manganese	mg/kg (ppm)	848	630	155	743	581	142	580	430	496	748	807	NG
Molybdenum	mg/kg (ppm)	0.32	0.54	1.7	0.55	0.49	0.24	0.8	1.08	0.44	0.42	0.25	40
Nickel	mg/kg (ppm)	48.2	35.4	19.1	38.1	34.6	2.21	24.2	27.4	46.1	32.8	36.6	89
Phosphorus	mg/kg (ppm)	542	610	132	954	537	56	578	398	511	450	516	NG
Potassium	mg/kg (ppm)	5850	4760	370	6480	4060	350	1530	2840	5430	4010	4160	NG
Selenium	mg/kg (ppm)	<0.20	<0.20	<0.20	0.47	0.25	<0.20	<0.20	0.36	<0.20	<0.20	0.21	2.9
Sodium	mg/kg (ppm)	719	148	59	626	279	61	493	344	580	327	397	NG
Silver	mg/kg (ppm)	0.13	0.12	0.1	0.14	0.12	<0.10	0.11	<0.10	0.15	0.12	0.11	40
Thallium	mg/kg (ppm)	0.429	0.3	<0.050	0.34	0.285	<0.050	0.232	0.214	0.405	0.258	0.33	3.6
Tin	mg/kg (ppm)	<2.0	<2.0	2.7	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	2.1	<2.0	300
Vanadium	mg/kg (ppm)	86	78.1	9.55	72.8	65.6	5.14	40	43.9	76.9	59.2	66.7	130
Uranium	mg/kg (ppm)	3.54	0.999	0.263	1.61	1.3	0.236	1.86	1.26	1.79	0.79	2.62	300
Zinc	mg/kg (ppm)	113	80	335	123	90.3	6	60.1	72.5	84.1	142	80.5	450

Notes:

< - less than the method detection limit

BOLD exceeds applicable soil guideline

NG - not applicable/no guideline criteria established.

 \cdot mg/kg - concentration in milligrams per kilogram equivlanet to μ g/g - micro gram per gram

1 As per the Contaminated Sites Remediation Act (CSRA) and the standards for reporting established by regulation (CSRR). Criteria are

based on CCME standards unless otherwise noted

See laboratory report for detection limits, testing protocols and QA/QC procedures.

See laboratory report for detection limits, testing protocols and QA/QC procedures. Laboratory analysis was performed by

ALS Laboratory in Winnipeg.

TABLE 5: SOIL ANALYTICAL RESULTS - PAHs

BOLD exceeds applicable soil guideline

Deveryor	Units	Detection Limit	TH19-01	TH19-03	TH19-04	TH19-05	TH19-06	TH19-07	TH19-07	TH19-08	TH19-09	TH19-10	TH19-11 @	Assessment
Parameter	Units	Detection Limit	@ 0.8M	@ 0.8M	@ 0.8M	@ 0.8M	@ 0.8M	@ 0.8M	@ 1.5M	@ 0.8M	@ 0.8M	@ 0.8M	1.5M	Criteria
Acenaphthene	mg/kg (ppm)	0.005	< 0.0050	< 0.0050	< 0.0050	0.0077	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	96
Acenaphthylene	mg/kg (ppm)	0.005	< 0.0050	< 0.0050	< 0.0050	0.11	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.17
Anthracene	mg/kg (ppm)	0.004	< 0.0040	< 0.0040	0.0041	0.0984	0.0098	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	32
Benzo(a)anthracene	mg/kg (ppm)	0.01	< 0.010	< 0.010	<0.10	0.506	0.03	<0.010	< 0.010	<0.010	<0.010	< 0.010	<0.010	10
Benzo(a)pyrene	mg/kg (ppm)	0.01	< 0.010	< 0.010	<0.10	0.376	0.022	<0.010	< 0.010	<0.010	<0.010	< 0.010	<0.010	72
Benzo[b+j]fluoranthene	mg/kg (ppm)	0.01	< 0.010	< 0.010	0.12	0.81	0.038	0.015	< 0.010	<0.010	<0.010	< 0.010	<0.010	10
Benzo(g,h,i)perylene	mg/kg (ppm)	0.01	< 0.010	< 0.010	0.13	0.302	0.021	<0.010	< 0.010	<0.010	<0.010	< 0.010	<0.010	9.6
Benzo(k)fluoranthene	mg/kg (ppm)	0.01	< 0.010	< 0.010	<0.10	0.307	0.016	<0.010	< 0.010	<0.010	<0.010	< 0.010	<0.010	10
Chrysene	mg/kg (ppm)	0.01	< 0.010	< 0.010	0.3	0.646	0.041	0.049	< 0.010	<0.010	<0.010	< 0.010	<0.010	9.6
Dibenzo(a,h)anthracene	mg/kg (ppm)	0.005	< 0.0050	< 0.0050	< 0.050	0.0993	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	10
Fluoranthene	mg/kg (ppm)	0.01	< 0.010	< 0.010	0.032	0.66	0.058	<0.010	< 0.010	<0.010	<0.010	<0.010	<0.010	180
Fluorene	mg/kg (ppm)	0.01	< 0.010	< 0.010	<0.010	<0.010	<0.010	<0.010	< 0.010	<0.010	<0.010	< 0.010	<0.010	69
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.01	< 0.010	< 0.010	<0.10	0.322	0.021	<0.010	< 0.010	<0.010	<0.010	< 0.010	<0.010	10
2-Methylnaphthalene	mg/kg (ppm)	0.01	< 0.010	< 0.010	0.021	0.015	<0.010	<0.010	< 0.010	<0.010	<0.010	< 0.010	<0.010	85
Naphthalene	mg/kg (ppm)	0.01	< 0.010	< 0.010	0.014	0.015	<0.010	<0.010	< 0.010	<0.010	<0.010	< 0.010	<0.010	22
Phenanthrene	mg/kg (ppm)	0.01	<0.010	<0.010	0.02	0.071	0.032	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	50
Pyrene	mg/kg (ppm)	0.01	<0.010	<0.010	0.091	0.85	0.057	0.018	<0.010	<0.010	<0.010	<0.010	<0.010	100
B[a]P Total Potency Equivalent	mg/kg (ppm)	0.02	<0.020	<0.020	0.106	0.68	0.035	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	5.3

Notes:

< - less than the method detection limit

NG - not applicable/no guideline criteria established.

 \cdot mg/kg - concentration in milligrams per kilogram equivlanet to μ g/g - micro gram per gram

CCME EQG - Industrial land use guidelines as outlined in the Canadian Council of the Ministers of the Environment (CCME) "Canadian Environmental Quality Guidelines", 1999

(updates to 2016). The B[a]P Total Potency Equivalent concentration is based on one in one hundred thousand (10-5) incremental risk of cance.

See laboratory report for detection limits, testing protocols and QA/QC procedures.

See laboratory report for detection limits, testing protocols and QA/QC procedures. Laboratory analysis was performed by ALS Laboratory in Winnipeg.

¹ As per the Contaminated Sites Remediation Act (CSRA) and the standards for reporting established by regulation (CSRR).

TABLE 6: SOIL ANALYTICAL RESULTS - VOCs

Parameter Units 0 0.8M 0 0.8												
Actoox mg/kg (gpm 0.030 0.030 0.030 0.030 0.0300<	Parameter	Units										Assessment
Benere mg/hg (ppm) c0.0050	Acetope	ma/ka (ppm)										Guidelines 28
International mg/hg (gpm) -0.10 -0.10 <td></td> <td>0 0 11 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.9</td>		0 0 11 1										2.9
Intromethane mg/kg (ppm) 40.10 <td></td> <td>NG</td>												NG
Bronnochinomethane mg/kg (ppm) c0050 c00												18
Bronnortham mg/kg (ppm) c0050												18
Brownenshane mg/kg (ppm) c0.050 c0.050 <		0 0 11 1										1.7
Burghemen mg/kg (gpm) 0.0159 0.0059 0.0059 0.0059 0.0059 0.0050 <th< td=""><td></td><td>0 0 11 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.05</td></th<>		0 0 11 1										0.05
ses: Butyberszene mg/kg (ppm) 0.050 0.05												NG
unit mg/kg (ppm) 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.055 0.025 0.050												NG
Gabon disultified mg/kg (ppm) -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.050 <td>,</td> <td></td> <td>NG</td>	,											NG
Garbon Herachloride mg/kg (ppm) 0.050 0.	,											NG
Chorobarene mg/kg (ppm) 0.050												50
Diaromochloromethane mg/kg (ppm) 40.050 -0.050												10
Chionethane mg/kg (ppm) 0.050												13
Chorotem mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050												NG
Chloromethane mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050												50
2-Chorotolusene mg/kg (ppm) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10<												NG
4-Chiorobuene mg/kg (ppm) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.100 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.0000 <0.0000 <0.000												NG
12:Db:Domo-3:-blicoroprane mg/kg (ppm) <0.050												NG
12-Dichoromethane mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050												NG
Discrementane mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050												0.05
12-Dichlorobenzene mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050												0.05 NG
13-Dichlorobenzene mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050		0 0 11 1										NG 10
1.4-Dichlorobenzene mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050												10
Dichlorodifluoromethane mg/kg (ppm) < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0		5 5 11										10
11-dichloroethane mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050												
12-Dichloroethane μg/g (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050												25
1.1-dickloroethene mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050												50
ds-1,2-Dichloroethene mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050												50
trans-1,2-Dichloroethene mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 </td <td></td> <td>50</td>												50
Dickloromethane mg/kg (ppm) 0.14 <0.10 <0.10 <0.10 <0.10 <0.10 0.118 0.18 <0.10 1,2-Dickloropropane mg/kg (ppm) <0.050												50
1.2-Dichloropropane mg/kg (ppm) < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050		2. 2.11 /										50
13-Dichloropropane mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050												50 50
2,2-Dichloropropane mg/kg (ppm) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <td></td>												
1.1-Dichloropropene mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050												NG
cis-1,3-Dichloropropene mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <td></td> <td>NG</td>												NG
trans-1,3-Dichloropropene mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.												NG
Ethyl benzene mg/kg (ppm) <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.015 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010												0.21
Hexachlorobutadiene mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.21</td></th<>												0.21
Hexane mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0	~											6700
2-Hexanone (Methyl butyl ketone) mg/kg (ppm) <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50												0.095
Isopropylbenzene mg/kg (ppm) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10												NG
4-Isopropyltoluene mg/kg (ppm) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.												NG
MEK mg/kg (ppm) <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050												NG
MIBK mg/kg (ppm) <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50												NG
MTBE mg/kg (ppm) <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20 <0.20												88
Styrene mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <												210
1,1,2-Tetrachloroethane mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <td></td> <td>3.2</td>												3.2
1,1,2,2-Tetrachloroethane mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050<	<i>`</i>											50
Tetrachloroethene mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050												0.11
Toluene mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <												NG
1,2,3-Trichlorobenzene mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <td></td> <td>NG</td>												NG
1,2,4-Trichlorobenzene mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <td></td> <td>0.5</td>												0.5
1,1,1-Trichloroethane mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050												10
1,1,2-Trichloroethane mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050												10
Trichloroethene mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050												50
Trichlorofluoromethane mg/kg (ppm) <0.050 <0.050 0.144 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050												50
1,2,3-Trichloropropane mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <td></td> <td>0.92</td>												0.92
1,2,4-Trimethylbenzene mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <td></td> <td>5 5 11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.8</td>		5 5 11										5.8
1,3,5-Trimethylbenzene mg/kg (ppm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050												NG
	· · ·											NG
Winyl Chloride I ma/ka (npm) <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050												NG
	Vinyl Chloride	mg/kg (ppm)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.25
Xylenes (Total) mg/kg (ppm) <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071	Xylenes (Total)	mg/kg (ppm)	<0.071	<0.071	<0.071	<0.071	<0.071	<0.071	<0.071	<0.071	<0.071	1600

Notes:

· mg/kg - concentration in milligrams per kilogram)

< - less than the method detection limit

· NG - No Guideline

See laboratory report for detection limits, testing protocols and QA/QC procedures. Laboratory analysis was performed by ALS Environmental's Laboratory in Winnipeg.
 Guideline - CCME EQG commercial land use guidelines as outlined in the Canadian Council of the Ministers of the Environment (CCME) "Canadian Environmental Quality Guidelines", 1999 (updates to 2018)

BOLD exceeds applicable soil guideline

¹ As per the Contaminated Sites Remediation Act (CSRA) and the standards for reporting established by regulation (CSRR). See Table D-1

TABLE 7: SOIL ANALYTICAL RESULTS - PCBs

Parameter	Units	Detection Limit	TH19-01	TH19-03	TH19-04	TH19-05	TH19-06	TH19-07	TH19-07	TH19-09	Guideline
Parameter	Units	Detection Limit	@ 0.8M	@ 1.5M	@ 0.8M	Guideime					
PCBs - Total	mg/kg (ppm)	0.005	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	33

BOLD exceeds applicable soil guideline

TABLE 8: SOIL ANALYTICAL RESULTS - EXTRACTABLE ORGANIC HALIDES (EOX)

Devementer	Units	TH19-01	TH19-03	TH19-04	TH19-05	TH19-06 @	TH19-07	TH19-07	TH19-09	Guideline
Parameter	Units	@ 0.8M	@ 0.8M	@ 0.8M	@ 0.8M	0.8M	@ 0.8M	@ 1.5M	1019-09	Guideime
Halogen, Total Organic (TOX)	mg/kg	ND	ND	ND	ND	7.1	ND	ND	ND	NG

BOLD exceeds applicable soil guideline

TABLE 9: GROUNDWATER MONITORING WELL DATA

Monitoring Well	Date	Ground Elevation	TOC Elevation	Total Depth	Depth to Water	Depth to Water	Ground Water Elevation	LNAPL Thickness	Well Headspace Vapours	Groundwater Headspace Vapours
	dd-mmm-yy	m	m	m btoc	m btoc	m bgl	m	mm	ppm _v	ppm _v
TH19-01	8-Jan-20	234.811	234.805	4.485	3.837	3.998	230.32	ND	<5	<5
TH19-03	20-Dec-19	235.61	235.604	4.49	1.677	1.837	231.114	ND	<5	<5
TH19-04	20-Dec-19	235.056	235.031	4.236	2.135	2.277	230.795	ND	<5	<5
TH19-07	20-Dec-19	234.706	234.669	3.614	2.222	2.384	231.055	ND	<5	<5
TH19-08	20-Dec-19	234.842	235.344	3.657	1.847	2.09	231.687	ND	<5	<5
TH19-10	20-Dec-19	234.792	234.786	4.476	2.574	2.748	230.31	ND	<5	<5

Notes:

- m meters
- TOC top of casing
- LNAPL light non-aqueous phase liquids
- ORP oxidation/reduction potential
- m btoc meters below top of casing
- m bgl meters below ground level

- mm millimeters
- ppm_v parts per million organic vapour
- --- not measured
- ND not detected
- NS not surveyed
- NC not calculated

TABLE 10: GROUNDWATER ANALYTICAL RESULTS - PHCs

		Well Headspace				Concentrat	ion (mg/L)			
Monitoring Well	Date (dd-mmm-yy)	Vapour Concentration (ppm _v)	Benzene	Toluene	Ethylbenzene	Xylenes	PHC Fraction F1	PHC Fraction F2	PHC Fraction F3	PHC Fraction F4
TH19-01	8-Jan-20	<5	< 0.00050	<0.00050	< 0.00050	<0.00064	<0.10	<0.10	0.38	< 0.25
TH19-03	20-Dec-19	<5	< 0.00050	<0.00050	< 0.00050	< 0.00064	<0.10	<0.10	< 0.25	< 0.25
DUP1 (TH19-03)	20-Dec-19	< >	< 0.00050	0.00070	< 0.00050	<0.00064	<0.10	<0.10	< 0.25	< 0.25
TH19-04	20-Dec-19	<5	< 0.00050	<0.00050	< 0.00050	<0.00064	<0.10	<0.10	1.26	0.66
TH19-07	20-Dec-19	<5	< 0.00050	0.0012	< 0.00050	<0.00064	<0.10	< 0.10	0.98	0.83
TH19-08	20-Dec-19	<5	< 0.00050	<0.00050	< 0.00050	<0.00064	<0.10	< 0.50	57.2	74
TH19-10	20-Dec-19	<5	< 0.00050	< 0.00050	< 0.00050	< 0.00064	<0.10	<0.10	< 0.25	< 0.25
Applicable Industr	ial Groundwater potable) ¹	Guidelines (non-	19	240	150	74	9.9	3.1	NG	NG
Tap (Water Well)	8-Jan-20	<5	< 0.00050	<0.00050	< 0.00050	<0.00064	<0.10	<0.10	< 0.25	< 0.25
	ater Guidelines ([.] Tap (Water Well)	for comparison to)	0.005	0.06	0.073	0.09	NG	NG	NG	NG

Notes:

- mg/L concentration in milligrams per liter
- ppm_v parts per million organic vapour
- PHC Fraction F1 volatile petroleum hydrocarbons (C₆ C₁₀), less BTEX
- PHC Fraction F2 extractable petroleum hydrocarbons (C₁₀ C₁₆)
- PHC Fraction F3 extractable petroleum hydrocarbons (C₁₆ C₃₄)
- PHC Fraction F4 extractable petroleum hydrocarbons (C₃₄ C₅₀)
- < less than the analytical detection limit
- NG no guideline
- See laboratory report for detection limits, testing protocols and QA/QC procedures. Laboratory analysis was performed by ALS Canada Ltd.

¹ As per the Contaminated Sites Remediation Act (CSRA) and the standards for reporting established by regulation (CSRR) . The assessment guidelines are based on Health Canada Guidelines for Canadian Drinking Water Quality and Alberta Environment and Parks Tier 2 Groundwater Remediation Guidelines (2019), as outlined in table D-1. See Appendix D.

BOLD exceed

exceeds the referenced guidelines

TABLE 11: GROUNDWATER ANALYTICAL RESULTS - METALS

Parameter	TH19-01	TH19-03	DUP1 (TH19-03)	TH19-04	TH19-07	TH19-08	TH19-10	Assesment Criteria (non-potable)	Tap (Water Well)	Potable Criteria (Water Well)
Antimony	0.00026	< 0.010	0.00051	< 0.0010	< 0.0010	< 0.0010	0.0016	NG	< 0.00010	NG
Aluminum	0.102	395	0.34	8.42	28.2	10.9	0.302	NG	< 0.0030	NG
Arsenic	0.00093	0.289	0.00109	0.0086	0.0246	0.0076	0.0011	NG	0.00017	NG
Barium	0.0315	6.79	0.0436	0.198	0.398	0.187	0.05	NG	0.0181	1
Beryllium	< 0.00010	0.021	<0.00010	< 0.0010	0.0017	< 0.0010	< 0.0010	NG	< 0.00010	NG
Cadmium	0.000196	0.0136	0.000133	0.000337	0.00117	0.000406	0.0014	NG	0.0000117	0.005
Calcium	514	9510	342	361	859	469	415	NG	42.9	NG
Chromium	0.00078	0.822	0.00203	0.0163	0.0598	0.0228	0.0015	NG	< 0.00010	0.05
Cobalt	0.00552	0.36	0.00053	0.0228	0.0227	0.0172	0.0024	NG	0.00047	NG
Copper	0.00618	0.944	0.00786	0.0318	0.0846	0.0414	0.0312	NG	0.0169	1
Iron	0.187	631	0.559	12.6	58.6	16.6	0.76	NG	2.26	0.3
Lead	0.000404	0.409	0.0011	0.0184	0.0406	0.0286	0.0207	NG	0.00279	0.01
Magnesium	407	5210	363	282	551	307	314	NG	46	NG
Manganese	3.56	28.9	0.1	4.1	2.31	2.38	1.17	NG	0.0552	0.05
Molybdenum	0.00339	0.0094	0.00538	0.00371	0.00379	0.00558	0.00296	NG	0.000607	NG
Nickel	0.0208	1.02	0.0116	0.0409	0.0811	0.0401	0.0302	NG	0.00103	NG
Phosphorus	0.091	30.6	0.098	0.33	1.86	0.35	< 0.30	NG	< 0.030	NG
Potassium	11.4	96.2	7.24	7.21	10.8	7.63	7.85	NG	3.7	NG
Selenium	0.00214	< 0.0050	0.00918	< 0.00050	0.00078	< 0.00050	< 0.00050	NG	< 0.000050	NG
Sodium	291	602	169	188	260	229	259	NG	25.7	NG
Silver	0.000019	0.0046	0.000023	0.00012	0.00035	0.00018	< 0.00010	NG	< 0.000010	NG
Thallium	0.00002	0.0087	0.000028	0.00016	0.00062	0.0002	< 0.00010	NG	< 0.000010	NG
Tin	0.00841	< 0.010	0.00166	< 0.0010	0.0017	0.0016	0.0031	NG	< 0.00010	NG
Vanadium	0.00158	1.2	0.00191	0.0271	0.0946	0.0365	< 0.0050	NG	< 0.00050	NG
Uranium	0.11	0.168	0.145	0.0398	0.0977	0.0618	0.0969	NG	0.00103	0.02
Zinc	0.0217	1.7	0.0187	0.167	0.247	0.162	0.522	NG	0.211	5

Notes:

< - less than the method detection limit

NG - not applicable/no guideline criteria established.

mg/l - concentration in milligrams per litre

See laboratory report for detection limits, testing protocols and QA/QC procedures.

See laboratory report for detection limits, testing protocols and QA/QC procedures. Laboratory analysis was performed by ALS Laboratory in Winnipeg.

1 As per the Contaminated Sites Remediation Act (CSRA) and the standards for reporting established by regulation (CSRR). The assessment guidelines are based on Alberta Environment and Parks Tier 2

BOLD exceeds the referenced guidelines

Groundwater Remediation Guidelines (2019), as outlined in table D-1. See Appendix D.

2 Potable Comparison Criteria based on Health Canada Guidelines for Canadian Drinking Water Quality (2019)

TABLE 12 : GROUNDWATER ANALYTICAL RESULTS - PAHs

Parameter	Units	Detection Limit	TH19-01	TH19-03	DUP1 (TH19-03)	TH19-04	TH19-07	TH19-08	TH19-10	Assessment Criteria ¹	Tap (Water Well)	Potable Criteria ² (Water Well)
Acenaphthene	mg/kg (ppm)	0.005	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000060	<0.000020	NG	<0.000020	NG
Acenaphthylene	mg/kg (ppm)	0.005	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000060	<0.000020	NG	<0.000020	NG
Anthracene	mg/kg (ppm)	0.004	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000030	<0.000010	0.32	<0.000010	NG
Benzo(a)anthracene	mg/kg (ppm)	0.01	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000030	<0.000010	NG	<0.000010	NG
Benzo(a)pyrene	mg/kg (ppm)	0.01	<0.000050	<0.000050	<0.000050	0.0000084	0.0000066	<0.000015	<0.000050	0.0066	< 0.0000050	0.00004
Benzo[b+j]fluoranthene	mg/kg (ppm)	0.01	<0.000010	<0.000010	<0.000010	0.000014	<0.000010	<0.000030	<0.000010	NG	<0.000010	NG
Benzo(g,h,i)perylene	mg/kg (ppm)	0.01	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000060	<0.000020	NG	<0.000020	NG
Benzo(k)fluoranthene	mg/kg (ppm)	0.01	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000030	<0.000010	NG	<0.000010	NG
Chrysene	mg/kg (ppm)	0.01	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000060	<0.000020	NG	<0.000020	NG
Dibenzo(a,h)anthracene	mg/kg (ppm)	0.005	<0.000050	<0.000050	<0.000050	<0.0000050	<0.0000050	<0.000015	<0.000050	10	< 0.0000050	NG
Fluoranthene	mg/kg (ppm)	0.01	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000060	<0.000020	0.86	<0.000020	NG
Fluorene	mg/kg (ppm)	0.01	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000060	<0.000020	NG	<0.000020	NG
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.01	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000060	<0.000010	NG	<0.000010	NG
2-Methylnaphthalene	mg/kg (ppm)	0.01	<0.000020	<0.000020	<0.000020	<0.000020	<0.000020	<0.000060	<0.000020	NG	<0.000020	NG
Naphthalene	mg/kg (ppm)	0.01	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.00015	<0.000050	NG	<0.000050	NG
Phenanthrene	mg/kg (ppm)	0.01	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.00015	<0.000050	NG	<0.000050	NG
Pyrene	mg/kg (ppm)	0.01	<0.000010	<0.000010	<0.000010	0.000018	0.000022	<0.000030	<0.000010	NG	<0.000010	NG
B[a]P Total Potency Equivalent	mg/kg (ppm)	0.02	<0.000030	<0.000030	<0.000030	<0.000030	<0.000030	<0.000030	<0.000030	NG	<0.000030	0.00004

Notes:

< - less than the method detection limit

NG – not applicable/no guideline criteria established.

• mg/kg - concentration in milligrams per kilogram equivlanet to μ g/g - micro gram per gram

• CCME EQG – commercial land use guidelines as outlined in the Canadian Council of the Ministers of the Environment (CCME) "Canadian Environmental Quality Guidelines", 1999 (updates to 2016). The B[a]P Total Potency Equivalent concentration is based on one in one hundred thousand (10-5) incremental risk of cancer.

exceeds the referenced guidelines

• See laboratory report for detection limits, testing protocols and QA/QC procedures.

See laboratory report for detection limits, testing protocols and QA/QC procedures. Laboratory analysis was performed by ALS Laboratory in Winnipeg. As per the Contaminated sites kemediation Act (CSKA) and the standards for reporting established by regulation (CSKK). The assessment guidelines are based on Alberta Environment and Parks Tier 2 Groundwater kemediation Guidelines (2019), as outline in table D-1. See Appendix D.

BOLD

2 Potable Comparison Criteria based on Health Canada Guidelines for Canadian Drinking Water Quality (2019)

TABLE 13: GROUNDWATER ANALYTICAL RESULTS - VOCs

Parameter	Units	тн19-01	TH19-03	DUP 1 (TH19-03)	TH19-04	TH19-07	TH19-08	TH19-10	Assessment Criteria ¹	Tap (Water Well)	Potable Criteria ² (Water Well)
Acetone	mg/L	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	NG	< 0.050	NG
Benzene	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	NG	< 0.00050	NG
Bromobenzene	mg/L	< 0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	< 0.0010	NG	< 0.0010	NG
Bromochloromethane	mg/L	< 0.0010	< 0.0010	< 0.0010	<0.0010	<0.0010	<0.0010	< 0.0010	85	<0.0010	NG
Bromodichloromethane	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	<0.00050	< 0.00050	NG	< 0.00050	NG
Bromoform	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	<0.0010	< 0.0010	NG	<0.0010	NG
Bromomethane	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NG	< 0.0010	NG
n-Butylbenzene	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NG	< 0.0010	NG
sec-Butylbenzene tert-Butylbenzene	mg/L	<0.0010 <0.0010	NG NG	<0.0010 <0.0010	NG NG						
	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	<0.0010	< 0.0010	NG	< 0.0010	NG
Carbon disulfide Carbon Tetrachloride	mg/L mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.08	< 0.0050	0.002
Chlorobenzene	mg/L	< 0.00030	< 0.00030	< 0.00030	< 0.00030	< 0.00030	< 0.00030	< 0.00030	2.2	< 0.0010	0.002 NG
Dibromochloromethane	mg/L	<0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	250	< 0.00050	NG
Chloroethane	mg/L	< 0.0010	< 0.00030	< 0.00030	< 0.00030	< 0.00030	< 0.00030	< 0.00030	NG	< 0.0010	NG
Chloroform	mg/L	<0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	3.5	< 0.00050	NG
Chloromethane	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	NG	< 0.0050	NG
2-Chlorotoluene	mg/L	< 0.020	< 0.0000	< 0.020	< 0.020	< 0.020	< 0.020	< 0.0000	NG	< 0.020	NG
4-Chlorotoluene	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	<0.0010	<0.0010	< 0.0010	NG	< 0.0010	NG
1,2-Dibromo-3-chloropropane	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NG	< 0.0010	NG
1,2-Dibromoethane	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NG	< 0.0010	NG
Dibromomethane	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	<0.0010	< 0.0010	NG	< 0.0010	NG
1,2-Dichlorobenzene	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	9.6	< 0.00050	0.005
1,3-Dichlorobenzene	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	9.6	< 0.0010	NG
1,4-Dichlorobenzene	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	<0.0010	< 0.0010	32	< 0.0010	0.005
Dichlorodifluoromethane	mg/L	< 0.0010	< 0.0010	< 0.0010	<0.0010	<0.0010	<0.0010	< 0.0010	4.4	< 0.0010	NG
1,1-dichloroethane	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	44	< 0.00050	NG
1,2-Dichloroethane	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	1.2	< 0.00050	0.005
1,1-dichloroethene	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	4.5	< 0.00050	0.014
cis-1,2-Dichloroethene	mg/L	< 0.0010	< 0.0010	< 0.0010	<0.0010	<0.0010	<0.0010	< 0.0010	NG	< 0.0010	NG
trans-1,2-Dichloroethene	mg/L	< 0.0010	< 0.0010	< 0.0010	<0.0010	<0.0010	<0.0010	< 0.0010	NG	<0.0010	NG
Dichloromethane	mg/L	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	410	< 0.0050	0.05
1,2-Dichloropropane	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	<0.0010	<0.0010	< 0.0010	NG	< 0.0010	NG
1,3-Dichloropropane	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NG	< 0.0010	NG
2,2-Dichloropropane	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NG	< 0.0010	NG
1,1-Dichloropropene	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NG	< 0.0010	NG
cis-1,3-Dichloropropene	mg/L	<0.0010 <0.0010	<0.0010 <0.0010	<0.0010 <0.0010	<0.0010 <0.0010	<0.0010 <0.0010	<0.0020 <0.0010	<0.0010 <0.0010	NG NG	<0.0010 <0.0010	NG NG
trans-1,3-Dichloropropene Ethyl benzene	mg/L mg/L	< 0.0010	< 0.0010	<0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NG	< 0.0010	NG
Hexachlorobutadiene	mg/L	< 0.00030	< 0.00030	< 0.00030	< 0.00030	< 0.00030	< 0.00030	< 0.00030	0.22	< 0.00030	NG
Hexane	mg/L	< 0.0010	< 0.0010	<0.0010	< 0.0010	< 0.0010	<0.0010	<0.0010	0.52	<0.0010	NG
2-Hexanone (Methyl butyl ketone)	mg/L	< 0.020	< 0.0010	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	NG	< 0.020	NG
Isopropylbenzene	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	<0.0010	<0.0010	< 0.0010	NG	< 0.0010	NG
4-Isopropyltoluene	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NG	< 0.0010	NG
MEK	mg/L	< 0.020	<0.020	< 0.020	< 0.020	< 0.020	< 0.020	<0.020	NG	<0.020	NG
МІВК	mg/L	< 0.020	<0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	NG	<0.020	NG
MTBE	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	40	< 0.00050	0.015
Styrene	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0015	< 0.0010	NG
1,1,1,2-Tetrachloroethane	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	NG	< 0.00050	NG
1,1,2,2-Tetrachloroethane	mg/L	<0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	NG	< 0.00050	NG
Tetrachloroethene	mg/L	< 0.00050	<0.00050	<0.00050	< 0.00050	< 0.00050	<0.00050	< 0.00050	1.8	<0.00050	0.01
Toluene	mg/L	<0.00050	<0.00050	0.0007	< 0.00050	0.00115	<0.00050	< 0.00050	NG	< 0.00050	NG
1,2,3-Trichlorobenzene	mg/L	<0.0010	< 0.0010	< 0.0010	<0.0010	<0.0010	<0.0010	< 0.0010	6.9	< 0.0010	NG
1,2,4-Trichlorobenzene	mg/L	<0.0010	< 0.0010	< 0.0010	< 0.0010	<0.0010	<0.0010	< 0.0010	6.1	< 0.0010	NG
1,1,1-Trichloroethane	mg/L	< 0.00050	<0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	NG	< 0.00050	NG
1,1,2-Trichloroethane	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	<0.00050	< 0.00050	NG	< 0.00050	NG
Trichloroethene	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	<0.00050	< 0.00050	2.8	< 0.00050	0.005
Trichlorofluoromethane	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	2.5	< 0.0010	NG
1,2,3-Trichloropropane	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NG	< 0.0010	NG
1,2,4-Trimethylbenzene	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NG	< 0.0010	NG
1,3,5-Trimethylbenzene	mg/L	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NG	< 0.0010	NG
Vinyl Chloride	mg/L	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.12	< 0.00050	0.002
Xylenes (Total)	mg/L	<0.00064	< 0.00064	<0.00064	< 0.00064	< 0.00064	< 0.00064	< 0.00064	NG	<0.00064	NG

Notes:

mg/L - concentration in milligrams per liter

< - less than the method detection limit

NG - No Guideline

See laboratory report for detection limits, testing protocols and QA/QC procedures. Laboratory analysis was performed by ALS Environmental's Laboratory in Winnipeg.

Guideline Refer to Appendix D for critera source As per the Contaminated Sites Remediation Act (CSRA) and the standards for reporting established by regulation (CSRR). The assessment guidelines are based on Alberta Environment and Parks Tier 2

BOLD exceeds the referenced guidelines

Construction of the second state of the s

		Detection	Тар	MOE Assesment
Parameter	Units	Limit	(Water Well)	Guideline ²
2,3,7,8-TCDD	pg/L	0.59	< 0.46	NG
1,2,3,7,8-PeCDD	pg/L	0.33	< 0.26	NG
1,2,3,4,7,8-HxCDD	pg/L	0.42	< 0.34	NG
1,2,3,6,7,8-HxCDD	pg/L	0.42	< 0.34	NG
1,2,3,7,8,9-HxCDD	pg/L	0.42	< 0.34	NG
1,2,3,4,6,7,8-HpCDD	pg/L	0.41	0.73	NG
OCDD	pg/L	0.8	3.11	NG
Total-TCDD	pg/L	0.59	< 0.46	NG
Total TCDD # Homologues	-		0	NG
Total-PeCDD	pg/L	0.33	< 0.26	NG
Total PeCDD # Homologues	-		0	NG
Total-HxCDD	pg/L	0.42	< 0.34	NG
Total HxCDD # Homologues	-		0	NG
Total-HpCDD	pg/L	0.41	< 0.40	NG
Total HpCDD # Homologues	-		0	NG
2,3,7,8-TCDF	pg/L	0.46	< 0.32	NG
1,2,3,7,8-PeCDF	pg/L	0.36	0.34	NG
2,3,4,7,8-PeCDF	pg/L	0.3	< 0.18	NG
1,2,3,4,7,8-HxCDF	pg/L	0.32	< 0.19	NG
1,2,3,6,7,8-HxCDF	pg/L	0.33	< 0.20	NG
1,2,3,7,8,9-HxCDF	pg/L	0.42	0.56	NG
2,3,4,6,7,8-HxCDF	pg/L	0.32	< 0.19	NG
1,2,3,4,6,7,8-HpCDF	pg/L	0.29	< 0.26	NG
1,2,3,4,7,8,9-HpCDF	pg/L	0.32	< 0.31	NG
OCDF	pg/L	0.55	1.19	NG
Total-TCDF	pg/L	0.46	< 0.32	NG
Total TCDF # Homologues	-		0	NG
Total-PeCDF	pg/L	0.36	0.34	NG
Total PeCDF # Homologues	-		1	NG
Total-HxCDF	pg/L	0.42	0.56	NG
Total HxCDF # Homologues	-		1	NG
Total-HpCDF	pg/L	0.32	< 0.31	NG
Total HpCDF # Homologues	-		0	NG
Lower Bound PCDD/F TEQ (WHO 2005)	pg/L		0.0675	NG
Mid Point PCDD/F TEQ (WHO 2005)	pg/L		0.561	NG
Upper Bound PCDD/F TEQ (WHO 2005)	pg/L		1.05	15 ¹

TABLE 14: GROUNDWATER ANALYTICAL RESULTS - Dioxins and Furans

Notes:

< - less than the method detection limit

NG – not applicable/no guideline criteria established.

mg/kg - concentration in milligrams per kilogram equivlanet to µg/g - micro gram per gram

¹ Standards Selected from the Ontario Ministry of Environment's Full Depth Generic Site Conditions Standards in a Potable Groundwater Condition. Table 3. 2011.

TABLE 15: GROUNDWATER ANALYTICAL RESULTS - TOTAL ORGANIC HALIDES (TOX)

Parameter	Units	TH19-01	TH19-03	DUP1 (TH19-03)	TH19-04	TH19-07	TH19-08	TH19-10	Tap (Water Well)	Guideline
Halogen, Total Organic (TOX)	µg/l	ND	51.0	54.6	58.4	77.8	ND	82.4	ND	NG

exceeds applicable soil guideline

Photograph 1: Monitoring well TH19-11 inside building on site.

Photograph 2: Monitoring well TH19-03 in southeast of site .

wood.	Environment & Infrastructure Solutions 440 Dovercourt Drive Winnipeg MB, R3Y 1N4 www.woodplc.com	Phase II Environmental Site Ass 999 Redonda Street RM of Springfield Oakbank, Manitoba	sessment
MADE BY: AC	DATE: Feb. 2019	PROJECT NO.: WX18979	PLATE 1

Photograph 3: Monitoring well TH19-04 on south part of site..

Photograph 4: Monitoring well TH19-07 on southwest part of site.

wood.	Environment & Infrastructure Solutions 440 Dovercourt Drive Winnipeg MB, R3Y 1N4 www.woodplc.com	Phase II Environmental Site 999 Redonda Stro RM of Springfie Oakbank, Manito	eet Id
MADE BY: AC	DATE: Feb. 2019	PROJECT NO.: WX18979	PLATE 2

Photograph 5: Monitoring well TH19-08 on west side of site.

Photograph 6: Monitoring well TH19-10 on northwest side of site.

W	ood.	Environment & Infrastructure Solutions 440 Dovercourt Drive Winnipeg MB, R3Y 1N4 www.woodplc.com	Phase II Environmental Site A 999 Redonda Street RM of Springfield Oakbank, Manitoba	
MADE	BY: AC	DATE: Feb. 2019	PROJECT NO.: WX18979	PLATE 3

999 Redonda Street, Rural Municipality of Springfield

Appendix B

Test Hole Logs

WX18979 | May 2020

PRC	JECT: Phase II	Asse	essment DRILLER: Maple Leaf Drilling Ltd.						TEST HOLE ID: TH19-01						
CLIE	ENT: Tervita Cor	poration											PROJ	ECT No: WX18979	
LOC	ATION: 999 Re	donda St, Oakba	ink,	MB				: 125mm SS	A				ELEV	ATION: Not Surveyed	
SAN	IPLE TYPE	Shelby Tul	ре		No Recove	ery	SPT		Grab Sa	mple			Split-Pe		
BAC	KFILL TYPE	Bentonite			Pea Grave	el	Drill	Cuttings	Grout	,			Slough	<u>گ</u> ٹی Sand	
DEPTH (m)	100 200 ▲ COMBUSTIBL	E VAPOUR (ppmv) 🔺	SOIL SYMBOL	MUSCS		DE	SOII SCRIF			SAMPLE TYPE	SAMPLE NO	SPT (N)	WELL INSTALLATION TH19-01	COMMENTS	DEPTH (m)
WX18979-PHASE I AND II ESA 999 REDONDA TERVITA.GPJ 2000128 11:57 AM (WPG - ENVIROLOG 1)				CI	SILT - Iow plas CLAY - medius - below 2.4m, - below 3.7m, END OF HOLE Notes: - No sloughing - No seepage	m plastic, stic, moist m plastic, occasiona occasiona E AT 4.6m was obse	damp, firm, , soft, tan damp to mo al mica al oxides n BELOW EX erved during rved during	(ISTING GRAD drilling.			1				
SHA - 979	10 Wood Environmer a division of								ED BY: AC WED BY: JH					DMPLETION DEPTH: 4.6 m DMPLETION DATE: December	F 16, 2019
WX1		a di	livision of Wood Canada Limited				Figure No.					Sheet 1 of 1			

PROJ	PROJECT: Phase II Environmental Site Assessment					DRILLER: Maple Leaf Drilling Ltd.				TEST HOLE ID: TH19-02				
CLIEN	IT: Tervita Corpo	oration									PROJ	ECT No: WX18979		
LOCA	TION: 999 Redo	nda St, Oakbank	, MB		DRILL N	METHOD: 125n	nm SSA				ELEV	ATION: Not Surveyed		
SAMP	LE TYPE	Shelby Tube		No Recov	ery	SPT (N)	-	Grab Sample			Split-Pe			
BACK	FILL TYPE	Bentonite		Pea Grav	el	Drill Cuttings	; [Grout		_ []]	Slough	: Sand		
DEPTH (m)	■ POCKET PENETF 100 200 ▲ COMBUSTIBLE V 2000 4000	<u>300 400</u>				SOIL DESCRIPTI	ON		SAMPLE TYPE	SAMPLE NO	SPT (N)	COMMENTS	DEPTH (m)	
- 0			CI	ORGANIC (G CLAY - mediu		ozen Jamp, firm, black, so	ome roots			1				
			ML	SILT - low pla	stic, damp,	soft, tan				2			-1	
2					m plastic, c	damp, firm, light bro	wn, occasio	onal mica		3			- 2	
	CI									4				
			CI							5				
-4										6			-4	
	T		~	Notes: - No sloughing - No seepage - Test hole rer water prior to	g was observ was observ nained ope backfilling.	BELOW EXISTING rved during drilling. ved during drilling. In to 4.6m below gra	ade with no						5	
						a with adger collings	ings and bentonite.							- 6 6
													- - 7 7	
8														
													9	
		Wood Envir	onme	nt & Infrastr	ucture S	iniutione F	LOGGED					OMPLETION DEPTH: 4.6 m	40.0010	
	ood.			f Wood Cana		ted	REVIEWE Figure No.	DRI: JH			CC	OMPLETION DATE: December	16, 2019 et 1 of 1	
<	a division of						ingule NO.					Sne	եւ լ ՕԼ	

PROJECT: Phase II Environmental Site	Assessment	DRILLER: Maple Leaf Drillin		TEST HOLE ID: TH19-03			
CLIENT: Tervita Corporation					PROJECT	No: WX18979	
LOCATION: N5532079 E644909		DRILL METHOD: 125mm S	SA			DN: Not Surveyed	
SAMPLE TYPE Shelby Tube		overy SPT (N)	Grab Sample		Split-Pen	Core	
BACKFILL TYPE Bentonite	Pea Grav	vel Drill Cuttings	Grout		Slough	ै <u>ः</u> Sand	
(E) ■ POCKET PENETROMETER (kPa) 0 <td< td=""><td>MUSCS</td><td>SOIL DESCRIPTION</td><td>SAMPLE TYPE</td><td>SAMPLE NO SPT (N)</td><td>WELL INSTALLATION TH19-03</td><td>COMMENTS</td><td>DEPTH (m)</td></td<>	MUSCS	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE NO SPT (N)	WELL INSTALLATION TH19-03	COMMENTS	DEPTH (m)
	CLAY - high some oxides CH - below 0.7m CLAY - silty, - below 1.9m CI - below 3.0m - below 3.7m END OF HOI Notes: - No sloughin - No seepage	grass, trace sand, frozen plastic, damp, firm, brown to tan mott n, brown, no sand, mica medium plastic, moist, soft, tan, frequ n, some silt, medium plastic, moist, so n, medium plastic, moist, soft, brown, s n, frequent mica LE AT 4.6m BELOW EXISTING GRA ng was observed during drilling. ewas observed during drilling. emained open to 4.6m below grade wi n of water prior to backfilling.	led, trace sand, lent mica ft, dark tan some mica	1 2 3 4 5 6			
≤		LOG	GED BY: AC			ETION DEPTH: 4.6 m	-
wood. Wood Envir		tructure Solutions	EWED BY: JH			ETION DATE: December 3,	, 2019
	ion of Wood Can	Figur	e No.				t 1 of 1

PROJECT: Phase II Environment	al Site Assessment	DRILLER: Maple Leaf Drilli	ng Ltd.	TEST HOLE ID: TH19-04			
CLIENT: Tervita Corporation				PRO	JECT No: WX18979		
LOCATION: 999 Redonda St, Oa	kbank, MB	DRILL METHOD: 125mm S	SSA	ELE	ATION: Not Surveyed		
SAMPLE TYPE Shelby	r Tube No Reco		Grab Sample	Split-F			
BACKFILL TYPE Benton	nite 🔄 Pea Gra	vel Drill Cuttings	Grout	Sloug	h 🔅 Sand		
€ ■ POCKET PENETROMETER (kPa) 100 200 300 400 ▲ COMBUSTIBLE VAPOUR (ppmv) 2000 8000 8000 8000	MUSC	SOIL DESCRIPTION	SAMPLE TYPE SAMPLE NO	SPT (N) WELL INSTALLATION	COMMENTS (Û) HI dag		
	GP GP GP GP CLAY - high CLAY - high CLAY - med - below 2.3m CLAY - med - below 2.3m CLAY - med - below 2.3m CLAY - med - below 2.3m CLAY - high CLAY - high - below 2.3m CLAY - high - below 2.3m CLAY - high - below 2.3m CLAY - high CLAY - high - below 2.3m	L - organic matter, poorly graded, me plastic, damp, firm, brown, some sar ium plastic, moist to wet, soft, light br h, soft to firm with occasional mica h, damp with frequent mica LE AT 4.6m BELOW EXISTING GR/ ng was observed during drilling. e was observed during drilling. e was observed during drilling. e mained open to 4.6m below grade w h of water prior to backfilling.	d, some mica 2 own 3 MDE 6				
wood. Wood	Environment & Infrast a division of Wood Car	ructure Solutions	GED BY: AC IEWED BY: JH re No.		COMPLETION DEPTH: 4.6 m COMPLETION DATE: December 3, 2019 Sheet 1 of 1		

PROJECT: Phase II Environmental	Site Assessment	DRILLER: Maple Leaf Dril	ling Ltd.	TEST HOLE ID: TH19-05		
CLIENT: Tervita Corporation				PRO	JECT No: WX18979	
LOCATION: 999 Redonda St, Oakba	ank, MB	DRILL METHOD: 125mm	SSA	ELE	ATION: Not Surveyed	
SAMPLE TYPE Shelby Tu	ibe 🛛 No Reco	overy SPT (N)	Grab Sample	Split-F	Pen Core	
BACKFILL TYPE Bentonite	Pea Gra	vel Drill Cuttings	Grout	Sloug	h 👫 Sand	
€ ■ POCKET PENETROMETER (kPa) ■ 100 200 300 400 ▲ COMBUSTIBLE VAPOUR (ppmv) ▲ 2000 4000 6000 8000	SOIL SYMBOL MUSCS	SOIL DESCRIPTIO	SAMPLE TYPE	SAMPLE NO SPT (N)	COMMENTS (E) HI dag	
2000 4000 6000 8000 1 1 1 1 1 2 1 1 1 1 3 1 1 1 1 4 1 1 1 1 5 1 1 1 1 6 1 1 1 1 8 1 1 1 1 10 Woodd. Wood Er a d 1	CLAY - medi debris (cinde - below 1.7m - below 2.3m - below 2.3m - below 3.0m - below 3.0m - below 3.0m - no soughir - No soughir - No soughir - No sepaga - Test hole m water prior to	n, damp to moist, soft to firm, tan to n, occasional mica n, occasional oxides LE AT 4.6m BELOW EXISTING GF ng was observed during drilling. e was observed during drilling. emained open to 4.6m below grade	light brown	1 2 3 4 5 6		
Wood. a d	vironment & Infrast ivision of Wood Car	ada Limited	GGED BY: AC VIEWED BY: JH ure No.		COMPLETION DEPTH: 4.6 m COMPLETION DATE: December 16, 2019 Sheet 1 of 1	

PRO.	PROJECT: Phase II Environmental Site Assessment					DRILLER: Maple Leaf Drilling Ltd.					TEST HOLE ID: TH19-06			
CLIEI	NT: Tervita Co	rporation										PROJ	ECT No: WX18979	
LOCA	ATION: 999 Re	edonda St, Oakba	nk, N	ЛB		DRILL	METHOD:	125mm S	SA			ELEV	ATION: Not Surveyed	
SAM	PLE TYPE	Shelby Tub	е		No Recove	ery	SPT (N)	Grab Samp	le		Split-Pe		
BAC	KFILL TYPE	Bentonite			Pea Grave	el	Drill C	uttings	Grout			Slough	ં <u>ૈ</u> Sand	_
DEPTH (m)	100 200	LE VAPOUR (ppmv)	SO	MUSCS			SO DESCR			SAMPLE TYPE	SAMPLE NO	SPT (N)	COMMENTS	DEPTH (m)
- 0 - - - - - - - - - - - - - - - - - -	▲			ML	ORGANIC (GF SILT - clayey, (plastic) and o CLAY - mediu	medium rganic de	plastic, damp, ebris (wood)		an with brown, debri onal gravel	is	1			- - - - - - - - - - - - - - - - - -
2					2									
3	•			СІ	- below 2.3m,	occasior	nal oxides, brov	n and black	mottling		4			
- - - - - 4 -											5			
9 ENVIRO LOG 1) 					Notes: - No sloughing - No seepage - Test hole ren water prior to b	y was obs was obs nained o backfillin	im BELOW EX served during or erved during dr pen to 4.6m be g. led with auger of	Irilling. illing. Iow grade wi	th no accumulation o	of				5
4.GPJ 20/01/28 11:58 AM (WF														- - - - - - - - - - - - - - - - - - -
WX18979 - PHASE I AND IL ESA 999 REDONDA TERVITA GPJ 20/01/28 11:58 AM (WPG - ENVIROL 0 6														
PHASE I AND														
- 626	(aad				nt & Infrastr				GED BY: AC EWED BY: JH				OMPLETION DEPTH: 4.6 m OMPLETION DATE: December 1	6 2010
WX18	vood.	a div	/isio	n of	Wood Cana	ada Lin	nited	Figure						t 1 of 1

PROJ	PROJECT: Phase II Environmental Site Assessment					DRILLER: Maple Leaf Drilling Ltd.					TEST HOLE ID: TH19-07				
CLIEN	IT: Tervita Corp	poration											PROJ	ECT No: WX18979	
		londa St, Oakba		MB			METHOD: 12	5mm SSA						ATION: Not Surveyed	
	LE TYPE	Shelby Tu	be		No Recov	•	SPT (N)		Grab Sa	mple			Split-Pe		
BACK	FILL TYPE	Bentonite			Pea Grave	el	Drill Cuttir	ngs	Grout				Slough	ैःै Sand	
DEPTH (m)	100 200 ▲ COMBUSTIBLE	TROMETER (kPa) ■ 300 400 E VAPOUR (ppmv) ▲ 6000 8000	SOIL SYMBOL	MUSCS		DE	SOIL SCRIPTI	NC		SAMPLE TYPE	SAMPLE NO	SPT (N)	WELL INSTALLATION TH19-07	COMMENTS	DEPTH (m)
				GP CI	CLAY - silty, n CLAY - high p CLAY - high p END OF HOLI Notes: - No sloughing - No sloughing	edium pla lastic, dan E AT 4.6m y was obse	np, firm, brown	ight brown t	o tan		1 2 3 4 5 6				-1
- 10 - 10					nt & Infrastr	ucture S	Solutions		DBY: AC					DMPLETION DEPTH: 4.6 m	<u> </u>
	ood.								ED BY: JH					OMPLETION DATE: December	
s 🗌	a division of W			-			Figure N	0.					She	et 1 of 1	

PROJ	PROJECT: Phase II Environmental Site Assessn CLIENT: Tervita Corporation				DRILLER: Maple Leaf Drilling Ltd.					TES	TEST HOLE ID: TH19-08			
CLIEN	NT: Tervita Co	rporation									PRC	JECT No:	WX18979	
LOCA	TION: 999 Re	donda St, Oakbar	ık, MB			THOD: 125mr					ELE	VATION: I	Not Surveyed	
SAMP	PLE TYPE	Shelby Tub	9	No Recov	-	SPT (N)	-	Grab San	nple	[Split-		Core	
BACK	FILL TYPE	Bentonite		Pea Grave	el 🛛	Drill Cuttings	•	Grout		[Sloug	jh	र्े Sand	
DEPTH (m)	100 200	_E VAPOUR (ppmv) ▲	SOIL SYMBOL MUSCS			SOIL CRIPTION	I		SAMPLE TYPE		WELL INSTALLATION	80-61HI (COMMENTS	DEPTH (m)
- 0 - - - - -			GP	brown	-	ter, poorly graded	, moist, firm,	light		1				
1 			СН	- below 1.6m,	medium plasti	c, moist, soft, light	t brown		_	2				1
				- below 2.3m, mica	damp to moisi	t, firm, high plastic	, brown, frec	quent		3				3
			СІ	CLAY - mediu	m plastic, dan	ıp, soft, light brow	n, frequent n	nica		5				
-4 - - - - - - - - - - - - - - - - - -	•			Notes:	was observed	LOW EXISTING (GRADE			6				-4 - - - - - - - - - - - - - - - - - -
9 - ENVIRO LOG 1)				- Test hole rer accumulation	nained open to	o 4.6m below grad	e with no							6
WX18979 - PHASE I AND ILESA 999 REDONDA TERVITA GPJ 20/01/28 11:58 AM (WPG - ENVIROL 0 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7														7
A TERVITA.GPJ 20/														
LESA 999 REDONDA														9
						I,	OGGED BY	· AC						
- 6265	bood			ent & Infrastr		utions 🛛 🕞	EVIEWED E						N DEPTH: 4.6 m N DATE: Decer	
WX1				a division of Wood Canada Limited			1 –					Sheet 1 of 1		

PR	OJECT: Phase II	Environmental Si	te Asse	essment DRILLER: Maple Leaf Drilling Ltd.					TEST HOLE ID: TH19-09			
CLI	ENT: Tervita Co	rporation								PROJI	ECT No: WX18979	
LOC	CATION: 999 Re	donda St, Oakbar	nk, MB	DF	RILL METHOD: 1	25mm SSA	ł			ELEVA	ATION: Not Surveyed	
SAM	MPLE TYPE	Shelby Tube	e	No Recovery	SPT (N)		Grab Sample			Split-Pe		
BAC	CKFILL TYPE	Bentonite		Pea Gravel	Drill Cutt	ings	Grout			Slough	🔅 Sand	
DEPTH (m)		LE VAPOUR (ppmv) ▲	SOIL SYMBOL MUSCS		SOIL DESCRIP			SAMPLE TYPE	SAMPLE NO	SPT (N)	COMMENTS	DEPTH (m)
_ 0			UIII OL	ORGANIC (GRAS	S) - frozen	1.	,					-
WX18979 - PHASE I AND IL ESA 999 REDONDA TERVITA.GPJ 2010/128 11:58 AM (WPG - ENVIRO LOG 1)			CI	CLAY - medium pl - below 0.8m, dam - below 1.5m, mica - below 1.5m, mica - below 3.0m, som END OF HOLE AT Notes: - No sloughing wa: - Test hole remain water prior to back	astic, damp, firm, blac p to moist, soft to firm a a 5 observed during drill observed during drill observed during drill observed during drill observed during drill observed during drill	, brown with TNG GRADE ing. rg. v grade with	no accumulation of		1			
ASE I AND ILESA 999 REDOI												9
<u> </u>							D BY: AC				MPLETION DEPTH: 3.7 m	Γ
3979	wood.			nt & Infrastruct			/ED BY: JH				MPLETION DEPTH. 3.7 m MPLETION DATE: December 1	6. 2019
NX18		a div	ision o	f Wood Canada	Limited	Figure N						t 1 of 1
	a division											

PROJ	ECT: Phase II	Environmental S	Site As	sessment	DRILLER: N	/laple Leaf Drilli	ing Ltd.			TES	THOLE ID: TH19-10	
CLIENT: Tervita Corporation							PRO	PROJECT No: WX18979				
LOCATION: 999 Redonda St, Oakbank, MB					HOD: 125mm \$				ELE\	ATION: Not Surveyed		
	LE TYPE	Shelby Tul	be	No Recov	-	SPT (N)	Grab Sa	mple		Split-F		
BACK	FILL TYPE	Bentonite		Pea Grav	el 🛛	Drill Cuttings	Grout		[Sloug	n 🔅 Sand	
DEPTH (m)	100 200 ▲ COMBUSTIBL	LE VAPOUR (ppmv) ▲	SOIL SYMBOL	MUSCS		SOIL RIPTION		SAMPLE TYPE	SAMPLE NO	WELL INSTALLATION	COMMENTS	DEPTH (m)
WX18979 - PHASE I AND II ESA 999 REDONDA TERVITA.GPJ 20/01/28 11:58 AM (MPG - ENVIRO LOG 1)				CLAY - trace sand CLAY - trace some oxides, CLAY - silty, r brown to tan - below 2.3m, - below 3.0m, - below 3.7m, END OF HOL Notes: - No sloughing - No seepage - Test hole ret	sand, high plastic some mica nedium plastic, d damp to moist, li damp frequent oxides E AT 4.6m BELC g was observed du	DW EXISTING GR/ luring drilling. .6m below grade w	n with black, to firm, light		1 2 3 4 5 6			-1 -1 -2 -3 -3 -4 -4 -5 -6 -7 -7 -8 -9
WX18979 - F	Wood Environment & Infrastructure Solution a division of Wood Canada Limited				ions REV	LOGGED BY: AC REVIEWED BY: JH Figure No.				COMPLETION DEPTH: 4.6 m COMPLETION DATE: December 3, 2019 Sheet 1 of 1		

PROJ	PROJECT: Phase II Environmental Site Assessment			DRILLER: Maple Leaf Drilling Ltd.			TEST HOLE ID: TH19-11						
CLIEN	CLIENT: Tervita Corporation						PROJECT No: WX18979						
LOCATION: 999 Redonda St, Oakbank, MB			DRILL I	METHOD: 12	5mm SSA	4			ELEV	ATION: Not Surveyed			
SAMF	PLE TYPE	Shelby Tub	е	No Recov	ery	SPT (N)		Grab Sample			Split-Pe		
BACK	FILL TYPE	Bentonite		Pea Grav	el	Drill Cuttin	gs	Grout			Slough	👬 Sand	
DEPTH (m)	100 200	LE VAPOUR (ppmv)	SOIL SYMBOL	COCOM	C	SOIL DESCRIPT	ΓΙΟΝ		SAMPLE TYPE	SAMPLE NO	SPT (N)	COMMENTS	DEPTH (m)
WX18979 - PHASE I ANDII ESA 999 REDONDA TERVITA GPJ 2001/28 11:58 AM (WPG - ENVIRO LOG 1) 0 0 0 0 0 0 0 0 0 0 0 0 0				P CLAY - high p - below 1.5m, - below 2.6m, CLAY - mediu END OF HOL Notes: - No sloughing - No seepage - Test hole rei water prior to	lastic, darr high plasti frequent m m plastic, n m plastic, n E AT 4.6m g was obser nained ope backfillio.	moist, firm, brown BELOW EXISTIP erved during drilling ved during drilling en to 4.6m below	ce gravel k brown, od , frequent r , grade with ngs and ber	nica		1 2 3 4 5 6		MPLETION DEPTH: 4.6 m	- 1 - 1 - 2 - 3 - 4 - 4 - 5 - 6 - 7 - 8 - 9
WX18979	Wood Environment & Infrastructure a division of Wood Canada Lir						INS LOGGED BY: AC REVIEWED BY: JH Figure No.				COMPLETION DATE: December 20, 2019 Sheet 1 of 2		

999 Redonda Street, Rural Municipality of Springfield

Water Wells Records

WX18979 | May 2020

wood.

Well Search

Site - NE16-11-4E1

Quarter sections within 500 m of Site:

NW ¼ 15-11-4E1 SW ¼ 15-11-4E1 SE ¼ 16-11-4E1

Location: NE16-11-4E

Well_PID: 111325

Owner: X-POTENTIAL

Driller: Paul Slusarchuk Well Drilling LTd.

Well Name: RETURN TEST WELL #1

Well Use: TEST WELL

Water Use:

UTMX: 644608.1110

UTMY: 5532407.76

Accuracy XY:

UTMZ:

Accuracy Z:

Date Completed: 1998 May 27

WELL LOG

From To Log (ft.) (ft.) 0 42.0 CLAY 42.0 50.0 TILL 50.0 51.0 LIMESTONE RUBBLE 51.0 65.0 SOFT LIMESTONE

65.0 80.0 SOFT LIMESTONE, LOOSE 80.0 102.0 LIMESTONE RUBBLE

102.0 118.0 LIMESTONE

WELL CONSTRUCTION

From To CasingInside Outside SlotTypeMaterial(ft.)(ft.) TypeDia.(in) Dia.(in) Size(in)GALVANIZED052.5 CASING5.00GALVANIZED52.5118.0 OPEN HOLE4.50CEMENT040.0 CASING GROUTCEMENT40.0118.0 CASING GROUTBENTONITE

Top of Casing: 2.000 ft. above ground

PUMPING TEST

Date:	1998 May 27			
Pumping Rate:	30.000 Imp. gallons/minute			
Water level before p	umping: 30.4 ft. below ground			
Pumping level at end of test: 47.1 ft. below ground				
Test duration:	hours, 10 minutes			
Water temperature:	?? degrees F			

REMARKS

999 REDONDA, S SIDE OF PROPERTY, HOLE ABANDONED

Location: NE16-11-4E

. . .

Well_PID: 111328

Owner: X-POTENTIAL

Driller: Paul Slusarchuk Well Drilling LTd.

Well Name: RETURN TEST WELL #2

Well Use: TEST WELL

Water Use:

UTMX: 644608.1110

UTMY: 5532407.76

Accuracy XY:

UTMZ:

Accuracy Z:

Date Completed: 1998 May 27

WELL LOG

From To Log (ft.) (ft.) 0 36.0 CLAY 36.0 39.0 TILL 39.0 50.0 WEATHERED LIMESTONE

50.0 118.0 LIMESTONE

WELL CONSTRUCTION

From To CasingInside Outside SlotTypeMaterial(ft.) (ft.) TypeDia.(in) Dia.(in) Size(in)GALVANIZED0 52.0 CASING5.00GALVANIZED52.0 118.0 OPEN HOLE4.50BENTONITE0 40.0 CASING GROUTBENTONITE40.0 118.0 CASING GROUTCASING GROUT

Top of Casing: 2.000 ft. above ground

PUMPING TEST

Date:1998 May 27Pumping Rate:10.000 Imp. gallons/minuteWater level before pumping:?? ft. below groundPumping level at end of test:?? ft. below groundTest duration:??? hours, ?? minutesWater temperature:?? degrees F

REMARKS

999 REDONDA, NW OF RETURN TEST WELL #1, ABANDONED

Location: NE16-11-4E

Well_PID: 111327 Owner: X-POTENTIAL Driller: Paul Slusarchuk Well Drilling LTd. Well Name: **RETURN TEST WELL #3** Well Use: TEST WELL Water Use: UTMX: 644608.1110 UTMY: 5532407.76 Accuracy XY: UTMZ: Accuracy Z: Date Completed: 1998 Jun 09

• • •

WELL LOG

 From
 To
 Log

 (ft.)
 (ft.)

 0
 43.0
 CLAY

 43.0
 49.0
 TILL

 49.0
 54.0
 SOFT LIMESTONE

 54.0
 122.0
 LIMESTONE

WELL CONSTRUCTION

From To	Casing	Inside	Outside Slot	Туре	Material
(ft.) (ft.) Ty	rpe Dia	a.(in) Dia	.(in) Size(in)		
0 51.0	CASING	5.00		GALVA	ANIZED
51.0 122.0 OPEN HOLE 4.50					
0 40.0	CASING GR	OUT		BEN	ITONITE
40.0 122.0	CASING C	GROUT			

Top of Casing: 1.000 ft. above ground

PUMPING TEST

Date:	1998 Jun 09			
Pumping Rate:	10.000 Imp. gallons/minute			
Water level before pumping: ?? ft. below ground				
Pumping level at end of test: ?? ft. below ground				
Test duration:	??? hours, ?? minutes			
Water temperature:	?? degrees F			

REMARKS

999 REDONDA, NE OF RETURN TEST WELL #1, HOLE ABANDONED

Location: NE16-11-4E

Well_PID: 111329 X-POTENTIAL Owner: Driller: Paul Slusarchuk Well Drilling LTd. Well Name: **RETURN TEST WELL #4** Well Use: TEST WELL Water Use: UTMX: 644608.1110 UTMY: 5532407.76 Accuracy XY: UTMZ: Accuracy Z: Date Completed: 1998 Jun 09

WELL LOG

From To Log (ft.) (ft.) 0 37.0 CLAY 37.0 45.0 SILTY TILL 45.0 49.0 TILL WITH RUBBLE 49.0 145.0 LIMESTONE

WELL CONSTRUCTION

From To Casing Inside Outside Slot Type Material

(ft.) (ft.) Type	Dia.(in) [Dia.(in) Size(in)	
0 49.0 CASIN	G	5.50	GALVANIZED
49.0 145.0 OPE	N HOLE	4.90	
0 4.0 CASINO	G GROUT		BENTONITE
4.0 40.0 CASIN	IG GROUT		CEMENT

Top of Casing:

PUMPING TEST

Date:1998 Jun 09Pumping Rate:85.000 Imp. gallons/minuteWater level before pumping:31.8 ft. below groundPumping level at end of test:44.0 ft. below groundTest duration:hours, 10 minutesWater temperature:?? degrees F

REMARKS

999 REDONDA, W SIDE OF PROPERTY, CASING LEFT IN HOLE

Location: NE16-11-4E

Well_PID:111330Owner:X-POTENTIALDriller:Paul Slusarchuk Well Drilling LTd.Well Name:RETURN WELL #5Well Use:RECHARGEWater Use:

UTMX: 644608.1110

UTMY: 5532407.76

Accuracy XY:

UTMZ:

Accuracy Z: UNKNOWN

Date Completed: 1998 Jun 10

WELL LOG

From To Log (ft.) (ft.) 0 38.0 CLAY 38.0 45.0 TILL 45.0 49.0 LIMESTONE RUBBLE 49.0 125.0 LIMESTONE

WELL CONSTRUCTION

From To	Casing	Inside	Outside Slot	Туре	Material
(ft.) (ft.) Ty	pe Di	a.(in) Dia	.(in) Size(in)		
0 50.0	CASING	5.00		GALVA	ANIZED
50.0 125.0 OPEN HOLE 4.00					
5.0 35.0	CASING GI	ROUT		CEI	MENT
35.0 45.0	CASING G	ROUT		BE	NTONITE

Top of Casing: 2.000 ft. above ground

PUMPING TEST

Date:	1998 Jun 10
Pumping Rate:	85.000 Imp. gallons/minute
Water level before p	umping: 30.4 ft. below ground

Pumping level at end of test: 31.0 ft. below ground Test duration: 1 hours, 15 minutes

Water temperature: ?? degrees F

REMARKS

999 REDONDA, N OF RETURN TEST WELL #4, PUMP TEST DATA FILE

Location: NE16-11-4E

- Well_PID: 111331
- Owner: X-POTENTIAL
- Driller: Paul Slusarchuk Well Drilling LTd.
- Well Name: RETURN WELL #6
- Well Use: RECHARGE

Water Use:

UTMX: 644608.1110

UTMY: 5532407.76

Accuracy XY:

UTMZ:

Accuracy Z:

Date Completed: 1998 Jul 09

WELL LOG

From To Log (ft.) (ft.) 0 36.0 CLAY 36.0 47.0 TILL AND BOULDERS 47.0 49.0 LIMESTONE RUBBLE49.0 51.0 SOFT LIMESTONE51.0 148.0 LIMESTONE

WELL CONSTRUCTION

From To	Casing	Inside	Outside Slot	Туре	Material
(ft.) (ft.) Ty	pe Dia	a.(in) Dia	.(in) Size(in)		
0 51.0 (CASING	6.50		STEEL	
51.0 148.0 OPEN HOLE 6.50					
0 40.0 0	CASING GR	OUT		CEM	ENT
40.0 51.0 CASING GROUT BENTONITE					NTONITE

Top of Casing: 1.000 ft. above ground

PUMPING TEST

Date:	1998 Jul 28			
Pumping Rate:	330.000 Imp. gallons/minute			
Water level before p	umping: 31.4 ft. below ground			
Pumping level at end of test: 37.4 ft. below ground				
Test duration:	6 hours, minutes			
Water temperature:	?? degrees F			

REMARKS

999 REDONDA, N OF RETURN WELL #5, PUMP TEST DATA FILE

Location: NE16-11-4E

Well_PID: 111332

Owner: X-POTENTIAL

Driller: Paul Slusarchuk Well Drilling LTd.

Well Name: RETURN WELL #7

Well Use: RECHARGE

Water Use:

UTMX: 644608.1110

UTMY: 5532407.76

Accuracy XY:

UTMZ:

Accuracy Z:

Date Completed: 1998 Jul 10

WELL LOG

From To Log

(ft.) (ft.)

- 0 38.0 CLAY
- 38.0 45.0 TILL
- 45.0 48.0 LIMESTONE RUBBLE AND TILL
- 48.0 49.0 LIMESTONE
- 49.0 51.0 SOFT LIMESTONE RUBBLE
- 51.0 148.0 LIMESTONE, MAIN FRACTURES 59-60 FEET, SMALLER FRACTURE

AT 73 FEET

WELL CONSTRUCTION

From To CasingInside Outside SlotTypeMaterial(ft.) (ft.) TypeDia.(in) Dia.(in) Size(in)051.5 CASING6.50STEEL51.5148.0 OPEN HOLE6.30

040.0 CASING GROUTCEMENT40.050.0 CASING GROUTBENTONITE

Top of Casing: 1.502 ft. above ground

PUMPING TEST

Date:1998 Jul 30Pumping Rate:255.000 Imp. gallons/minuteWater level before pumping:30.6 ft. below groundPumping level at end of test:41.0 ft. below groundTest duration:4 hours, minutesWater temperature:?? degrees F

REMARKS

999 REDONDA, NW OF RETURN WELL #5, PUMP TEST DATA FILE

Location: NE16-11-4E

Well_PID: 110162 Owner: **X POTENTIAL** Driller: Paul Slusarchuk Well Drilling LTd. Well Name: **RETURN WELL #8** Well Use: RECHARGE Water Use: Industrial UTMX: 644608.1110 UTMY: 5532407.76 Accuracy XY:

. . .

UTMZ:

Accuracy Z: UNKNOWN Date Completed: 1998 Aug 06

WELL LOG

From To Log (ft.) (ft.) 0 36.0 CLAY 36.0 47.0 TILL 47.0 50.0 LIMESTONE RUBBLE 50.0 148.0 LIMESTONE

WELL CONSTRUCTION

From To	Casing	Inside	Outside Slot	Туре	Material
(ft.) (ft.) Ty	pe Dia	ı.(in) Dia	.(in) Size(in)		
0 51.0 (CASING	7.00		STEEL	
51.0 148.0 OPEN HOLE 6.30					
0 45.0 CASING GROUT CEMENT					ENT
45.0 51.0 CASING GROUT BENTONITE					ITONITE

Top of Casing: 2.000 ft. above ground

PUMPING TEST

Date:1998 Aug 12Pumping Rate:360.000 Imp. gallons/minuteWater level before pumping:33.7 ft. below groundPumping level at end of test:40.2 ft. below groundTest duration:4 hours, minutesWater temperature:?? degrees F

REMARKS

99 REDONDA, FRACTURE START AT 52-56 FT

Location: NE16-11-4E

Well_PID: 77062 Owner: X-POTENTIAL Driller: Paul Slusarchuk Well Drilling LTd. Well Name: SOUTH WELL Well Use: PRODUCTION Water Use: Domestic UTMX: 644608.1110 UTMY: 5532407.76 Accuracy XY: UNKNOWN UTMZ: Accuracy Z: UNKNOWN Date Completed: 1993 Sep 27 WELL LOG

 From
 To
 Log

 (ft.)
 (ft.)
 0
 2.0
 GRAVEL FILL

 2.0
 40.0
 CLAY
 0
 48.0
 SILTY TILL

 48.0
 52.0
 RUBBLE LIMESTONE
 52.0
 119.9
 LIMESTONE

119.9 129.9 CLAY, RUBBLE LIMESTONE AND SOME SAND129.9 145.9 LIMESTONE

WELL CONSTRUCTION

From To CasingInside Outside SlotTypeMaterial(ft.) (ft.) TypeDia.(in) Dia.(in) Size(in)054.5 casing6.50INSERTPVC54.5145.9 open hole6.0000 casing groutCEMENT

Top of Casing: 1.000 ft. above ground

PUMPING TEST

Date:	1993 Sep 27			
Pumping Rate:	182.995 Imp. gallons/minute			
Water level before pumping: 35.7 ft. below ground				
Pumping level at end of test: 37.5 ft. below ground				
Test duration:	21 hours, 30 minutes			
Water temperature:	?? degrees F			

REMARKS

999 REDONDA, PUMPED WITH AIR, WATER RIGHTS FILE, PREVIOUS OWNER-GENERAL SCRAP LTD

Location: NE16-11-4E

Well_PID: 119785

• • •

Owner: UMA ENGINEERING

Driller: Friesen Drillers Ltd.

Well Name:

Well Use: OBSERVATION

Water Use:

UTMX: 644608.1110

UTMY: 5532407.76

Accuracy XY:

UTMZ:

Accuracy Z:

Date Completed: 2001 Jan 22

WELL LOG

From To Log (ft.) (ft.) 0 32.0 CLAY 32.0 44.0 TILL 44.0 53.0 RUBBLE - SOFT LIMESTONE 53.0 65.0 HARD LIMESTONE

WELL CONSTRUCTION

From To Casing Inside Outside Slot Type Material (ft.) (ft.) Type Dia.(in) Dia.(in) Size(in) 0 56.0 CASING 4.50 4.00 INSERT STEEL 56.0 65.0 OPEN HOLE 4.00 40.0 56.0 GRAVEL PACK PEA SIZE GRAVEL 44.0 55.0 PERFORATIONS WELDED 10.0 40.0 CASING GROUT BENTONITE

Top of Casing: 2.000 ft. above ground

PUMPING TEST

Date:2001 Jan 22Pumping Rate:30.000 Imp. gallons/minuteWater level before pumping:32.0 ft. below groundPumping level at end of test:60.0 ft. below groundTest duration:??? hours, ?? minutesWater temperature:?? degrees F

REMARKS

999 REDONDA, SE CORNER OF PROPERTY.

Location: NE16-11-4E

Well_PID: 111323
Owner: X-POTENTIAL
Driller: Paul Slusarchuk Well Drilling LTd.
Well Name: 12 INCH SUPPLY WELL
Well Use: TEST WELL
Water Use: Industrial
UTMX: 644608.1110
UTMY: 5532407.76
Accuracy XY:
UTMZ:
Accuracy Z:
Date Completed: 1998 May 26

WELL LOG

From To Log (ft.) (ft.) 0 45.0 CLAY 45.0 55.0 TILL 55.0 138.0 LIMESTONE

WELL CONSTRUCTION

From To CasingInside Outside SlotTypeMaterial(ft.)(ft.) TypeDia.(in) Dia.(in) Size(in)GALVANIZED056.0 CASING5.00GALVANIZED56.0138.0 OPEN HOLE4.50

Top of Casing: 2.000 ft. above ground

PUMPING TEST

Date:1998 May 26Pumping Rate:80.000 Imp. gallons/minuteWater level before pumping:34.7 ft. below groundPumping level at end of test:35.3 ft. below groundTest duration:1 hours, minutesWater temperature:?? degrees F

REMARKS

999 REDONDA, PULLED CASING ON TEST HOLE & 12 INCH WELL INSTALLED

Location: NE16-11-4E

Well_PID: 111324 Owner: X-POTENTIAL Driller: Paul Slusarchuk Well Drilling LTd. Well Name: **12 INCH SUPPLY WELL** Well Use: PRODUCTION Water Use: Industrial UTMX: 644608.1110 UTMY: 5532407.76 Accuracy XY: UTMZ: Accuracy Z: Date Completed: 1998 Jul 15

WELL LOG

 From To
 Log

 (ft.)
 (ft.)

 0
 45.0
 CLAY

 45.0
 55.0
 TILL

 55.0
 148.0
 LIMESTONE, MAJOR FRACTURE ZONE 59-65 FEET

WELL CONSTRUCTION

From To CasingInside Outside SlotTypeMaterial(ft.)(ft.) TypeDia.(in) Dia.(in) Size(in)58.0 CASING12.00STEEL58.0148.0 OPEN HOLE11.00CEMENTCEMENT

Top of Casing: 2.000 ft. above ground

PUMPING TEST

Date:1998 Jul 20Pumping Rate:641.003 Imp. gallons/minuteWater level before pumping:37.0 ft. below groundPumping level at end of test:50.7 ft. below groundTest duration:24 hours, minutesWater temperature:?? degrees F

REMARKS

999 REDONDA, WATER USED FOR INDUSTRIAL COOLING

Location: NE16-11-4E

Well_PID: 77063
Owner: X-POTENTIAL
Driller: Paul Slusarchuk Well Drilling LTd.
Well Name: NORTH WELL
Well Use: RECHARGE
Water Use: Industrial
UTMX: 644608.1110
UTMY: 5532407.76
Accuracy XY: UNKNOWN
UTMZ:
Accuracy Z: UNKNOWN
Date Completed: 1993 Oct 05

WELL LOG

 From To
 Log

 (ft.)
 (ft.)

 0
 37.0
 CLAY

 37.0
 45.0
 TILL AND RUBBLE LIMESTONE

 45.0
 53.0
 RUBBLE LIMESTONE AND TILL

 53.0
 267.8
 LIMESTONE

WELL CONSTRUCTION

From To	Casing Inside	Outside Slot	Type Material
(ft.) (ft.) Typ	be Dia.(in) Dia.	(in) Size(in)	
0 54.5 ca	asing 6.50	INSERT	BLACK IRON
54.5 267.8	open hole 6.0	0	
0 0 ca	sing grout	(CEMENT

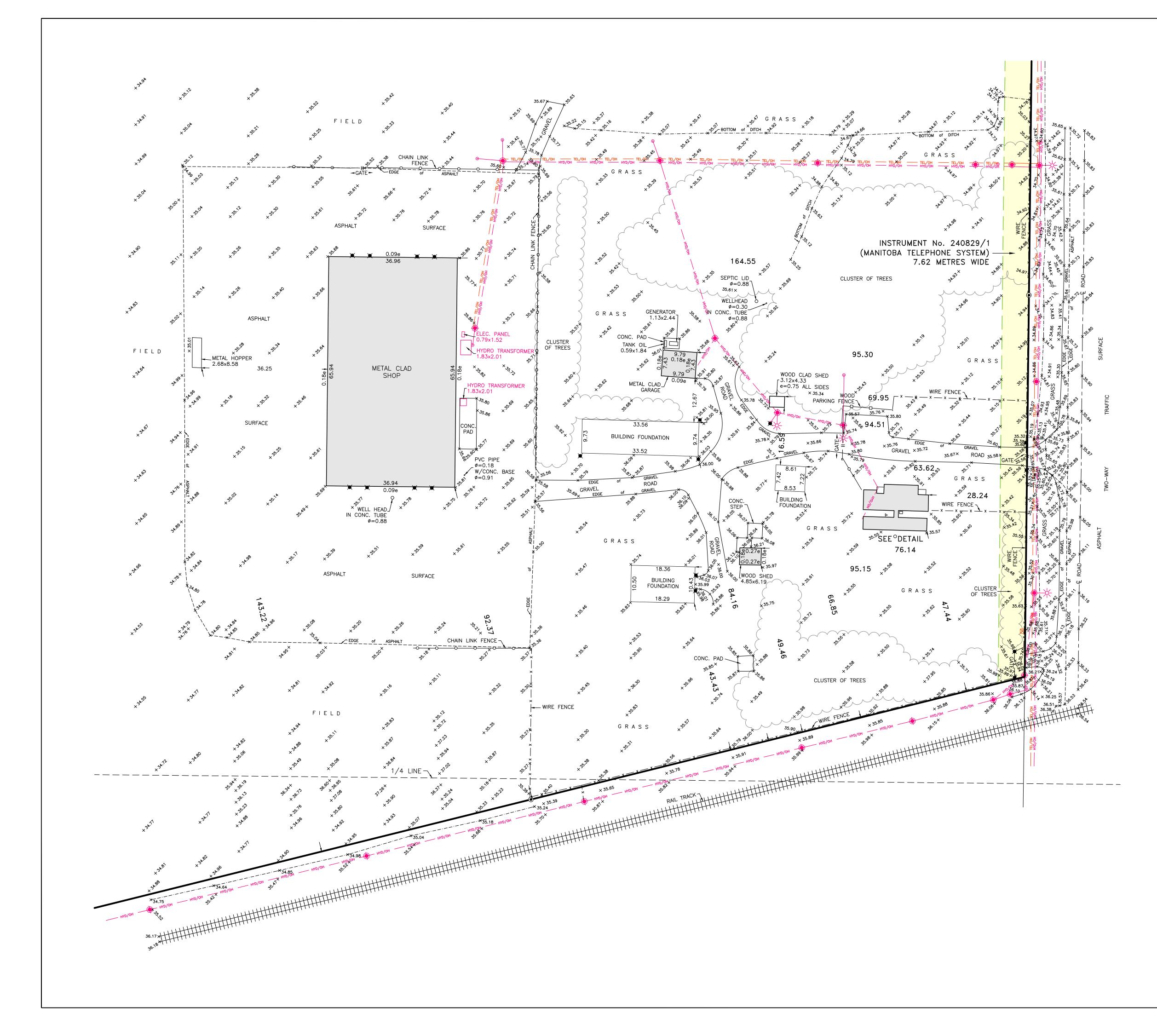
Top of Casing: 1.000 ft. above ground

PUMPING TEST

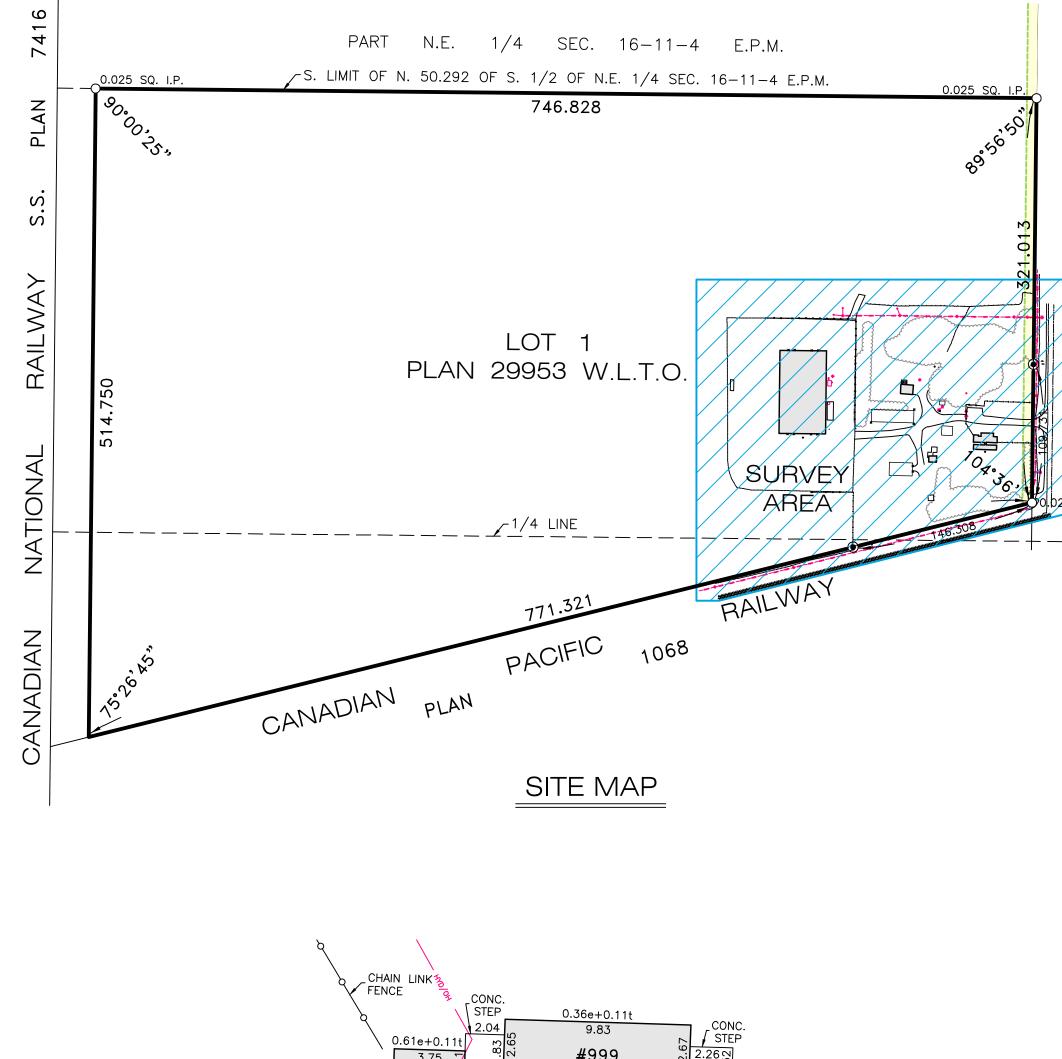
Date:	1993 Oct 05
Pumping Rate:	167.005 Imp. gallons/minute
Water level before p	umping: 34.1 ft. below ground
Pumping level at end	d of test: 45.6 ft. below ground
Test duration:	17 hours, 30 minutes
Water temperature:	?? degrees F

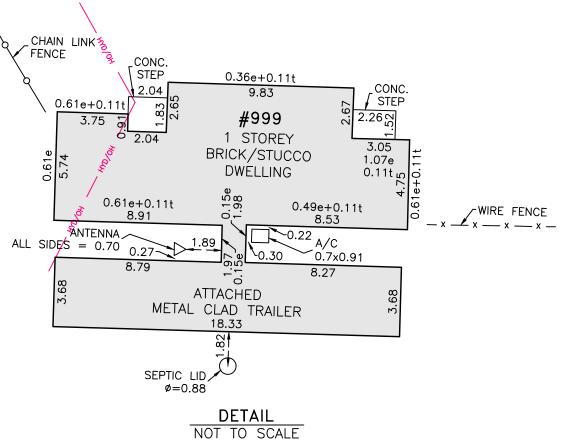
REMARKS

999 REDONDA, PUMPED WITH AIR, WELL ACIDIZED WITH 100 GAL ACID TO



999 Redonda Street, Rural Municipality of Springfield




WX18979 | May 2020

MET

-		1
	R	ノ

= N =ENCUMBRANCES:

6 DONALD STREET WINNIPEG, MANITOBA R3L 0K6

CLIENT: wood.

999 REDONA STREET R.M. OF SPRINGFIELD, MANITOBA

PLAN OF TOPOGRAPHIC SURVEY OF PART OF

E. 1/2 OF SECTION 16, TOWNSHIP 11, RANGE 3 E.P.M.

BEING

LOT 1, PLAN 29953

R.M. OF SPRINGFIELD MANITOBA

SCALE - 1 : 500

0 5 10 15 20 25 30 35 40 45 50 METRES

TITLE INFORMATION:

CERTIFICATE OF TITLE: 2005569/1 W.L.T.O. (SEARCH DATE: NOVEMBER 14, 2019) REGISTERED OWNER: LEGAL DESCRIPTION:

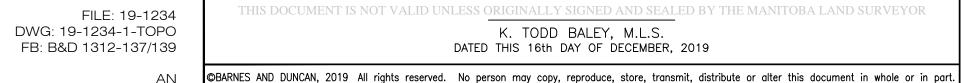
XPOTENTIAL PRODUCTS INC. LOT 1, PLAN 29953 WLTO IN E 1/2 16–11–4 EPM

INSTRUMENTS NUMBERED 240829/1 AND 2606108/1 ARE REGISTERED AGAINST THE ABOVE CERTIFICATE OF TITLE. ENCUMBRANCES NOTED HEREIN ARE PROVIDED FOR INFORMATION ONLY AND HAVE NOT BEEN INVESTIGATED AS TO THEIR INTENT OR EXTENT.

LEGEND			
Survey monuments found on the ground are	described and s	hown thus	0
0.013 diam. iron posts are placed at all po	ints shown thus_		
Property Lines and Dimensions		100.000	
Fences			WOOD
Street and Traffic Signs	-0-		
Power Poles	. 🔶		
Power Poles with Light	• *		
Guy Wire Anchors	Θ		
MTS Boxes			
Guard Posts	X		
Telephone Cables (overhead)			

Hydro Cables (overhead)_____нүр/он ____ нүр/он ____ нүр/он ____ нүр/он ____ нүр/он ____ нүр/он ____

NOTES


All dimensions are in metres and may be converted to feet by multiplying by 3.28084 . Elevations are referred to Geodetic Datum and are indicated thus _ _ _ _ _ _ _ _ _ _ $\times^{5'}$ For Geodetic Elevations add 200.0 to all elevations shown. Elevations are referred to City of Winnipeg Bench Mark No. 10—030, having an elevation of 233.068 metres. Confirmation of existence and exact location of all services must be obtained from the individual utilities before proceeding with construction.

This survey was made between the 16th day of November and the 13th day of December, 2019.

SHOULD INFORMATION ON THE DIGITAL FILE DIFFER FROM THE INFORMATION SHOWN ON THE ORIGINAL HARD COPY, AS PROVIDED BY OUR FIRM, THE LATTER WILL GOVERN.

© COPYRIGHT - BARNES & DUNCAN K. TODD BALEY, M.L.S.

DATED THIS 16th DAY OF DECEMBER, 2019

999 Redonda Street, Rural Municipality of Springfield

WX18979 | May 2020

Assessment Criteria & Regulatory Information

General

Manitoba Sustainable Development has adopted the principals established by the CCME for environmental management and assessment of sites in Manitoba, in addition to the requirements of the Manitoba Contaminated Sites Remediation Act (CSRA) and the Manitoba Contaminated Sites Remediation Regulation (CSRR), M.R. 105/97. The ESA process in Manitoba is outlined in the MSD June 2016 Guideline document "Environmental Site Assessments in Manitoba" which discusses the derivation process to determine the applicable Assessment Guidelines and Reporting Standards for potentially contaminated soil, groundwater, surface water or sediment.

The Assessment Guidelines for the Site are used to determine the significance of risk to human health and the environment associated with the contamination discovered by an ESA and what future action is recommended to address the risk for the site. The Assessment Guidelines can be derived primarily from the Environmental Quality Guidelines (EQGs) published by CCME; however, should the CCME not provide adequate information or guidance, documents from other jurisdictions may be used, provided they are supported as the most scientifically valid Assessment Guidelines for the Site. The Assessment Guidelines may differ from the applicable Reporting Standards.

The following documents produced by CCME were selected as being applicable for assessment of the Site dependent on the contaminants of concern, pathways and receptors:

- CCME 1999 (updates to 2019). Canadian Environmental Quality Guidelines (EQGs).
- CCME 2001 (revised 2008). Canada-Wide Standards (CWS) for Petroleum Hydrocarbons in Soil.
- Health Canada Guidelines for Canadian Drinking Water Quality (GCDWQ) (October 2014).

Based on the conditions present at the Site, the following documents may be used for groundwater assessment:

- Government of Alberta, Alberta Tier 1 and Tier 2 Soil and Groundwater Remediation Guidelines January 2019 (AEP 2019).
- Ontario Ministry of the Environment. (MOE, 2011). Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act.

As determined by CCME (A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines, 2006), a tiered framework can be employed for the screening and assessment of contaminated sites. The framework relies on generic guidelines (Tier 1) and site-specific objectives (Tiers 2 and 3). The generic guidelines are simple numerical values, based on generic scenarios developed for different land uses, and employ conservative assumptions. Generic guidelines help evaluate the relative risk posed by contaminants at a site but may not always be an appropriate indication of actual risk based on-site conditions. Site-specific remediation objectives may be developed, either by modifying (within limits) the generic remediation objectives based on site-specific conditions (Tier 2) or by conducting a human health and/or ecological risk assessment (Tier 3).

The most common assessment guideline approach used in Manitoba is the Tier 2 protocol employing published individual guidelines based on the pathways and/or receptors that could be applicable to the Site. Adequate information must be acquired during the investigation to justify the inclusion or exclusion

WX18979 | May 2020

of each of the exposure pathways. The published guidelines (CCME, Health Canada, AEP, or MOE) provide guidance as to what information is needed to determine if a pathway and/or receptor is applicable to a site or if it can be excluded.

Based on the listed published guideline documents (and their precursors), Wood conducted an evaluation of the applicable exposure pathways, land uses, key receptors and a visual evaluation of the predominant soil texture at the Site. The evaluation was conducted in accordance with CCME 2006 protocols and did not include the modification or recalculation of the formulas used to derive the Assessment Guideline values. The most stringent of the applicable exposure pathway guideline values was employed for assessment of each contaminant in soil, groundwater, and soil vapour.

The Contaminated Site Remediation Regulation (CSRR) establishes criteria (Reporting Standards) for when it is necessary to submit a site report to MSD. The applicable Reporting Standards are derived from the primary, secondary and tertiary standards (or their current equivalent) listed within the CSRR. The reporting standards listed includes the CCME EQG values as the primary values augmented by the MOE, Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, 2011 and the AEP, Tier 1 Soil and Groundwater Remediation Guidelines, 2019. The selection of Reporting Standard is based on the most applicable standard for the parameters and/or applicable Site conditions. Further adjustment of the Reporting Standards may be considered in order to use Tier 2 values for the standards outlined in the CSRR, should sufficient site characterization data be available. As such, the CSRA reporting threshold values may not be equivalent to the exposure pathway Assessment Guidelines.

Land Use

CCME has developed four generic land uses for use in assessment using these guidelines. A generic land use scenario is envisioned for each category based on the normal activities on these lands. The four land uses as defined by CCME are:

Agricultural lands: Agricultural land encompasses a wide range of activities including dairy, livestock and/or crop production. Most farms include a homestead, so the possible presence of an on-site residence (similar to those specified for residential/parkland sites, below) is considered in the default scenario. Agricultural lands are generally accessible by the farmer and his/her family members, including children, which represent the more sensitive human receptor category. Therefore, the critical human receptor in the agricultural land use category is assumed to be a toddler who receives 100% of his/her daily intake of soil and drinking water (groundwater) from the property.

Residential/Parkland: The generic residential property is a typical detached, single-family home with a backyard where children, particularly toddlers, play. The critical receptor assumed on a residential property is a toddler who receives 100% of his/her daily intake of soil, drinking water (groundwater), and air (indoors) from the property. Separate guidelines have been developed for two house foundation construction styles; below grade concrete foundation wall and floor slab (basement) and concrete slab-on-grade foundation. Parks may serve as areas for children's play and other family activities and are therefore also included in the residential land use category.

Commercial: Commercial properties span a wide variety of uses with varying degrees of public access. For purposes of criteria, the generic commercial property is assumed to contain a daycare facility, a sensitive commercial property use that is permitted in many municipal jurisdictions in Canada. It is

assumed that the critical receptor (toddler) spends a substantial portion of the weekdays at a daycare. In particular, it is assumed that the toddler spends 10 hours per day, 5 days per week for 48 weeks per year at the daycare. The toddler thereby receives an amount of his/her daily intake of drinking water (groundwater), and air (indoors) from the commercial property proportional to the number of hours per day, days per week and weeks per year spent at the facility. Intake via direct contact with soil (soil ingestion and dermal contact) is proportional to the days per week and weeks per year spent at the facility. Most commercial buildings are constructed with concrete slab-on-grade foundations.

Industrial: Industrial properties span a wide variety of uses but generally do not permit direct public access and therefore, children are not likely or frequently present. For purposes of deriving criteria, the generic industrial property is assumed to be a site with a building frequented by an adult worker who spends 10 hours per day, 5 days per week for 48 weeks per year on the property. The adult receptor thereby receives an amount of his/her daily intake of drinking water (groundwater), and air (indoors) from the industrial property proportional to the number of hours per day, days per week and weeks per year spent at the facility. Intake via direct contact with soil (soil ingestion and dermal contact) is proportional to the days per week and weeks per year spent at the facility. Most industrial buildings are constructed with concrete slab-on-grade foundations.

The Site is currently zoned as industrial land use, and proposed future land use is industrial.

The Site and surrounding land use is shown on Figure 1 and summarized in Table 1.

Grain Size Designation

CCME guidelines are prescribed for coarse-grained and fine-grained soils for Site assessments. Finegrained soils are defined as having a median grain size of less than or equal to 75 μ m; coarse-grained soils have a median grain size of greater than 75 μ m. Where both fine- and coarse-grained strata are present, the dominant soil particle size is determined by the stratum governing horizontal and vertical migration to a receptor.

Grain size analysis was not completed as on two samples as part of the assessment:

TH19-01 – 0.8 m bgl (clay) – 2 %>75 μm – Fine

Based on the results of the grain size analysis, native soils at the Site are predominantly fine-grained in nature. In general medium to high plastic clay was observed below the surface soil layer and extended to the maximum depth explored at each test hole. Based on the above, the Site is characterized as fine-grained for the purpose of this assessment.

Applicable Exposure Pathways

Human Exposure Pathways

Potential human exposure pathways for commercial/industrial sites include the following: direct contact (soil ingestion, dermal contact, and soil inhalation), indoor vapour inhalation, and the protection of potable groundwater. Applicability of each of these potential exposure pathways is discussed in the following sections.

999 Redonda Street, Rural Municipality of Springfield

Soil Ingestion and Dermal Contact

Currently, portions of the Site are covered by concrete pads and buildings, however the majority of the Site is covered by vegetated areas. As such the direct contact (soil ingestion and dermal contact) pathway is considered applicable to the surface soil horizon.

The direct contact pathway is not considered applicable for the subsoil as the surface soil creates a suitable barrier to avoid contact. It is assumed that any ground disturbance in which soils at depth previously not accessible are brought to ground surface would result in short-term exposure and not be considered applicable to the exposure models in which the CCME guidelines are derived.

Vapour Inhalation

The indoor vapour inhalation pathway would be considered applicable to the Site as there are buildings present on Site.

Protection of Potable Groundwater

CCME considers all water bearing units as a potential potable groundwater resource; however, CCME defines a water bearing unit as having a hydraulic conductivity of greater than 10⁻⁴ cm/s. Furthermore, MSD recognizes the division between contaminated soil and groundwater that is not hydraulically connected to an underlying aquifer. A 5 m thickness of massive unfractured saturated fine-grained material, with a bulk hydraulic conductivity less than 10⁻⁵ cm/s is considered sufficient isolation of groundwater aquifers.

A water well records review was conducted by Wood, using the MSD GW Drill data base. The search determined that groundwater at the Site and within a 500 m radius of the Site are used for domestic purposes. These well records indicate the wells are installed into a depth of approximately 15 m. The water well records information for the Site is included in Appendix C. Based on the stratigraphic information from the water well records, as well as stratigraphic observations at the Site, a substantial thickness (> 6 m) of fine grained soil exists over the underlying aquifer, providing a sufficient confining layer as verified during test hole drilling.

As such, the potable groundwater pathway is not considered to be applicable for the assessment of near surface soil and groundwater Site.

As a water sample was collected from the water well located near the warehouse building, the applicable potable groundwater will be used for the assessment water quality from this well only.

Ecological Exposure Pathways

The potential ecological exposure pathway at the Site is the ecological soil contact and freshwater aquatic life pathways.

Ecological Soil Contact

The ecological soil contact pathway is protective of potential ecological receptor exposure, from terrestrial and subterranean organisms and plant root systems, to soils in the surface soil horizon. Presently, as the majority of the Site is covered by grass and other vegetation, the ecological pathway is applicable.

Ecological receptor direct contact exposure to soils in the subsoil horizon is not considered applicable as the surface soil creates a suitable barrier to avoid subsoil ecological contact from organisms at the ground surface and the subsoil horizon is not typically suitable to support invertebrates or burrowing mammals.

Freshwater Aquatic Life Pathway

CCME states that the freshwater aquatic life pathway may be excluded in cases where there is no surface water body within 10 m of a site classified as fine-grained and 500 m of a site classified as coarse-grain. If a surface water body is within 500 m, it must be assessed to determine whether the freshwater aquatic life pathway is applicable.

The nearest permanent surface water body is the Red River Floodway800 m east of the Site. Based on information provided and the fine-grained soil encountered during the subsurface investigations, the protection of fresh water aquatic life pathway is not considered applicable to the assessment.

Miscellaneous Criteria

As commercial land use criteria are applicable to the Site, soil management limits as produced by CCME for PHCs are applicable to the assessment.

Management Limit

The management limits for PHCs applies for all soils in the surface soil and subsoil horizon.

Off-Site Migration Check

Surrounding properties include residential dwellings, which is a more sensitive land usage. Therefore, off-Site migration check does apply to the Site.

CCME 1991 Interim Criteria

CCME initially developed interim criteria for many potential contaminants in 1991. With the publishing of the Canadian Environmental Quality Guidelines in 1999 (and subsequent updates), CCME adopted a risk based scientific approach to determining soil quality guidelines. While many of the interim criteria have been superseded by updated guidelines, there are still contaminants, including several PAH, VOC and metal parameters, in which new guidelines have not yet been developed for all exposure pathways and, in some cases, the interim criteria still remain as the only guideline for assessment comparison.

Summary of Applicable Assessment Guidelines

Given the current and inferred future industrial land use of the Site, the fine-grained nature of the soil and the applicable exposure pathways as outlined in the previous sections, Wood determined assessment guidelines for each contaminant of concern. The most stringent of the applicable exposure pathway guideline values as produced by CCME was used for each contaminant for both the surface soil and subsoil horizons and groundwater. Where CCME did not provide an assessment guideline, applicable guidelines from other jurisdictions were included, based on applicability to the Site conditions. The limiting exposure pathways are presented in Table D-1 (Appendix D).

Wood has chosen the following applicable risk guideline criteria for the Site:

PHC Soil Assessment Guidelines

Above 1.5 m grade:

Industrial values for fine-grained soil in a non-potable groundwater situation as limited by the:

- Indoor Vapour Inhalation (Slab on Grade) exposure pathway for benzene;
- Ecological Soil Contact exposure pathway for toluene, ethylbenzene, xylenes and PHC fraction F1 F4.

Below 1.5 m grade:

Industrial values for fine-grained soil in a non-potable groundwater situation as limited by the:

- Indoor Vapour Inhalation (Slab on Grade) exposure pathway for benzene, toluene, ethylbenzene, xylenes; and
- Management Limits for PHC fractions F1 F4.

Metals Soil Assessment Guidelines

Industrial values as limited by the:

- Soil Ingestion exposure pathway for arsenic,;
- Ecological Soil Contact exposure for cadmium, chromium, copper, lead, nickel, selenium, thallium, vanadium and zinc; and
- Interim Soil Quality Criterion for antimony, barium, beryllium, hexavalent chromium, cobalt, molybdenum, silver, and tin.

PAH Soil Assessment Guidelines

Industrial values for fine-grained soil in a non-potable groundwater situation as limited by the:

- Soil Contact exposure pathway for anthracene, benzo(a)pyrene, fluoranthene and B[a]P TEP;
- Provisional Soil Quality Guideline for Napthalene; and
- Interim Criteria for benzo(a)anthracene, benzo(b+j)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, indeno(1,23-cd)pyrene, phenanthrene and pyrene.

VOC Soil Assessment Guidelines

Industrial values for fine-grained soil in a non-potable groundwater situation as limited by the:

 Interim Criteria for carbon tetrachloride, chlorobenzene, chloroform, 1,2-dichlorobenzene, 1,3dichlorobenzene, 1,4-dichlorobenzene, 1,1-dichloroethane, 1,2-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, dichloromethane, 1,2-dichloropropane, styrene, 1,1,2,2-tetrachloroethane, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, 1,1,1-trichloroethane, 1,1,2trichloroethane, tetrachloroethene and trichloroethene.

There are no guidelines available for the remaining VOC parameters and therefore the analytical results are compared to the MOE Table 3 criteria.

• • •

999 Redonda Street, Rural Municipality of Springfield

PCB (Total) Soil Assessment Guidelines

Industrial values for fine-grained soil in a non-potable groundwater situation as limited by the soil contact exposure pathway

Groundwater Assessment Guidelines (Monitoring Wells)

Based on the exposure scenario present at the Site, Commercial/Industrial values for fine-grained soil in a non-potable groundwater situation have been used for groundwater comparison. As CCME does not provide applicable groundwater criteria for the conditions at the Site, the AEP 2019 Groundwater Remediation Guideline Values have been used for the purposes of this assessment.

- Inhalation exposure pathway for benzene, methylnaphthalenes, acetone, bromoform, bromomethane, carbon tetrachloride, chlorobenzene, dibromochloromethane, ethylene dibromide, 1,4-dichlorobenzene, 1,1-dichloroethane, 1,2-dichloroethane, 1,1-dichloroethene, cis 1,2dichloroethene, trans 1,2-dichloroethene, dichloromethane, 1,2-dichloropropane, 1,3dichloropropene, hexachlorobutadiene, methyl butyl ketone, MEK, MIBK, MTBE, 1,1,1,2tetrachloroethane, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, 1,1,1-trichloroethane, 1,1,2-Trichloroethane, trichloroethene (TCE), and vinyl chloride; and
- Soil Organisms Direct Contact exposure for toluene, ethylbenzene, xylenes, PHC fraction F1 F2, anthracene, benzo(a)pyrene, and fluoranthene.

Groundwater Assessment Criteria (Water Well Sample)

- The Health Canada GCDWQ Maximum Acceptable Concentrations (MAC) are considered applicable for benzene, and xylenes;
- Dioxin and Furan Toxic Equivalency Factor (TEQ) guideline from MOE 2011 Table 2 (potable) and us compared to the upper bound result.

Fine-Grained Soil Criteria (mg/kg) Criteria - Land Use **Exposure Pathway** PHC Fraction F1 PHC Fraction F2 PHC Fraction F3 Benzene Toluene Ethylbenzene **Xylenes** Soil Ingestion 620,000 110 NA NA RES RES RES Dermal Contact 250 NA 560,000 NA RES RES RES **CCME - Industrial** Indoor Vapour Inhalation (slab on grade) 2.8 13,000 6500 1600 4600 23000 NA Surface Soil (≤ 1.5 m) Off-Site Migration Check NG NA 4300 NG NG NG NA Ecological Soil Contact 310 330 430 230 320 260 2500 Management Limits NG 800 1000 5000 NG NG NG MSD Reporting Standard Surface Soil (≤1.5 m) 2.8 330 430 230 320 260 2,500 MSD Reporting Standards Selected From CCME CCME CCME CCME CCME CCME CCME CCME - Industrial Indoor Vapour Inhalation (slab on grade) 2.9 13,000 6700 1600 4600 23000 NA Subsurface Soil (< 1.5 Management Limits NG NG NG 800 1000 5000 NG Subsurface Soil (> 1.5 m) Applicable Soil Guidelines 2.9 13,000 6,700 1,600 800 1,000 5,000 MSD Reporting Standards Selected From CCME CCME CCME CCME CCME CCME CCME

TABLE D-1: ASSESSMENT CRITERIA - Soil PHCs

• Benzene guidelines were selected based on the 10⁻⁵ incremental risk for human health

• MCC Reporting Standards - Manitoba Conservaiton and Climate Reporting standards as per the Contaminated Sites Remediation Act (CSRA) and the standards for reporting established by regulation (CSRR). Values based on CCME standards unless noted.

- mg/kg milligrams per kilogram
- mg/L milligrams per liter
- PHC Fraction F1 volatile petroleum hydrocarbons ($C_6 C_{10}$), less BTEX
- PHC Fraction F2 extractable petroleum hydrocarbons (C₁₀ C₁₆)
- PHC Fraction F3 extractable petroleum hydrocarbons (C₁₆ C₃₄)
- PHC Fraction F4 extractable petroleum hydrocarbons ($C_{34} C_{50}$)
- NC not calculated
- NG no guideline available
- NA not applicable, calculated value exceeds 1,000,000 mg/kg
- NGR no guideline required Calculated value is greater than solubility or 1,000,000 mg/L.
- RES Residual PHC formation. Calculated value exceeds 30,000 mg/kg and solubility limit for PHC fraction.
- CCME EQG Criteria industrial land use criteria as outlined in the Canadian Council of the Ministers of the Environment (CCME) "Canadian Environmental Quality Guidelines", 1999 (updates to 2019).
- CCME CWS PHC Criteria industriial land use criteria as outlined in the Canadian Council of the Ministers of the Environment (CCME) "Canada-Wide Standards for Hydrocarbons in Soil", 2001, revised 2008.
- AEP Alberta Tier 2 Soil and Groundwater Remediation Guidelines (2019)
- Health Canada. 2019. Guidelines for Canadian Drinking Water Quality Summary Table.

PHC Fraction F4
RES
RES
NA
RES
6600
10000
6,600
CCME
NA
10000
10,000
CCME

TABLE D-1: ASSESSMENT CRITERIA - METALS

Land Use	Exposure Pathway					Soil Guid	elines (mg/kg) (N	/letals)				
Land Use	Exposure Pathway	Aluminum	Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt
	Soil Ingestion ^{HH}	NG	NC	12	10000	NC	NG	NG	49	NG	630	NC
	Indoor Vapour Inhalation ^{HH}	NG	NC	NC	NC	NC	NG	NG	NC	NG	NC	NC
	Off-Site Migration Check HH	NG	NC	NC	96000	NC	NG	NG	NC	NG	NC	NC
Industrial	Ecological Soil Contact EH	NG	NC	26	NC	NC	NG	NG	22	NG	87	NC
	Provisional SQG ^{EH}	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	Interim Criteria ²	NG	40	50	2000	8	NG	NG	20	NG	800	300
	Assessment Criteria ¹	NG	40	12	2000	8	NG	120	22	NG	87	300
Land Use	Exposure Pathway	Copper	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Phosphorus	Potassium	Selenium	Silver
	Soil Ingestion ^{HH}	4000	NG	8200	NG	NG	NC	310	NG	NG	125	NC
	Indoor Vapour Inhalation ^{HH}	NC	NG	NC	NG	NG	NC	10000	NG	NG	NC	NC
	Off-Site Migration Check HH	NC	NG	740	NG	NG	NC	2500	NG	NG	1135	NC
Industrial	Ecological Soil Contact ^{EH}	91	NG	600	NG	NG	NC	89	NG	NG	2.9	NC
	Provisional SQG ^{EH}	NC	NC	NC	NC	NC	NC	NG	NC	NG	NG	NG
	Interim Criteria ²	500	NG	1000	NG	NG	40	500	NG	NG	10	40
	Assessment Criteria ¹	91	NG	600	NG	NG	40	89	NG	NG	2.9	40
Land Use	Exposure Pathway	Sodium	Strontium	Sulfur	Thallium	Tin	Titanium	Tungsten	Uranium	Vanadium	Zinc	Zirconium
	Soil Ingestion ^{HH}	NG	NG	NG	NC	NC	NG	NG	510	NC	140000	NC
	Indoor Vapour Inhalation ^{HH}	NG	NG	NG	NC	NC	NG	NG	NC	NC	NG	NC
	Off-Site Migration Check HH	NG	NG	NG	NC	NC	NG	NG	300	NC	140000	NC
Industrial	Ecological Soil Contact ^{EH}	NG	NG	NG	3.6	NC	NG	NG	2000	130	450	NC
	Provisional SQG ^{EH}	NG	NG	NG	1	NG	NG	NG	NG	NC	NC	NG
	Interim Criteria ²	NG	NG	NG	NG	300	NG	NG	NG	NG	1500	NG
	Assessment Criteria ¹	NG	NG	NG	3.6	300	NG	NG	300	130	450	NG

Notes:

¹ As per the Contaminated Sites Remediation Act (CSRA) and the standards for reporting established by regulation (CSRR). Criteria are based on CCME standards unless otherwise noted

² Interim Criteria based on non-scientific rational. In the case where a scientific defensible value established for an exposure pathway is greater than the interim criteria value, the scientific defensible value will be considered applicable

 \cdot mg/kg - concentration in milligrams per kilogram equivlanet to μ g

· HH = Human Health

· EH = Environmental Health

						Soil Guide	lines (mg/kg) (PAHs	s) ⁴				
Land Use	Exposure Pathway	Acenaphthene	Acenaphthylene	Acridine	Anthracene	Benzo(a) anthracene	Benzo(a)pyrene	Benzo(b+j) fluoranthene	Benzo(b+j+k) fluoranthene	Benzo(g,h,i) perylene	Benzo(k) fluoranthene	Chrysene
	Soil Contact ^{6 HH}	NC	NC	NG	32	NC	72	NC	NG	NC	NC	NC
	Soil and Food Ingestion ^{HH}	NC	NC	NG	NC	NC	NC	NC	NG	NC	NC	NC
Industrial	Provisional SQG ^{EH}	NG	NG	NG	NG	NG	1.4	NG	NG	NG	NG	NG
	Interim Criteria ⁵	NG	NG	NG	NG	10	NG	10	NG	NG	10	NG
	Assessment Criteria ³	96 ⁷	0.17 ⁷	NG	32	10	72	10	NG	9.6 ⁷	10	9.6 ⁷
Land Use	Exposure Pathway	Dibenzo(a,h)anthracen e	Fluoranthene	Fluorene	Indeno(1,2,3-cd) pyrene	2-Methyl naphthalene	Naphthalene	Phenanthrene	Pyrene	B(a)p TEP ¹		
	Soil Contact ^{6 HH}	NC	180	NC	NC	NG	NC	NC	NC	5.3		
	Soil and Food Ingestion ^{HH}	NC	NC	NC	NC	NG	NC	NC	NC	NG		
Industrial	Provisional SQG ^{EH}	NG	NG	NG	NG	NG	22	NG	NG	NG		
	Interim Criteria ⁵	10	NG	NG	10	NG	NG	50	100	NG		
	Assement Criteria ³	10	180	69 ⁷	10	85 ⁷	22	50	100	5.3		

TABLE D-1: ASSESSMENT CRITERIA - INDUSTRIAL - PAHs

Notes:

¹ B(a)P TEP guidelines were selected based on the 10⁻⁵ incremental risk for human health

² Combined values for soil injection and dermal contact for exposure pathway value will be considered applicable.

³ As per the Contaminated Sites Remediation Act (CSRA) and the standards for reporting established by regulation (CSRR). Criteria are based on CCME standards unless otherwise noted

⁴ PAHs, VOC, and metals (with the exception of PCE and TCE) are independent of soil grain size or sample depth.

⁵ Interim Criteria based on non-scientific rational. In the case where a scientific defensible value established for an exposure pathway is greater than the interim criteria value, the scientific defensible value will be considered applicable.

⁶ Direct contact may be a combination and/or lowest of soil injestion, soil dermal contact, and particulate inhalation

⁷ Standards Selected from the Ontario Ministry of Environment's Full Depth Generic Site Conditions Standards in a Non-Potable Groundwater Condition. Table 3. 2011.

• PHC (F1) - volatile petroleum hydrocarbons ($C_6 - C_{10}$)

· PHC (F2) - extractable petroleum hydrocarbons ($C_{10} - C_{16}$)

- PHC (F3) extractable petroleum hydrocarbons ($C_{16} C_{34}$)
- PHC (F4) extractable petroleum hydrocarbons ($C_{34} C_{50}$)
- mg/kg concentration in milligrams per kilogram equivlanet to μ
- \cdot HH = Human Health
- EH = Environmental Health
- **<u>BOLD</u>** selected guideline

Italics – MSD Reporting Standard

- NA not applicable, calculated value exceeds 1,000,000 mg/kg
- · "--" CCME does not evaluate parameter
- NC not calculated
- · NG no guideline available
- RES Residual PHC formation. Calculated value exceeds 30,000 mg/kg and solubility limit for PHC fraction.
- CCME EQG Guideline commercial land use criteria as outlined in the Canadian Council of the Ministers of the Environment (CCME) "Canadian Environmental Quality Guidelines", 1999 (updates to 2018).
- CCME CWS PHC Guideline commercial land use criteria as outlined in the Canadian Council of the Ministers of the Environment (CCME) "Canada-Wide Standards for Hydrocarbons in Soil", 2001, revised 2008.

TABLE D-1: ASSESSMENT CRITERIA - INDUSTRIAL - VOCs

Land Use	Exposure Pathway					Fine Grained Soil Gui	delines (µg/g) (VOCs) ²				
	,	Acetone	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	n-Butylbenzene	sec-Butylbenzene	tert-Butylbenzene	Carbon disulfide
Industrial	Interim Soil Quality Criterion ⁵										
industrial	Assessment Criteria	28 ⁷	NG	18 ⁷	18 ⁷	1.7 ⁷	0.05 ⁷	NG	NG	NG	NG
Land Use	Exposure Pathway	Carbon Tetrachloride	Chlorobenzene	Dibromochloromethane	Chloroethane	Chloroform	Chloromethane	2-Chlorotoluene	4-Chlorotoluene	1,2-Dibromo-3- chloropropane	1,2-Dibromoethane (Ethylene dibromide)
Industrial	Interim Soil Quality Criterion ⁵	50	10	NG		50					
Industrial	Assessment Criteria	50	10	13 ⁷	NG	50	NG	NG	NG	NG	0.05 7
Land Use	Exposure Pathway	Dibromomethane	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Dichlorodifluoromethane	1,1-dichloroethane	1,2-Dichloroethane	1,1-dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene
Industrial	Interim Soil Quality Criterion ⁵		10	10	10		50	50	50	50	50
industriai	Assessment Criteria	NG	10	10	10	25 ⁷	50	50	50	50	50
Land Use	Exposure Pathway	Dichloromethane	1,2-Dichloropropane	1,3-Dichloropropane	2,2-Dichloropropane	1,1-Dichloropropene	cis-1,3-Dichloropropene	trans-1,3-Dichloropropene	Hexachlorobutadiene	Hexane	2-Hexanone (Methyl butyl ketone
Industrial	Interim Soil Quality Criterion ⁵	50	50						NG		
industrial	Assessment Criteria	50	50	NG	NG	NG	0.21 ⁷	0.21 ⁷	0.095 ⁷	NG	NG
Land Use	Exposure Pathway	lsopropylbenzene	4-Isopropyltoluene	MEK	MIBK	MTBE	Styrene	1,1,1,2-Tetrachloroethane	1,1,2,2-Tetrachloroethane	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene
Industrial	Interim Soil Quality Criterion ⁵					NG	50		50	10	10
muustnai	Assessment Criteria	NG	NG	88 ⁷	210 ⁷	3.2 ⁷	50	0.11 ⁷	50	10	10
Land Use	Exposure Pathway	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichlorofluoromethane	1,2,3-Trichloropropane	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Vinyl Chloride			
Industrial	Interim Soil Quality Criterion ⁵	50	50								
maastria	Assessment Criteria	50	50	5.8 ⁷	NG	NG	NG	0.25 ⁷			
Land Use	Exposure Pathway	Tetrachloroethene (PCE)	Trichloroethene (TCE)								
	Direct contact ⁴	NG	100								
	Inhalation of Indoor Air Check	<u>0.5</u>	<u>0.92</u>								
Industrial	Interim Soil Quality Criterion ⁵	50	50								
	Ecological Soil Contact (Provisional SQG)	34	50								
	Assessment Criteria	0.5	0.92	I							

Notes:

¹ Benzene guidelines were selected based on the 10⁻⁵ incremental risk for human health

² Combined values for soil injection and dermal contact for exposure pathway value will be considered applicable.

³ As per the Contaminated Sites Remediation Act (CSRA) and the standards for reporting established by regulation (CSRR). Criteria are based on CCME standards unless otherwise noted ⁴ PAHs, VOC, and metals (with the exception of PCE and TCE) are independent of soil grain size or sample depth.

⁵ Interim Criteria based on non-scientific rational. In the case where a scientific defensible value established for an exposure pathway is greater than the interim criteria value, the scientific defensible value will be considered applicable. ⁶ Direct contact may be a combination and/or lowest of soil ingestion, soil dermal contact, and particulate inhalation

⁷ Standards Selected from the Ontario Ministry of Environment's Full Depth Generic Site Conditions Standards in a Non-Potable Groundwater Condition. Table 3. 2011.

 \cdot mg/kg - concentration in milligrams per kilogram equivlanet to μ g/g - micro gram per gram

HH = Human Health •

• EH = Environmental Health

BOLD Applicable Assessment Guidelines NA - not applicable, calculated value exceeds 1,000,000 mg/kg

---" CCME does not evaluate parameter NC - not calculated

NG - no guideline available

• RES - Residual PHC formation. Calculated value exceeds 30,000 mg/kg and solubility limit for PHC fraction.

• CCME EQG Guideline – commercial land use criteria as outlined in the Canadian Council of the Ministers of the Environment (CCME) "Canadian Environmental Quality Guidelines", 1999 (updates to 2018). CCME CWS PHC Guideline - commercial land use criteria as outlined in the Canadian Council of the Ministers of the Environment (CCME) "Canada-Wide Standards for Hydrocarbons in Soil", 2001, revised 2008.

wood

TABLE D-1: ASSESSMENT CRITERIA - INDUSTRIAL - PHCs

		Fine-G	rained Groune	lwater Criteria (n	ng/L)				
Criteria	Exposure Pathway	Benzene	Toluene	Ethylbenzene	Xylenes	PHC Fraction F1	PHC Fraction F2	PHC Fraction F3	PHC Fraction F4
Health Canada	Drinking Water - MAC	0.005	0.06	0.14	0.09	NG	NG	NG	NG
Health Canada	Drinking Water - AO	NG	0.024	0.0016	0.02	NG	NG	NG	NG
	Potable	0.005	0.024	0.0016	0.02	2.2	1.1	NG	NG
AEP	Vapour Inhalation	19	NG	NG	NG	NG	NG	NG	NG
	Eco-Soil Contact	540	240	150	74	9.9	3.1	NG	NG
Applicable Ind	ustrial Groundwater Guidelines	19	240	150	74	9.9	3.1	NG	NG

TABLE D-1: ASSESSMENT CRITERIA - INDUSTRIAL - Metals

		Fine-G	rained Ground	water Criteria (mg/L)					
Criteria - Land Use	Exposure Pathway	Aluminum	Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron	Cadmium	Calcium
	Potable	NG	0.006	0.01	1	NG	NG	5	0.005	NG
AEP - Industrial	Vapour Inhalation	NG	NG	NG	NG	NG	NG	NG	NG	NG
	Eco-Soil Contact	NG	NG	NG	NG	NG	NG	NG	NG	NG
Assessment	Criteria (non-potable)	NG	NG	NG	NG	NG	NG	NG	NG	NG
Assessmer	nt Criteria (potable)	NG	NG	0.01	1	NG	NG	5	0.005	NG
Criteria - Land Use	Exposure Pathway	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Molybdenum	
	Potable	0.05	NG	1	0.3	0.01	NG	0.05	NG	
AEP - Industrial	Vapour Inhalation	NG	NG	NG	NG	NG	NG	NG	NG	
	Eco-Soil Contact	NG	NG	NG	NG	NG	NG	NG	NG	
Assessment	Criteria (non-potable)	NG	NG	NG	NG	NG	NG	NG	NG	
Assessmen	nt Criteria (potable)	0.05	NG	1	0.3	0.01	NG	0.05	NG	
	Potable	NG	NG	NG	0.02	NG	NG	NG	NG	
AEP - Industrial	Vapour Inhalation	NG	NG	NG	NG	NG	NG	NG	NG	
	Management Limits	NG	NG	NG	NG	NG	NG	NG	NG	
Assessment	Criteria (non-potable)	NG	NG	NG	NG	NG	NG	NG	NG	
Assessmer	nt Criteria (potable)	NG	NG	NG	0.002	NG	NG	NG	NG	
Criteria - Land Use	Exposure Pathway	Thallium	Tin	Titanium	Tungsten	Uranium	Vanadium	Zinc	Zirconium	
	Potable	NG	NG	NG	NG	0.02	NG	5	NG	
AEP - Industrial	Vapour Inhalation	NG	NG	NG	NG	NG	NG	NG	NG	
	Management Limits	NG	NG	NG	NG	NG	NG	NG	NG	
Assessment	Criteria (non-potable)	NG	NG	NG	NG	NG	NG	NG	NG	
Assessmer	nt Criteria (potable)	NG	NG	NG	NG	0.02	NG	5	NG	

BOLDApplicable Assessment Guidelines (non-potable)BOLDApplicable Assessment Guidelines Water Well (potable)

Notes:

• NC - not calculated

• NG - no guideline available

• NGR - no guideline required - Calculated value is greater than solubility or 1,000,000 mg/L.

• RES - Residual PHC formation. Calculated value exceeds 30,000 mg/kg and solubility limit for PHC fraction.

• AEP - Alberta Tier 2 Soil and Groundwater Remediation Guidelines (2019)

[•] mg/L - milligrams per Litre

Land Lies	Exposure Pathway		Fine Grained Groundwater Guidelines (mg/L) (PAHs) ⁴									
Land Use		Acenaphthene	Acenaphthylene	Acridine	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b+j)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	
	Inhalation	NGR	NG	NG	NGR	NG	NG	NG	NG	NG	NG	
Industrial	Eco Soil Contact	NG	NG	NG	0.32	NG	0.0066	NG	NG	NG	NG	
	Assessment Criteria ¹	NG	NG	NG	0.32	NG	0.0066	NG	NG	NG	NG	
Land Use	Exposure Pathway	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene	Quinoline	B(a)p TEP ¹
	Inhalation	NG	NGR	NGR	NG	NG	NG	NGR	NG	NGR	NG	NG
Industrial	Eco Soil Contact	NG	0.86	NG	NG	NG	NG	NG	NG	NG	NG	NG
	Assessment Criteria ¹	NG	0.86	NG	NG	NG	NG	NG	NG	NG	NG	NG

TABLE D-1: ASSESSMENT CRITERIA - INDUSTRIAL - VOCs

	Frank Production					Fine Grained Groundwa	ter Guidelines (mg/L) (VOC	s)			
Land Use	Exposure Pathway	Acetone	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	n-Butylbenzene	sec-Butylbenzene	tert-Butylbenzene	Carbon disulfide
	Inhalation	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG
Industrial	Eco Soil Contact	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG
ſ	Assessment Criteria ¹	NG	NG	NG	85 ²	NG	NG	NG	NG	NG	NG
Land Use	Exposure Pathway	Carbon Tetrachloride	Chlorobenzene	Dibromochloromethane	Chloroethane	Chloroform	Chloromethane	2-Chlorotoluene	4-Chlorotoluene	1,2-Dibromo-3- chloropropane	1,2-Dibromoethane (Ethylene dibromide)
	Inhalation	0.08	2.2	250	NG	3.5	NG	NG	NG	NG	NG
Industrial	Eco Soil Contact	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG
ſ	Assessment Criteria ¹	0.08	2.2	250	NG	3.5	NG	NG	NG	NG	NG
Land Use	Exposure Pathway	Dibromomethane	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Dichlorodifluoromethane	1,1-dichloroethane	1,2-Dichloroethane	1,1-dichloroethene	cis-1,2- Dichloroethene	trans-1,2-Dichloroethene
	Inhalation	NG	NGR	NG	32	NG	44	1.2	4.5	NG	NG
Industrial	Eco Soil Contact	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG
ſ	Assessment Criteria ¹	NG	9.6 ²	9.6 ²	32	4.4 ²	44	1.2	4.5	NG	NG
Land Use	Exposure Pathway	Dichloromethane	1,2-Dichloropropane	1,3-Dichloropropene	2,2-Dichloropropane	1,1-Dichloropropene	cis-1,3-Dichloropropene	trans-1,3- Dichloropropene	Hexachlorobutadiene	Hexane	2-Hexanone (Methyl butyl ketone)
	Inhalation	410	NG	NG	NG	NG	NG	NG	0.22	NG	NG
Industrial	Eco Soil Contact	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG
ſ	Assessment Criteria ¹	410	NG	NG	NG	NG	NG	NG	0.22	0.52 ²	NG
Land Use	Exposure Pathway	Isopropylbenzene	4-Isopropyltoluene	МЕК	МІВК	МТВЕ	Styrene	1,1,1,2- Tetrachloroethane	1,1,2,2-Tetrachloroethane	Tetrachloroethene (PCE)	1,2,3-Trichlorobenzene
	Inhalation	NG	NG	NG	NG	40	NGR	NG	NG	1.8	6.9
Industrial	Eco Soil Contact	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG
	Assessment Criteria ¹	NG	NG	NG	NG	40	0.0015 ²	NG	NG	1.8	6.9
Land Use	Exposure Pathway	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene (TCE)	Trichlorofluoromethane	1,2,3-Trichloropropane	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Vinyl Chloride	
	Inhalation	<u>6.1</u>	NG	NG	2.8	NG	NG	NG	NG	0.12	
Industrial	Eco Soil Contact	NG	NG	NG	73	NG	NG	NG	NG	NG	
Γ	Assessment Criteria ¹	6.1	NG	NG	2.8	2.5 ²	NG	NG	NG	0.12	

Notes:

¹ As per the Contaminated Sites Remediation Act (CSRA) and the standards for reporting established by regulation (CSRR). Criteria are based on AEP 2019 Groundwater Remediation Guidelines unless otherwise noted ² Standards Selected from the Ontario Ministry of Environment's Full Depth Generic Site Conditions Standards in a Non-Potable Groundwater Condition. Table 3. 2011.

mg/L - concentration in milligrams per kilogram equivlanet to μ g/g - micro gram per gram

· BOLD selected guideline

NGR - no guideline required; calculated guideline exceeds solubility limit

wood.

TABLE D-1: ASSESSMENT CRITERIA - INDUSTRIAL - PAHs

NG - no guideline available

999 Redonda Street, Rural Municipality of Springfield

WX18979 | May 2020

Wood Environment & Infrastructure Solutions (Winnipeg) ATTN: KEVIN BEECHINOR 440 Dovercourt Drive Winniped MB R3Y 1G4 Date Received:08-JAN-20Report Date:21-JAN-20 12:06 (MT)Version:FINAL

Client Phone: 204-488-2997

Certificate of Analysis

Lab Work Order #: L2403425 Project P.O. #: NOT SUBMITTED Job Reference: WX18979 999 REDONDA C of C Numbers: Legal Site Desc:

Hua Wo Chemistry Laboratory Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
2403425-1 TH19-01 @ 0.8M							
ampled By: CLIENT on 16-DEC-19							
latrix: SOIL							
Miscellaneous Parameters							
Moisture	28.5		0.10	%		09-JAN-20	R496615
Extractable Organic Halides (EOX)	See Attached		0.10	70		14-JAN-20	R497359
% Particles > 75um (Coarse/Fine)	See Allacheu					14-JAN-20	R497339
% Particles > 75um (Coarse/Fine) % >75um	2.0		1.0	%	16-JAN-20	16-JAN-20	R497329
General Texture Class	Fine		1.0	70	16-JAN-20	16-JAN-20	R497329
Metals in Soil by CRC ICPMS	Fille				10-3411-20	10-3411-20	1497329
Aluminum (Al)	31500		5000	mg/kg	13-JAN-20	13-JAN-20	R496886
Antimony (Sb)	0.31		0.10	mg/kg	13-JAN-20	13-JAN-20	R496886
Arsenic (As)	9.34		0.10	mg/kg	13-JAN-20	13-JAN-20	R496886
Barium (Ba)	195		0.50	mg/kg	13-JAN-20	13-JAN-20	R496886
Beryllium (Be)	1.34		0.00	mg/kg	13-JAN-20	13-JAN-20	R496886
Boron (B)	17.0		5.0	mg/kg	13-JAN-20	13-JAN-20	R496886
Bismuth (Bi)	0.32		0.20	mg/kg	13-JAN-20	13-JAN-20	R496886
Cadmium (Cd)	0.164		0.020	mg/kg	13-JAN-20	13-JAN-20	R496886
Calcium (Ca)	7110		50	mg/kg	13-JAN-20	13-JAN-20	R496886
Chromium (Cr)	53.3		0.50	mg/kg	13-JAN-20	13-JAN-20	R496886
Cobalt (Co)	16.0		0.10	mg/kg	13-JAN-20	13-JAN-20	R496886
Copper (Cu)	31.8		0.50	mg/kg	13-JAN-20	13-JAN-20	R496886
Iron (Fe)	35600		50	mg/kg	13-JAN-20	13-JAN-20	R496886
Lead (Pb)	16.0		0.50	mg/kg	13-JAN-20	13-JAN-20	R496886
Lithium (Li)	36.0		2.0	mg/kg	13-JAN-20	13-JAN-20	R496886
Magnesium (Mg)	15600		2.0	mg/kg	13-JAN-20	13-JAN-20	R496886
Manganese (Mn)	848		1.0	mg/kg	13-JAN-20	13-JAN-20	R496886
Molybdenum (Mo)	0.32		0.10	mg/kg	13-JAN-20	13-JAN-20	R496886
Nickel (Ni)	48.2		0.50	mg/kg	13-JAN-20	13-JAN-20	R496886
Phosphorus (P)	542		50	mg/kg	13-JAN-20	13-JAN-20	R496886
Potassium (K)	5850		100	mg/kg	13-JAN-20	13-JAN-20	R496886
Selenium (Se)	<0.20		0.20	mg/kg	13-JAN-20	13-JAN-20	R496886
Silver (Ag)	0.13		0.20	mg/kg	13-JAN-20	13-JAN-20	R496886
Sodium (Na)	719		50	mg/kg	13-JAN-20	13-JAN-20	R496886
Strontium (Sr)	51.1		0.50	mg/kg	13-JAN-20	13-JAN-20	R496886
Sulfur (S)	<1000		1000	mg/kg	13-JAN-20	13-JAN-20	R496886
Thallium (TI)	0.429		0.050	mg/kg	13-JAN-20	13-JAN-20	R496886
Tin (Sn)	<2.0		2.0	mg/kg	13-JAN-20	13-JAN-20	R496886
Titanium (Ti)	199		2.0 1.0	mg/kg	13-JAN-20	13-JAN-20	R496886
Tungsten (W)	<0.50		0.50	mg/kg	13-JAN-20	13-JAN-20	R496886
Uranium (U)	3.54		0.050	mg/kg	13-JAN-20	13-JAN-20	R496886
Vanadium (V)	86.0		0.030	mg/kg	13-JAN-20	13-JAN-20	R496886
Zinc (Zn)	113		2.0	mg/kg	13-JAN-20	13-JAN-20	R496886
Zirconium (Zr)	7.3		2.0 1.0	mg/kg	13-JAN-20	13-JAN-20	R496886
. ,	1.3		1.0	iiig/kg	10.0414-20	13-0419-20	11490000
Polyaromatic Hydrocarbons (PAHs) 1-Methyl Naphthalene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R496771
2-Methyl Naphthalene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R496771
Acenaphthene	<0.010		0.010	mg/kg	09-JAN-20 09-JAN-20	13-JAN-20	R496771
Acenaphthylene	<0.0050		0.0050	mg/kg	09-JAN-20 09-JAN-20	13-JAN-20	R496771
Acridine					09-JAN-20 09-JAN-20	13-JAN-20 13-JAN-20	
Anthracene	<0.010		0.010	mg/kg	09-JAN-20 09-JAN-20	13-JAN-20 13-JAN-20	R496771
Benzo(a)anthracene	<0.0040		0.0040	mg/kg	09-JAN-20 09-JAN-20		R496771
	<0.010		0.010	mg/kg		13-JAN-20	R496771
Benzo(a)pyrene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R496771
Benzo(b&j)fluoranthene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R496771
Benzo(g,h,i)perylene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R496771

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2403425-1 TH19-01 @ 0.8M							
Sampled By: CLIENT on 16-DEC-19							
Matrix: SOIL							
Polyaromatic Hydrocarbons (PAHs) Benzo(k)fluoranthene	<0.010		0.010	ma/ka	09-JAN-20	13-JAN-20	B4067710
			0.010	mg/kg			R4967719
Chrysene	< 0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Dibenzo(a,h)anthracene	<0.0050		0.0050	mg/kg	09-JAN-20	13-JAN-20	R4967719
Fluoranthene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Fluorene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Indeno(1,2,3-cd)pyrene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Naphthalene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Phenanthrene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Pyrene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Quinoline	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
B(a)P Total Potency Equivalent	<0.020		0.020	mg/kg	09-JAN-20	13-JAN-20	R4967719
IACR (CCME)	<0.15		0.15		09-JAN-20	13-JAN-20	R4967719
Benzo(b+j+k)fluoranthene	<0.014		0.014	mg/kg	09-JAN-20	13-JAN-20	R4967719
Surrogate: Acenaphthene d10	109.9		60-130	%	09-JAN-20	13-JAN-20	R4967719
Surrogate: Chrysene d12	108.3		60-130	%	09-JAN-20	13-JAN-20	R4967719
Surrogate: Naphthalene d8	113.9		50-130	%	09-JAN-20	13-JAN-20	R4967719
Surrogate: Phenanthrene d10	110.2		60-130	%	09-JAN-20	13-JAN-20	R4967719
PCBs							
Aroclor 1016	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1221	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1232	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1242	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1248	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1254	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1260	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1262	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1268	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Total PCBs	<0.050		0.050	mg/kg		15-JAN-20	R4970310
Surrogate: Decachlorobiphenyl	109.1		65-130	%		15-JAN-20	R4970310
VOC plus F1-F4 by Tumbler	100.1		00 100	70		10 0/ 11 20	
CCME Total Extractable Hydrocarbons							
F2 (C10-C16)	<25		25	mg/kg	10-JAN-20	10-JAN-20	R4966649
F3 (C16-C34)	<50		50	mg/kg	10-JAN-20	10-JAN-20	R4966649
F4 (C34-C50)	<50		50	mg/kg	10-JAN-20	10-JAN-20	R4966649
Surrogate: 2-Bromobenzotrifluoride	91.3		60-140	тту/ку %	10-JAN-20	10-JAN-20	R4966649
Chrom. to baseline at nC50	YES		00-140	70	10-JAN-20	10-JAN-20 10-JAN-20	R4966649
	160				10-57(19-20	10-07411-20	114300049
CCME Total Hydrocarbons F1-BTEX	<10		10	mg/kg		17-JAN-20	
F1-B1EA F2-Naphth	<10		25	mg/kg		17-JAN-20 17-JAN-20	
F3-PAH	<25					17-JAN-20 17-JAN-20	
F3-PAH Total Hydrocarbons (C6-C50)			50 76	mg/kg			
	<76		76	mg/kg		17-JAN-20	
Sum of Xylene Isomer Concentrations Xylenes (Total)	0.074		0.074			47 1414 00	
, (<0.071		0.071	mg/kg		17-JAN-20	
VOC plus F1 by GCMS	0.50		0.50		16 050 40	44 1411 00	D 4000007
Acetone	< 0.50		0.50	mg/kg	16-DEC-19	11-JAN-20	R4969007
Benzene	<0.0050		0.0050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Bromobenzene	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
Bromochloromethane	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
Bromodichloromethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Bromoform	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Bromomethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
n-Butylbenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
_2403425-1 TH19-01 @ 0.8M							
Sampled By: CLIENT on 16-DEC-19							
Matrix: SOIL							
VOC plus F1 by GCMS							
sec-Butylbenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
tert-Butylbenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Carbon disulfide	<0.25		0.25	mg/kg	16-DEC-19	11-JAN-20	R4969007
Carbon Tetrachloride	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Chlorobenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Chloroethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Chloroform	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Chloromethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
2-Chlorotoluene	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
4-Chlorotoluene	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
Dibromochloromethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2-Dibromo-3-chloropropane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1.2-Dibromoethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Dibromomethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1.2-Dichlorobenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,3-Dichlorobenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,4-Dichlorobenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Dichlorodifluoromethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1.1-dichloroethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2-Dichloroethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1-dichloroethene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
cis-1,2-Dichloroethene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
trans-1,2-Dichloroethene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Dichloromethane	0.14		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2-Dichloropropane	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,3-Dichloropropane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
2,2-Dichloropropane	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1-Dichloropropene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
cis-1,3-Dichloropropene	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
trans-1,3-Dichloropropene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Ethylbenzene	< 0.015		0.015	mg/kg	16-DEC-19	11-JAN-20	R4969007
F1	<10		10	mg/kg	16-DEC-19	11-JAN-20	R4969007
Hexachlorobutadiene	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Hexane	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
2-Hexanone (Methyl butyl ketone)	<0.50		0.50	mg/kg	16-DEC-19	11-JAN-20	R4969007
Isopropylbenzene	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
4-Isopropyltoluene	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
MEK	<0.50		0.50	mg/kg	16-DEC-19	11-JAN-20	R4969007
MIBK	<0.50		0.50	mg/kg	16-DEC-19	11-JAN-20	R4969007
МТВЕ	<0.20		0.20	mg/kg	16-DEC-19	11-JAN-20	R4969007
Styrene	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1,1,2-Tetrachloroethane	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1,2,2-Tetrachloroethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Tetrachloroethene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Toluene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2,3-Trichlorobenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2,4-Trichlorobenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1,1-Trichloroethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1,2-Trichloroethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Trichloroethene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Trichlorofluoromethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2403425-1 TH19-01 @ 0.8M							
Sampled By: CLIENT on 16-DEC-19							
Matrix: SOIL							
VOC plus F1 by GCMS							
1,2,3-Trichloropropane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2,4-Trimethylbenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,3,5-Trimethylbenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Vinyl Chloride	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
M+P-Xylenes	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
o-Xylene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Surrogate: 1,4-Difluorobenzene (SS)	119.1		70-130	%	16-DEC-19	11-JAN-20	R4969007
Surrogate: 3,4-Dichlorotoluene (SS)	107.8		70-130	%	16-DEC-19	11-JAN-20	R4969007
Surrogate: 4-Bromofluorobenzene (SS)	107.3		70-130	%	16-DEC-19	11-JAN-20	R4969007
_2403425-2 TH19-05 @ 0.8M	107.0		70 100	/0	10 220 10	11 07 11 20	114000001
Sampled By: CLIENT on 16-DEC-19							
Miscellaneous Parameters							
Moisture	32.5		0.10	%		09-JAN-20	R4966151
Extractable Organic Halides (EOX)	See Attached					14-JAN-20	R4973593
Metals in Soil by CRC ICPMS							
Aluminum (Al)	26400		5000	mg/kg	13-JAN-20	13-JAN-20	R4968866
Antimony (Sb)	0.43		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Arsenic (As)	8.46		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Barium (Ba)	193		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Beryllium (Be)	1.12		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Boron (B)	19.0		5.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Bismuth (Bi)	0.28		0.20	mg/kg	13-JAN-20	13-JAN-20	R4968866
Cadmium (Cd)	0.497		0.020	mg/kg	13-JAN-20	13-JAN-20	R4968866
Calcium (Ca)	15800		50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Chromium (Cr)	44.7		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Cobalt (Co)	13.7		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Copper (Cu)	35.4		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Iron (Fe)	28300		50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Lead (Pb)	21.9		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Lithium (Li)	27.1		2.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Magnesium (Mg)	15000		20	mg/kg	13-JAN-20	13-JAN-20	R4968866
Manganese (Mn)	743		1.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Molybdenum (Mo)	0.55		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Nickel (Ni)	38.1		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Phosphorus (P)	954		50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Potassium (K)	6480		100	mg/kg	13-JAN-20	13-JAN-20	R4968866
Selenium (Se)	0.47		0.20	mg/kg	13-JAN-20	13-JAN-20	R4968866
Silver (Ag)	0.14		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Sodium (Na)	626		50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Strontium (Sr)	55.2		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Sulfur (S)	<1000		1000	mg/kg	13-JAN-20	13-JAN-20	R4968866
Thallium (TI)	0.340		0.050	mg/kg	13-JAN-20	13-JAN-20	R4968866
Tin (Sn)	<2.0		2.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Titanium (Ti)	224		1.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Tungsten (W)	<0.50		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Uranium (U)	1.61		0.050	mg/kg	13-JAN-20	13-JAN-20	R4968866
Vanadium (V)	72.8		0.20	mg/kg	13-JAN-20	13-JAN-20	R4968866
Zinc (Zn)	123		2.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Zirconium (Zr)	10.6		1.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Polyaromatic Hydrocarbons (PAHs)				5-5			

Extracted	Analyzed	Batch
09-JAN-20	13-JAN-20	R4967719
09-JAN-20 09-JAN-20	13-JAN-20 13-JAN-20	R4967719
09-JAN-20 09-JAN-20	13-JAN-20 13-JAN-20	R4967719 R4967719
09-JAN-20	13-JAN-20	R4967719 R4967719
09-JAN-20	13-JAN-20	R4967719
	15-JAN-20	R4970310
	15-JAN-20 15-JAN-20	R4970310 R4970310
	15-JAN-20	R4970310 R4970310
	10-0/11-20	11-310310
10-JAN-20	10-JAN-20	R4966649
10-JAN-20		R4966649
10-JAN-20		R4966649
10-JAN-20		R4966649
10-JAN-20	10-JAN-20	R4966649
	17-JAN-20	
		17-JAN-20 17-JAN-20

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
.2403425-2 TH19-05 @ 0.8M							
Sampled By: CLIENT on 16-DEC-19							
Matrix: SOIL							
Sum of Xylene Isomer Concentrations Xylenes (Total)	<0.071		0.071	mg/kg		17-JAN-20	
VOC plus F1 by GCMS							
Acetone	<0.50		0.50	mg/kg	16-DEC-19	11-JAN-20	R4969007
Benzene	< 0.0050		0.0050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Bromobenzene	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
Bromochloromethane	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
Bromodichloromethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Bromoform	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Bromomethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
n-Butylbenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
sec-Butylbenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
tert-Butylbenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Carbon disulfide	<0.25		0.25	mg/kg	16-DEC-19	11-JAN-20	R4969007
Carbon Tetrachloride	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Chlorobenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Chloroethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Chloroform	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Chloromethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
2-Chlorotoluene	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
4-Chlorotoluene	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
Dibromochloromethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2-Dibromo-3-chloropropane	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2-Dibromoethane	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Dibromomethane	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2-Dichlorobenzene	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,3-Dichlorobenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,4-Dichlorobenzene Dichlorodifluoromethane	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
	< 0.050		0.050	mg/kg	16-DEC-19 16-DEC-19	11-JAN-20	R4969007
1,1-dichloroethane 1,2-Dichloroethane	< 0.050		0.050	mg/kg		11-JAN-20	R4969007
1,1-dichloroethene	< 0.050		0.050	mg/kg	16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	R4969007
cis-1,2-Dichloroethene	< 0.050		0.050	mg/kg	16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	R4969007
trans-1,2-Dichloroethene	<0.050 <0.050		0.050 0.050	mg/kg mg/kg	16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	R4969007 R4969007
Dichloromethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20 11-JAN-20	R4969007 R4969007
1,2-Dichloropropane	<0.10		0.050	mg/kg	16-DEC-19	11-JAN-20 11-JAN-20	R4969007 R4969007
1,3-Dichloropropane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
2,2-Dichloropropane	<0.050		0.050	mg/kg	16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	R4969007 R4969007
1,1-Dichloropropene	<0.10		0.050	mg/kg	16-DEC-19	11-JAN-20 11-JAN-20	R4969007 R4969007
cis-1,3-Dichloropropene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
trans-1,3-Dichloropropene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20 11-JAN-20	R4969007 R4969007
Ethylbenzene	<0.030		0.015	mg/kg	16-DEC-19	11-JAN-20	R4969007
F1	<10		10	mg/kg	16-DEC-19	11-JAN-20	R4969007
Hexachlorobutadiene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Hexane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
2-Hexanone (Methyl butyl ketone)	<0.50		0.50	mg/kg	16-DEC-19	11-JAN-20	R4969007
Isopropylbenzene	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
4-Isopropyltoluene	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
MEK	<0.10		0.50	mg/kg	16-DEC-19	11-JAN-20	R4969007
MIBK	<0.50		0.50	mg/kg	16-DEC-19	11-JAN-20	R4969007
MTBE	<0.20		0.20	mg/kg	16-DEC-19	11-JAN-20	R4969007
		1	0.20				1

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2403425-2 TH19-05 @ 0.8M							
Sampled By: CLIENT on 16-DEC-19							
Matrix: SOIL							
VOC plus F1 by GCMS							
1,1,1,2-Tetrachloroethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1,2,2-Tetrachloroethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Tetrachloroethene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Toluene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2,3-Trichlorobenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2,4-Trichlorobenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1,1-Trichloroethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1,2-Trichloroethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Trichloroethene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Trichlorofluoromethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2,3-Trichloropropane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2,4-Trimethylbenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,3,5-Trimethylbenzene Vinyl Chloride	<0.050		0.050	mg/kg	16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	R4969007
M+P-Xylenes	<0.050		0.050	mg/kg	16-DEC-19 16-DEC-19		R4969007
o-Xylene	<0.050 <0.050		0.050 0.050	mg/kg mg/kg	16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	R4969007 R4969007
Surrogate: 1,4-Difluorobenzene (SS)	121.7		70-130	%	16-DEC-19	11-JAN-20	R4969007 R4969007
Surrogate: 3,4-Dichlorotoluene (SS)	129.5		70-130	%	16-DEC-19	11-JAN-20	R4969007 R4969007
Surrogate: 4-Bromofluorobenzene (SS)	107.3		70-130	%	16-DEC-19	11-JAN-20	R4969007
L2403425-3 TH19-02 @ 0.8M							
Sampled By: CLIENT on 16-DEC-19							
Matrix: SOIL BTEX and F1-F4 by Tumbler Method							
BTX plus F1 by GCMS							
Benzene	<0.0050		0.0050	mg/kg	16-DEC-19	11-JAN-20	R4967626
Toluene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4967626
Ethyl benzene	< 0.015		0.015	mg/kg	16-DEC-19	11-JAN-20	R4967626
o-Xylene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4967626
m+p-Xylenes	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4967626
F1 (C6-C10)	<10		10	mg/kg	16-DEC-19	11-JAN-20	R4967626
Surrogate: 4-Bromofluorobenzene (SS)	102.5		70-130	%	16-DEC-19	11-JAN-20	R4967626
Surrogate: 3,4-Dichlorotoluene (SS)	129.8		70-130	%	16-DEC-19	11-JAN-20	R4967626
CCME Total Extractable Hydrocarbons							
F2 (C10-C16)	<25		25	mg/kg	10-JAN-20	10-JAN-20	R4966649
F3 (C16-C34)	<50		50	mg/kg	10-JAN-20	10-JAN-20	R4966649
F4 (C34-C50)	<50		50	mg/kg	10-JAN-20	10-JAN-20	R4966649
Surrogate: 2-Bromobenzotrifluoride	91.4		60-140	%	10-JAN-20	10-JAN-20	R4966649
Chrom. to baseline at nC50	YES				10-JAN-20	10-JAN-20	R4966649
CCME Total Hydrocarbons F1-BTEX	<10		10	mg/kg		15-JAN-20	
Total Hydrocarbons (C6-C50)	<76		76	mg/kg		15-JAN-20	
Sum of Xylene Isomer Concentrations			70			10 0/ 11 20	
Xylenes (Total)	<0.071		0.071	mg/kg		15-JAN-20	
Miscellaneous Parameters				5.5		-	
Moisture	26.2		0.10	%		09-JAN-20	R4966151
L2403425-4 TH19-09 @ 0.8M							
Sampled By: CLIENT on 16-DEC-19							
Matrix: SOIL							
Miscellaneous Parameters							
Moisture	29.6		0.10	%		09-JAN-20	R4966151
Extractable Organic Halides (EOX)	See Attached					14-JAN-20	R4973593

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2403425-4 TH19-09 @ 0.8M							
Sampled By: CLIENT on 16-DEC-19							
Matrix: SOIL							
Metals in Soil by CRC ICPMS							
Aluminum (Al)	26900		5000	mg/kg	13-JAN-20	13-JAN-20	R4968866
Antimony (Sb)	0.52		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Arsenic (As)	9.35		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Barium (Ba)	199		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Beryllium (Be)	1.34		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Boron (B)	14.4		5.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Bismuth (Bi)	0.34		0.20	mg/kg	13-JAN-20	13-JAN-20	R4968866
Cadmium (Cd)	0.077		0.020	mg/kg	13-JAN-20	13-JAN-20	R4968866
Calcium (Ca)	9990		50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Chromium (Cr)	48.0		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Cobalt (Co)	15.3		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Copper (Cu)	33.1		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Iron (Fe)	32800		50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Lead (Pb)	16.0		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Lithium (Li)	37.2		2.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Magnesium (Mg)	14200		20	mg/kg	13-JAN-20	13-JAN-20	R4968866
Manganese (Mn)	496		1.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Molybdenum (Mo) Nickel (Ni)	0.44		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Phosphorus (P)	46.1		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Potassium (K)	511 5430		50 100	mg/kg	13-JAN-20 13-JAN-20	13-JAN-20 13-JAN-20	R4968866
Selenium (Se)	<0.20		0.20	mg/kg mg/kg	13-JAN-20 13-JAN-20	13-JAN-20 13-JAN-20	R4968866 R4968866
Silver (Ag)	0.15		0.20	mg/kg	13-JAN-20	13-JAN-20	R4968866
Sodium (Na)	580		50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Strontium (Sr)	70.2		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Sulfur (S)	<1000		1000	mg/kg	13-JAN-20	13-JAN-20	R4968866
Thallium (TI)	0.405		0.050	mg/kg	13-JAN-20	13-JAN-20	R4968866
Tin (Sn)	<2.0		2.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Titanium (Ti)	143		1.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Tungsten (W)	<0.50		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Uranium (U)	1.79		0.050	mg/kg	13-JAN-20	13-JAN-20	R4968866
Vanadium (V)	76.9		0.20	mg/kg	13-JAN-20	13-JAN-20	R4968866
Zinc (Zn)	84.1		2.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Zirconium (Zr)	9.0		1.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Polyaromatic Hydrocarbons (PAHs)							
1-Methyl Naphthalene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
2-Methyl Naphthalene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Acenaphthene	<0.0050		0.0050	mg/kg	09-JAN-20	13-JAN-20	R4967719
Acenaphthylene	<0.0050		0.0050	mg/kg	09-JAN-20	13-JAN-20	R4967719
Acridine	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Anthracene	<0.0040		0.0040	mg/kg	09-JAN-20	13-JAN-20	R4967719
Benzo(a)anthracene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Benzo(b&j)fluoranthene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Benzo(g,h,i)perylene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Benzo(k)fluoranthene Chrysene	<0.010		0.010	mg/kg	09-JAN-20 09-JAN-20	13-JAN-20 13-JAN-20	R4967719
Dibenzo(a,h)anthracene	<0.010		0.010	mg/kg mg/kg	09-JAN-20 09-JAN-20		R4967719
Fluoranthene	< 0.0050		0.0050	mg/kg mg/kg	09-JAN-20 09-JAN-20	13-JAN-20 13-JAN-20	R4967719
Fluorene	<0.010 <0.010		0.010 0.010	mg/kg mg/kg	09-JAN-20 09-JAN-20	13-JAN-20 13-JAN-20	R4967719
Indeno(1,2,3-cd)pyrene	<0.010		0.010		09-JAN-20 09-JAN-20	13-JAN-20 13-JAN-20	R4967719 R4967719
המטחטרו,ב,ס טמואאופוופ	<0.010		0.010	mg/kg	03-37(1)-20	13-37419-20	1490//19

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2403425-4 TH19-09 @ 0.8M							
Sampled By: CLIENT on 16-DEC-19							
Matrix: SOIL							
Polyaromatic Hydrocarbons (PAHs)							
Naphthalene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Phenanthrene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Pyrene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Quinoline	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
B(a)P Total Potency Equivalent	<0.020		0.020	mg/kg	09-JAN-20	13-JAN-20	R4967719
IACR (CCME)	<0.15		0.15		09-JAN-20	13-JAN-20	R4967719
Benzo(b+j+k)fluoranthene	<0.014		0.014	mg/kg	09-JAN-20	13-JAN-20	R4967719
Surrogate: Acenaphthene d10	105.4		60-130	%	09-JAN-20	13-JAN-20	R4967719
Surrogate: Chrysene d12	112.4		60-130	%	09-JAN-20	13-JAN-20	R4967719
Surrogate: Naphthalene d8	108.6		50-130	%	09-JAN-20	13-JAN-20	R4967719
Surrogate: Phenanthrene d10	108.1		60-130	%	09-JAN-20	13-JAN-20	R4967719
PCBs							
Aroclor 1016	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1221	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1232	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1242	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1248	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1254	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1260	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1262	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1268 Total PCBs	<0.010 <0.050		0.010 0.050	mg/kg		15-JAN-20 15-JAN-20	R4970310
Surrogate: Decachlorobiphenyl	<0.050		0.050 65-130	mg/kg %		15-JAN-20 15-JAN-20	R4970310 R4970310
VOC plus F1-F4 by Tumbler	99.5		00-130	/0		13-JAN-20	R49/0310
CCME Total Extractable Hydrocarbons							
F2 (C10-C16)	<25		25	mg/kg	10-JAN-20	10-JAN-20	R4966649
F3 (C16-C34)	<50		50	mg/kg	10-JAN-20	10-JAN-20	R4966649
F4 (C34-C50)	<50		50	mg/kg	10-JAN-20	10-JAN-20	R4966649
Surrogate: 2-Bromobenzotrifluoride	87.9		60-140	%	10-JAN-20	10-JAN-20	R4966649
Chrom. to baseline at nC50	YES		00 0		10-JAN-20	10-JAN-20	R4966649
CCME Total Hydrocarbons							
F1-BTEX	<10		10	mg/kg		17-JAN-20	
F2-Naphth	<25		25	mg/kg		17-JAN-20	
F3-PAH	<50		50	mg/kg		17-JAN-20	
Total Hydrocarbons (C6-C50)	<76		76	mg/kg		17-JAN-20	
Sum of Xylene Isomer Concentrations Xylenes (Total)	<0.071		0.071	mg/kg		17-JAN-20	
VOC plus F1 by GCMS			0.071				
Acetone	<0.50		0.50	mg/kg	16-DEC-19	11-JAN-20	R4969007
Benzene	< 0.0050		0.0050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Bromobenzene	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
Bromochloromethane	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
Bromodichloromethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Bromoform	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Bromomethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
n-Butylbenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
sec-Butylbenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
tert-Butylbenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Carbon disulfide	<0.25		0.25	mg/kg	16-DEC-19	11-JAN-20	R4969007
Carbon Tetrachloride	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Chlorobenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Chloroethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2403425-4 TH19-09 @ 0.8M							
Sampled By: CLIENT on 16-DEC-19							
Matrix: SOIL							
VOC plus F1 by GCMS Chloroform	<0.050		0.050	malka	16-DEC-19	11-JAN-20	D4060007
Chloromethane	<0.050		0.050	mg/kg	16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	R4969007
2-Chlorotoluene			0.050 0.10	mg/kg	16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	R4969007
4-Chlorotoluene	<0.10 <0.10			mg/kg	16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	R4969007
Dibromochloromethane	<0.10		0.10 0.050	mg/kg	16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	R4969007
1,2-Dibromo-3-chloropropane				mg/kg	16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	R4969007
1,2-Diblomo-s-chiolopropane	<0.050 <0.050		0.050 0.050	mg/kg	16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	R4969007
Dibromomethane	<0.050		0.050	mg/kg	16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	R4969007 R4969007
1,2-Dichlorobenzene				mg/kg	16-DEC-19 16-DEC-19		
1,3-Dichlorobenzene	< 0.050		0.050	mg/kg		11-JAN-20	R4969007
1,4-Dichlorobenzene	< 0.050		0.050	mg/kg	16-DEC-19 16-DEC-19	11-JAN-20	R4969007
Dichlorodifluoromethane	< 0.050		0.050	mg/kg		11-JAN-20	R4969007
1.1-dichloroethane	<0.050		0.050	mg/kg	16-DEC-19 16-DEC-19	11-JAN-20	R4969007
1,1-dichloroethane	< 0.050		0.050	mg/kg		11-JAN-20	R4969007
1,2-Dichloroethane 1,1-dichloroethene	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1-dichloroethene cis-1,2-Dichloroethene	<0.050 <0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
trans-1,2-Dichloroethene			0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Dichloromethane	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2-Dichloropropane	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,3-Dichloropropane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
2,2-Dichloropropane	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1-Dichloropropene	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
cis-1,3-Dichloropropene	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
trans-1,3-Dichloropropene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Ethylbenzene	<0.015		0.015	mg/kg	16-DEC-19	11-JAN-20	R4969007
F1	<10		10	mg/kg	16-DEC-19	11-JAN-20	R4969007
Hexachlorobutadiene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Hexane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
2-Hexanone (Methyl butyl ketone)	<0.50		0.50	mg/kg	16-DEC-19	11-JAN-20	R4969007
Isopropylbenzene	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
4-Isopropyltoluene	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
MEK	<0.50		0.50	mg/kg	16-DEC-19	11-JAN-20	R4969007
MIBK	<0.50		0.50	mg/kg	16-DEC-19	11-JAN-20	R4969007
MTBE	<0.20		0.20	mg/kg	16-DEC-19	11-JAN-20	R4969007
Styrene	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1,1,2-Tetrachloroethane	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1,2,2-Tetrachloroethane	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Tetrachloroethene	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2,3-Trichlorobenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2,4-Trichlorobenzene	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1,1-Trichloroethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1,2-Trichloroethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Trichloroethene	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Trichlorofluoromethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2,3-Trichloropropane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2,4-Trimethylbenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,3,5-Trimethylbenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Vinyl Chloride	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
M+P-Xylenes	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
o-Xylene	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2403425-4 TH19-09 @ 0.8M							
Sampled By: CLIENT on 16-DEC-19							
Matrix: SOIL							
VOC plus F1 by GCMS Surrogate: 1,4-Difluorobenzene (SS)	117.4		70-130	%	16-DEC-19	11-JAN-20	R4969007
Surrogate: 3,4-Dichlorotoluene (SS)	119.3		70-130	%	16-DEC-19	11-JAN-20	R4969007
Surrogate: 4-Bromofluorobenzene (SS)	105.8		70-130	%	16-DEC-19	11-JAN-20	R4969007
5	105.0		70-130	70	10-020-13	11-3/11-20	14909007
L2403425-5 TH19-06 @ 0.8M							
Sampled By: CLIENT on 16-DEC-19							
Matrix: SOIL							
Miscellaneous Parameters							
Moisture	25.5		0.10	%		09-JAN-20	R4966151
Extractable Organic Halides (EOX)	See Attached					14-JAN-20	R4973593
Metals in Soil by CRC ICPMS							
Aluminum (Al)	22900		5000	mg/kg	13-JAN-20	13-JAN-20	R4968866
Antimony (Sb)	0.42		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Arsenic (As)	7.24		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Barium (Ba)	212		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Beryllium (Be)	0.89		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Boron (B)	18.6		5.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Bismuth (Bi)	0.24		0.20	mg/kg	13-JAN-20	13-JAN-20	R4968866
Cadmium (Cd)	0.318		0.020	mg/kg	13-JAN-20	13-JAN-20	R4968866
Calcium (Ca)	65600		50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Chromium (Cr)	38.7		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Cobalt (Co)	12.0		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Copper (Cu)	27.9		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Iron (Fe)	25500		50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Lead (Pb)	18.7		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Lithium (Li)	26.3		2.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Magnesium (Mg)	27800		20	mg/kg	13-JAN-20	13-JAN-20	R4968866
Manganese (Mn)	581		1.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Molybdenum (Mo)	0.49		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Nickel (Ni)	34.6		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Phosphorus (P)	537		50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Potassium (K)	4060		100	mg/kg	13-JAN-20	13-JAN-20	R4968866
Selenium (Se)	0.25		0.20	mg/kg	13-JAN-20	13-JAN-20	R4968866
Silver (Ag)	0.12		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Sodium (Na)	279		50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Strontium (Sr)	94.2		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Sulfur (S)	<1000		1000	mg/kg	13-JAN-20	13-JAN-20	R4968866
Thallium (TI)	0.285		0.050	mg/kg	13-JAN-20	13-JAN-20	R4968866
Tin (Sn)	<2.0		2.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Titanium (Ti)	224		1.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Tungsten (W)	<0.50		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Uranium (U)	1.30		0.050	mg/kg	13-JAN-20	13-JAN-20	R4968866
Vanadium (V)	65.6		0.20	mg/kg	13-JAN-20	13-JAN-20	R4968866
Zinc (Zn)	90.3		2.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Zirconium (Zr)	5.9		1.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Polyaromatic Hydrocarbons (PAHs)	0.0						
1-Methyl Naphthalene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
2-Methyl Naphthalene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Acenaphthene	<0.0050		0.0050	mg/kg	09-JAN-20	13-JAN-20	R4967719
Acenaphthylene	<0.0050		0.0050	mg/kg	09-JAN-20	13-JAN-20	R4967719
Acridine	<0.000		0.000	mg/kg	09-JAN-20	13-JAN-20	R4967719
Anthracene	0.0098		0.0040	mg/kg	09-JAN-20	13-JAN-20	R4967719

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2403425-5 TH19-06 @ 0.8M							
Sampled By: CLIENT on 16-DEC-19							
Matrix: SOIL							
Polyaromatic Hydrocarbons (PAHs)							
Benzo(a)anthracene	0.030		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Benzo(a)pyrene	0.022		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Benzo(b&j)fluoranthene	0.038		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Benzo(g,h,i)perylene	0.021		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Benzo(k)fluoranthene	0.016		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Chrysene	0.041		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Dibenzo(a,h)anthracene	<0.0050		0.0050	mg/kg	09-JAN-20	13-JAN-20	R4967719
Fluoranthene	0.058		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Fluorene	< 0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Indeno(1,2,3-cd)pyrene	0.021		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Naphthalene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Phenanthrene	0.032		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Pyrene	0.052		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Quinoline	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
B(a)P Total Potency Equivalent	0.035		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
IACR (CCME)	0.53		0.020	iiig/kg	09-JAN-20	13-JAN-20	R4967719
Benzo(b+j+k)fluoranthene	0.054		0.13	mg/kg	09-JAN-20	13-JAN-20	R4967719
Surrogate: Acenaphthene d10	108.7		60-130	%	09-JAN-20	13-JAN-20	R4967719
Surrogate: Chrysene d12	119.0		60-130 60-130	%	09-JAN-20	13-JAN-20	R4967719
Surrogate: Naphthalene d8	119.0		50-130	%	09-JAN-20	13-JAN-20	R4967719
Surrogate: Phenanthrene d10	109.3		60-130	%	09-JAN-20	13-JAN-20	R4967719
PCBs	109.5		00-130	/0	09-JAN-20	13-JAN-20	R4907719
Aroclor 1016	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1221	<0.010		0.010	mg/kg		15-JAN-20	R4970310 R4970310
Aroclor 1221	<0.010		0.010	mg/kg		15-JAN-20	R4970310 R4970310
Aroclor 1242	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1242 Aroclor 1248	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1254	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1260	<0.010		0.010			15-JAN-20	R4970310 R4970310
Aroclor 1260	<0.010		0.010	mg/kg mg/kg		15-JAN-20 15-JAN-20	R4970310 R4970310
Aroclor 1268						15-JAN-20	
Total PCBs	<0.010		0.010	mg/kg		15-JAN-20 15-JAN-20	R4970310
Surrogate: Decachlorobiphenyl	< 0.050		0.050	mg/kg %		15-JAN-20 15-JAN-20	R4970310 R4970310
VOC plus F1-F4 by Tumbler	113.0		65-130	70		15-JAN-20	R4970310
CCME Total Extractable Hydrocarbons							
F2 (C10-C16)	<25		25	mg/kg	10-JAN-20	10-JAN-20	R4966649
F3 (C16-C34)	<25 <50		25 50	mg/kg	10-JAN-20	10-JAN-20 10-JAN-20	R4966649
F4 (C34-C50)	<50		50 50	mg/kg	10-JAN-20	10-JAN-20 10-JAN-20	R4966649 R4966649
Surrogate: 2-Bromobenzotrifluoride				тід/кд %	10-JAN-20	10-JAN-20 10-JAN-20	R4966649
Chrom. to baseline at nC50	91.0 YES		60-140	/0	10-JAN-20	10-JAN-20 10-JAN-20	
	TES				IU-JAN-20	10-3/414-20	R4966649
CCME Total Hydrocarbons F1-BTEX	<10		10	mg/kg		17-JAN-20	
F2-Naphth	<10		25	mg/kg		17-JAN-20	
F3-PAH	<25		25 50	mg/kg		17-JAN-20 17-JAN-20	
Total Hydrocarbons (C6-C50)	<76		50 76	mg/kg		17-JAN-20 17-JAN-20	
Sum of Xylene Isomer Concentrations	0</td <td></td> <td>10</td> <td>iiig/kg</td> <td></td> <td>17-07-11-20</td> <td></td>		10	iiig/kg		17-07-11-20	
Xylenes (Total)	<0.071		0.071	mg/kg		17-JAN-20	
VOC plus F1 by GCMS	NO.071		0.07 1			17 0711-20	
Acetone	<0.50		0.50	mg/kg	16-DEC-19	11-JAN-20	R4969007
Benzene	<0.0050		0.0050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Bromobenzene	<0.0050		0.0050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Bromochloromethane	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20 11-JAN-20	R4969007 R4969007
	<0.10		0.10	mg/Kg	10-020-19	11-37419-20	14909007

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
_2403425-5 TH19-06 @ 0.8M							
Sampled By: CLIENT on 16-DEC-19							
Matrix: SOIL							
VOC plus F1 by GCMS							
Bromodichloromethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Bromoform	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Bromomethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
n-Butylbenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
sec-Butylbenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
tert-Butylbenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Carbon disulfide	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Carbon Tetrachloride	<0.25		0.25	mg/kg	16-DEC-19	11-JAN-20	R4969007
Chlorobenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007 R4969007
Chloroethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20 11-JAN-20	R4969007 R4969007
Chloroform	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007 R4969007
Chloromethane	<0.050		0.050	mg/kg	16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	R4969007 R4969007
2-Chlorotoluene	<0.050		0.050	mg/kg	16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	R4969007 R4969007
4-Chlorotoluene	<0.10		0.10		16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	R4969007 R4969007
Dibromochloromethane	<0.10		0.10	mg/kg	16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	
1,2-Dibromo-3-chloropropane	<0.050		0.050	mg/kg	16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	R4969007 R4969007
1,2-Dibromoethane				mg/kg		11-JAN-20 11-JAN-20	
Dibromomethane	<0.050 <0.050		0.050	mg/kg	16-DEC-19		R4969007
			0.050	mg/kg	16-DEC-19 16-DEC-19	11-JAN-20	R4969007
1,2-Dichlorobenzene	< 0.050		0.050	mg/kg		11-JAN-20	R4969007
1,3-Dichlorobenzene	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,4-Dichlorobenzene	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Dichlorodifluoromethane	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1-dichloroethane	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2-Dichloroethane	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1-dichloroethene	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
cis-1,2-Dichloroethene	< 0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
trans-1,2-Dichloroethene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Dichloromethane	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2-Dichloropropane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,3-Dichloropropane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
2,2-Dichloropropane	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1-Dichloropropene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
cis-1,3-Dichloropropene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
trans-1,3-Dichloropropene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Ethylbenzene	<0.015		0.015	mg/kg	16-DEC-19	11-JAN-20	R4969007
F1	<10		10	mg/kg	16-DEC-19	11-JAN-20	R4969007
Hexachlorobutadiene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Hexane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
2-Hexanone (Methyl butyl ketone)	<0.50		0.50	mg/kg	16-DEC-19	11-JAN-20	R4969007
Isopropylbenzene	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
4-Isopropyltoluene	<0.10		0.10	mg/kg	16-DEC-19	11-JAN-20	R4969007
MEK	<0.50		0.50	mg/kg	16-DEC-19	11-JAN-20	R4969007
MIBK	<0.50		0.50	mg/kg	16-DEC-19	11-JAN-20	R4969007
MTBE	<0.20		0.20	mg/kg	16-DEC-19	11-JAN-20	R4969007
Styrene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1,1,2-Tetrachloroethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1,2,2-Tetrachloroethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Tetrachloroethene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Toluene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2,3-Trichlorobenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2,4-Trichlorobenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2403425-5 TH19-06 @ 0.8M							
Sampled By: CLIENT on 16-DEC-19							
Matrix: SOIL							
VOC plus F1 by GCMS							
1,1,1-Trichloroethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,1,2-Trichloroethane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Trichloroethene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Trichlorofluoromethane	0.144		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2,3-Trichloropropane	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,2,4-Trimethylbenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
1,3,5-Trimethylbenzene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Vinyl Chloride	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
M+P-Xylenes	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
o-Xylene	<0.050		0.050	mg/kg	16-DEC-19	11-JAN-20	R4969007
Surrogate: 1,4-Difluorobenzene (SS)			0.050 70-130	тту/ку %	16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	
Surrogate: 3,4-Dichlorotoluene (SS)	119.7 127.2		70-130 70-130	%	16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	R4969007 R4969007
Surrogate: 4-Bromofluorobenzene (SS)			70-130 70-130	%	16-DEC-19 16-DEC-19	11-JAN-20 11-JAN-20	
	106.1		10-130	70	10-DEC-19	11-JAN-20	R4969007
L2403425-6 TH19-11 @ 1.5M							
Sampled By: CLIENT on 20-DEC-19							
Matrix: SOIL							
Miscellaneous Parameters							
Moisture	25.3		0.10	%		09-JAN-20	R4966151
Metals in Soil by CRC ICPMS							
Aluminum (Al)	23600		5000	mg/kg	13-JAN-20	13-JAN-20	R4968866
Antimony (Sb)	0.32		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Arsenic (As)	7.04		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Barium (Ba)	194		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Beryllium (Be)	0.98		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Boron (B)	17.5		5.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Bismuth (Bi)	0.25		0.20	mg/kg	13-JAN-20	13-JAN-20	R4968866
Cadmium (Cd)	0.359		0.020	mg/kg	13-JAN-20	13-JAN-20	R4968866
Calcium (Ca)	58500		50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Chromium (Cr)	41.1		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Cobalt (Co)	12.3		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Copper (Cu)	28.0		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Iron (Fe)	27600		50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Lead (Pb)	12.2		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Lithium (Li)	31.7		2.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Magnesium (Mg)	25700		20	mg/kg	13-JAN-20	13-JAN-20	R4968866
Manganese (Mn)	807		1.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Molybdenum (Mo)	0.25		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Nickel (Ni)	36.6		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Phosphorus (P)	516		50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Potassium (K)	4160		100	mg/kg	13-JAN-20	13-JAN-20	R4968866
Selenium (Se)	0.21		0.20	mg/kg	13-JAN-20	13-JAN-20	R4968866
Silver (Ag)	0.11		0.10	mg/kg	13-JAN-20	13-JAN-20	R4968866
Sodium (Na)	397		50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Strontium (Sr)	105		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Sulfur (S)	<1000		1000	mg/kg	13-JAN-20	13-JAN-20	R4968866
Thallium (TI)	0.330		0.050	mg/kg	13-JAN-20	13-JAN-20	R4968866
					13-JAN-20 13-JAN-20		
Tin (Sn) Titanium (Ti)	<2.0		2.0	mg/kg		13-JAN-20	R4968866
Titanium (Ti)	212		1.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Tungsten (W)	<0.50		0.50	mg/kg	13-JAN-20	13-JAN-20	R4968866
Uranium (U)	2.62		0.050	mg/kg	13-JAN-20	13-JAN-20	R4968866
Vanadium (V)	66.7		0.20	mg/kg	13-JAN-20	13-JAN-20	R4968866

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2403425-6 TH19-11 @ 1.5M							
Sampled By: CLIENT on 20-DEC-19							
Matrix: SOIL							
Metals in Soil by CRC ICPMS							
Zinc (Zn)	80.5		2.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Zirconium (Zr)	6.1		1.0	mg/kg	13-JAN-20	13-JAN-20	R4968866
Polyaromatic Hydrocarbons (PAHs)	0.1		1.0	iiig/kg	13-3AN-20	13-3711-20	R4900000
1-Methyl Naphthalene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
2-Methyl Naphthalene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Acenaphthene	<0.0050		0.0050	mg/kg	09-JAN-20	13-JAN-20	R4967719
Acenaphthylene	<0.0050		0.0050	mg/kg	09-JAN-20	13-JAN-20	R4967719
Acridine	<0.0050		0.0050	mg/kg	09-JAN-20 09-JAN-20	13-JAN-20	R4967719
Anthracene	<0.0040		0.010		09-JAN-20 09-JAN-20	13-JAN-20	R4967719
				mg/kg			
Benzo(a)anthracene Benzo(a)pyrene	<0.010		0.010	mg/kg	09-JAN-20 09-JAN-20	13-JAN-20 13-JAN-20	R4967719
	<0.010		0.010	mg/kg			R4967719
Benzo(b&j)fluoranthene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Benzo(g,h,i)perylene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Benzo(k)fluoranthene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Chrysene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Dibenzo(a,h)anthracene	<0.0050		0.0050	mg/kg	09-JAN-20	13-JAN-20	R4967719
Fluoranthene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Fluorene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Indeno(1,2,3-cd)pyrene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Naphthalene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Phenanthrene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Pyrene	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
Quinoline	<0.010		0.010	mg/kg	09-JAN-20	13-JAN-20	R4967719
B(a)P Total Potency Equivalent	<0.020		0.020	mg/kg	09-JAN-20	13-JAN-20	R4967719
IACR (CCME)	<0.15		0.15		09-JAN-20	13-JAN-20	R4967719
Benzo(b+j+k)fluoranthene	<0.014		0.014	mg/kg	09-JAN-20	13-JAN-20	R4967719
Surrogate: Acenaphthene d10	104.1		60-130	%	09-JAN-20	13-JAN-20	R4967719
Surrogate: Chrysene d12	113.3		60-130	%	09-JAN-20	13-JAN-20	R4967719
Surrogate: Naphthalene d8	107.7		50-130	%	09-JAN-20	13-JAN-20	R4967719
Surrogate: Phenanthrene d10	107.7		60-130	%	09-JAN-20	13-JAN-20	R4967719
PCBs							
Aroclor 1016	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1221	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1232	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1242	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1248	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1254	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1260	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1262	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Aroclor 1268	<0.010		0.010	mg/kg		15-JAN-20	R4970310
Total PCBs	< 0.050		0.050	mg/kg		15-JAN-20	R4970310
Surrogate: Decachlorobiphenyl	113.5		65-130	%		15-JAN-20	R4970310
VOC plus F1-F4 by Tumbler							
CCME Total Extractable Hydrocarbons							
F2 (C10-C16)	<25		25	mg/kg	10-JAN-20	10-JAN-20	R4966649
F3 (C16-C34)	<50		50	mg/kg	10-JAN-20	10-JAN-20	R4966649
F4 (C34-C50)	<50		50	mg/kg	10-JAN-20	10-JAN-20	R4966649
Surrogate: 2-Bromobenzotrifluoride	88.4		60-140	%	10-JAN-20	10-JAN-20	R4966649
Chrom. to baseline at nC50	YES				10-JAN-20	10-JAN-20	R4966649
CCME Total Hydrocarbons							
F1-BTEX	<10		10	mg/kg		17-JAN-20	
F2-Naphth	<10		25	mg/kg		17-JAN-20	
	<20	1	20	mg/kg	1	17-07-11-20	·

ample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
2403425-6 TH19-11 @ 1.5M							
ampled By: CLIENT on 20-DEC-19							
latrix: SOIL							
CCME Total Hydrocarbons F3-PAH	<50		50	mg/kg		17-JAN-20	
Total Hydrocarbons (C6-C50)	<76		50 76	mg/kg		17-JAN-20	
Sum of Xylene Isomer Concentrations	0</td <td></td> <td>70</td> <td>iiig/kg</td> <td></td> <td>17-0411-20</td> <td></td>		70	iiig/kg		17-0411-20	
Xylenes (Total)	<0.071		0.071	mg/kg		17-JAN-20	
VOC plus F1 by GCMS	20.071		0.071	ing/itg		11 07 11 20	
Acetone	<0.50		0.50	mg/kg	20-DEC-19	11-JAN-20	R4969007
Benzene	<0.0050		0.0050	mg/kg	20-DEC-19	11-JAN-20	R4969007
Bromobenzene	<0.10		0.10	mg/kg	20-DEC-19	11-JAN-20	R4969007
Bromochloromethane	<0.10		0.10	mg/kg	20-DEC-19	11-JAN-20	R4969007
Bromodichloromethane	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
Bromoform	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
Bromomethane	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
n-Butylbenzene	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
sec-Butylbenzene	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
tert-Butylbenzene	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
Carbon disulfide	<0.25		0.25	mg/kg	20-DEC-19	11-JAN-20	R496900
Carbon Tetrachloride	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
Chlorobenzene	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
Chloroethane	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
Chloroform	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
Chloromethane	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
2-Chlorotoluene	<0.10		0.10	mg/kg	20-DEC-19	11-JAN-20	R496900
4-Chlorotoluene	<0.10		0.10	mg/kg	20-DEC-19	11-JAN-20	R496900
Dibromochloromethane	< 0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
1,2-Dibromo-3-chloropropane	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
1,2-Dibromoethane	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
Dibromomethane	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
1.2-Dichlorobenzene	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
1,3-Dichlorobenzene	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
1,4-Dichlorobenzene	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
Dichlorodifluoromethane	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
1,1-dichloroethane	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
1.2-Dichloroethane	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
1,1-dichloroethene	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
cis-1,2-Dichloroethene	< 0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
trans-1,2-Dichloroethene	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
Dichloromethane	0.18		0.10	mg/kg	20-DEC-19	11-JAN-20	R496900
1,2-Dichloropropane	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
1,3-Dichloropropane	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
2,2-Dichloropropane	<0.10		0.10	mg/kg	20-DEC-19	11-JAN-20	R496900
1,1-Dichloropropene	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
cis-1,3-Dichloropropene	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
trans-1,3-Dichloropropene	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
Ethylbenzene	<0.015		0.000	mg/kg	20-DEC-19	11-JAN-20	R496900
F1	<10		10	mg/kg	20-DEC-19	11-JAN-20	R496900
Hexachlorobutadiene	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
Hexane	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R496900
2-Hexanone (Methyl butyl ketone)	<0.50		0.50	mg/kg	20-DEC-19	11-JAN-20	R496900
Isopropylbenzene	<0.10		0.10	mg/kg	20-DEC-19	11-JAN-20	R496900
4-Isopropyltoluene	<0.10		0.10	mg/kg	20-DEC-19 20-DEC-19	11-JAN-20	R496900
MEK	<0.10		0.50	mg/kg	20-DEC-19	11-JAN-20	R496900

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2403425-6 TH19-11 @ 1.5M Sampled By: CLIENT on 20-DEC-19							
Matrix: SOIL							
VOC plus F1 by GCMS MIBK	<0.50		0.50	malka	20-DEC-19	11-JAN-20	D 4060007
MTBE	<0.50		0.50 0.20	mg/kg mg/kg	20-DEC-19 20-DEC-19	11-JAN-20 11-JAN-20	R4969007 R4969007
Styrene	<0.20		0.20	mg/kg	20-DEC-19 20-DEC-19	11-JAN-20	R4969007 R4969007
1,1,1,2-Tetrachloroethane	<0.050		0.050	mg/kg	20-DEC-19 20-DEC-19	11-JAN-20	R4969007
1,1,2,2-Tetrachloroethane	<0.050		0.050	mg/kg	20-DEC-19 20-DEC-19	11-JAN-20	R4969007
Tetrachloroethene	<0.050		0.050	mg/kg	20-DEC-19 20-DEC-19	11-JAN-20	R4969007
Toluene	<0.050		0.050	mg/kg	20-DEC-19 20-DEC-19	11-JAN-20	R4969007
1,2,3-Trichlorobenzene	<0.050		0.050	mg/kg	20 DEC-19	11-JAN-20	R4969007
1,2,4-Trichlorobenzene	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R4969007
1,1,1-Trichloroethane	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R4969007
1,1,2-Trichloroethane	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R4969007
Trichloroethene	<0.050		0.050	mg/kg	20 DEC-19	11-JAN-20	R4969007
Trichlorofluoromethane	<0.050		0.050	mg/kg	20 DEC 19 20-DEC-19	11-JAN-20	R4969007
1,2,3-Trichloropropane	<0.050		0.050	mg/kg	20 DEC-19	11-JAN-20	R4969007
1,2,4-Trimethylbenzene	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R4969007
1,3,5-Trimethylbenzene	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R4969007
Vinyl Chloride	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R4969007
M+P-Xylenes	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R4969007
o-Xylene	<0.050		0.050	mg/kg	20-DEC-19	11-JAN-20	R4969007
Surrogate: 1,4-Difluorobenzene (SS)	109.2		70-130	%	20-DEC-19	11-JAN-20	R4969007
Surrogate: 3,4-Dichlorotoluene (SS)	110.8		70-130	%	20-DEC-19	11-JAN-20	R4969007
Surrogate: 4-Bromofluorobenzene (SS)	97.7		70-130	%	20-DEC-19	11-JAN-20	R4969007

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

Test Method References: ALS Test Code Matrix Method Reference** **Test Description** BTEXS+F1-HSMS-WP EPA 8260C Soil BTX plus F1 by GCMS The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. Extractable Organic Halides (EOX) SEE SUBLET LAB REPORT EOX-MP Misc. The material is extracted with ethyl acetate then the extract is analyzed on the TOX (Total Organic Halides) instrument. F1-F4-CALC-WP Soil CCME Total Hydrocarbons CCME CWS-PHC, Pub #1310, Dec 2001-S Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC. In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons. In samples where BTEX and F1 were analyzed . F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1. In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3. Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range: 1. All extraction and analysis holding times were met. 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene. 3. Linearity of gasoline response within 15% throughout the calibration range. Unless otherwise gualified, the following guality control criteria have been met for the F2-F4 hydrocarbon ranges: 1. All extraction and analysis holding times were met. 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average. 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors. 4. Linearity of diesel or motor oil response within 15% throughout the calibration range. F2-F4-TMB-FID-WP Soil CCME Total Extractable Hydrocarbons CCME CWS-PHC, Pub #1310, Dec 2001 A soil or sediment sample is extracted with 1:1 hexane/acetone in a tumbler, followed by a silica gel clean up to facilitate separation of the hydrocarbons from other polar extractions. An aliquot of the solvent is analyzed using a gas chromatograph equipped with a flame -ionization detector. Metals in Soil by CRC ICPMS MET-200.2-CCMS-WP Soil EPA 200.2/6020B (mod) Soil/sediment is dried, disaggregated, and sieved (2 mm). Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS. Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including Al, Ba, Be, Cr, S, Sr, Ti, TI, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion. MOISTURE-WP Soil % Moisture CCME PHC in Soil - Tier 1 (mod) Moisture content in solid matrices is determined gravimetrically after drying to constant weight at 105°C. PAH, PANH-WP Soil Polyaromatic Hydrocarbons (PAHs) EPA SW 846/8270-GC/MS Samples are rotary extracted using a 1:1 mixture of acetone and dichloromethane. Extracts are concentrated and solvent exchanged to toluene. The toluene extract is analyzed by GCMS. PCB-ED PCBs EPA 3570/8082-GC-ECD Soil This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3500, 3620, 3630, 3660, 3665 & 8082, published by the United States Environmental Protection Agency (EPA). The procedure involves a solid-liquid extraction of a subsample of the sediment/soil using a mixture of hexane and acetone. Water is added to the extract and the resulting hexane extract undergoes one or more of the following clean-up procedures (if required): florisil clean-up, silica gel clean-up, sulphur clean-up and/or sulphuric acid clean-up. The final extract is analysed by capillary column gas chromatography with electron capture detection (GC/ECD). PSA-75UM-SIEVE-WP % Particles > 75um (Coarse/Fine) ASTM D422-63 Soil An air-dried sample is reduced to < 2 mm size and mixed with a dispersing agent (Calgon solution). The sample is washed through a 200 mesh (75 µm) sieve. The retained weight of sample is used to determine % sand fraction. VOC+F1-HSMS-WP VOC plus F1 by GCMS EPA 8260C Soil The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. XYLENES-SUM-CALC-Soil Sum of Xylene Isomer Concentrations CALCULATED RESULT WP

Total xylenes represents the sum of o-xylene and m&p-xylene.

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
** ALS test methods ma	y incorporate m	odifications from specifie	ed reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
MP	ALS ENVIRONMENTAL - MIDDLETOWN, PENNSYLVANIA, USA
ED	ALS ENVIRONMENTAL - EDMONTON, ALBERTA, CANADA
WP	ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA
Chain of Custody Numbers:	

-

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L2403425

Report Date: 21-JAN-20 Page 1 of 14

Client:	Wood Environment & Infrastructure Solutions (Winnipeg)
	440 Dovercourt Drive
	Winnipeg MB R3Y 1G4
Contact:	KEVIN BEECHINOR

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTEXS+F1-HSMS-	-WP	Soil							
Batch R4	4967626								
WG3255738-4 Benzene	DUP		L2403425-3 <0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	11-JAN-20
Toluene			<0.050	<0.050	RPD-NA	mg/kg	N/A	50	11-JAN-20
Ethyl benzene			<0.015	<0.015	RPD-NA	mg/kg	N/A	50	11-JAN-20
o-Xylene			<0.050	<0.050	RPD-NA	mg/kg	N/A	50	11-JAN-20
m+p-Xylenes			<0.050	<0.050	RPD-NA	mg/kg	N/A	50	11-JAN-20
F1 (C6-C10)			<10	<10	RPD-NA	mg/kg	N/A	50	11-JAN-20
WG3255738-2 Benzene	LCS			100.3		%		70-130	11-JAN-20
Toluene				92.2		%		70-130	11-JAN-20
Ethyl benzene				99.1		%		70-130	11-JAN-20
o-Xylene				104.0		%		70-130	11-JAN-20
m+p-Xylenes				107.1		%		70-130	11-JAN-20
WG3255738-3 F1 (C6-C10)	LCS			75.2		%		70-130	11-JAN-20
WG3255738-1	MB					70		70-100	11 0/11/20
Benzene				<0.0050		mg/kg		0.005	11-JAN-20
Toluene				<0.050		mg/kg		0.05	11-JAN-20
Ethyl benzene				<0.015		mg/kg		0.015	11-JAN-20
o-Xylene				<0.050		mg/kg		0.05	11-JAN-20
m+p-Xylenes				<0.050		mg/kg		0.05	11-JAN-20
F1 (C6-C10)				<10		mg/kg		10	11-JAN-20
Surrogate: 4-Br	romofluo	robenzene (SS)		84.3		%		70-130	11-JAN-20
Surrogate: 3,4-	Dichlorot	oluene (SS)		106.6		%		70-130	11-JAN-20
F2-F4-TMB-FID-W	Р	Soil							
Batch R4	1966649								
WG3256223-3	IRM		ALS PHC RM3						
F2 (C10-C16)				96.7		%		70-130	10-JAN-20
F3 (C16-C34)				99.0		%		70-130	10-JAN-20
F4 (C34-C50)				107.7		%		70-130	10-JAN-20
WG3256223-2 F2 (C10-C16)	LCS			98.7		%		70-130	10-JAN-20
F3 (C16-C34)				92.2		%		70-130	10-JAN-20
F4 (C34-C50)				101.1		%		70-130	10-JAN-20
WG3256223-1 F2 (C10-C16)	MB			<25		mg/kg		25	10-JAN-20

		Workorder	: L240342	25	Report Date: 2	1-JAN-20	Page	e 2 of ^r
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
2-F4-TMB-FID-WP	Soil							
Batch R4966649								
WG3256223-1 MB F3 (C16-C34)			<50		mg/kg		50	10-JAN-20
F4 (C34-C50)			<50		mg/kg		50	10-JAN-20
Surrogate: 2-Bromobenzo	otrifluoride		95.8		%		60-140	10-JAN-20
MET-200.2-CCMS-WP	Soil							
Batch R4968866								
WG3256934-4 CRM Aluminum (Al)		CANMET TI	L L-1 102.2		%		70-130	13-JAN-20
Antimony (Sb)			107.5		%		70-130	13-JAN-20
Arsenic (As)			107.3		%		70-130	13-JAN-20
Barium (Ba)			99.7		%		70-130	13-JAN-20
Beryllium (Be)			112.1		%		70-130	13-JAN-20
Boron (B)			4.4		mg/kg		0-8.2	13-JAN-20
Bismuth (Bi)			112.3		%		70-130	13-JAN-20
Cadmium (Cd)			101.7		%		70-130	13-JAN-20
Calcium (Ca)			94.6		%		70-130	13-JAN-20
Chromium (Cr)			94.1		%		70-130	13-JAN-20
Cobalt (Co)			98.4		%		70-130	13-JAN-20
Copper (Cu)			102.7		%		70-130	13-JAN-20
Iron (Fe)			97.6		%		70-130	13-JAN-20
Lead (Pb)			112.8		%		70-130	13-JAN-20
Lithium (Li)			108.3		%		70-130	13-JAN-20
Magnesium (Mg)			105.2		%		70-130	13-JAN-20
Manganese (Mn)			104.0		%		70-130	13-JAN-20
Molybdenum (Mo)			101.6		%		70-130	13-JAN-20
Nickel (Ni)			97.0		%		70-130	13-JAN-20
Phosphorus (P)			97.4		%		70-130	13-JAN-20
Potassium (K)			82.5		%		70-130	13-JAN-20
Selenium (Se)			0.32		mg/kg		0.12-0.52	13-JAN-20
Silver (Ag)			0.24		mg/kg		0.12-0.32	13-JAN-20
Sodium (Na)			84.1		%		70-130	13-JAN-20
Strontium (Sr)			95.1		%		70-130	13-JAN-20
Thallium (TI)			0.138		mg/kg		0.075-0.175	13-JAN-20
Tin (Sn)			0.8		mg/kg		0-3.1	13-JAN-20

		Workorder	: L240342	25	Report Date: 2	1-JAN-20	Pa	age 3 of 1
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WP	Soil							
Batch R4968866	6							
WG3256934-4 CRM		CANMET TI						
Tungsten (W)			0.16		mg/kg		0-0.66	13-JAN-20
Uranium (U)			112.9		%		70-130	13-JAN-20
Vanadium (V)			92.3		%		70-130	13-JAN-20
Zinc (Zn)			97.8		%		70-130	13-JAN-20
Zirconium (Zr)			0.7		mg/kg		0-1.8	13-JAN-20
WG3256934-2 LCS Aluminum (Al)			102.5		%		80-120	13-JAN-20
Antimony (Sb)			104.6		%		80-120	13-JAN-20
Arsenic (As)			102.1		%		80-120	13-JAN-20
Barium (Ba)			100.7		%		80-120	13-JAN-20
Beryllium (Be)			109.7		%		80-120	13-JAN-20
Boron (B)			111.1		%		80-120	13-JAN-20
Bismuth (Bi)			107.2		%		80-120	13-JAN-20
Cadmium (Cd)			103.2		%		80-120	13-JAN-20
Calcium (Ca)			103.2		%		80-120	13-JAN-20
Chromium (Cr)			104.9		%		80-120	13-JAN-20
Cobalt (Co)			103.3		%		80-120	13-JAN-20
Copper (Cu)			103.5		%		80-120	13-JAN-20
Iron (Fe)			94.2		%		80-120	13-JAN-20
Lead (Pb)			108.3		%		80-120	13-JAN-20
Lithium (Li)			112.5		%		80-120	13-JAN-20
Magnesium (Mg)			117.7		%		80-120	13-JAN-20
Manganese (Mn)			101.2		%		80-120	13-JAN-20
Molybdenum (Mo)			102.7		%		80-120	13-JAN-20
Nickel (Ni)			101.0		%		80-120	13-JAN-20
Phosphorus (P)			106.6		%		80-120	13-JAN-20
Potassium (K)			100.8		%		80-120	13-JAN-20
Selenium (Se)			113.0		%		80-120	13-JAN-20
Silver (Ag)			101.7		%		80-120	13-JAN-20
Sodium (Na)			106.0		%		80-120	13-JAN-20
Strontium (Sr)			102.9		%		80-120	13-JAN-20
Sulfur (S)			117.4		%		70-130	13-JAN-20
Thallium (TI)			105.1		%		80-120	13-JAN-20
Tin (Sn)			102.7		%		80-120	13-JAN-20

		Workorder	: L240342	25	Report Date: 2	1-JAN-20	Pa	age 4 of
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WP	Soil							
Batch R4968866	6							
WG3256934-2 LCS			07.5		0 (
Titanium (Ti)			97.5		%		80-120	13-JAN-20
Tungsten (W)			108.5		%		70-130	13-JAN-20
Uranium (U)			115.9		%		80-120	13-JAN-20
Vanadium (V)			103.2		%		80-120	13-JAN-20
Zinc (Zn)			102.6		%		80-120	13-JAN-20
Zirconium (Zr)			98.4		%		80-120	13-JAN-20
WG3256934-1 MB Aluminum (Al)			<50		mg/kg		50	13-JAN-20
Antimony (Sb)			<0.10		mg/kg		0.1	13-JAN-20
Arsenic (As)			<0.10		mg/kg		0.1	13-JAN-20
Barium (Ba)			<0.50		mg/kg		0.5	13-JAN-20
Beryllium (Be)			<0.10		mg/kg		0.1	13-JAN-20
Boron (B)			<5.0		mg/kg		5	13-JAN-20
Bismuth (Bi)			<0.20		mg/kg		0.2	13-JAN-20
Cadmium (Cd)			<0.020		mg/kg		0.02	13-JAN-20
Calcium (Ca)			<50		mg/kg		50	13-JAN-20
Chromium (Cr)			<0.50		mg/kg		0.5	13-JAN-20
Cobalt (Co)			<0.10		mg/kg		0.1	13-JAN-20
Copper (Cu)			<0.50		mg/kg		0.5	13-JAN-20
Iron (Fe)			<50		mg/kg		50	13-JAN-20
Lead (Pb)			<0.50		mg/kg		0.5	13-JAN-20
Lithium (Li)			<2.0		mg/kg		2	13-JAN-20
Magnesium (Mg)			<20		mg/kg		20	13-JAN-20
Manganese (Mn)			<1.0		mg/kg		1	13-JAN-20
Molybdenum (Mo)			<0.10		mg/kg		0.1	13-JAN-20
Nickel (Ni)			<0.50		mg/kg		0.5	13-JAN-20
Phosphorus (P)			<50		mg/kg		50	13-JAN-20
Potassium (K)			<100		mg/kg		100	13-JAN-20
Selenium (Se)			<0.20		mg/kg		0.2	13-JAN-20
Silver (Ag)			<0.10		mg/kg		0.1	13-JAN-20
Sodium (Na)			<50		mg/kg		50	13-JAN-20
Strontium (Sr)			<0.50		mg/kg		0.5	13-JAN-20
Sulfur (S)			<1000		mg/kg		1000	13-JAN-20
Thallium (TI)			<0.050		mg/kg		0.05	13-JAN-20

		Workorder:	L240342	5 Re	port Date: 2	21-JAN-20	Pa	age 5 of 1
Fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WP	Soil							
Batch R4968866								
WG3256934-1 MB								
Tin (Sn)			<2.0		mg/kg		2	13-JAN-20
Titanium (Ti)			<1.0		mg/kg		1	13-JAN-20
Tungsten (W)			<0.50		mg/kg		0.5	13-JAN-20
Uranium (U)			<0.050		mg/kg		0.05	13-JAN-20
Vanadium (V)			<0.20		mg/kg		0.2	13-JAN-20
Zinc (Zn)			<2.0		mg/kg		2	13-JAN-20
Zirconium (Zr)			<1.0		mg/kg		1	13-JAN-20
MOISTURE-WP	Soil							
Batch R4966151								
WG3255124-2 LCS Moisture			100.3		%		90-110	09-JAN-20
WG3255124-1 MB Moisture			<0.10		%		0.1	09-JAN-20
PAH,PANH-WP	Soil							
Batch R4967719								
WG3256667-3 DUP		L2403425-1						
1-Methyl Naphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	13-JAN-20
2-Methyl Naphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	13-JAN-20
Acenaphthene		<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	13-JAN-20
Acenaphthylene		<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	13-JAN-20
Acridine		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	13-JAN-20
Anthracene		<0.0040	<0.0040	RPD-NA	mg/kg	N/A	50	13-JAN-20
Benzo(a)anthracene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	13-JAN-20
Benzo(a)pyrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	13-JAN-20
Benzo(b&j)fluoranthene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	13-JAN-20
Benzo(g,h,i)perylene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	13-JAN-20
Benzo(k)fluoranthene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	13-JAN-20
Chrysene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	13-JAN-20
Dibenzo(a,h)anthracene		<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	13-JAN-20
Fluoranthene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	13-JAN-20
Fluorene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	13-JAN-20
Indeno(1,2,3-cd)pyrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	13-JAN-20
Naphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	13-JAN-20
Phenanthrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	13-JAN-20
Pyrene		<0.010	<0.010			1 1// 1		10 0/11 20

		Workorder:	L240342	5 Re	Report Date: 21-JA		Pa	Page 6 of 14	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
PAH,PANH-WP	Soil								
Batch R4967719									
WG3256667-3 DUP Quinoline		L2403425-1 <0.010	<0.010	RPD-NA	mg/kg	N/A	50	13-JAN-20	
WG3256667-4 IRM 1-Methyl Naphthalene		ALS PAH RM	115.6		%		65-130	13-JAN-20	
2-Methyl Naphthalene			122.1		%		65-130	13-JAN-20	
Acenaphthene			114.8		%		65-130	13-JAN-20	
Acenaphthylene			97.1		%		65-130	13-JAN-20	
Anthracene			101.7		%		65-130	13-JAN-20	
Benzo(a)anthracene			101.6		%		65-130	13-JAN-20	
Benzo(a)pyrene			74.1		%		65-130	13-JAN-20	
Benzo(b&j)fluoranthene			86.4		%		65-130	13-JAN-20	
Benzo(g,h,i)perylene			79.4		%		65-130	13-JAN-20	
Benzo(k)fluoranthene			91.7		%		65-130	13-JAN-20	
Chrysene			96.5		%		65-130	13-JAN-20	
Dibenzo(a,h)anthracene	9		93.9		%		65-130	13-JAN-20	
Fluoranthene			106.0		%		65-130	13-JAN-20	
Fluorene			103.6		%		65-130	13-JAN-20	
Indeno(1,2,3-cd)pyrene			75.6		%		65-130	13-JAN-20	
Naphthalene			127.8		%		65-130	13-JAN-20	
Phenanthrene			106.3		%		65-130	13-JAN-20	
Pyrene			108.4		%		65-130	13-JAN-20	
WG3256667-2 LCS 1-Methyl Naphthalene			118.1		%		60-130	13-JAN-20	
2-Methyl Naphthalene			111.7		%		60-130	13-JAN-20	
Acenaphthene			117.0		%		60-130	13-JAN-20	
Acenaphthylene			106.7		%		60-130	13-JAN-20	
Acridine			115.4		%		60-130	13-JAN-20	
Anthracene			110.4		%		60-130	13-JAN-20	
Benzo(a)anthracene			112.8		%		60-130	13-JAN-20	
Benzo(a)pyrene			106.7		%		60-130	13-JAN-20	
Benzo(b&j)fluoranthene			110.6		%		60-130	13-JAN-20	
Benzo(g,h,i)perylene			108.0		%		60-130	13-JAN-20	
Benzo(k)fluoranthene			114.5		%		60-130	13-JAN-20	
Chrysene			111.1		%		60-130	13-JAN-20	
Dibenzo(a,h)anthracene)		106.3		%		60-130	13-JAN-20	
Fluoranthene			112.7		%		60-130	13-JAN-20	

		Workorder			Report Date: 2	10/11/20	10	ige 7 of 1
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH,PANH-WP	Soil							
Batch R4967719								
WG3256667-2 LCS Fluorene			107.6		%		00.400	40, 1411, 00
Indeno(1,2,3-cd)pyrene			107.6		%		60-130	13-JAN-20
Naphthalene			102.0		%		60-130	13-JAN-20
Phenanthrene			108.9		%		50-130 60-130	13-JAN-20 13-JAN-20
Pyrene			115.4		%		60-130 60-130	13-JAN-20 13-JAN-20
Quinoline			107.3		%		60-130 60-130	13-JAN-20 13-JAN-20
			107.5		70		60-130	13-JAIN-20
WG3256667-1 MB 1-Methyl Naphthalene			<0.010		mg/kg		0.01	13-JAN-20
2-Methyl Naphthalene			<0.010		mg/kg		0.01	13-JAN-20
Acenaphthene			<0.0050		mg/kg		0.005	13-JAN-20
Acenaphthylene			<0.0050		mg/kg		0.005	13-JAN-20
Acridine			<0.010		mg/kg		0.01	13-JAN-20
Anthracene			<0.0040		mg/kg		0.004	13-JAN-20
Benzo(a)anthracene			<0.010		mg/kg		0.01	13-JAN-20
Benzo(a)pyrene			<0.010		mg/kg		0.01	13-JAN-20
Benzo(b&j)fluoranthene			<0.010		mg/kg		0.01	13-JAN-20
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	13-JAN-20
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	13-JAN-20
Chrysene			<0.010		mg/kg		0.01	13-JAN-20
Dibenzo(a,h)anthracene			<0.0050		mg/kg		0.005	13-JAN-20
Fluoranthene			<0.010		mg/kg		0.01	13-JAN-20
Fluorene			<0.010		mg/kg		0.01	13-JAN-20
Indeno(1,2,3-cd)pyrene			<0.010		mg/kg		0.01	13-JAN-20
Naphthalene			<0.010		mg/kg		0.01	13-JAN-20
Phenanthrene			<0.010		mg/kg		0.01	13-JAN-20
Pyrene			<0.010		mg/kg		0.01	13-JAN-20
Quinoline			<0.010		mg/kg		0.01	13-JAN-20
Surrogate: Acenaphthene	d10		101.2		%		60-130	13-JAN-20
Surrogate: Chrysene d12			105.4		%		60-130	13-JAN-20
Surrogate: Naphthalene d	8		105.8		%		50-130	13-JAN-20
Surrogate: Phenanthrene	d10		104.8		%		60-130	13-JAN-20

PCB-ED

Soil

		Workorder:	L240342	5 Re	port Date: 2	21-JAN-20	Pa	ge 8 of 1
ſest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PCB-ED	Soil							
Batch R4	970310							
WG3256620-3 Aroclor 1260	CRM	PCB_SOIL_C	CRM915-050 89.2		%		65-130	15-JAN-20
WG3256620-4 Aroclor 1016	DUP	L2403425-6 <0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JAN-20
Aroclor 1221		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JAN-20
Aroclor 1232		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JAN-20
Aroclor 1242		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JAN-20
Aroclor 1248		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JAN-20
Aroclor 1254		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JAN-20
Aroclor 1260		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JAN-20
Aroclor 1262		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JAN-20
Aroclor 1268		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	15-JAN-20
WG3256620-2 Aroclor 1268	LCS	LCS_A1268	98.8		%		65-130	15-JAN-20
WG3256620-1	МВ		-0.010		~~~// ~		0.04	
Aroclor 1016 Aroclor 1221			<0.010		mg/kg		0.01	15-JAN-20
			<0.010		mg/kg		0.01	15-JAN-20
Aroclor 1232			<0.010		mg/kg		0.01	15-JAN-20
Aroclor 1242			<0.010		mg/kg		0.01	15-JAN-20
Aroclor 1248			<0.010		mg/kg		0.01	15-JAN-20
Aroclor 1254 Aroclor 1260			<0.010		mg/kg		0.01	15-JAN-20
Aroclor 1260 Aroclor 1262			<0.010 <0.010		mg/kg		0.01	15-JAN-20
Aroclor 1262 Aroclor 1268					mg/kg		0.01	15-JAN-20
Surrogate: Deca	ablarabiabaavd		<0.010		mg/kg		0.01	15-JAN-20
-			96.8		%		65-130	15-JAN-20
WG3260576-1 % >75um	IRM	SRS-1704	68.1		%		65.7-75.7	16-JAN-20
WG3260576-1	973298 IRM	SRS-1704	68.1		%		65.7-75.7	
n R4 3255736-2	969007 LCS							
Acetone			117.7		%		70-130	10-JAN-20
Benzene			89.2		%		70-130	10-JAN-20
Bromobenzene			92.0		%		70-130	10-JAN-20

		Workorder	L240342	25 R	eport Date: 2	21-JAN-20	Pa	age 9 of ^r
lest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC+F1-HSMS-WP	Soil							
Batch R4969007								
WG3255736-2 LCS Bromochloromethane			05.6		0/		70.400	
Bromodichloromethane			95.6 91.5		% %		70-130	10-JAN-20
Bromodichioromethane			91.5 98.9		%		70-130	10-JAN-20
Bromomethane			96.9 113.7		%		70-130	10-JAN-20
n-Butylbenzene			86.3		%		60-140	10-JAN-20
							70-130	10-JAN-20
sec-Butylbenzene			90.9		%		70-130	10-JAN-20
tert-Butylbenzene			92.5		%		70-130	10-JAN-20
Carbon disulfide			101.7		%		70-130	10-JAN-20
Carbon Tetrachloride			80.2		%		70-130	10-JAN-20
Chlorobenzene			91.3		%		70-130	10-JAN-20
Chloroethane			99.5		%		60-140	10-JAN-20
Chloroform			87.8	5500	%		70-130	10-JAN-20
Chloromethane			185.8	RRQC	%		60-140	10-JAN-20
2-Chlorotoluene			96.5		%		70-130	10-JAN-20
4-Chlorotoluene			94.3		%		70-130	10-JAN-20
Dibromochloromethane			96.8		%		70-130	10-JAN-20
1,2-Dibromo-3-chloropro	pane		106.6		%		70-130	10-JAN-20
1,2-Dibromoethane			103.1		%		70-130	10-JAN-20
Dibromomethane			101.6		%		70-130	10-JAN-20
1,2-Dichlorobenzene			90.1		%		70-130	10-JAN-20
1,3-Dichlorobenzene			84.9		%		70-130	10-JAN-20
1,4-Dichlorobenzene			90.1		%		70-130	10-JAN-20
Dichlorodifluoromethane)		263.3	RRQC	%		60-140	10-JAN-20
1,1-dichloroethane			88.3		%		70-130	10-JAN-20
1,2-Dichloroethane			98.2		%		70-130	10-JAN-20
1,1-dichloroethene			87.2		%		70-130	10-JAN-20
cis-1,2-Dichloroethene			90.8		%		70-130	10-JAN-20
trans-1,2-Dichloroethene	e		85.8		%		70-130	10-JAN-20
Dichloromethane			94.7		%		60-140	10-JAN-20
1,2-Dichloropropane			87.0		%		70-130	10-JAN-20
1,3-Dichloropropane			101.0		%		70-130	10-JAN-20
2,2-Dichloropropane			92.4		%		70-130	10-JAN-20
1,1-Dichloropropene			84.0		%		70-130	10-JAN-20
cis-1,3-Dichloropropene			96.7		%		70-130	10-JAN-20

	Workorder:	L240342	25	Report Date: 2	21-JAN-20	Pa	age 10 of 1
Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Soil							
)7							
pene						70-130	10-JAN-20
						70-130	10-JAN-20
		76.6		%		70-130	10-JAN-20
		74.2		%		70-130	10-JAN-20
outyl ketone)		124.2		%		70-130	10-JAN-20
		92.3		%		70-130	10-JAN-20
		90.8		%		70-130	10-JAN-20
		121.3		%		70-130	10-JAN-20
		124.5		%		70-130	10-JAN-20
		91.4		%		70-130	10-JAN-20
		99.8		%		70-130	10-JAN-20
hane		89.6		%		70-130	10-JAN-20
hane		104.8		%		70-130	10-JAN-20
		76.7		%		70-130	10-JAN-20
		90.3		%		70-130	10-JAN-20
ne		91.4		%			10-JAN-20
ne		76.1		%			10-JAN-20
		85.3		%			10-JAN-20
		101.5					10-JAN-20
		82.7		%			10-JAN-20
ne		79.9					10-JAN-20
							10-JAN-20
							10-JAN-20
							10-JAN-20
			RPO				10-JAN-20
							10-JAN-20 10-JAN-20
		Matrix Reference Soil Soil Spene butyl ketone) hane hane hane hane	Matrix Reference Result Soil	Soil 07 5 pene 98.7 90.4 76.6 74.2 poutyl ketone) 124.2 90.8 121.3 124.5 91.4 99.8 hane 89.6 hane 104.8 r6.7 90.3 pol.4 101.5 scalar 101.5 scalar 101.5 scalar 102.6 ne 93.8 ne 93.0 ne 93.0 ne 93.0	Matrix Reference Result Qualifier Units Soil	Matrix Reference Result Qualifier Units RPD Soil 5	Matrix Reference Result Qualifier Units RPD Limit Soil 5 5 5 5 5 5 5 5 5 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 92.3 % 70-130 90.8 70-130 90.8 70-130 90.8 70-130 90.8 70-130 90.8 70-130 90.8 70-130 90.8 70-130 91.4 % 70-130 91.4 70-130 90.8 70-130 90.8 70-130 90.8 70-130 90.8 70-130 90.8 70-130 90.8 70-130 90.8 70-130 70-130 90.8 70-130 70-130 90.8 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130

COMMENTS: % Recovery for Dichlorodifluromethane, Chloromethane & Vinyl Chloride are hogher than our Data Quality OObjective (DQO). Sample results are not affected as results for these compounds are less than our Limit of Reporting (LOR) .CS

WG3255736-4 I	_(
---------------	----

F1	114.2	%	70-130	10-JAN-20
WG3255736-1 MB				
Acetone	<0.50	mg/kg	0.5	10-JAN-20
Benzene	<0.005) mg/kg	0.005	10-JAN-20
Bromobenzene	<0.10	mg/kg	0.1	10-JAN-20

		Workorder:	L240342	25	Report Date: 2	1-JAN-20	Р	age 11 of 1
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC+F1-HSMS-WP	Soil							
Batch R4969007								
WG3255736-1 MB			0.40					
Bromochloromethane Bromodichloromethane			<0.10		mg/kg		0.1	10-JAN-20
Bromodichloromethane			<0.050		mg/kg		0.05	10-JAN-20
Bromonethane			<0.050		mg/kg		0.05	10-JAN-20
			<0.050		mg/kg		0.05	10-JAN-20
n-Butylbenzene			<0.050		mg/kg		0.05	10-JAN-20
sec-Butylbenzene			<0.050		mg/kg		0.05	10-JAN-20
tert-Butylbenzene			<0.050		mg/kg		0.05	10-JAN-20
Carbon disulfide			<0.25		mg/kg		0.25	10-JAN-20
Carbon Tetrachloride			<0.050		mg/kg		0.05	10-JAN-20
Chlorobenzene			<0.050		mg/kg		0.05	10-JAN-20
Chloroethane			<0.050		mg/kg		0.05	10-JAN-20
Chloroform			<0.050		mg/kg		0.05	10-JAN-20
Chloromethane			<0.050		mg/kg		0.05	10-JAN-20
2-Chlorotoluene			<0.10		mg/kg		0.1	10-JAN-20
4-Chlorotoluene			<0.10		mg/kg		0.1	10-JAN-20
Dibromochloromethane			<0.050		mg/kg		0.05	10-JAN-20
1,2-Dibromo-3-chloroprop	bane		<0.050		mg/kg		0.05	10-JAN-20
1,2-Dibromoethane			<0.050		mg/kg		0.05	10-JAN-20
Dibromomethane			<0.050		mg/kg		0.05	10-JAN-20
1,2-Dichlorobenzene			<0.050		mg/kg		0.05	10-JAN-20
1,3-Dichlorobenzene			<0.050		mg/kg		0.05	10-JAN-20
1,4-Dichlorobenzene			<0.050		mg/kg		0.05	10-JAN-20
Dichlorodifluoromethane			<0.050		mg/kg		0.05	10-JAN-20
1,1-dichloroethane			<0.050		mg/kg		0.05	10-JAN-20
1,2-Dichloroethane			<0.050		mg/kg		0.05	10-JAN-20
1,1-dichloroethene			<0.050		mg/kg		0.05	10-JAN-20
cis-1,2-Dichloroethene			<0.050		mg/kg		0.05	10-JAN-20
trans-1,2-Dichloroethene			<0.050		mg/kg		0.05	10-JAN-20
Dichloromethane			<0.10		mg/kg		0.1	10-JAN-20
1,2-Dichloropropane			<0.050		mg/kg		0.05	10-JAN-20
1,3-Dichloropropane			<0.050		mg/kg		0.05	10-JAN-20
2,2-Dichloropropane			<0.10		mg/kg		0.1	10-JAN-20
1,1-Dichloropropene			<0.050		mg/kg		0.05	10-JAN-20
cis-1,3-Dichloropropene			<0.050		mg/kg		0.05	10-JAN-20

	Workorder: L2403	425	Report Date: 2	1-JAN-20	Pa	age 12 of 14
est Matrix	Reference Resul	t Qualifier	Units	RPD	Limit	Analyzed
OC+F1-HSMS-WP Soil						
Batch R4969007						
WG3255736-1 MB trans-1,3-Dichloropropene	<0.05	0	mg/kg		0.05	10 1411 20
Ethylbenzene	<0.03		mg/kg		0.05	10-JAN-20
F1	<10	5	mg/kg			10-JAN-20
Hexachlorobutadiene	<10	0			10	10-JAN-20
			mg/kg		0.05	10-JAN-20
Hexane	<0.05		mg/kg		0.05	10-JAN-20
2-Hexanone (Methyl butyl ketone)	<0.50		mg/kg		0.5	10-JAN-20
Isopropylbenzene	<0.10		mg/kg		0.1	10-JAN-20
4-Isopropyltoluene	<0.10		mg/kg		0.1	10-JAN-20
MEK	<0.50		mg/kg		0.5	10-JAN-20
MIBK	<0.50		mg/kg		0.5	10-JAN-20
MTBE	<0.20		mg/kg		0.2	10-JAN-20
Styrene	<0.05		mg/kg		0.05	10-JAN-20
1,1,1,2-Tetrachloroethane	<0.05		mg/kg		0.05	10-JAN-20
1,1,2,2-Tetrachloroethane	<0.05	0	mg/kg		0.05	10-JAN-20
Tetrachloroethene	<0.05	0	mg/kg		0.05	10-JAN-20
Toluene	<0.05	0	mg/kg		0.05	10-JAN-20
1,2,3-Trichlorobenzene	<0.05	0	mg/kg		0.05	10-JAN-20
1,2,4-Trichlorobenzene	<0.05	0	mg/kg		0.05	10-JAN-20
1,1,1-Trichloroethane	<0.05	0	mg/kg		0.05	10-JAN-20
1,1,2-Trichloroethane	<0.05	0	mg/kg		0.05	10-JAN-20
Trichloroethene	<0.05	0	mg/kg		0.05	10-JAN-20
Trichlorofluoromethane	<0.05	0	mg/kg		0.05	10-JAN-20
1,2,3-Trichloropropane	<0.05	0	mg/kg		0.05	10-JAN-20
1,2,4-Trimethylbenzene	<0.05	0	mg/kg		0.05	10-JAN-20
1,3,5-Trimethylbenzene	<0.05	0	mg/kg		0.05	10-JAN-20
Vinyl Chloride	<0.05	0	mg/kg		0.05	10-JAN-20
M+P-Xylenes	<0.05	0	mg/kg		0.05	10-JAN-20
o-Xylene	<0.05	0	mg/kg		0.05	10-JAN-20
Surrogate: 1,4-Difluorobenzene (SS)	96.4		%		70-130	10-JAN-20
Surrogate: 3,4-Dichlorotoluene (SS)						
	111.7		%		70-130	10-JAN-20

Workorder: L2403425

Report Date: 21-JAN-20

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

_	Qualifier	Description
	RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.
	RRQC	Refer to report remarks for information regarding this QC result.

Workorder: L2403425

Report Date: 21-JAN-20

Page 14 of 14

Hold Time Exceedances:

ALS Product Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
-							
% Moisture							
	1	16-DEC-19	09-JAN-20 12:00	14	24	days	EHTR
	2	16-DEC-19	09-JAN-20 12:00	14	24	days	EHTR
	3	16-DEC-19	09-JAN-20 12:00	14	24	days	EHTR
	4	16-DEC-19	09-JAN-20 12:00	14	24	days	EHTR
	5	16-DEC-19	09-JAN-20 12:00	14	24	days	EHTR
	6	20-DEC-19	09-JAN-20 12:00	14	20	days	EHTR
Aggregate Organics							
Extractable Organic Halide	s (EOX)						
	1	16-DEC-19	14-JAN-20 00:00	28	29	days	EHT
	2	16-DEC-19	14-JAN-20 00:00	28	29	days	EHT
	4	16-DEC-19	14-JAN-20 00:00	28	29	days	EHT
	5	16-DEC-19	14-JAN-20 00:00	28	29	days	EHT
Hydrocarbons							
CCME Total Extractable Hy	ydrocarbons						
	1	16-DEC-19	10-JAN-20 14:00	14	25	days	EHTR
	2	16-DEC-19	10-JAN-20 14:00	14	25	davs	EHTR
	3	16-DEC-19	10-JAN-20 14:00	14	25	davs	EHTR
	4	16-DEC-19	10-JAN-20 14:00	14	25	days	EHTR
	5	16-DEC-19	10-JAN-20 14:00	14	25	days	EHTR
	6	20-DEC-19	10-JAN-20 14:00	14	21	days	EHTR
Polycyclic Aromatic Hydroca	arbons						
Polyaromatic Hydrocarbons	s (PAHs)						
	1	16-DEC-19	09-JAN-20 00:00	14	24	days	EHTR
	2	16-DEC-19	09-JAN-20 00:00	14	24	days	EHTR
	4	16-DEC-19	09-JAN-20 00:00	14	24	days	EHTR
	5	16-DEC-19	09-JAN-20 00:00	14	24	days	EHTR
	6	20-DEC-19	09-JAN-20 00:00	14	20	days	EHTR
						-	

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry. EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2403425 were received on 08-JAN-20 12:45.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

January 14, 2020

Ms. Judy Dalmaijer ALS Environmental-Winnipeg MB Unit 12–1329 Niakwa Road East Winnipeg, MB, R2J 3T4

Certificate of Analysis

Project Name:	тох	Workorder:	3079655
Purchase Order:		Workorder ID:	L2403425

Dear Ms. Dalmaijer:

Enclosed are the analytical results for samples received by the laboratory on Thursday, January 9, 2020.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact Ms. Sarah S Leung (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Environmental.

ALS Spring City: 10 Riverside Drive, Spring City, PA 19475 610-948-4903

CC: Ms. Bea Ryback , Mr. Craig Riddell

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Ms. Sarah S Leung Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3079655 L2403425

Sample ID	Matrix	Date Collected	Date Received	Collected By
L240345-1	Solid	12/16/2019 00:00	1/9/2020 10:27	Collected by Client
L240345-2	Solid	12/16/2019 00:00	1/9/2020 10:27	Collected by Client
L240345-4	Solid	12/16/2019 00:00	1/9/2020 10:27	Collected by Client
L240345-5	Solid	12/16/2019 00:00	1/9/2020 10:27	Collected by Client
	L240345-1 L240345-2 L240345-4	L240345-1 Solid L240345-2 Solid L240345-4 Solid	L240345-1 Solid 12/16/2019 00:00 L240345-2 Solid 12/16/2019 00:00 L240345-4 Solid 12/16/2019 00:00	L240345-1 Solid 12/16/2019 00:00 1/9/2020 10:27 L240345-2 Solid 12/16/2019 00:00 1/9/2020 10:27 L240345-4 Solid 12/16/2019 00:00 1/9/2020 10:27

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3079655 L2403425

Notes

- -- Samples collected by ALS personnel are done so in accordance with the procedures set forth in the ALS Field Sampling Plan (20 Field Services Sampling Plan).
- -- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- -- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- -- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- -- The Chain of Custody document is included as part of this report.
- -- All Library Search analytes should be regarded as tentative identifications based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.
- -- Parameters identified as "analyze immediately" require analysis within 15 minutes of collection. Any "analyze immediately" parameters not listed under the header "Field Parameters" are preformed in the laboratory and are therefore analyzed out of hold time.
- -- Method references listed on this report beginning with the prefix "S" followed by a method number (such as S2310B-97)
- refer to methods from "Standard Methods for the Examination of Water and Wastewater".
- -- For microbiological analyses, the "Prepared" value is the date/time into the incubator and the "Analyzed" value is the date/time out the incubator.
- -- An Analysis-Prep Method Cross Reference Table is included after Analytical Results & Qualifiers section in this report.

Standard Acronyms/Flags

- J Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte
- U Indicates that the analyte was Not Detected (ND)
- N Indicates presumptive evidence of the presence of a compound
- MDL Method Detection Limit
- PQL Practical Quantitation Limit
- RDL Reporting Detection Limit
- ND Not Detected indicates that the analyte was Not Detected at the RDL
- Cntr Analysis was performed using this container
- RegLmt Regulatory Limit
- LCS Laboratory Control Sample
- MS Matrix Spike
- MSD Matrix Spike Duplicate
- DUP Sample Duplicate
- %Rec Percent Recovery
- RPD Relative Percent Difference
- LOD DoD Limit of Detection
- LOQ DoD Limit of Quantitation
- DL DoD Detection Limit
- I Indicates reported value is greater than or equal to the Method Detection Limit (MDL) but less than the Report Detection Limit (RDL)
- (S) Surrogate Compound
- NC Not Calculated
- * Result outside of QC limits

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3079655 L2403425

Lab ID: 30796550 Sample ID: L240345-	•••				Date Collected: Date Received:			Matrix: S	Solid		
Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	
WET CHEMISTRY											
Halogen, Total Organic (TOX)	ND		mg/kg	6.6	SW846 9023			1/14/20 12:06	PAG	А	
Moisture	27.6		%	0.1	S2540G-11			1/10/20 09:47	AXD		
Total Solids	72.4	1	%	0.1	S2540G-11			1/10/20 09:47	AXD		

An \mathcal{S}

Ms. Sarah S Leung Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3079655 L2403425

Lab ID: Sample ID:	3079655002 L240345-2					Date Collected: Date Received:			Matrix: S	Solid	
Parameters		Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
WET CHEMIS	STRY										
Halogen, Tota (TOX)	l Organic	ND		mg/kg	7.1	SW846 9023			1/14/20 12:16	PAG	А
Moisture		31.8		%	0.1	S2540G-11			1/10/20 09:47	AXD	
Total Solids		68.2	1	%	0.1	S2540G-11			1/10/20 09:47	AXD	

An \mathcal{S}

Ms. Sarah S Leung Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3079655 L2403425

Lab ID: 3079655003 Sample ID: L240345-4					Date Collected: Date Received:			Matrix: S	olid	
Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
Halogen, Total Organic (TOX)	7.1		mg/kg	6.4	SW846 9023			1/14/20 12:35	PAG	A
Moisture	28.8		%	0.1	S2540G-11			1/10/20 09:47	AXD	
Total Solids	71.2	1	%	0.1	S2540G-11			1/10/20 09:47	AXD	

An \mathcal{S}

Ms. Sarah S Leung Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3079655 L2403425

Lab ID: 3079655004 Sample ID: L240345-5					Date Collected: Date Received:			Matrix: S	olid	
Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
Halogen, Total Organic (TOX)	ND		mg/kg	6.5	SW846 9023			1/14/20 12:48	PAG	А
Moisture	25.7		%	0.1	S2540G-11			1/10/20 09:47	AXD	
Total Solids	74.3	1	%	0.1	S2540G-11			1/10/20 09:47	AXD	

An \mathcal{S}

Ms. Sarah S Leung Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3079655 L2403425

PARAMETER QUALIFIERS

Lab ID	#	Sample ID	Analytical Method	Analyte	
3079655001	1	L240345-1	S2540G-11	Total Solids	
Analyte was analyz	zed past	t the 7 day holding time.			
3079655002	1	L240345-2	S2540G-11	Total Solids	
Analyte was analyz	zed past	t the 7 day holding time.			
3079655003	1	L240345-4	S2540G-11	Total Solids	
Analyte was analyz	zed past	t the 7 day holding time.			
3079655004	1	L240345-5	S2540G-11	Total Solids	
Analyte was analyz	zed pas	t the 7 day holding time.			

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYSIS - PREP METHOD CROSS REFERENCE TABLE

Workorder: 3079655 L2403425

Lab ID	Sample ID	Analysis Method	Prep Method
3079655001	L240345-1	S2540G-11	
3079655001	L240345-1	SW846 9023	
3079655002	L240345-2	S2540G-11	
3079655002	L240345-2	SW846 9023	
3079655003	L240345-4	S2540G-11	
3079655003	L240345-4	SW846 9023	
3079655004	L240345-5	S2540G-11	
3079655004	L240345-5	SW846 9023	

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Workorder: 3079655 L2403425

QC Batch: WETC/232971

Analysis Method: S2540G-11

QC Batch Method: S2540G-11

Associated Lab Samples: 3079655001, 3079655002, 3079655003, 3079655004

SAMPLE DUPLICATE: 3071456 ORIGINAL: 3079494001

Parameter	Original Result	Units	DUP Result	RPD	Max RPD	
Moisture	78.5185	%	78.6246	.14	10	
Total Solids	21.4814	%	21.3753	.5	5	

SAMPLE DUPLICATE: 3071457 ORIGINAL: 3079460003

	Original Result		DUP Result	RPD	Max RPD
Parameter	Result	Units	Result	RED	RED
Moisture	8.4651	%	7.7261	9.13	10
Total Solids	91.5348	%	92.2738	.8	5

SAMPLE DUPLICATE: 3071458 ORIGINAL: 3079655001

Parameter	Original Result	Units	DUP Result	RPD	Max RPD	
Moisture	27.647	%	27.4878	.58	10	
Total Solids	72.3529	%	72.5121	.22	5	

SAMPLE DUPLICATE: 3071459 ORIGINAL: 3079734005

Parameter	Original Result	Units	DUP Result	RPD	Max RPD
Moisture	99.7414	%	99.732	.009	10
Total Solids	.2585	%	.2679	3.57	5

SAMPLE DUPLICATE: 3071460 ORIGINAL: 3079766007

Parameter	Original Result	Units	DUP Result	RPD	Max RPD
Moisture	2.0018	%	2.1259	6.01	10
Total Solids	97.9981	%	97.874	.13	5

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Workorder: 3079655 L2403425

SAMPLE DUPLICATE: 3071461	ORIGINAL	.: 3078769	026		
Parameter	Original Result	Units	DUP Result	RPD	Max RPD
Moisture	22.4344	%	22.3398	.42	10
Total Solids	77.5655	%	77.6601	.12	5

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

QC Batch:WETC/23QC Batch Method:SW846 9Associated Lab Samples:30	0023	79655002		a lysis Meth , 30796550		SW846 902	3				
METHOD BLANK: 3072995											
Parameter	Blank Result	Units	Reporting Limit								
Halogen, Total Organic (TOX)	ND	mg/kg	5.0								
LABORATORY CONTROL SAM	MPLE: 307299	6									
Parameter	LCS % Rec	Units	Spike Conc.	LCS Result	% Rec Limit						
Halogen, Total Organic (TOX)	104	mg/kg	500	521	90 - 110						
LABORATORY CONTROL SAM	MPLE: 307299	7	Spike	LCS	% Rec						
Parameter	Rec	Units	Conc.	Result	Limit						
Halogen, Total Organic (TOX)	104	mg/kg	500	521	90 - 110						
MATRIX SPIKE: 3073268 DL ****NOTE - The Original Result	JPLICATE: 30		ORIGINAL: 30			of calculatio	a Matrix Sr	iko			
percent recoveries. This result							ig matrix op	JIKE .			
Parameter	Original Result	Units	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	
Halogen, Total Organic (TOX)	2.895	mg/kg	483	493.77	506.96	102	104	80 - 120	2.64	20	
METHOD BLANK: 3072999											
Parameter	Blank Result	Units	Reporting Limit								
	ND		5.0								

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Workorder: 3079655 L2403425

METHOD BLANK: 3073001			
Parameter	Blank Result	Units	Reporting Limit
Halogen, Total Organic (TOX)	ND	mg/kg	5.0

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 3079655 L2403425

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
3079655001	L240345-1			S2540G-11	WETC/232971
3079655002	L240345-2			S2540G-11	WETC/232971
3079655003	L240345-4			S2540G-11	WETC/232971
3079655004	L240345-5			S2540G-11	WETC/232971
3079655001	L240345-1			SW846 9023	WETC/233109
3079655002	L240345-2			SW846 9023	WETC/233109
3079655003	L240345-4			SW846 9023	WETC/233109
3079655004	L240345-5			SW846 9023	WETC/233109

ALS Environmental Laboratory Locations Across North America

ALS) Environmen	tal a	· · · ·	
	Subcontract Request	Form	
Subcontract To:			
ALS ENVIRONMENTAL - MIDDL 34 DOGWOOD LANE MIDDLETOWN,PENNSYLVANIA 17057	ETOWN, PENNSYLVANIA, US.	A C	
	report and invoice: PO# <u>L2403</u> be provided with your final results.	5.5.5	
Please see enclosed <u>4</u> sam	ple(s) in <u>4</u> Container(s)	, •	
SAMPLE NUMBER ANALYTI	CAL REQUIRED	DATE SAMPLED DUE DATE	Priority Flag
L2403425-1 TH19-01 @ 0.8M Extractabl	e Organic Halides (EOX) (EOX-MP 14)	12/ 16/ 2019 1/24/2020	
L2403425-2 TH19-05 @ 0.8M Extractabl	e Organic Halídes (EOX) (EOX-MP 14)	12/ 16/ 2019	
L2403425-4 TH19-09 @ 0.8M	e Organic Halides (EOX) (EOX-MP 14)	127 16/ 2019 1/24/2020	
L2403425-5 TH19-06 @ 0.8M : Extractabl	e Organic Halides (EOX) (EOX-MP 14)	12/ 16/ ³ 2019 37 1/24/2020	
Subcontract Info Contact: Analysis and reporting info contact:	Judy Dalmaijer (204) 255-9749 Judy Dalmaijer 12-1329 NIAKWA ROAD E WINNIPEG,MB R2J3T4		
	Phone: (204) 255-9749	Emall: Judy.Dalmaijer@als	global.com
Please email confirmation of received By:	Date Shipped:	alsglobal.com	NB
Received By:	Date Received:	119/5	020
Verified By:	Date Verified:	<u> </u>	00
Sample Integrity Issues:	Temperature:		- 7

L2403425

WINNIPEG

1

United States Department of Agriculture

> United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection & Quarantine 4700 River Road Riverdale, MD 20737

Permit to Receive Soil Regulated by 7 CFR 330

This permit was generated electronically via the ePermits system. P330-18-00175 PERMIT NUMBER: PERMITTEE NAME: Susan Magness APPLICATION P525-181207-001 ALS Environmental-Middletown COMPANY: NUMBER: DATE ISSUED: 06/15/2018 301 Fulling Mill Road RECEIVING Middletown, PA 17057 ADDRESS: MAILING ADDRESS: 301 Fulling Mill Road Middletown, PA 17057 12/11/2018 DATE AMENDED: (717) 944-5541 PHONE: 06/15/2021 EXPIRES: FAX: PORTS OF ARRIVAL/PLANT INSPECTION STATIONS: AK, Anchorage; AL, Huntsville; AL, Mobile; AZ, Douglas; AZ, Lukeville; AZ, Naco; AZ, Nogales; AZ, Phoenix; AZ, San Luis; AZ, Tucson; CA, Calexico; CA, El Segundo; CA, Fresno; CA, Long Beach; CA, Oakland; CA, Ontario; CA, Otay Mesa; CA, Port Hueneme; CA,

Sacramento; CA, San Diego; CA, San Francisco; CA, San Jose; CA, San Ysidro; CA, Tecate; CO, Denver; CT, Hartford; CT, New Haven; DE, Dover; DE, Wilmington; FL, Ft. Lauderdale; FL, Ft. Myers; FL, Ft. Pierce; FL, Jacksonville; FL, Key West; FL, Miami; FL, Miami (Cargo, DHL, Fed Ex, UPS, etc.); FL, Orlando; FL, Pensacola; FL, Port Canaveral; FL, Port Everglades; FL, Sanford; FL, Tampa; FL, West Palm Beach; GA, Atlanta; GA, Savannah; GU, Agana; HI, Hilo; HI, Honolulu; HI, Kahului; HI, Kailua-Kona; HI, Lihue; ID, Eastport; IL, Chicago; IN, Indianapolis; KY, Louisville; MA, South Boston; MD, Baltimore; MD, Beltsville; ME, Bangor; ME, Calais; ME, Houlton; ME, Portland; MI, Detroit; MI, Port Huron; MI, Romulus; MI, Sault Saint Marie; MN, Duluth; MN, Grand Portage; MN, International Falls; MN, Minneapolis; MO, Kansas City; MO, St. Louis; MP, Commonwealth of the Northern Mariana Islands: MS, Gulfport; MS, Port Bienville; MT, Raymond; MT, Roosville; MT, Sweetgrass; NC, Raleigh; NC, Wilmington; ND, Dunseith; ND, Pembina; ND, Portal; NJ, Linden; NM, Albuquerque; NM, Columbus; NM, SantaTeresa; NV, Las Vegas; NY, Albany; NY, Alexandria Bay; NY, Brooklyn; NY, Buffalo; NY, Champlain, Rouses Point; NY, Jamaica; NY, Newburgh; OH, Ashtabula; OH, Cincinnati; OH, Cleveland; OH, Columbus; OH, Toledo; OH, Wilmington; OK, Oklahoma City; OR, Portland; PA, Allentown; PA, Harrisburg; PA, Philadelphia; PA, Pittsburgh; PA, Scranton; PR, Aguadilla; PR, Carolina; PR, Fajardo; PR, Mayaguez; PR, Ponce; RI, Warwick/Providence; SC, Charleston; TN, Memphis; TN, Nashville; TX, Austin; TX, Brownsville; TX, Corpus Christi; TX, Dallas; TX, Del Rio; TX. Eagle Pass; TX, El Paso; TX, Fabens; TX, Falcon; TX, Fort Hancock; TX, Freeport; TX, Galveston; TX, Hidalgo; TX, Humble; TX, Laredo; TX, Los Indios; TX, Pharr; TX, Port Arthur; TX, Presidio; TX, Progresso; TX, Rio Grande City; TX, Roma; TX, San Antonio; TX, Victoria; UT, Salt Lake City; VA, Dulles; VA, Norfolk; VI, St. Croix; VI, St. Thomas; VT, Berlin; WA, Blaine; WA, Oroville; WA, Port Angeles; WA, SeaTac; WA, Sumas; WI, Green Bay; WI, Milwaukee HAND CARRY: Yes

Under the conditions specified, this permit authorizes the following:

Quantity of Soil per Shipment and Treatment

3 lbs or less: Sterilization will interfere with intended use - Your facility MUST be inspected and approved to receive this soil

SPECIAL INSTRUCTIONS TO INSPECTORS

	Permit Number P330-16-00175
THIS PERMIT HAS BEEN APPROVED ELECTRONICALLY BY THE FOLLOWING PPQ HEADQUARTER OFFICIAL VIA EPERMITS.	DATE
Food	12/11/2018
Gibbs Smith	12/11/2018

WARNING: Any alteration, forgery or unauthorized use of this Federal Form is subject to civil penalties of up to \$250,000 (7 U.S.C.s 7734(b)) or punishable by a fine of not more than \$10,000, or imprisonment of not more than \$ years, or both (18 U.S.C.s 1001)

I

Page 1 of 16

PERMIT CONDITIONS

CHEMICAL/PHYSICAL ANALYSIS IMPORTATION

USDA-APHIS issues this permit to Susan Magness with ALS Environmental-Middletown in Middletown, PA. The permit authorizes the importation of soil from all foreign sources (except countries with sanctions or embargoes by U.S. State Department) only for chemical/physical analysis in a controlled laboratory environment at the named facility on the permit.

HAND-CARRY

This permit also authorizes Susan Magness to hand carry the regulated soil per hand carry conditions stipulated below.

1. If an accidental release into the environment occurs, notification must be made within one business day to APHIS, PPQ, 4700 River Rd., unit 133; Riverdale, MD 20737; 866-524-5421. A written report of the incident must be submitted identifying: (a) the name of the permit holder (responsible person), (b) the permit number, (c) the country or State of origin of the soil, (d) the nature of the release, and (e) measures already taken to contain, reduce or limit the effects of the accidentally released soil. Any plans prepared to contain, reduce or limit the effects of the accidentally released soil may be submitted as developed.

2.

- This permit is issued by the United States Department of Agriculture's Animal and Plant Health Inspection Service (APHIS). It conveys APHIS regulations and requirements for the material(s) listed on this permit. It does not reduce or eliminate your legal duty and ... responsibility to comply with all other applicable Federal and State regulatory requirements.
- The permit number or a copy of the permit must accompany the shipment.
- You must be an individual at least 18 years old, or legal entity such as partnership, corporation, association, or joint venture.
- You are legally responsible for complying with all permit requirements and permit conditions.
- The regulated material and shipping container(s) are subject to inspection by officials of Custom and Border Protection (CBP) and APHIS. CBP or APHIS officials may require the shipment to be treated, seized, re-exported, or destroyed (in part or whole). You will be responsible for expenses.
- . If you violate any applicable laws associated with this permit, you may face substantial

	Permit Number P330-18-0	00175
THIS PERMIT HAS BEEN APPROVED ELECTRONICALLY BY THE FOLLOWING PPQ HEADQUARTER OFFICIAL VIA EPERMITS.	DATE	
Ecol		
Gibbs Smith	12/11/2018	, ŝ

WARNING. Any alteration, forgety or unauthorized use of this Federal Form is subject to civil penalties of up to \$250,000 (7 U.S.C.s 7734(b)) or punishable by a fine of not more than \$30,000, or imprisonment of not more than \$ years, or both (18 U.S.C.s 1001)

Page 3 of 16

United States Department of Agriculture

10. Further distribution of soil is not allowed without a permit from the receiving lab. While in storage, all soil must be kept locked (e.g. in freezer, cabinet) in the approved lab with access limited to authorized personnel or they will be in a restricted access building that requires a key card entry and access is restricted to authorized personnel only; or it must be in locked room restricted to authorized personnel only.

11. The soil must be handled as quarantined material until sterilized. This will include keeping the soil enclosed in containers when not in use and labeling all containers and/or storage areas:

12. All packing material, media, substrate, and shipping containers must be sterilized or destroyed as approved and prescribed by the permit conditions after removing the soil.

13. All unconsumed soil, containers and effluent must be autoclaved, incinerated or properly sterilized by the permittee at the conclusion of the project as approved and prescribed by the permit conditions.

 Any water residues (effluent) from the processing of soil samples must be treated by an approved sterilization procedure such as hydroclave or autoclave.

15. All soil residues must be dry-heat treated, incinerated, hydroclaved or autoclaved or any other procedure approved by the Deputy Administrator.

Dry Heat Treatment: use one of the following schedules:

110- 120.5 degrees C (230-249 F) for 16 hours 121-154 degrees C (250-309 F) for 2 hours 154.4 - 192.5 degrees C (310-379 F) for 30 minutes 193-220 degrees C (380-429 F) for 4 minutes 221-232 degrees C (430-450) for 2 minutes

Time starts when the entire sample reaches the required temperature, and a suitable temperature probe or currently calibrated thermometer must be used for verification.

Autoclaving Waste

a. Waste must be autoclaved at 121 degrees Centigrade (250 degrees Fahrenheit) for a minimum of 30 minutes.

b. Autoclave tape or other indicators must be placed on each load prior to treatment. The autoclave tape or other indicator on each container must be checked to verify color change before disposal.

c. The autoclave must be professionally calibrated annually and a written record must be maintained.

	Permit Number P330-18-00175
THIS PERMIT HAS BEEN APPROVED ELECTRONICALLY BY THE FOLLOWING PPQ HEADQUARTER OFFICIAL VIA EPERMITS.	DATE
Ecol	
Gibbs Smith	12/11/2018

WARNING: Any afteration, forgory or unauthorized use of this Federal Form is subject to civil penalties of up to \$250,000 (7 U.S.C.s 7734(b)) or punishable by a fine of not more than \$10,000, or imprisonment of not more than \$ years, or both (18 U.S.C.s 1001)

Page 5 of 16

- 17. The permit holder must:
 - maintain a valid PPQ 330 permit so long as any portion of the regulated soil remains untreated,
 - not assign or transfer this permit to other persons without prior APHIS PPQ authorization,
 - maintain an official permanent work assignment, residence, or affiliation at the address on this permit,
 - notify the Pest Permit Staff as soon as possible of any change in the permit holder's work assignment, residence, or affiliation,
 - notify the Pest Permit Staff of the receipt of unauthorized and/or misdirected shipments of regulated soil,
 - adequately mitigate environmental impacts resulting from unauthorized release of the regulated soil,
 - notify the Pest Permit Staff if the facility is damaged/destroyed or if you wish to decommission the facility,
 - devitalize/sterilize all regulated soil prior to departure from the organization unless other arrangements are confirmed by the Pest Permit Staff.

Notifications to the Pest Permit Staff must be made via 866-524-5421 or pest.permits@aphis.usda.gov within one business day of the event triggering a notification.

18. Upon issuance of this permit (i.e., a signed PPQ 330), you will need to request the PPQ Form 550 Black/White labels at least 5 days in advance of shipping date. If you applied online using ePermits, you may request the labels using the My Shipments/Labels feature. Otherwise, send your request to BlackWhiteGreenYellowlabelrequest@aphis.usda.gov. All email requests must come from the permit holder or appointee, if requested by the appointee the permit holder must be Ccýd on all requests. Specify the approved port as listed on the permit and the total number of labels needed in multiples of four. You may request additional labels the same way. We will send you the labels by email as a pdf.

	Permit Number P330-18-00175
THIS PERMIT HAS BEEN APPROVED ELECTRONICALLY BY THE FOLLOWING PPQ HEADQUARTER OFFICIAL VIA EPERMITS.	DATE
Food	
Gibbs Smith	12/11/2018

WARNING: Any alteration, forgery or unauthorized use of this Federal Form is subject to civil penaltics of up to \$250,000 (7 U.S.C.s 7734(b)) or punishable by a fine of not more than \$10,000, or imprisonment of not more than \$ years, or both {18 U.S.C.s 1001}

Page 7 of 16

23.

- This permit is issued by the United States Department of Agriculture's Animal and Plant Health Inspection Service (APHIS). It conveys APHIS regulations and requirements for the material(s) listed on this permit. It does not reduce or eliminate your legal duty and responsibility to comply with all other applicable Federal and State regulatory requirements.
- . The permit number or a copy of the permit must accompany the shipment.
- You must be an individual at least 18 years old, or legal entity such as partnership, corporation, association, or joint venture.
- You are legally responsible for complying with all permit requirements and permit conditions.
- The regulated material and shipping container(s) are subject to inspection by officials of Custom and Border Protection (CBP) and APHIS. CBP or APHIS officials may require the shipment to be treated, seized, re-exported, or destroyed (in part or whole). You will be responsible for expenses.
- If you violate any applicable laws associated with this permit, you may face substantial civil or criminal penalties. We may cancel all current permits and deny future permit applications.
- Without prior notice and during reasonable hours, authorized Federal and State Regulators must be allowed to inspect the conditions associated with the regulated materials/organisms authorized under this permit.

24. All solid wood packing material (SWPM) accompanying the shipment must be in compliance with ISPM 15 treatment regulations and IPPC stamp requirements and enforcement. Noncompliant shipments will be treated, re-exported or destroyed at the consignee's expense.

25. All operations must be consistent with information submitted in association with the above listed APHIS-PPQ inspected facility and subject to the conditions below.

26. Soil must be shipped in a securely closed, watertight container (primary container, test tube, vial, etc.) which must be enclosed in a second, durable watertight container (secondary container).

	Permit Number P330-18-00175
THIS PERMIT HAS BEEN APPROVED ELECTRONICALLY BY THE FOLLOWING PPQ HEADQUARTER OFFICIAL VIA EPERMITS.	DATE
Ford	
Gibbs Smith	12/11/2018

WARNING: Any alternation, forgery or unauthorized use of this Federal Form is subject to civil penalties of up to \$250,000 (7 U.S.C.s 7734(b)) or punishable by a fine of not more than \$10,000, or imprisonment of not more than \$ years, or both (18 U.S.C.s 1001)

Page 9 of 16

36. All soil residues must be dry-heat treated, incinerated, hydroclaved or autoclaved or any other procedure approved by the Deputy Administrator.

Dry Heat Treatment: use one of the following schedules:

110- 120.5 degrees C (230-249 F) for 16 hours 121-154 degrees C (250-309 F) for 2 hours 154.4 - 192.5 degrees C (310-379 F) for 30 minutes 193-220 degrees C (380-429 F) for 4 minutes 221-232 degrees C (430-450) for 2 minutes

Time starts when the entire sample reaches the required temperature, and a suitable temperature probe or currently calibrated thermometer must be used for verification.

Autoclaving Waste

a. Waste must be autoclaved at 121 degrees Centigrade (250 degrees Fahrenheit) for a minimum of 30 minutes.

b. Autoclave tape or other indicators must be placed on each load prior to treatment. The autoclave tape or other indicator on each container must be checked to verify color change before disposal.

c. The autoclave must be professionally calibrated annually and a written record must be maintained.

d. Every 3 months, you must use a commercially available biological indicator kit that uses bacterial spores (e.g. Geobacillus species) that are rendered unviable at 121 degrees C. You must follow the manufacturerýs instructions. If any growth is observed, you must have the autoclave serviced and retested.

Incineration:

With the exception of metal and glass containers, all regulated and associated material must be reduced completely to ash at the end of the incineration cycle.

Hydroclave soil and other material using the following conditions:

a. Soil must be hydroclaved at 121 degrees Centigrade (250 degrees Fahrenheit) for a minimum of 30 minutes, or at 132 degrees Centigrade (267 degrees Fahrenheit) for a minimum of 15 minutes.

	Permit Number P330-18-00175
THIS PERMIT HAS BEEN APPROVED ELECTRONICALLY BY THE FOLLOWING PPQ HEADQUARTER OFFICIAL VIA EPERMITS.	DATE
Food	
Gibbs Smith	12/11/2018

WARNING: Any alteration, forgery or unauthorized use of this Federal Form is subject to civil penalties of up to \$250,000 (7 U.S.C.s 7734(b)) or punishable by a fine of not more than \$10,000, or imprisonment of not more than \$ years, or both (18 U.S.C.s 1001)

Page 11 of 16

United States Department of griculture

Enclose the following supplemental information in each shipment:

- Permittee Name
- Permit number
- Label number

Underlying packaging/wrapping must carry the address, billing, and any other information required to direct the shipment to its final destination (i.e., the permit holder's address; N.B., USDA APHIS does not defray any additional shipping costs incurred for transiting the shipment through an inspection station as the initial US destination).

39. HAND CARRY PART 1 OF 2

The following conditions apply to all authorized hand carry events. Note that no PPQ-issued labels are required for hand carry events.

a) At least 20 days prior to each hand carry event, the permit holder or designee must notify the PPQ Permit Compliance Officer by email at PPQSoilHandCarryRequest@aphis.usda.gov. In the subject line of the email, write "Notification of Hand Carry - Permit # xxxx":

The email must contain the following information:

- hand carrier's name and permit number
- anticipated first port of entry into the United States
- · date and time of arrival and method of transport (maritime, land border, air)
- description of the regulated material/organism and packaging used for transport
- · travel plans from the first port of arrival to the final destination

The PPQ Permit Compliance Officer will notify the Customs and Border Protection (CBP) Agricultural Specialist at the port of entry to document and facilitate the entry of the regulated material/organism.

If you have domestic (connecting) air travel plans, please contact the Transportation Security Administration (TSA) prior to arrival into the U.S.: TSA Contact Center Telephone:

	Permit Number P330-18-00175
THIS PERMIT HAS BEEN APPROVED ELECTRONICALLY BY THE FOLLOWING PPQ HEADQUARTER OFFICIAL VIA EPERMITS.	DATE
Food	
Gibbs Smith	12/11/2018

WARNING: Any alteration, forgory or unsuthorized use of this Federal Form is subject to civil pensities of up to \$250,000 (7 U.S.C.s 7734(b)) or punishable by a fine of not more than \$10,000, or imprisonment of not more than \$ years, or both (18 U.S.C.s 1001)

Page 13 of 16

1

United States Department of Agriculture

materials) or 877-770-5990 (for restricted or prohibited plant material).

g) Within 24 hours of the first business day of the regulated material/organisms' arrival at the facility, an independent third party (e.g. containment facility director, departmental chair, campus biosafety officer, etc.) must notify the PPQ Permit Compliance Officer via email at: BlackWhiteGreenYellow.labelrequest@aphis.usda.gov that the shipment remained sealed until arrival. The notification must include what regulated material/organism was imported, its origin, permit number, date of arrival, and quantity. In the subject line of the email, please write: "Notification of Hand Carry Arrival - Permit # xxxx". See 29(a) above for the list of e-mail addresses to use for the notification.

Failure to notify the PPQ Permit Compliance Officer may result in loss of hand carry privileges. A PPQ inspector may visit the facility to confirm the arrival of the package and its contents.

41. The Permit holder must comply with all the items listed below. In cases where notification is required, the notification must be made to the Pest Permit staff at 866-524-5421 or pest.permits@aphis.usda.gov within one business day of the event triggering a notification. You must also notify the PPQ State Plant Health Director in your State. Access the list of SPHDs at

https://www.aphis.usda.gov/aphis/ourfocus/planthealth/ppq-program-overview/ct_sphd.

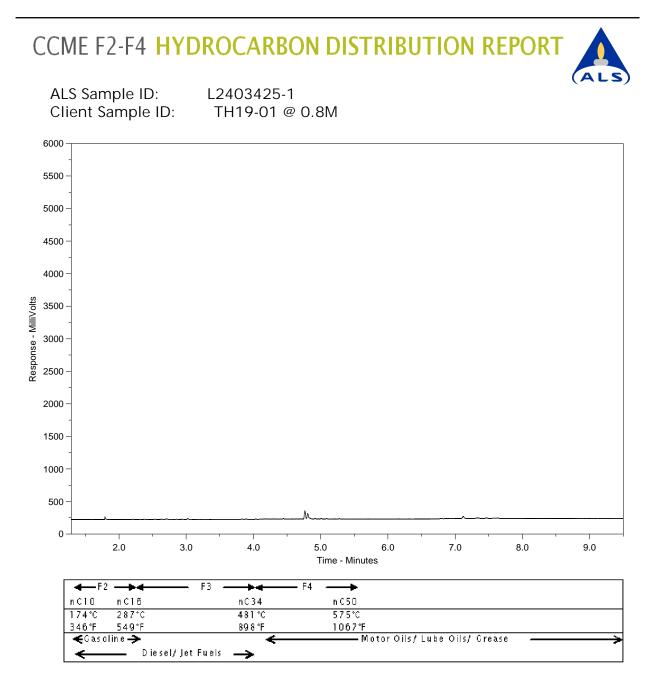
- maintain a valid PPQ 330 permit so long as any portion of the regulated soil remains untreated,
- · not assign or transfer this permit to other persons without prior APHIS PPQ authorization,
- · maintain an official permanent work assignment or affiliation at the address on this permit,
- notify the Pest Permit Staff of any change in the permit holder's work assignment, residence, or affiliation,
- notify the Pest Permit Staff of the receipt of unauthorized and/or misdirected shipments of regulated soil,
- adequately mitigate environmental impacts resulting from unauthorized or accidental release of the regulated soil,
- notify the Pest Permit Staff if the facility or equipment is damaged/destroyed or if you wish to decommission the facility,
- devitalize/sterilize all regulated soil prior to departure from the organization unless other arrangements are confirmed by the Pest Permit Staff,
- notify the Pest Permit Staff if you intend to let your permit expire and you will no longer receive or work with the regulated soil.

	Permit Number P330-18-00	175
THIS PERMIT HAS BEEN APPROVED ELECTRONICALLY BY THE FOLLOWING PPQ HEADQUARTER OFFICIAL VIA EPERMITS.	DATE	٦
Food		
Gibbs Smith	12/11/2018	

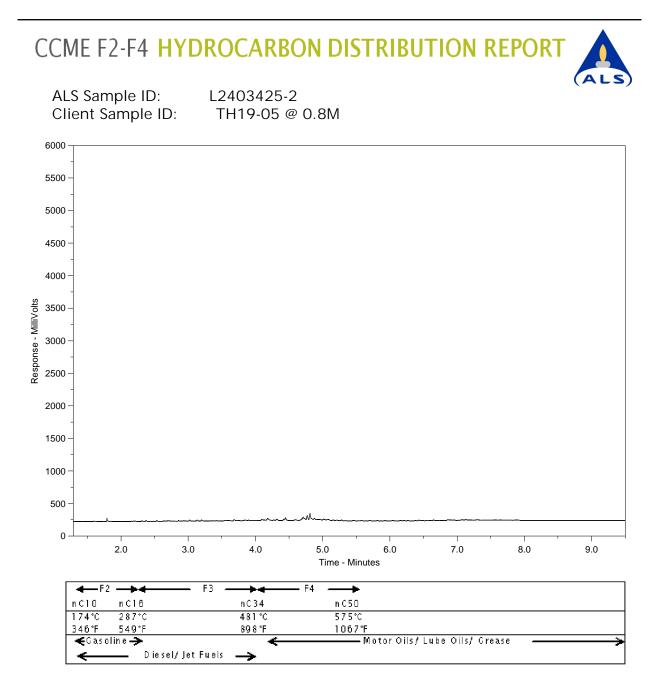
WARNING: Any alteration, forgery or unauthorized use of this Federal Form is subject to civil penelties of up to \$250,000 (7 U.S.C.s 7734(b)) or punishable by a fine of not more than \$20,000, or imprisonment of not more than \$ years, or both (18 U S C.s 1001)

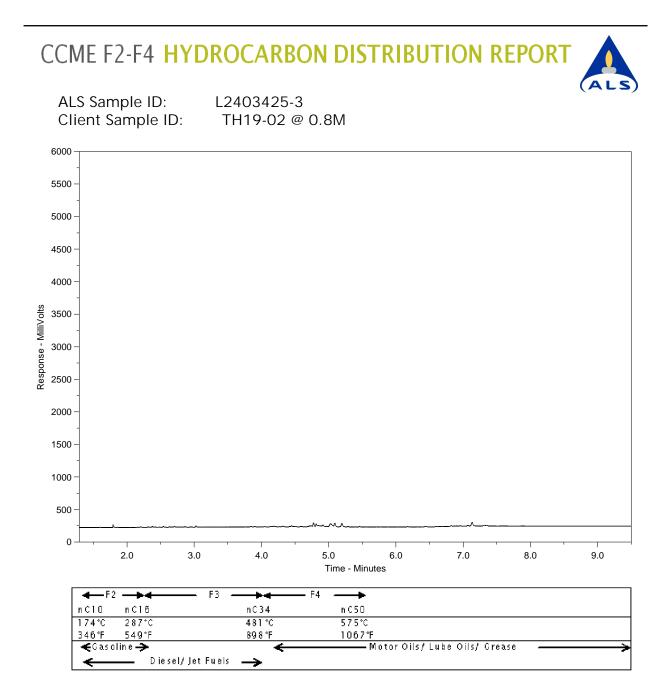
Page 15 of 16

301 Fulling Mill Road Middletown, PA 17057 P: (717) 944-5541 F: (717) 944-1430 Condition of Sample Receipt Form	1
HU MMM 1000. Work Order #: 3079655 (US 1/9	
1. Were airbills / tracking numbers present and recorded? NONE YES Tracking number: 12. 1002 FH5 04 670 730 NONE YES 2. Are Custody Seals on shipping containers intact? NONE YES 3. Are Custody Seals on sample containers intact? NONE YES 4. Is there a COC (Chain-of-Custody) present? YES YES YES YES	
5a. Does the COC contain sample locations? YES 5b. Does the COC contain date and time of sample collection for all samples? YES 5c. Does the COC contain sample collectors name? YES 5d. Does the COC note the type(s) of preservation for all bottles? YES 5e. Does the COC note the number of bottles submitted for each sample? YES 5f. Does the COC note the type of sample, composite or grab? YES 5g. Does the COC note the matrix of the sample(s)? YES	S 202 9 2 2 2 2 2
6. Are all aqueous samples requiring preservation preserved correctly?	NO NO
7. Were all samples placed in the proper containers for the requested analyses, with sufficient volume?	NO
 Are all samples within holding times for the requested analyses?	> NO
10. Did we receive trip blanks (applies only for methods EPA 504, EPA 524.2 and 1631E (LL Hg)?	NO
11. Were the samples received on ice?) NO'
12. Were sample temperatures measured at 0.0-6.0°C	NO
13. Are the samples DW matrix ? If YES, fill out Reportable Drinking Water questions below	(NO)
13a. Are the samples required for SDWA compliance reporting?	NO
13b. Did the client provide a SDWA PWS ID#?	NO
13c. Are all aqueous unpreserved SDWA samples pH 5-9?	NO
13d. Did the client provide the SDWA sample location ID/Description?	NO
13e. Did the client provide the SDWA sample type (D, E, R, C, P, S)?	NO
Cooler #:	1
COMMENTS (Required for all NO responses above and any sample non-conformance):	

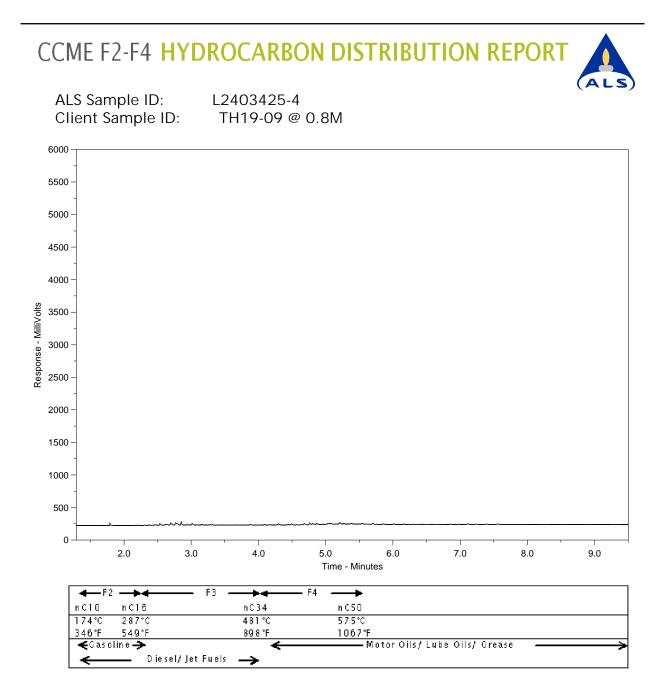

P.

.

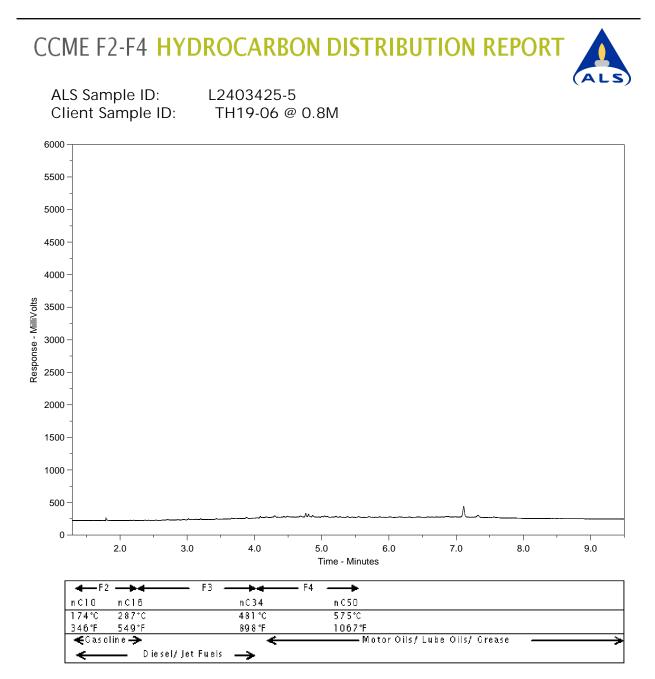

.


The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

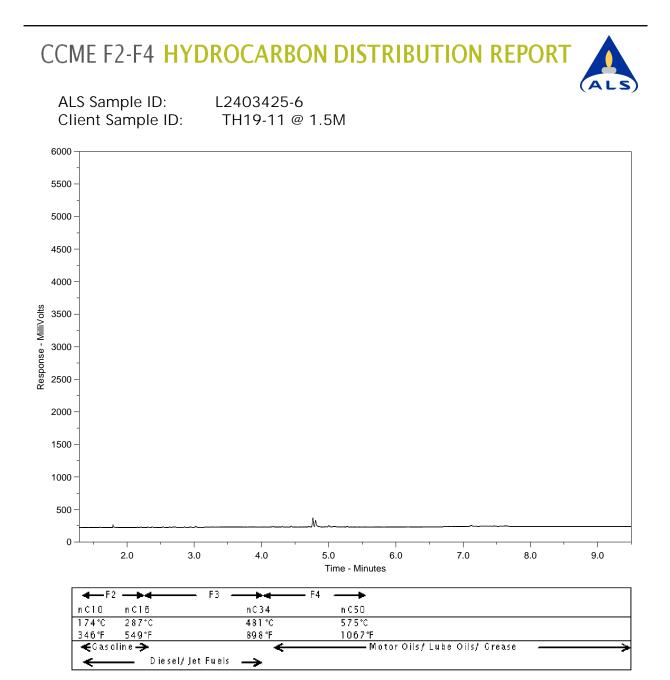
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.


The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.


The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.


The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Chain of Custody / Analytical Request Form Canada Toll Free: 1 800 668 9878 www.alsglobal.com

 \mathbb{R}^{2}

L2403425-COFC

Environmental Division		www.alsglobal.con	1													
Report to:	Report Fo	ormat / Distributio	on		Ser	vice	Requ	este	d:							
Company: Wood	I Stand	ard Г Other	-		9	Reg	ular S	Servic	e (C	Defau	ılt)					
Contact:	PDF	Excel	Fax .	-	Γ	Rus	n Ser	vice (2-3	Days	s)					
Address: 440 Dovercourt Drive	Email 1:	kevin.beechinor@	woodplc.com		Г	Prio	ity Se	ervice	e (1	Day	or A	SAP)				
	Email 2:	justin huberdeau(@woodplc.com		Γ	Eme	rgeno	cy Se	rvic	e (<1	1 Day	, i w⊧	(end) -	Cont	act A	LS
Phone: (204)488-2997 Fax: (204)489-8261									An	alysi	is Re	eques	it			
Invoice To: 🔽 Same as Report			Indicate Bottles	:: Filtered / Preserved (F/P) →												
Company:	Client / P	roject Information	1:											7		
Contact:	Job #:	WX18979	999 Redonda													
Address:	PO/AFE:														l Si	S.
Sample	Legal Site	Description:													ate	aine
Phone: Fax:	Quote #:] 4						(<75				i i i i	ont
Lab Work Order #	ALS		Sampler		Ę.						ě			sر جو	Contaminated?	Number of Containers
	Contact:		(Initials):		Ē	1			s		Size			Hazardous?	Ŭ	er (
Sample i Sample Identification		Date	Time	Sample Type	BTEX	PAH	202	PCB	Metals	БÖХ	Grain			eze	Highly	Įğ
(This description will appear on the report)		dd-mmm-yy	hh:mm	(Select from drop-down list)	-	+			_		_	\rightarrow	+	ļĨ	<u> </u>	Įž
TH19-01 @ 0.8 m		16-Dec-19		Soil	X	X	X		X	X	<u> </u>			_	<u> </u> '	-
TH19-05 @ 0.8 m		16-Dec-19		Soil	X	X	X	x	x	X			\rightarrow	—	 '	
TH19-02 @ 0.8 m		16-Dec-19		Soil	X	 			_			\rightarrow	\rightarrow	—	<u> </u> '	<u> </u>
TH19-09 @ 0.8 m		16-Dec-19		Soil	X	X	X		x	X		\rightarrow	$ \rightarrow $	—	<u> </u>	
TH19-06 @ 0.8 m		16-Dec-19		Soil	X	X	X		<u>×</u>	X			\square	_ <u></u>	<u> </u>	-
TH19-11 @ 1.5 m		20-Dec-19	•	Soil	X	X	X	X	x			\rightarrow		—	ļ'	⊢
												\rightarrow	\square	<u> </u>	<u> </u>	
				_	ļ									\downarrow	<u> </u>	┢
			_			<u> </u>			_					—	<u> </u>	<u> </u>
								ľ								
Guidelines / Regulations	·			Special Instructions	i / Ha	zard	ous (Detail	S							
		l														
	-			. Please fill in this form												
By the use of this form the user ad		and agrees with	the second s						_			tob	e only) @	and Side do The Stat	INPRA-	ali di cua :
Relinquished Date & Time: 08-Jan-20	Received By:	(EL	Date & Time:	JAN 8	1 ion with		rature	· · · ·		· · ·		ed in Go		al ann a mac a	And House	2,05255
Relinquished Date & Time:	Received		Date & Time:	12:45	1.	2	ר	ľ	Con	dition	?Y/N	N (ifr				
Ву:	By:			14.75)	7			provid	ied de	tails)				

Wood Environment & Infrastructure Solutions (Winnipeg) ATTN: KEVIN BEECHINOR 440 Dovercourt Drive Winnipea MB R3Y 1G4 Date Received: 10-DEC-19 Report Date: 05-MAR-2013:51 (MT) Version: FINAL

Client Phone: 204-488-2997

Certificate of Analysis

Lab Work Order #: L2394273 Project P.O. #: NOT SUBMITTED Job Reference: WX 18979 999 REDONDA C of C Numbers: Legal Site Desc:

Judy Dalmaijer Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
2394273-1 TH19-03 @ 0.8M							
ampled By: CLIENT on 03-DEC-19							
latrix: SOIL							
Miscellaneous Parameters							
Moisture	26.1		0.10	%		11-DEC-19	R4941938
			0.10	/0			
Extractable Organic Halides (EOX)	See Attached					30-DEC-19	R501777
Metals in Soil by CRC ICPMS Aluminum (Al)	07000		5000		20-DEC-19	07 DEC 40	D 405775
	27200		5000	mg/kg		27-DEC-19	R495775
Antimony (Sb)	0.50		0.10	mg/kg	20-DEC-19	27-DEC-19	R495775
Arsenic (As)	9.15		0.10	mg/kg	20-DEC-19	27-DEC-19	R495775
Barium (Ba)	196		0.50	mg/kg	20-DEC-19	27-DEC-19	R495775
Beryllium (Be)	1.03		0.10	mg/kg	20-DEC-19	27-DEC-19	R495775
Boron (B)	14.4		5.0	mg/kg	20-DEC-19	27-DEC-19	R495775
Bismuth (Bi)	0.26		0.20	mg/kg	20-DEC-19	27-DEC-19	R495775
Cadmium (Cd)	0.365		0.020	mg/kg	20-DEC-19	27-DEC-19	R495775
Calcium (Ca)	63800		50	mg/kg	20-DEC-19	27-DEC-19	R495775
Chromium (Cr)	43.3		0.50	mg/kg	20-DEC-19	27-DEC-19	R495775
Cobalt (Co)	12.3		0.10	mg/kg	20-DEC-19	27-DEC-19	R495775
Copper (Cu)	29.9		0.50	mg/kg	20-DEC-19	27-DEC-19	R495775
Iron (Fe)	28100		50	mg/kg	20-DEC-19	27-DEC-19	R495775
Lead (Pb)	13.2		0.50	mg/kg	20-DEC-19	27-DEC-19	R495775
Lithium (Li)	29.2		2.0	mg/kg	20-DEC-19	27-DEC-19	R495775
Magnesium (Mg)	26900		20	mg/kg	20-DEC-19	27-DEC-19	R495775
Manganese (Mn)	630		1.0	mg/kg	20-DEC-19	27-DEC-19	R495775
Molybdenum (Mo)	0.54		0.10	mg/kg	20-DEC-19	27-DEC-19	R495775
Nickel (Ni)	35.4		0.50	mg/kg	20-DEC-19	27-DEC-19	R495775
Phosphorus (P)	610		50	mg/kg	20-DEC-19	27-DEC-19	R495775
Potassium (K)	4760		100	mg/kg	20-DEC-19	27-DEC-19	R495775
Selenium (Se)	<0.20		0.20	mg/kg	20-DEC-19	27-DEC-19	R495775
Silver (Ag)	0.12		0.10	mg/kg	20-DEC-19	27-DEC-19	R495775
Sodium (Na)	148		50	mg/kg	20-DEC-19	27-DEC-19	R495775
Strontium (Sr)	91.4		0.50	mg/kg	20-DEC-19	27-DEC-19	R495775
Sulfur (S)	<1000		1000	mg/kg	20-DEC-19	27-DEC-19	R495775
Thallium (TI)	0.300		0.050	mg/kg	20-DEC-19	27-DEC-19	R495775
Tin (Sn)	<2.0		2.0	mg/kg	20-DEC-19	27-DEC-19	R495775
Titanium (Ti)	214		1.0	mg/kg	20-DEC-19	27-DEC-19	R495775
Tungsten (W)	<0.50		0.50	mg/kg	20-DEC-19	27-DEC-19	R495775
Uranium (U)	0.999		0.050	mg/kg	20-DEC-19	27-DEC-19	R495775
Vanadium (V)	78.1		0.20	mg/kg	20-DEC-19	27-DEC-19	R495775
Zinc (Zn)	80.0		2.0	mg/kg	20-DEC-19	27-DEC-19	R495775
Zirconium (Zr)	7.2		1.0	mg/kg	20-DEC-19	27-DEC-19	R495775
Polyaromatic Hydrocarbons (PAHs)					40.050.40		
1-Methyl Naphthalene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R494876
2-Methyl Naphthalene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R494876
Acenaphthene	< 0.0050		0.0050	mg/kg	18-DEC-19	19-DEC-19	R494876
Acenaphthylene	<0.0050		0.0050	mg/kg	18-DEC-19	19-DEC-19	R494876
Acridine	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R494876
Anthracene	<0.0040		0.0040	mg/kg	18-DEC-19	19-DEC-19	R494876
Benzo(a)anthracene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R494876
Benzo(a)pyrene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R494876
Benzo(b&j)fluoranthene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R494876
Benzo(g,h,i)perylene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R494876
Benzo(k)fluoranthene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R494876
Chrysene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R494876
Dibenzo(a,h)anthracene	<0.0050		0.0050	mg/kg	18-DEC-19	19-DEC-19	R494876

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2394273-1 TH19-03 @ 0.8M							
Sampled By: CLIENT on 03-DEC-19							
Matrix: SOIL							
Polyaromatic Hydrocarbons (PAHs) Fluoranthene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Fluorene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Indeno(1,2,3-cd)pyrene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Naphthalene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Phenanthrene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Pyrene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Quinoline	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
B(a)P Total Potency Equivalent	<0.020		0.020	mg/kg	18-DEC-19	19-DEC-19	R4948769
IACR (CCME)	<0.15		0.15		18-DEC-19	19-DEC-19	R4948769
Benzo(b+j+k)fluoranthene	<0.014		0.014	mg/kg	18-DEC-19	19-DEC-19	R4948769
Surrogate: Acenaphthene d10	104.8		60-130	%	18-DEC-19	19-DEC-19	R4948769
Surrogate: Chrysene d12	117.2		60-130	%	18-DEC-19	19-DEC-19	R4948769
Surrogate: Naphthalene d8	111.5		50-130	%	18-DEC-19	19-DEC-19	R4948769
Surrogate: Phenanthrene d10	109.1		60-130	%	18-DEC-19	19-DEC-19	R4948769
PCBs			0.010				D 40 4 4000
Aroclor 1016 Aroclor 1221	<0.010		0.010	mg/kg		17-DEC-19	R4944999
	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1232 Aroclor 1242	<0.010 <0.010		0.010 0.010	mg/kg		17-DEC-19 17-DEC-19	R4944999 R4944999
Aroclor 1242 Aroclor 1248	<0.010		0.010	mg/kg mg/kg		17-DEC-19 17-DEC-19	R4944999 R4944999
Aroclor 1254	<0.010		0.010	mg/kg		17-DEC-19	R4944999 R4944999
Aroclor 1260	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1262	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1268	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Total PCBs	<0.050		0.050	mg/kg		17-DEC-19	R4944999
Surrogate: Decachlorobiphenyl	92.6		65-130	%		17-DEC-19	R4944999
VOC plus F1-F4 by Tumbler							
CCME Total Extractable Hydrocarbons							
F2 (C10-C16)	<25		25	mg/kg	13-DEC-19	14-DEC-19	R4943247
F3 (C16-C34)	<50		50	mg/kg	13-DEC-19	14-DEC-19	R4943247
F4 (C34-C50)	<50		50	mg/kg	13-DEC-19	14-DEC-19	R4943247
Surrogate: 2-Bromobenzotrifluoride	77.4		60-140	%	13-DEC-19	14-DEC-19	R4943247
Chrom. to baseline at nC50	YES				13-DEC-19	14-DEC-19	R4943247
CCME Total Hydrocarbons	10		40			00 DEC 40	
F1-BTEX F2-Naphth	<10		10 25	mg/kg mg/kg		23-DEC-19 23-DEC-19	
F2-Naphth F3-PAH	<25 <50		25 50	mg/kg mg/kg		23-DEC-19 23-DEC-19	
Total Hydrocarbons (C6-C50)	<76		50 76	mg/kg		23-DEC-19 23-DEC-19	
Sum of Xylene Isomer Concentrations			10	mg/ng		20 020-19	
Xylenes (Total)	<0.071		0.071	mg/kg		23-DEC-19	
VOC plus F1 by GCMS				5.5			
Acetone	<0.50		0.50	mg/kg	03-DEC-19	20-DEC-19	R4953041
Benzene	<0.0050		0.0050	mg/kg	03-DEC-19	20-DEC-19	R4953041
Bromobenzene	<0.10		0.10	mg/kg	03-DEC-19	20-DEC-19	R4953041
Bromochloromethane	<0.10		0.10	mg/kg	03-DEC-19	20-DEC-19	R4953041
Bromodichloromethane	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
Bromoform	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
Bromomethane	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
n-Butylbenzene	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
sec-Butylbenzene	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
tert-Butylbenzene	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
Carbon disulfide	<0.25		0.25	mg/kg	03-DEC-19	20-DEC-19	R4953041

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2394273-1 TH19-03 @ 0.8M							
Sampled By: CLIENT on 03-DEC-19							
Matrix: SOIL							
VOC plus F1 by GCMS Carbon Tetrachloride	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
Chlorobenzene	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19 20-DEC-19	R4953041 R4953041
Chloroethane	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19 20-DEC-19	R4953041
Chloroform	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19 20-DEC-19	R4953041
Chloromethane	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19 20-DEC-19	R4953041
2-Chlorotoluene	<0.000		0.000	mg/kg	03-DEC-19	20-DEC-19 20-DEC-19	R4953041
4-Chlorotoluene	<0.10		0.10	mg/kg	03-DEC-19	20-DEC-19 20-DEC-19	R4953041
Dibromochloromethane	<0.050		0.10	mg/kg	03-DEC-19	20-DEC-19 20-DEC-19	R4953041
1,2-Dibromo-3-chloropropane	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19 20-DEC-19	R4953041 R4953041
1,2-Dibromoethane	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19 20-DEC-19	R4953041 R4953041
Dibromomethane	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19 20-DEC-19	R4953041 R4953041
1,2-Dichlorobenzene	<0.050		0.050	mg/kg	03-DEC-19 03-DEC-19	20-DEC-19 20-DEC-19	R4953041 R4953041
1,3-Dichlorobenzene	<0.050		0.050	mg/kg	03-DEC-19 03-DEC-19	20-DEC-19 20-DEC-19	R4953041 R4953041
1,4-Dichlorobenzene	<0.050		0.050	mg/kg	03-DEC-19 03-DEC-19	20-DEC-19 20-DEC-19	R4953041 R4953041
Dichlorodifluoromethane	<0.050				03-DEC-19	20-DEC-19 20-DEC-19	R4953041 R4953041
1,1-dichloroethane	<0.050		0.050 0.050	mg/kg mg/kg	03-DEC-19 03-DEC-19	20-DEC-19 20-DEC-19	R4953041 R4953041
1,2-Dichloroethane					03-DEC-19 03-DEC-19	20-DEC-19 20-DEC-19	
1,1-dichloroethene	< 0.050		0.050	mg/kg	03-DEC-19 03-DEC-19	20-DEC-19 20-DEC-19	R4953041 R4953041
cis-1,2-Dichloroethene	< 0.050		0.050	mg/kg	03-DEC-19 03-DEC-19	20-DEC-19 20-DEC-19	
trans-1,2-Dichloroethene	<0.050		0.050	mg/kg			R4953041
	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
Dichloromethane	<0.10		0.10	mg/kg	03-DEC-19	20-DEC-19	R4953041
1,2-Dichloropropane	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
1,3-Dichloropropane	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
2,2-Dichloropropane	<0.10		0.10	mg/kg	03-DEC-19	20-DEC-19	R4953041
1,1-Dichloropropene	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
cis-1,3-Dichloropropene	< 0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
trans-1,3-Dichloropropene	< 0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
Ethylbenzene	<0.015		0.015	mg/kg	03-DEC-19	20-DEC-19	R4953041
F1	<10		10	mg/kg	03-DEC-19	20-DEC-19	R4953041
Hexachlorobutadiene	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
Hexane (Mathelinetalistic)	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
2-Hexanone (Methyl butyl ketone)	<0.50		0.50	mg/kg	03-DEC-19	20-DEC-19	R4953041
Isopropylbenzene	<0.10		0.10	mg/kg	03-DEC-19	20-DEC-19	R4953041
4-Isopropyltoluene	<0.10		0.10	mg/kg	03-DEC-19	20-DEC-19	R4953041
MEK	<0.50		0.50	mg/kg	03-DEC-19	20-DEC-19	R4953041
MIBK	<0.50		0.50	mg/kg	03-DEC-19	20-DEC-19	R4953041
MTBE	<0.20		0.20	mg/kg	03-DEC-19	20-DEC-19	R4953041
Styrene	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
1,1,1,2-Tetrachloroethane	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
1,1,2,2-Tetrachloroethane	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
Tetrachloroethene	< 0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
1,2,3-Trichlorobenzene	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
1,2,4-Trichlorobenzene	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
1,1,1-Trichloroethane	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
1,1,2-Trichloroethane	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
Trichloroethene	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
Trichlorofluoromethane	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
1,2,3-Trichloropropane	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
1,2,4-Trimethylbenzene	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
1,3,5-Trimethylbenzene	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2394273-1 TH19-03 @ 0.8M							
Sampled By: CLIENT on 03-DEC-19							
Matrix: SOIL							
VOC plus F1 by GCMS							
Vinyl Chloride	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
M+P-Xylenes	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
o-Xylene	<0.050		0.050	mg/kg	03-DEC-19	20-DEC-19	R4953041
Surrogate: 1,4-Difluorobenzene (SS)	109.8		70-130	%	03-DEC-19	20-DEC-19	R4953041
Surrogate: 3,4-Dichlorotoluene (SS)	170.8	SURR-ND	70-130	%	03-DEC-19	20-DEC-19	R4953041
Surrogate: 4-Bromofluorobenzene (SS)	101.5		70-130	%	03-DEC-19	20-DEC-19	R4953041
L2394273-2 TH19-04 @ 0.8M							
Sampled By: CLIENT on 03-DEC-19							
Matrix: SOIL							
Miscellaneous Parameters							
Moisture	11.7		0.10	%		11-DEC-19	R4941938
F4G-SG	10600		500	mg/kg		17-DEC-19	R4945332
	See Attached		300			30-DEC-19	R4945552 R5017777
Extractable Organic Halides (EOX)	See Allached					30-DEC-19	KUU1////
Metals in Soil by CRC ICPMS Aluminum (Al)	1400		50	mg/kg	20-DEC-19	27-DEC-19	R4957756
Antimony (Sb)	1400		50 0.10	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756 R4957756
Arianony (30) Arsenic (As)	1.98		0.10		20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756 R4957756
Barium (Ba)	69.8		0.10	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	
Beryllium (Be)	<0.10		0.50	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Boron (B)	13.4		5.0	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756 R4957756
Bismuth (Bi)				mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	
Cadmium (Cd)	0.26		0.20	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Calcium (Ca)	0.552		0.020	mg/kg	20-DEC-19 20-DEC-19		R4957756
Chromium (Cr)	147000		50	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
	7.64		0.50	mg/kg			R4957756
Cobalt (Co)	1.72		0.10	mg/kg	20-DEC-19	27-DEC-19	R4957756
Copper (Cu) Iron (Fe)	28.9		0.50	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Lead (Pb)	5160		50	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Lithium (Li)	40.3		0.50	mg/kg	20-DEC-19 20-DEC-19		R4957756
Magnesium (Mg)	3.6		2.0	mg/kg		27-DEC-19 27-DEC-19	R4957756
Magnesium (Mg) Manganese (Mn)	86100		20	mg/kg	20-DEC-19 20-DEC-19		R4957756 R4957756
	155		1.0	mg/kg		27-DEC-19	
Molybdenum (Mo) Nickel (Ni)	1.70		0.10	mg/kg	20-DEC-19	27-DEC-19	R4957756
Nickel (Ni) Phosphorus (P)	19.1		0.50	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19	R4957756
Potassium (K)	132 370		50 100	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Selenium (Se)			100	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Selenium (Se) Silver (Ag)	<0.20 0.10		0.20	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Solver (Ag) Sodium (Na)			0.10	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Strontium (Sr)	59		50	mg/kg			R4957756
Strontium (Sr) Sulfur (S)	39.3		0.50	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Thallium (TI)	<1000		1000	mg/kg			R4957756
Tin (Sn)	<0.050		0.050	mg/kg	20-DEC-19	27-DEC-19	R4957756
Titanium (Ti)	2.7		2.0	mg/kg	20-DEC-19	27-DEC-19 27-DEC-19	R4957756
	53.3		1.0	mg/kg	20-DEC-19		R4957756
Tungsten (W)	<0.50		0.50	mg/kg	20-DEC-19	27-DEC-19	R4957756
Uranium (U)	0.263		0.050	mg/kg	20-DEC-19	27-DEC-19	R4957756
Vanadium (V)	9.55		0.20	mg/kg	20-DEC-19	27-DEC-19	R4957756
Zinc (Zn)	335		2.0	mg/kg	20-DEC-19	27-DEC-19	R4957756
Zirconium (Zr)	<1.0		1.0	mg/kg	20-DEC-19	27-DEC-19	R4957756
Polyaromatic Hydrocarbons (PAHs)	0.040		0.010	···· // · ···	40.050.40		D 40 40 700
1-Methyl Naphthalene	0.013		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
2-Methyl Naphthalene	0.021		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2394273-2 TH19-04 @ 0.8M							
Sampled By: CLIENT on 03-DEC-19							
Matrix: SOIL							
Polyaromatic Hydrocarbons (PAHs)							
Acenaphthene	<0.0050		0.0050	mg/kg	18-DEC-19	20-DEC-19	R4948769
Acenaphthylene	<0.0050		0.0050	mg/kg	18-DEC-19	20-DEC-19	R4948769
Acridine	<0.010		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
Anthracene	0.0041	EMPC	0.0040	mg/kg	18-DEC-19	20-DEC-19	R4948769
Benzo(a)anthracene	<0.10	DLM	0.10	mg/kg	18-DEC-19	20-DEC-19	R4948769
Benzo(a)pyrene	<0.10	DLM	0.10	mg/kg	18-DEC-19	20-DEC-19	R4948769
Benzo(b&j)fluoranthene	0.12	EMPC	0.10	mg/kg	18-DEC-19	20-DEC-19	R4948769
Benzo(g,h,i)perylene	0.13	DLM	0.10	mg/kg	18-DEC-19	20-DEC-19	R4948769
Benzo(k)fluoranthene	<0.10	DLM	0.10	mg/kg	18-DEC-19	20-DEC-19	R4948769
Chrysene	0.30	EMPC	0.10	mg/kg	18-DEC-19	20-DEC-19	R4948769
Dibenzo(a,h)anthracene	<0.050	DLM	0.050	mg/kg	18-DEC-19	20-DEC-19	R4948769
Fluoranthene	0.032		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
Fluorene	<0.010		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
Indeno(1,2,3-cd)pyrene	<0.10	DLM	0.10	mg/kg	18-DEC-19	20-DEC-19	R4948769
Naphthalene	0.014		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
Phenanthrene	0.020		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
Pyrene	0.091		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
	<0.010		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
B(a)P Total Potency Equivalent	0.106		0.096	mg/kg	18-DEC-19	20-DEC-19	R4948769
IACR (CCME)	1.6		1.1		18-DEC-19	20-DEC-19	R4948769
Benzo(b+j+k)fluoranthene	<0.14		0.14	mg/kg	18-DEC-19	20-DEC-19	R4948769
Surrogate: Acenaphthene d10 Surrogate: Chrysene d12	100.9		60-130	%	18-DEC-19 18-DEC-19	20-DEC-19	R4948769
Surrogate: Naphthalene d8	100.9 97.1		60-130	%	18-DEC-19	20-DEC-19 20-DEC-19	R4948769
Surrogate: Phenanthrene d10	97.1		50-130 60-130	%	18-DEC-19	20-DEC-19 20-DEC-19	R4948769 R4948769
PCBs	94.5		00-130	/0	10-DEC-19	20-020-19	K4940709
Aroclor 1016	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1221	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1232	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1242	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1248	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1254	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1260	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1262	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1268	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Total PCBs	<0.050		0.050	mg/kg		17-DEC-19	R4944999
Surrogate: Decachlorobiphenyl	71.7		65-130	%		17-DEC-19	R4944999
VOC plus F1-F4 by Tumbler							
CCME Total Extractable Hydrocarbons							
F2 (C10-C16)	<250	DLM	250	mg/kg	13-DEC-19	17-DEC-19	R4945202
F3 (C16-C34)	2260	DLM	500	mg/kg	13-DEC-19	17-DEC-19	R4945202
F4 (C34-C50)	2500	DLM	500	mg/kg	13-DEC-19	17-DEC-19	R4945202
Surrogate: 2-Bromobenzotrifluoride	79.6		60-140	%	13-DEC-19	17-DEC-19	R4945202
Chrom. to baseline at nC50	NO				13-DEC-19	17-DEC-19	R4945202
CCME Total Hydrocarbons				"			
F1-BTEX	<10		10	mg/kg		23-DEC-19	
F2-Naphth	<250		250	mg/kg		23-DEC-19	
F3-PAH	2260		500	mg/kg		23-DEC-19	
Total Hydrocarbons (C6-C50)	4750		750	mg/kg		23-DEC-19	
Sum of Xylene Isomer Concentrations Xylenes (Total)	<0.071		0.071	mg/kg		23-DEC-19	
VOC plus F1 by GCMS							

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2394273-2 TH19-04 @ 0.8M							
Sampled By: CLIENT on 03-DEC-19							
Matrix: SOIL							
VOC plus F1 by GCMS Acetone	<0.50		0.50	mg/kg	03-DEC-19	21-DEC-19	R4953041
Benzene	<0.0050		0.0050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Bromobenzene	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R4953041
Bromochloromethane	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R4953041
Bromodichloromethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Bromoform	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19 21-DEC-19	R4953041
Bromomethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19 21-DEC-19	R4953041
n-Butylbenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19 21-DEC-19	R4953041
sec-Butylbenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19 21-DEC-19	R4953041
tert-Butylbenzene	<0.050		0.050	mg/kg	03-DEC-19 03-DEC-19	21-DEC-19 21-DEC-19	R4953041 R4953041
Carbon disulfide	<0.050		0.050	mg/kg	03-DEC-19 03-DEC-19	21-DEC-19 21-DEC-19	R4953041 R4953041
Carbon Tetrachloride							
Chlorobenzene	<0.050		0.050	mg/kg	03-DEC-19 03-DEC-19	21-DEC-19 21-DEC-19	R4953041
Chloroethane	<0.050		0.050	mg/kg			R4953041
Chloroform	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Chloromethane	<0.050 <0.050		0.050 0.050	mg/kg	03-DEC-19 03-DEC-19	21-DEC-19 21-DEC-19	R4953041 R4953041
2-Chlorotoluene				mg/kg			
4-Chlorotoluene	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R4953041
	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R4953041
Dibromochloromethane	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,2-Dibromo-3-chloropropane	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,2-Dibromoethane Dibromomethane	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,2-Dichlorobenzene	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,3-Dichlorobenzene	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,4-Dichlorobenzene	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Dichlorodifluoromethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,1-dichloroethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,2-Dichloroethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,1-dichloroethene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
cis-1,2-Dichloroethene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
trans-1,2-Dichloroethene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Dichloromethane	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,2-Dichloropropane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,3-Dichloropropane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
2,2-Dichloropropane	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,1-Dichloropropene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
cis-1,3-Dichloropropene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
trans-1,3-Dichloropropene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Ethylbenzene	<0.015		0.015	mg/kg	03-DEC-19	21-DEC-19	R4953041
F1	<10		10	mg/kg	03-DEC-19	21-DEC-19	R4953041
Hexachlorobutadiene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Hexane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
2-Hexanone (Methyl butyl ketone)	<0.50		0.50	mg/kg	03-DEC-19	21-DEC-19	R4953041
Isopropylbenzene	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R4953041
4-Isopropyltoluene	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R4953041
MEK	<0.50		0.50	mg/kg	03-DEC-19	21-DEC-19	R4953041
MIBK	<0.50		0.50	mg/kg	03-DEC-19	21-DEC-19	R4953041
MTBE	<0.20		0.20	mg/kg	03-DEC-19	21-DEC-19	R4953041
Styrene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,1,1,2-Tetrachloroethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,1,2,2-Tetrachloroethane	<0.050	1	0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2394273-2 TH19-04 @ 0.8M							
Sampled By: CLIENT on 03-DEC-19							
Matrix: SOIL							
VOC plus F1 by GCMS Tetrachloroethene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Toluene	<0.050				03-DEC-19 03-DEC-19	21-DEC-19 21-DEC-19	
1.2,3-Trichlorobenzene			0.050	mg/kg	03-DEC-19 03-DEC-19	21-DEC-19 21-DEC-19	R4953041 R4953041
1.2,4-Trichlorobenzene	<0.050		0.050	mg/kg	03-DEC-19 03-DEC-19	21-DEC-19 21-DEC-19	R4953041 R4953041
1,1,1-Trichloroethane	<0.050		0.050	mg/kg	03-DEC-19 03-DEC-19	21-DEC-19 21-DEC-19	R4953041 R4953041
1,1,2-Trichloroethane	<0.050 <0.050		0.050	mg/kg	03-DEC-19 03-DEC-19	21-DEC-19 21-DEC-19	R4953041 R4953041
Trichloroethene			0.050	mg/kg	03-DEC-19 03-DEC-19		
Trichlorofluoromethane	< 0.050		0.050	mg/kg		21-DEC-19	R4953041
	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,2,3-Trichloropropane	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,2,4-Trimethylbenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,3,5-Trimethylbenzene	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Vinyl Chloride	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
M+P-Xylenes	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
o-Xylene	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Surrogate: 1,4-Difluorobenzene (SS)	111.6		70-130	%	03-DEC-19	21-DEC-19	R4953041
Surrogate: 3,4-Dichlorotoluene (SS)	74.0		70-130	%	03-DEC-19	21-DEC-19	R4953041
Surrogate: 4-Bromofluorobenzene (SS)	95.3		70-130	%	03-DEC-19	21-DEC-19	R4953041
L2394273-3 TH19-07 @ 0.8M							
Sampled By: CLIENT on 03-DEC-19							
Matrix: SOIL							
Miscellaneous Parameters							
Moisture	12.8		0.10	%		11-DEC-19	R4941938
F4G-SG	1760		500	mg/kg		17-DEC-19	R4945332
Extractable Organic Halides (EOX)	See Attached					30-DEC-19	R5017777
Metals in Soil by CRC ICPMS	Occ Allached					00 020 10	10011111
Aluminum (Al)	971		50	mg/kg	20-DEC-19	27-DEC-19	R4957756
Antimony (Sb)	<0.10		0.10	mg/kg	20-DEC-19	27-DEC-19	R4957756
Arsenic (As)	0.61		0.10	mg/kg	20-DEC-19	27-DEC-19	R4957756
Barium (Ba)	7.36		0.50	mg/kg	20-DEC-19	27-DEC-19	R4957756
Beryllium (Be)	<0.10		0.00	mg/kg	20-DEC-19	27-DEC-19	R4957756
Boron (B)	11.5		5.0	mg/kg	20-DEC-19	27-DEC-19	R4957756
Bismuth (Bi)	<0.20		0.20	mg/kg	20-DEC-19	27-DEC-19	R4957756
Cadmium (Cd)	0.020		0.20	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Calcium (Ca)	200000		0.020 50	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Chromium (Cr)	2.39		0.50	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Cobalt (Co)	1.04		0.30	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Copper (Cu)	2.83		0.10	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Iron (Fe)	2390		0.30 50	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Lead (Pb)	1.48		50 0.50	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	
Lithium (Li)	3.3		0.50 2.0		20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Magnesium (Mg)	128000		2.0 20	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756 R4957756
Magnesium (Mg) Manganese (Mn)	128000		20 1.0	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	
Molybdenum (Mo)	0.24		0.10	mg/kg mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Nickel (Ni)	2.21		0.10	mg/kg mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Phosphorus (P)	56				20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Potassium (K)			50 100	mg/kg			R4957756
	350		100	mg/kg	20-DEC-19	27-DEC-19	R4957756
Selenium (Se)	<0.20		0.20	mg/kg	20-DEC-19	27-DEC-19	R4957756
Silver (Ag)	<0.10		0.10	mg/kg	20-DEC-19	27-DEC-19	R4957756
Sodium (Na)	61		50	mg/kg	20-DEC-19	27-DEC-19	R4957756
Strontium (Sr)	37.7		0.50	mg/kg	20-DEC-19	27-DEC-19	R4957756
Sulfur (S)	1000		1000	mg/kg	20-DEC-19	27-DEC-19	R4957756

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2394273-3 TH19-07 @ 0.8M							
Sampled By: CLIENT on 03-DEC-19							
Matrix: SOIL							
Metals in Soil by CRC ICPMS							
Thallium (TI)	<0.050		0.050	mg/kg	20-DEC-19	27-DEC-19	R4957756
Tin (Sn)	<2.0		2.0	mg/kg	20-DEC-19	27-DEC-19	R4957756
Titanium (Ti)	21.4		1.0	mg/kg	20-DEC-19	27-DEC-19	R4957756
Tungsten (W)	<0.50		0.50	mg/kg	20-DEC-19	27-DEC-19	R4957756
Uranium (U)	0.236		0.050	mg/kg	20-DEC-19	27-DEC-19	R4957756
Vanadium (V)	5.14		0.20	mg/kg	20-DEC-19	27-DEC-19	R4957756
Zinc (Zn)	6.0		2.0	mg/kg	20-DEC-19	27-DEC-19	R4957756
Zirconium (Zr)	1.4		1.0	mg/kg	20-DEC-19	27-DEC-19	R4957756
Polyaromatic Hydrocarbons (PAHs)							
1-Methyl Naphthalene	<0.010		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
2-Methyl Naphthalene	<0.010		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
Acenaphthene	<0.0050		0.0050	mg/kg	18-DEC-19	20-DEC-19	R4948769
Acenaphthylene	<0.0050		0.0050	mg/kg	18-DEC-19	20-DEC-19	R4948769
Acridine	<0.010		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
Anthracene	<0.0040		0.0040	mg/kg	18-DEC-19	20-DEC-19	R4948769
Benzo(a)anthracene	<0.010		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
Benzo(a)pyrene	<0.010		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
Benzo(b&j)fluoranthene	0.015	EMPC	0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
Benzo(g,h,i)perylene	<0.010		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
Benzo(k)fluoranthene	<0.010		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
Chrysene	0.049	EMPC	0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
Dibenzo(a,h)anthracene	<0.0050		0.0050	mg/kg	18-DEC-19	20-DEC-19	R4948769
Fluoranthene	<0.010		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
Fluorene	<0.010		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
Indeno(1,2,3-cd)pyrene	<0.010		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
Naphthalene	<0.010		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
Phenanthrene	<0.010		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
Pyrene	0.018		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
Quinoline	<0.010		0.010	mg/kg	18-DEC-19	20-DEC-19	R4948769
B(a)P Total Potency Equivalent	<0.020		0.020	mg/kg	18-DEC-19	20-DEC-19	R4948769
IACR (CCME)	0.19		0.15		18-DEC-19	20-DEC-19	R4948769
Benzo(b+j+k)fluoranthene	0.015		0.014	mg/kg	18-DEC-19	20-DEC-19	R4948769
Surrogate: Acenaphthene d10	119.7		60-130	%	18-DEC-19	20-DEC-19	R4948769
Surrogate: Chrysene d12	108.8		60-130	%	18-DEC-19	20-DEC-19	R4948769
Surrogate: Naphthalene d8	120.2		50-130	%	18-DEC-19	20-DEC-19	R4948769
Surrogate: Phenanthrene d10	105.0		60-130	%	18-DEC-19	20-DEC-19	R4948769
PCBs	0.040		0.040			47 050 40	D 40 4 4000
Aroclor 1016	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1221	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1232	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1242	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1248	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1254	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1260 Aroclor 1262	<0.010		0.010	mg/kg		17-DEC-19 17-DEC-19	R4944999
Aroclor 1262 Aroclor 1268	<0.010		0.010	mg/kg mg/kg		17-DEC-19 17-DEC-19	R4944999
Total PCBs	<0.010		0.010	mg/kg		17-DEC-19 17-DEC-19	R4944999 R4944999
Surrogate: Decachlorobiphenyl	<0.050 68.2		0.050 65-130	mg/kg %		17-DEC-19 17-DEC-19	R4944999 R4944999
VOC plus F1-F4 by Tumbler	00.2		00-130	/0		17-020-19	114944999
CCME Total Extractable Hydrocarbons F2 (C10-C16)	<130	DLM	130	mg/kg	13-DEC-19	14-DEC-19	R4943247
F3 (C16-C34)	480	DLM	130 250	mg/kg	13-DEC-19	14-DEC-19 14-DEC-19	R4943247 R4943247
* Refer to Referenced Information for Qualifiers (if any) a	•		200	iiig/Ky	15-020-19	17 020-13	117340241

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2394273-3 TH19-07 @ 0.8M							
Sampled By: CLIENT on 03-DEC-19							
Matrix: SOIL							
CCME Total Extractable Hydrocarbons							
F4 (C34-C50)	500	DLM	250	mg/kg	13-DEC-19	14-DEC-19	R4943247
Surrogate: 2-Bromobenzotrifluoride	79.7	2 2	60-140	%	13-DEC-19	14-DEC-19	R4943247
Chrom. to baseline at nC50	NO		00-140	70	13-DEC-19	14-DEC-19	R4943247
CCME Total Hydrocarbons	NO				15 DEC 15	IT DEC 15	114343247
F1-BTEX	<10		10	mg/kg		23-DEC-19	
F2-Naphth	<130		130	mg/kg		23-DEC-19	
F3-PAH	480		250	mg/kg		23-DEC-19	
Total Hydrocarbons (C6-C50)	980		380	mg/kg		23-DEC-19	
Sum of Xylene Isomer Concentrations	500		500	iiig/itg		20 020 10	
Xylenes (Total)	<0.071		0.071	mg/kg		23-DEC-19	
VOC plus F1 by GCMS	30.01		0.07 1			10 2 10 10	
Acetone	<0.50		0.50	mg/kg	03-DEC-19	21-DEC-19	R495304
Benzene	<0.0050		0.0050	mg/kg	03-DEC-19	21-DEC-19	R495304
Bromobenzene	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R495304
Bromochloromethane	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R495304
Bromodichloromethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304
Bromoform	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304
Bromomethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304
n-Butylbenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304
sec-Butylbenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304
tert-Butylbenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304
Carbon disulfide	<0.25		0.25	mg/kg	03-DEC-19	21-DEC-19	R495304
Carbon Tetrachloride	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304
Chlorobenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304
Chloroethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304
Chloroform	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304
Chloromethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304
2-Chlorotoluene	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R495304
4-Chlorotoluene	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R495304
Dibromochloromethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304
1,2-Dibromo-3-chloropropane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304
1,2-Dibromoethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304
Dibromomethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304
1,2-Dichlorobenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304
1,3-Dichlorobenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304
1,4-Dichlorobenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19 21-DEC-19	R495304
Dichlorodifluoromethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19 21-DEC-19	R495304 R495304
1,1-dichloroethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19 21-DEC-19	R495304 R495304
1,2-Dichloroethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19 21-DEC-19	R495304
1,1-dichloroethene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19 21-DEC-19	R495304
cis-1,2-Dichloroethene	<0.050		0.050	mg/kg	03-DEC-19 03-DEC-19	21-DEC-19 21-DEC-19	R495304 R495304
trans-1,2-Dichloroethene	<0.050		0.050	mg/kg	03-DEC-19 03-DEC-19	21-DEC-19 21-DEC-19	R495304 R495304
Dichloromethane	0.18		0.050	mg/kg	03-DEC-19 03-DEC-19	21-DEC-19 21-DEC-19	R495304 R495304
1,2-Dichloropropane	<0.050		0.10	mg/kg mg/kg	03-DEC-19 03-DEC-19	21-DEC-19 21-DEC-19	R495304 R495304
1,3-Dichloropropane	<0.050		0.050	mg/kg mg/kg	03-DEC-19 03-DEC-19	21-DEC-19 21-DEC-19	R495304 R495304
2,2-Dichloropropane	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R495304
1,1-Dichloropropene	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304
cis-1,3-Dichloropropene	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304
trans-1,3-Dichloropropene	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304
Ethylbenzene	<0.015		0.015	mg/kg	03-DEC-19	21-DEC-19	R495304
F1	<10		10	mg/kg	03-DEC-19	21-DEC-19	R495304
Hexachlorobutadiene	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R495304

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2394273-3 TH19-07 @ 0.8M							
Sampled By: CLIENT on 03-DEC-19							
Matrix: SOIL							
VOC plus F1 by GCMS							
Hexane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
2-Hexanone (Methyl butyl ketone)	<0.50		0.50	mg/kg	03-DEC-19	21-DEC-19	R4953041
Isopropylbenzene	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R4953041
4-Isopropyltoluene	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R4953041
MEK	<0.50		0.50	mg/kg	03-DEC-19	21-DEC-19	R4953041
MIBK	<0.50		0.50	mg/kg	03-DEC-19	21-DEC-19	R4953041
MTBE	<0.20		0.20	mg/kg	03-DEC-19	21-DEC-19	R4953041
Styrene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,1,1,2-Tetrachloroethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,1,2,2-Tetrachloroethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Tetrachloroethene	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19 21-DEC-19	R4953041
1,1,1-Trichloroethane	<0.050		0.050	mg/kg	03-DEC-19 03-DEC-19	21-DEC-19 21-DEC-19	R4953041
1,1,2-Trichloroethane	<0.050 <0.050		0.050 0.050	mg/kg mg/kg	03-DEC-19 03-DEC-19	21-DEC-19 21-DEC-19	R4953041 R4953041
Trichloroethene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19 21-DEC-19	R4953041 R4953041
Trichlorofluoromethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,2,3-Trichloropropane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,2,4-Trimethylbenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,3,5-Trimethylbenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Vinyl Chloride	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
M+P-Xylenes	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
o-Xylene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Surrogate: 1,4-Difluorobenzene (SS)	122.1		70-130	%	03-DEC-19	21-DEC-19	R4953041
Surrogate: 3,4-Dichlorotoluene (SS)	108.2		70-130	%	03-DEC-19	21-DEC-19	R4953041
Surrogate: 4-Bromofluorobenzene (SS)	109.1		70-130	%	03-DEC-19	21-DEC-19	R4953041
L2394273-4 TH19-07 @ 1.5M							
Sampled By: CLIENT on 03-DEC-19							
Matrix: SOIL							
Miscellaneous Parameters							
Moisture	26.4		0.10	%		11-DEC-19	R4941938
Extractable Organic Halides (EOX)	See Attached					30-DEC-19	R5017777
Metals in Soil by CRC ICPMS							
Aluminum (Al)	13800		50	mg/kg	20-DEC-19	27-DEC-19	R4957756
Antimony (Sb)	0.52		0.10	mg/kg	20-DEC-19	27-DEC-19	R4957756
Arsenic (As)	9.03		0.10	mg/kg	20-DEC-19	27-DEC-19	R4957756
Barium (Ba)	172		0.50	mg/kg	20-DEC-19	27-DEC-19	R4957756
Beryllium (Be)	0.66		0.10	mg/kg	20-DEC-19	27-DEC-19	R4957756
Boron (B)	6.9		5.0	mg/kg	20-DEC-19	27-DEC-19	R4957756
Bismuth (Bi)	<0.20		0.20	mg/kg	20-DEC-19	27-DEC-19	R4957756
Cadmium (Cd)	0.286		0.020	mg/kg	20-DEC-19	27-DEC-19	R4957756
Calcium (Ca) Chromium (Cr)	74900		50 0.50	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Chromium (Cr) Cobalt (Co)	20.9 8.22		0.50 0.10	mg/kg mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Copper (Cu)	21.3		0.10	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756 R4957756
Iron (Fe)	20900		0.50 50	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Lead (Pb)	10.1		0.50	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Lithium (Li)	19.6		2.0	mg/kg	20-DEC-19 20-DEC-19	27-DEC-19 27-DEC-19	R4957756
Magnesium (Mg)	28300	1	20	mg/kg	20-DEC-19	27-DEC-19	R4957756

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2394273-4 TH19-07 @ 1.5M							
Sampled By: CLIENT on 03-DEC-19							
Matrix: SOIL							
Metals in Soil by CRC ICPMS Molybdenum (Mo)	0.80		0.10	mg/kg	20-DEC-19	27-DEC-19	R4957756
Nickel (Ni)	24.2		0.10	mg/kg	20-DEC-19	27-DEC-19	R4957756
Phosphorus (P)	578		50	mg/kg	20-DEC-19	27-DEC-19	R4957756
Potassium (K)	1530		100	mg/kg	20-DEC-19	27-DEC-19	R4957756
Selenium (Se)	<0.20		0.20	mg/kg	20-DEC-19	27-DEC-19	R4957756
Silver (Ag)	0.11		0.20	mg/kg	20-DEC-19	27-DEC-19	R4957756
Sodium (Na)	493		50	mg/kg	20-DEC-19	27-DEC-19	R4957756
Strontium (Sr)	109		0.50	mg/kg	20-DEC-19	27-DEC-19	R4957756
Sulfur (S)	<1000		1000	mg/kg	20-DEC-19	27-DEC-19	R4957756
Thallium (TI)	0.232		0.050	mg/kg	20-DEC-19	27-DEC-19	R4957756
Tin (Sn)	<2.0		2.0	mg/kg	20-DEC-19	27-DEC-19	R4957756
Titanium (Ti)	64.5		1.0	mg/kg	20-DEC-19	27-DEC-19	R4957756
Tungsten (W)	<0.50		0.50	mg/kg	20-DEC-19	27-DEC-19	R4957756
Uranium (U)	1.86		0.050	mg/kg	20-DEC-19	27-DEC-19	R4957756
Vanadium (V)	40.0		0.20	mg/kg	20-DEC-19	27-DEC-19	R4957756
Zinc (Zn)	60.1		2.0	mg/kg	20-DEC-19	27-DEC-19	R4957756
Zirconium (Zr)	6.4		1.0	mg/kg	20-DEC-19	27-DEC-19	R4957756
Polyaromatic Hydrocarbons (PAHs)	0.4		1.0	ing/kg	20 220 10	21 820 10	114001100
1-Methyl Naphthalene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
2-Methyl Naphthalene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Acenaphthene	<0.0050		0.0050	mg/kg	18-DEC-19	19-DEC-19	R4948769
Acenaphthylene	<0.0050		0.0050	mg/kg	18-DEC-19	19-DEC-19	R4948769
Acridine	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Anthracene	< 0.0040		0.0040	mg/kg	18-DEC-19	19-DEC-19	R4948769
Benzo(a)anthracene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Benzo(a)pyrene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Benzo(b&j)fluoranthene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Benzo(g,h,i)perylene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Benzo(k)fluoranthene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Chrysene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Dibenzo(a,h)anthracene	<0.0050		0.0050	mg/kg	18-DEC-19	19-DEC-19	R4948769
Fluoranthene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Fluorene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Indeno(1,2,3-cd)pyrene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Naphthalene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Phenanthrene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Pyrene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Quinoline	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
B(a)P Total Potency Equivalent	<0.020		0.020	mg/kg	18-DEC-19	19-DEC-19	R4948769
IACR (CCME)	<0.15		0.15	5.5	18-DEC-19	19-DEC-19	R4948769
Benzo(b+j+k)fluoranthene	<0.014		0.014	mg/kg	18-DEC-19	19-DEC-19	R4948769
Surrogate: Acenaphthene d10	105.5		60-130	%	18-DEC-19	19-DEC-19	R4948769
Surrogate: Chrysene d12	122.6		60-130	%	18-DEC-19	19-DEC-19	R4948769
Surrogate: Naphthalene d8	114.1		50-130	%	18-DEC-19	19-DEC-19	R4948769
Surrogate: Phenanthrene d10	110.2		60-130	%	18-DEC-19	19-DEC-19	R4948769
PCBs							
Aroclor 1016	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1221	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1232	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1242	<0.010		0.010	mg/kg		17-DEC-19	R4944999
	<0.010		0.010	mg/kg	1	17-DEC-19	R4944999

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2394273-4 TH19-07 @ 1.5M							
Sampled By: CLIENT on 03-DEC-19							
Matrix: SOIL							
PCBs							
Aroclor 1254	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1260	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1262	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Aroclor 1268	<0.010		0.010	mg/kg		17-DEC-19	R4944999
Total PCBs	<0.050		0.050	mg/kg		17-DEC-19	R4944999
Surrogate: Decachlorobiphenyl	77.1		65-130	%		17-DEC-19	R4944999
VOC plus F1-F4 by Tumbler							
CCME Total Extractable Hydrocarbons							
F2 (C10-C16)	<25		25	mg/kg	13-DEC-19	14-DEC-19	R4943247
F3 (C16-C34)	<50		50	mg/kg	13-DEC-19	14-DEC-19	R4943247
F4 (C34-C50)	<50		50	mg/kg	13-DEC-19	14-DEC-19	R4943247
Surrogate: 2-Bromobenzotrifluoride Chrom, to baseline at nC50	78.6 YES		60-140	%	13-DEC-19 13-DEC-19	14-DEC-19 14-DEC-19	R4943247 R4943247
CCME Total Hydrocarbons	TEO				13-DEC-19	14-060-19	14943247
F1-BTEX	<10		10	mg/kg		23-DEC-19	
F2-Naphth	<25		25	mg/kg		23-DEC-19	
F3-PAH	<50		20 50	mg/kg		23-DEC-19	
Total Hydrocarbons (C6-C50)	<76		76	mg/kg		23-DEC-19	
Sum of Xylene Isomer Concentrations							
Xylenes (Total)	<0.071		0.071	mg/kg		23-DEC-19	
VOC plus F1 by GCMS							
Acetone	<0.50		0.50	mg/kg	03-DEC-19	21-DEC-19	R4953041
Benzene	<0.0050		0.0050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Bromobenzene	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R4953041
Bromochloromethane	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R4953041
Bromodichloromethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Bromoform	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Bromomethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
n-Butylbenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
sec-Butylbenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
tert-Butylbenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Carbon disulfide	<0.25		0.25	mg/kg	03-DEC-19	21-DEC-19	R4953041
Carbon Tetrachloride	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Chlorobenzene	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Chloroethane	< 0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Chloroform Chloromethane	< 0.050		0.050	mg/kg	03-DEC-19 03-DEC-19	21-DEC-19 21-DEC-19	R4953041
2-Chlorotoluene	<0.050 <0.10		0.050 0.10	mg/kg	03-DEC-19 03-DEC-19	21-DEC-19 21-DEC-19	R4953041 R4953041
4-Chlorotoluene	<0.10		0.10	mg/kg mg/kg	03-DEC-19 03-DEC-19	21-DEC-19 21-DEC-19	R4953041 R4953041
Dibromochloromethane	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19 21-DEC-19	R4953041 R4953041
1,2-Dibromo-3-chloropropane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19 21-DEC-19	R4953041
1,2-Dibromoethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19 21-DEC-19	R4953041
Dibromomethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19 21-DEC-19	R4953041 R4953041
1.2-Dichlorobenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,3-Dichlorobenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,4-Dichlorobenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Dichlorodifluoromethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,1-dichloroethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,2-Dichloroethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,1-dichloroethene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
cis-1,2-Dichloroethene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
trans-1,2-Dichloroethene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2394273-4 TH19-07 @ 1.5M							
Sampled By: CLIENT on 03-DEC-19							
Matrix: SOIL							
VOC plus F1 by GCMS							
Dichloromethane	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,2-Dichloropropane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,3-Dichloropropane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
2,2-Dichloropropane	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,1-Dichloropropene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
cis-1,3-Dichloropropene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
trans-1,3-Dichloropropene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Ethylbenzene	<0.015		0.015	mg/kg	03-DEC-19	21-DEC-19	R4953041
F1	<10		10	mg/kg	03-DEC-19	21-DEC-19	R4953041
Hexachlorobutadiene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Hexane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
2-Hexanone (Methyl butyl ketone)	<0.50		0.50	mg/kg	03-DEC-19	21-DEC-19	R4953041
Isopropylbenzene	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R4953041
4-Isopropyltoluene	<0.10		0.10	mg/kg	03-DEC-19	21-DEC-19	R4953041
MEK	<0.50		0.50	mg/kg	03-DEC-19	21-DEC-19	R4953041
МІВК	<0.50		0.50	mg/kg	03-DEC-19	21-DEC-19	R4953041
MTBE	<0.20		0.20	mg/kg	03-DEC-19	21-DEC-19	R4953041
Styrene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,1,1,2-Tetrachloroethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,1,2,2-Tetrachloroethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Tetrachloroethene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Toluene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,2,3-Trichlorobenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,2,4-Trichlorobenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,1,1-Trichloroethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,1,2-Trichloroethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Trichloroethene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Trichlorofluoromethane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,2,3-Trichloropropane	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,2,4-Trimethylbenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
1,3,5-Trimethylbenzene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Vinyl Chloride	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
M+P-Xylenes	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
o-Xylene	<0.050		0.050	mg/kg	03-DEC-19	21-DEC-19	R4953041
Surrogate: 1,4-Difluorobenzene (SS)	113.1		70-130	%	03-DEC-19	21-DEC-19	R4953041
Surrogate: 3,4-Dichlorotoluene (SS)	101.1		70-130	%	03-DEC-19	21-DEC-19	R4953041
Surrogate: 4-Bromofluorobenzene (SS)	103.6		70-130	%	03-DEC-19	21-DEC-19	R4953041
L2394273-5 TH19-08 @ 0.8M							
Sampled By: CLIENT on 03-DEC-19							
Matrix: SOIL							
BTEX and F1-F4 by Tumbler Method							
BTX plus F1 by GCMS							
Benzene	<0.0050		0.0050	mg/kg	03-DEC-19	12-DEC-19	R4942491
Toluene	<0.050		0.050	mg/kg	03-DEC-19	12-DEC-19	R4942491
Ethyl benzene	<0.015		0.015	mg/kg	03-DEC-19	12-DEC-19	R4942491
o-Xylene	<0.050		0.050	mg/kg	03-DEC-19	12-DEC-19	R4942491
m+p-Xylenes	<0.050		0.050	mg/kg	03-DEC-19	12-DEC-19	R4942491
F1 (C6-C10)	<10		10	mg/kg	03-DEC-19	12-DEC-19	R4942491
Surrogate: 4-Bromofluorobenzene (SS)	95.6		70-130	%	03-DEC-19	12-DEC-19	R4942491
CCME Total Extractable Hydrocarbons							
F2 (C10-C16)	<25		25	mg/kg	13-DEC-19	14-DEC-19	R4943247

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2394273-5 TH19-08 @ 0.8M							
Sampled By: CLIENT on 03-DEC-19							
1 ,							
Matrix: SOIL							
CCME Total Extractable Hydrocarbons F3 (C16-C34)	.50		50	~~~// <i>c</i> ~	13-DEC-19		D 40 400 47
	<50		50	mg/kg		14-DEC-19	R4943247
F4 (C34-C50)	52		50	mg/kg	13-DEC-19	14-DEC-19	R4943247
Surrogate: 2-Bromobenzotrifluoride Chrom. to baseline at nC50	77.2		60-140	%	13-DEC-19	14-DEC-19	R4943247
	YES				13-DEC-19	14-DEC-19	R4943247
CCME Total Hydrocarbons F1-BTEX	10		10	~~~// <i>c</i> ~		20-DEC-19	
F2-Naphth	<10 <25		10 25	mg/kg		20-DEC-19 20-DEC-19	
F3-PAH			-	mg/kg		20-DEC-19 20-DEC-19	
Total Hydrocarbons (C6-C50)	<50		50 70	mg/kg			
	<76		76	mg/kg		20-DEC-19	
Sum of Xylene Isomer Concentrations Xylenes (Total)	<0.071		0.071	mg/kg		13-DEC-19	
Miscellaneous Parameters	<0.071		0.071	тід/кд		13-DEC-19	
	00.0		0.40	0/			D4044000
Moisture	30.8		0.10	%		11-DEC-19	R4941938
Metals in Soil by CRC ICPMS	45700		50	maller		22 DEC 40	D 4050 404
Aluminum (Al)	15700		50	mg/kg	16-DEC-19 16-DEC-19	23-DEC-19	R4953431
Antimony (Sb)	0.46		0.10	mg/kg		23-DEC-19	R4953431
Arsenic (As)	5.52		0.10	mg/kg	16-DEC-19	23-DEC-19	R4953431
Barium (Ba)	311		0.50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Beryllium (Be)	0.82		0.10	mg/kg	16-DEC-19	23-DEC-19	R4953431
Boron (B)	11.0		5.0	mg/kg	16-DEC-19	23-DEC-19	R4953431
Bismuth (Bi)	<0.20		0.20	mg/kg	16-DEC-19	23-DEC-19	R4953431
Cadmium (Cd)	0.213		0.020	mg/kg	16-DEC-19	23-DEC-19	R4953431
Calcium (Ca)	98200		50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Chromium (Cr)	26.6		0.50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Cobalt (Co)	9.89		0.10	mg/kg	16-DEC-19	23-DEC-19	R4953431
Copper (Cu)	23.0		0.50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Iron (Fe)	20100		50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Lead (Pb)	11.0		0.50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Lithium (Li)	21.6		2.0	mg/kg	16-DEC-19	23-DEC-19	R4953431
Magnesium (Mg)	59300		20	mg/kg	16-DEC-19	23-DEC-19	R4953431
Manganese (Mn)	430		1.0	mg/kg	16-DEC-19	23-DEC-19	R4953431
Molybdenum (Mo)	1.08		0.10	mg/kg	16-DEC-19	23-DEC-19	R4953431
Nickel (Ni)	27.4		0.50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Phosphorus (P)	398		50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Potassium (K)	2840		100	mg/kg	16-DEC-19	23-DEC-19	R4953431
Selenium (Se)	0.36		0.20	mg/kg	16-DEC-19	23-DEC-19	R4953431
Silver (Ag)	<0.10		0.10	mg/kg	16-DEC-19	23-DEC-19	R4953431
Sodium (Na)	344		50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Strontium (Sr)	68.5		0.50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Sulfur (S)	<1000		1000	mg/kg	16-DEC-19	23-DEC-19	R4953431
Thallium (TI)	0.214		0.050	mg/kg	16-DEC-19	23-DEC-19	R4953431
Tin (Sn)	<2.0		2.0	mg/kg	16-DEC-19	23-DEC-19	R4953431
Titanium (Ti)	82.4		1.0	mg/kg	16-DEC-19	23-DEC-19	R4953431
Tungsten (W)	<0.50		0.50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Uranium (U)	1.26		0.050	mg/kg	16-DEC-19	23-DEC-19	R4953431
Vanadium (V)	43.9		0.20	mg/kg	16-DEC-19	23-DEC-19	R4953431
Zinc (Zn)	72.5		2.0	mg/kg	16-DEC-19	23-DEC-19	R4953431
Zirconium (Zr)	8.3		1.0	mg/kg	16-DEC-19	23-DEC-19	R4953431
Polyaromatic Hydrocarbons (PAHs)							
1-Methyl Naphthalene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
2-Methyl Naphthalene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2394273-5 TH19-08 @ 0.8M							
Sampled By: CLIENT on 03-DEC-19							
Matrix: SOIL							
Polyaromatic Hydrocarbons (PAHs)							
Acenaphthene	<0.0050		0.0050	mg/kg	18-DEC-19	19-DEC-19	R4948769
Acenaphthylene	<0.0050		0.0050	mg/kg	18-DEC-19	19-DEC-19	R4948769
Acridine	<0.0050		0.0050	mg/kg	18-DEC-19	19-DEC-19	R4948769
Anthracene	<0.0040		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Benzo(a)anthracene	<0.0040		0.0040	mg/kg	18-DEC-19	19-DEC-19	R4948769
Benzo(a)pyrene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Benzo(b&j)fluoranthene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Benzo(g,h,i)perylene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Benzo(k)fluoranthene	<0.010		0.010		18-DEC-19	19-DEC-19 19-DEC-19	R4948769 R4948769
				mg/kg			
Chrysene Dibenzo(a.h)anthracene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Dibenzo(a,n)anthracene	< 0.0050		0.0050	mg/kg	18-DEC-19	19-DEC-19	R4948769
Fluoranthene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Indeno(1,2,3-cd)pyrene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Naphthalene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Phenanthrene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Pyrene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Quinoline	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
B(a)P Total Potency Equivalent	<0.020		0.020	mg/kg	18-DEC-19	19-DEC-19	R4948769
IACR (CCME)	<0.15		0.15		18-DEC-19	19-DEC-19	R4948769
Benzo(b+j+k)fluoranthene	<0.014		0.014	mg/kg	18-DEC-19	19-DEC-19	R4948769
Surrogate: Acenaphthene d10	107.6		60-130	%	18-DEC-19	19-DEC-19	R4948769
Surrogate: Chrysene d12	122.9		60-130	%	18-DEC-19	19-DEC-19	R4948769
Surrogate: Naphthalene d8	87.0		50-130	%	18-DEC-19	19-DEC-19	R4948769
Surrogate: Phenanthrene d10	109.1		60-130	%	18-DEC-19	19-DEC-19	R4948769
L2394273-6 TH19-10 @ 0.8M							
Sampled By: CLIENT on 03-DEC-19							
Matrix: SOIL							
BTEX and F1-F4 by Tumbler Method							
BTX plus F1 by GCMS							
Benzene	<0.0050		0.0050	mg/kg	03-DEC-19	12-DEC-19	R4942491
Toluene	<0.050		0.050	mg/kg	03-DEC-19	12-DEC-19	R4942491
Ethyl benzene	<0.015		0.015	mg/kg	03-DEC-19	12-DEC-19	R4942491
o-Xylene	< 0.050		0.050	mg/kg	03-DEC-19	12-DEC-19	R4942491
m+p-Xylenes	< 0.050		0.050	mg/kg	03-DEC-19	12-DEC-19	R4942491
F1 (C6-C10)	<10		10	mg/kg	03-DEC-19	12-DEC-19	R4942491
Surrogate: 4-Bromofluorobenzene (SS)	93.2		70-130	%	03-DEC-19	12-DEC-19	R4942491
CCME Total Extractable Hydrocarbons							
F2 (C10-C16)	<25		25	mg/kg	13-DEC-19	14-DEC-19	R4943247
F3 (C16-C34)	<50		50	mg/kg	13-DEC-19	14-DEC-19	R4943247
F4 (C34-C50)	<50		50	mg/kg	13-DEC-19	14-DEC-19	R4943247
Surrogate: 2-Bromobenzotrifluoride	79.6		60-140	%	13-DEC-19	14-DEC-19	R4943247
Chrom. to baseline at nC50	YES			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	13-DEC-19	14-DEC-19	R4943247
CCME Total Hydrocarbons							114040247
F1-BTEX	<10		10	mg/kg		20-DEC-19	
F2-Naphth	<10		25	mg/kg		20-DEC-19 20-DEC-19	
F3-PAH	<25		25 50	mg/kg		20-DEC-19 20-DEC-19	
Total Hydrocarbons (C6-C50)						20-DEC-19 20-DEC-19	
	<76		76	mg/kg		20-060-19	
Sum of Xylene Isomer Concentrations	-0.074		0.074	maller		17 DEC 40	
Xylenes (Total)	<0.071		0.071	mg/kg		17-DEC-19	
Miscellaneous Parameters							1

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2394273-6 TH19-10 @ 0.8M							
Sampled By: CLIENT on 03-DEC-19							
Matrix: SOIL							
Moisture	26.2		0.10	%		13-DEC-19	R4943683
Metals in Soil by CRC ICPMS	20.2		0.10	/0		10 020 10	114945005
Aluminum (Al)	23900		5000	mg/kg	16-DEC-19	23-DEC-19	R4953431
Antimony (Sb)	0.68		0.10	mg/kg	16-DEC-19	23-DEC-19	R4953431
Arsenic (As)	5.22		0.10	mg/kg	16-DEC-19	23-DEC-19	R4953431
Barium (Ba)	176		0.50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Beryllium (Be)	1.04		0.10	mg/kg	16-DEC-19	23-DEC-19	R4953431
Boron (B)	17.8		5.0	mg/kg	16-DEC-19	23-DEC-19	R4953431
Bismuth (Bi)	0.22		0.20	mg/kg	16-DEC-19	23-DEC-19	R4953431
Cadmium (Cd)	0.441		0.020	mg/kg	16-DEC-19	23-DEC-19	R4953431
Calcium (Ca)	66000		50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Chromium (Cr)	38.3		0.50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Cobalt (Co)	11.7		0.30	mg/kg	16-DEC-19	23 DEC-13 23-DEC-19	R4953431
Copper (Cu)	34.9		0.50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Iron (Fe)	25000		50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Lead (Pb)	44.8		0.50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Lithium (Li)	29.6		2.0	mg/kg	16-DEC-19	23-DEC-19	R4953431
Magnesium (Mg)	44500		20	mg/kg	16-DEC-19	23-DEC-19	R4953431
Manganese (Mn)	748		1.0	mg/kg	16-DEC-19	23-DEC-19	R4953431
Molybdenum (Mo)	0.42		0.10	mg/kg	16-DEC-19	23-DEC-19	R4953431
Nickel (Ni)	32.8		0.50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Phosphorus (P)	450		50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Potassium (K)	4010		100	mg/kg	16-DEC-19	23-DEC-19	R4953431
Selenium (Se)	<0.20		0.20	mg/kg	16-DEC-19	23-DEC-19	R4953431
Silver (Ag)	0.12		0.10	mg/kg	16-DEC-19	23-DEC-19	R4953431
Sodium (Na)	327		50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Strontium (Sr)	62.4		0.50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Sulfur (S)	<1000		1000	mg/kg	16-DEC-19	23-DEC-19	R4953431
Thallium (TI)	0.258		0.050	mg/kg	16-DEC-19	23-DEC-19	R4953431
Tin (Sn)	2.1		2.0	mg/kg	16-DEC-19	23-DEC-19	R4953431
Titanium (Ti)	150		1.0	mg/kg	16-DEC-19	23-DEC-19	R4953431
Tungsten (W)	<0.50		0.50	mg/kg	16-DEC-19	23-DEC-19	R4953431
Uranium (U)	0.790		0.050	mg/kg	16-DEC-19	23-DEC-19	R4953431
Vanadium (V)	59.2		0.20	mg/kg	16-DEC-19	23-DEC-19	R4953431
Zinc (Zn)	142		2.0	mg/kg	16-DEC-19	23-DEC-19	R4953431
Zirconium (Zr)	6.1		1.0	mg/kg	16-DEC-19	23-DEC-19	R4953431
Polyaromatic Hydrocarbons (PAHs)							
1-Methyl Naphthalene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
2-Methyl Naphthalene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Acenaphthene	<0.0050		0.0050	mg/kg	18-DEC-19	19-DEC-19	R4948769
Acenaphthylene	<0.0050		0.0050	mg/kg	18-DEC-19	19-DEC-19	R4948769
Acridine	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Anthracene	<0.0040		0.0040	mg/kg	18-DEC-19	19-DEC-19	R4948769
Benzo(a)anthracene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Benzo(a)pyrene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Benzo(b&j)fluoranthene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Benzo(g,h,i)perylene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Benzo(k)fluoranthene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Chrysene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Dibenzo(a,h)anthracene	<0.0050		0.0050	mg/kg	18-DEC-19	19-DEC-19	R4948769
Fluoranthene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Fluorene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
2204272 6 TU40 40 @ 0.9M							
_2394273-6 TH19-10 @ 0.8M							
Sampled By: CLIENT on 03-DEC-19							
Matrix: SOIL							
Polyaromatic Hydrocarbons (PAHs)							
Indeno(1,2,3-cd)pyrene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Naphthalene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Phenanthrene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Pyrene	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
Quinoline	<0.010		0.010	mg/kg	18-DEC-19	19-DEC-19	R4948769
B(a)P Total Potency Equivalent	<0.020		0.020	mg/kg	18-DEC-19	19-DEC-19	R4948769
IACR (CCME)	<0.15		0.15		18-DEC-19	19-DEC-19	R4948769
Benzo(b+j+k)fluoranthene	<0.014		0.014	mg/kg	18-DEC-19	19-DEC-19	R4948769
Surrogate: Acenaphthene d10	103.8		60-130	%	18-DEC-19	19-DEC-19	R4948769
Surrogate: Chrysene d12	108.9		60-130	%	18-DEC-19	19-DEC-19	R4948769
Surrogate: Naphthalene d8	109.4		50-130	%	18-DEC-19	19-DEC-19	R4948769
Surrogate: Phenanthrene d10							
	106.7		60-130	%	18-DEC-19	19-DEC-19	R4948769

Reference Information

Sample Parameter Qualifier Key:

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
DUP-H	Duplicate results outside ALS DQO, due to sample heterogeneity.
EMPC	Estimated Maximum Possible Concentration. Parameter detected but didn't meet all criteria for positive identification.
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).
SURR-ND	Surrogate recovery marginally exceeded ALS DQO. Reported non-detect results for associated samples were deemed to be unaffected.

Test Method References:

ALS Test Code Matrix		Test Description	Method Reference**		
BTEXS+F1-HSMS-WP	Soil	BTX plus F1 by GCMS	EPA 8260C		
		water and reagents, then heated in a sealed d concentrations are measured using mass s	vial to equilibrium. The headspace from the vial is transferred into a spectrometry detection.		
EOX-MP	Misc.	Extractable Organic Halides (EOX)	SEE SUBLET LAB REPORT		
The material is extracted v	with ethyl ac	etate then the extract is analyzed on the TO λ	(Total Organic Halides) instrument.		

F1-F4-CALC-WP Soil CCME Total Hydrocarbons CCME CWS-PHC, Pub #1310, Dec 2001-S

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

1. All extraction and analysis holding times were met.

2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.

3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

1. All extraction and analysis holding times were met.

2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.

3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.

4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F2-F4-TMB-FID-WP Soil CCME Total Extractable Hydrocarbons (

s CCME CWS-PHC, Pub #1310, Dec 2001

A soil or sediment sample is extracted with 1:1 hexane/acetone in a tumbler, followed by a silica gel clean up to facilitate separation of the hydrocarbons from other polar extractions. An aliquot of the solvent is analyzed using a gas chromatograph equipped with a flame -ionization detector.

F4G-TMB-WP Soil

CCME Gravimetric Heavy Hydrocarbons CCME CWS-PHC, Pub #1310, Dec 2001-S

A soil or sediment sample is extracted with 1:1 hexane/acetone in a tumbler, followed by a silica gel clean up to facilitate separation of the hydrocarbons from other polar extractions. An aliquot of the solvent is analyzed using gravimetric method

MET-200.2-CCMS-WP

Metals in Soil by CRC ICPMS

EPA 200.2/6020B (mod)

Soil/sediment is dried, disaggregated, and sieved (2 mm). Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including Al, Ba, Be, Cr, S, Sr, Ti, Tl, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

MOISTURE-WP	Soil	% Moisture

Soil

Soil

CCME PHC in Soil - Tier 1 (mod)

Moisture content in solid matrices is determined gravimetrically after drying to constant weight at 105°C.

PAH,PANH-WP

Polyaromatic Hydrocarbons (PAHs)

EPA SW 846/8270-GC/MS

Reference Information

ALS Test Code	Matrix	Test Description	Method Reference**
Samples are rotary extra toluene extract is analyz			extracts are concentrated and solvent exchanged to toluene. The
PCB-ED	Soil	PCBs	EPA 3570/8082-GC-ECD
This analysis is carried o	out using proc	edures adapted from "Test Methods for Evaluation	ting Solid Waste" SW-846, Methods 3500, 3620, 3630, 3660, 3665
& 8082, published by the sediment/soil using a mi following clean-up proce	e United State exture of hexa dures (if requ	es Environmental Protection Agency (EPA). The and acetone. Water is added to the extract	he procedure involves a solid-liquid extraction of a subsample of the and the resulting hexane extract undergoes one or more of the nur clean-up and/or sulphuric acid clean-up. The final extract is
& 8082, published by the sediment/soil using a mi following clean-up proce	e United State exture of hexa dures (if requ	es Environmental Protection Agency (EPA). The ne and acetone. Water is added to the extract ired): florisil clean-up, silica gel clean-up, sulph	ur clean-up and/or sulphuric acid clean-up. The final extract is
& 8082, published by the sediment/soil using a mi following clean-up proce analysed by capillary co /OC+F1-HSMS-WP The soil methanol extract	e United State xture of hexa dures (if requ lumn gas chro Soil st is added to	es Environmental Protection Agency (EPA). The ne and acetone. Water is added to the extract ired): florisil clean-up, silica gel clean-up, sulph omatography with electron capture detection (G VOC plus F1 by GCMS	he procedure involves a solid-liquid extraction of a subsample of the and the resulting hexane extract undergoes one or more of the fur clean-up and/or sulphuric acid clean-up. The final extract is GC/ECD). EPA 8260C ial to equilibrium. The headspace from the vial is transferred into a

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
MP	ALS ENVIRONMENTAL - MIDDLETOWN, PENNSYLVANIA, USA
ED	ALS ENVIRONMENTAL - EDMONTON, ALBERTA, CANADA
WP	ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L2394273

Report Date: 05-MAR-20

RPD

Limit

Units

Page 1 of 18

Analyzed

Contact:	Winnipeg MB R3Y 1G4 KEVIN BEECHINOR			
Test	Matrix	Reference	Result	Qualifier

						•
BTEXS+F1-HSMS-	WP Soil					
Batch R4	942491					
	LCS					
Benzene			94.4	%	70-130	12-DEC-19
Toluene			101.5	%	70-130	12-DEC-19
Ethyl benzene			110.8	%	70-130	12-DEC-19
o-Xylene			116.4	%	70-130	12-DEC-19
m+p-Xylenes			110.8	%	70-130	12-DEC-19
WG3240193-3 F1 (C6-C10)	LCS		74.5	%	70-130	12-DEC-19
WG3240193-1 Benzene	MB		<0.0050	mg/kg	0.005	12-DEC-19
Toluene			<0.050	mg/kg	0.05	12-DEC-19
Ethyl benzene			<0.015	mg/kg	0.015	12-DEC-19
o-Xylene			<0.050	mg/kg	0.05	12-DEC-19
m+p-Xylenes			<0.050	mg/kg	0.05	12-DEC-19
F1 (C6-C10)			<10	mg/kg	10	12-DEC-19
Surrogate: 4-Br	omofluorobenzene (SS)		90.9	%	70-130	12-DEC-19
F2-F4-TMB-FID-WI	P Soil					
Batch R4	943247					
WG3241707-3	IRM	ALS PHC RM3				
F2 (C10-C16)			86.1	%	70-130	14-DEC-19
F3 (C16-C34)			84.9	%	70-130	14-DEC-19
F4 (C34-C50)			80.4	%	70-130	14-DEC-19
WG3241707-2	LCS					
F2 (C10-C16)			93.6	%	70-130	14-DEC-19
F3 (C16-C34)			89.6	%	70-130	14-DEC-19
F4 (C34-C50)			90.5	%	70-130	14-DEC-19
WG3241707-1 F2 (C10-C16)	MB		<25	mg/kg	25	14-DEC-19
F3 (C16-C34)			<50	mg/kg	50	14-DEC-19
F4 (C34-C50)			<50	mg/kg	50	14-DEC-19
. ,	omobenzotrifluoride		75.6	%	60-140	14-DEC-19
F4G-TMB-WP	Soil					
Batch R4	945332					
WG3245249-2 F4G-SG	IRM	ALS PHC RM3	85.1	%	70-130	17-DEC-19
WG3245249-1	МВ					

		Workorder	: L239427	' 3	Report Date: 0	5-MAR-20	Pag	e 2 of ²
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
-4G-TMB-WP	Soil							
Batch R4945332	2							
WG3245249-1 MB F4G-SG			<500		mg/kg		500	17-DEC-19
MET-200.2-CCMS-WP	Soil							
Batch R4953431	Į							
WG3243514-4 CRM		CANMET TI			24			
Aluminum (Al)			111.5		%		70-130	23-DEC-19
Antimony (Sb)			104.8		%		70-130	23-DEC-19
Arsenic (As)			101.8		%		70-130	23-DEC-19
Barium (Ba)			99.4		%		70-130	23-DEC-19
Beryllium (Be)			107.6		%		70-130	23-DEC-19
Boron (B)			0.7		mg/kg		0-8.2	23-DEC-19
Bismuth (Bi)			102.8		%		70-130	23-DEC-19
Cadmium (Cd)			106.0		%		70-130	23-DEC-19
Calcium (Ca)			91.6		%		70-130	23-DEC-19
Chromium (Cr)			96.3		%		70-130	23-DEC-19
Cobalt (Co)			100.1		%		70-130	23-DEC-19
Copper (Cu)			111.7		%		70-130	23-DEC-19
Iron (Fe)			99.2		%		70-130	23-DEC-19
Lead (Pb)			104.2		%		70-130	23-DEC-19
Lithium (Li)			100.3		%		70-130	23-DEC-19
Magnesium (Mg)			104.6		%		70-130	23-DEC-19
Manganese (Mn)			112.4		%		70-130	23-DEC-19
Molybdenum (Mo)			101.7		%		70-130	23-DEC-19
Nickel (Ni)			100.7		%		70-130	23-DEC-19
Phosphorus (P)			102.7		%		70-130	23-DEC-19
Potassium (K)			77.5		%		70-130	23-DEC-19
Selenium (Se)			0.29		mg/kg		0.12-0.52	23-DEC-19
Silver (Ag)			0.26		mg/kg		0.12-0.32	23-DEC-19
Sodium (Na)			78.5		%		70-130	23-DEC-19
Strontium (Sr)			89.8		%		70-130	23-DEC-19
Thallium (TI)			0.117		mg/kg			5 23-DEC-19
Tin (Sn)			1.0		mg/kg		0-3.1	23-DEC-19
Titanium (Ti)			84.4		%		70-130	23-DEC-19
Tungsten (W)			0.14		mg/kg		0-0.66	23-DEC-19

		Workorder	: L239427	'3	Report Date: 0	5-MAR-20	Pa	age 3 of 1
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WP	Soil							
Batch R4953431								
WG3243514-4 CRM		CANMET TI						
Uranium (U)			97.0		%		70-130	23-DEC-19
Vanadium (V)			97.1		%		70-130	23-DEC-19
Zinc (Zn)			103.8		%		70-130	23-DEC-19
Zirconium (Zr)			0.7		mg/kg		0-1.8	23-DEC-19
WG3243514-2 LCS Aluminum (Al)			105.1		%		80-120	23-DEC-19
Antimony (Sb)			107.5		%		80-120	23-DEC-19
Arsenic (As)			104.1		%		80-120	23-DEC-19
Barium (Ba)			104.8		%		80-120	23-DEC-19
Beryllium (Be)			109.2		%		80-120	23-DEC-19
Boron (B)			103.6		%		80-120	23-DEC-19
Bismuth (Bi)			104.1		%		80-120	23-DEC-19
Cadmium (Cd)			105.1		%		80-120	23-DEC-19
Calcium (Ca)			104.6		%		80-120	23-DEC-19
Chromium (Cr)			102.9		%		80-120	23-DEC-19
Cobalt (Co)			104.7		%		80-120	23-DEC-19
Copper (Cu)			106.2		%		80-120	23-DEC-19
Iron (Fe)			96.4		%		80-120	23-DEC-19
Lead (Pb)			105.5		%		80-120	23-DEC-19
Lithium (Li)			107.8		%		80-120	23-DEC-19
Magnesium (Mg)			111.4		%		80-120	23-DEC-19
Manganese (Mn)			104.6		%		80-120	23-DEC-19
Molybdenum (Mo)			106.4		%		80-120	23-DEC-19
Nickel (Ni)			103.3		%		80-120	23-DEC-19
Phosphorus (P)			106.2		%		80-120	23-DEC-19
Potassium (K)			106.2		%		80-120	23-DEC-19
Selenium (Se)			108.7		%		80-120	23-DEC-19
Silver (Ag)			104.7		%		80-120	23-DEC-19
Sodium (Na)			107.1		%		80-120	23-DEC-19
Strontium (Sr)			103.8		%		80-120	23-DEC-19
Sulfur (S)			109.3		%		70-130	23-DEC-19
Thallium (TI)			105.2		%		80-120	23-DEC-19
Tin (Sn)			104.9		%		80-120	23-DEC-19
Titanium (Ti)			102.2		%		80-120	23-DEC-19

		Workorder	: L239427	73	Report Date: 0	5-MAR-20	Pa	age 4 of
Fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WP	Soil							
Batch R4953431	l							
WG3243514-2 LCS								
Tungsten (W)			108.3		%		70-130	23-DEC-19
Uranium (U)			108.2		%		80-120	23-DEC-19
Vanadium (V)			105.1		%		80-120	23-DEC-19
Zinc (Zn)			105.6		%		80-120	23-DEC-19
Zirconium (Zr)			99.4		%		80-120	23-DEC-19
WG3243514-1 MB Aluminum (Al)			<50		mg/kg		50	23-DEC-19
Antimony (Sb)			<0.10		mg/kg		0.1	23-DEC-19
Arsenic (As)			<0.10		mg/kg		0.1	23-DEC-19
Barium (Ba)			<0.50		mg/kg		0.5	23-DEC-19
Beryllium (Be)			<0.10		mg/kg		0.1	23-DEC-19
Boron (B)			<5.0		mg/kg		5	23-DEC-19
Bismuth (Bi)			<0.20		mg/kg		0.2	23-DEC-19
Cadmium (Cd)			<0.020		mg/kg		0.02	23-DEC-19
Calcium (Ca)			<50		mg/kg		50	23-DEC-19
Chromium (Cr)			<0.50		mg/kg		0.5	23-DEC-19
Cobalt (Co)			<0.10		mg/kg		0.1	23-DEC-19
Copper (Cu)			<0.50		mg/kg		0.5	23-DEC-19
Iron (Fe)			<50		mg/kg		50	23-DEC-19
Lead (Pb)			<0.50		mg/kg		0.5	23-DEC-19
Lithium (Li)			<2.0		mg/kg		2	23-DEC-19
Magnesium (Mg)			<20		mg/kg		20	23-DEC-19
Manganese (Mn)			<1.0		mg/kg		1	23-DEC-19
Molybdenum (Mo)			<0.10		mg/kg		0.1	23-DEC-19
Nickel (Ni)			<0.50		mg/kg		0.5	23-DEC-19
Phosphorus (P)			<50		mg/kg		50	23-DEC-19
Potassium (K)			<100		mg/kg		100	23-DEC-19
Selenium (Se)			<0.20		mg/kg		0.2	23-DEC-19
Silver (Ag)			<0.10		mg/kg		0.1	23-DEC-19
Sodium (Na)			<50		mg/kg		50	23-DEC-19
Strontium (Sr)			<0.50		mg/kg		0.5	23-DEC-19
Sulfur (S)			<1000		mg/kg		1000	23-DEC-19
Thallium (TI)			<0.050		mg/kg		0.05	23-DEC-19
Tin (Sn)			<2.0		mg/kg		2	23-DEC-19

		Workorder	: L239427	' 3	Report Date: 0	5-MAR-20	Pa	ge 5 of ²
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WP	Soil							
Batch R4953431								
WG3243514-1 MB			4.0					
Titanium (Ti)			<1.0		mg/kg		1	23-DEC-19
Tungsten (W)			<0.50		mg/kg		0.5	23-DEC-19
Uranium (U)			<0.050		mg/kg		0.05	23-DEC-19
Vanadium (V)			<0.20		mg/kg		0.2	23-DEC-19
Zinc (Zn)			<2.0		mg/kg		2	23-DEC-19
Zirconium (Zr)			<1.0		mg/kg		1	23-DEC-19
Batch R4957756								
WG3247479-4 CRM		CANMET TI			0/		70.400	
Aluminum (Al)			107.3		%		70-130	27-DEC-19
Antimony (Sb)			98.7		%		70-130	27-DEC-19
Arsenic (As)			97.9		%		70-130	27-DEC-19
Barium (Ba)			100.3		%		70-130	27-DEC-19
Beryllium (Be)			97.9		%		70-130	27-DEC-19
Boron (B)			1.5		mg/kg		0-8.2	27-DEC-19
Bismuth (Bi)			106.3		%		70-130	27-DEC-19
Cadmium (Cd)			100.3		%		70-130	27-DEC-19
Calcium (Ca)			88.2		%		70-130	27-DEC-19
Chromium (Cr)			93.4		%		70-130	27-DEC-19
Cobalt (Co)			94.8		%		70-130	27-DEC-19
Copper (Cu)			98.7		%		70-130	27-DEC-19
Iron (Fe)			97.4		%		70-130	27-DEC-19
Lead (Pb)			100.0		%		70-130	27-DEC-19
Lithium (Li)			94.8		%		70-130	27-DEC-19
Magnesium (Mg)			105.0		%		70-130	27-DEC-19
Manganese (Mn)			107.4		%		70-130	27-DEC-19
Molybdenum (Mo)			101.9		%		70-130	27-DEC-19
Nickel (Ni)			93.9		%		70-130	27-DEC-19
Phosphorus (P)			99.3		%		70-130	27-DEC-19
Potassium (K)			77.5		%		70-130	27-DEC-19
Selenium (Se)			0.33		mg/kg		0.12-0.52	27-DEC-19
Silver (Ag)			0.23		mg/kg		0.12-0.32	27-DEC-19
Sodium (Na)			65.0	MES	%		70-130	27-DEC-19
Strontium (Sr)			92.8		%		70-130	27-DEC-19
Thallium (Tl)			0.116		mg/kg		0.075-0.17	5 27-DEC-19

		Workorder	: L239427	'3	Report Date: 0	5-MAR-20	Pa	age 6 of ²
lest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WP	Soil							
Batch R4957756	5							
WG3247479-4 CRM		CANMET TI						
Tin (Sn)			0.9		mg/kg		0-3.1	27-DEC-19
Titanium (Ti)			72.8		%		70-130	27-DEC-19
Tungsten (W)			0.11		mg/kg		0-0.66	27-DEC-19
Uranium (U)			99.2		%		70-130	27-DEC-19
Vanadium (V)			91.7		%		70-130	27-DEC-19
Zinc (Zn)			94.8		%		70-130	27-DEC-19
Zirconium (Zr)			0.6		mg/kg		0-1.8	27-DEC-19
WG3247479-2 LCS Aluminum (Al)			103.7		%		80-120	27-DEC-19
Antimony (Sb)			105.5		%		80-120	27-DEC-19
Arsenic (As)			100.9		%		80-120	27-DEC-19
Barium (Ba)			98.4		%		80-120	27-DEC-19
Beryllium (Be)			102.3		%		80-120	27-DEC-19
Boron (B)			97.2		%		80-120	27-DEC-19
Bismuth (Bi)			101.6		%		80-120	27-DEC-19
Cadmium (Cd)			98.6		%		80-120	27-DEC-19
Calcium (Ca)			99.8		%		80-120	27-DEC-19
Chromium (Cr)			99.6		%		80-120	27-DEC-19
Cobalt (Co)			98.4		%		80-120	27-DEC-19
Copper (Cu)			98.6		%		80-120	27-DEC-19
Iron (Fe)			87.8		%		80-120	27-DEC-19
Lead (Pb)			101.6		%		80-120	27-DEC-19
Lithium (Li)			101.2		%		80-120	27-DEC-19
Magnesium (Mg)			112.5		%		80-120	27-DEC-19
Manganese (Mn)			101.6		%		80-120	27-DEC-19
Molybdenum (Mo)			106.3		%		80-120	27-DEC-19
Nickel (Ni)			96.7		%		80-120	27-DEC-19
Phosphorus (P)			106.1		%		80-120	27-DEC-19
Potassium (K)			105.8		%		80-120	27-DEC-19
Selenium (Se)			97.8		%		80-120	27-DEC-19
Silver (Ag)			103.1		%		80-120	27-DEC-19
Sodium (Na)			101.0		%		80-120	27-DEC-19
Strontium (Sr)			112.4		%		80-120	27-DEC-19
Sulfur (S)			99.6		%		70-130	27-DEC-19

		Workorder	: L239427	'3	Report Date: 0	5-MAR-20	Pa	ige 7 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WP	Soil							
Batch R4957756	i							
WG3247479-2 LCS			00.0		0/			
Thallium (TI)			98.9		%		80-120	27-DEC-19
Tin (Sn)			99.2		%		80-120	27-DEC-19
Titanium (Ti)			99.9		%		80-120	27-DEC-19
Tungsten (W)			102.2		%		70-130	27-DEC-19
Uranium (U)			105.3		%		80-120	27-DEC-19
Vanadium (V)			100.9		%		80-120	27-DEC-19
Zinc (Zn)			99.3		%		80-120	27-DEC-19
Zirconium (Zr)			102.1		%		80-120	27-DEC-19
WG3247479-1 MB Aluminum (Al)			<50		mg/kg		50	27-DEC-19
Antimony (Sb)			<0.10		mg/kg		0.1	27-DEC-19
Arsenic (As)			<0.10		mg/kg		0.1	27-DEC-19
Barium (Ba)			<0.50		mg/kg		0.5	27-DEC-19
Beryllium (Be)			<0.10		mg/kg		0.1	27-DEC-19
Boron (B)			<5.0		mg/kg		5	27-DEC-19
Bismuth (Bi)			<0.20		mg/kg		0.2	27-DEC-19
Cadmium (Cd)			<0.020		mg/kg		0.02	27-DEC-19
Calcium (Ca)			<50		mg/kg		50	27-DEC-19
Chromium (Cr)			<0.50		mg/kg		0.5	27-DEC-19
Cobalt (Co)			<0.10		mg/kg		0.1	27-DEC-19
Copper (Cu)			<0.50		mg/kg		0.5	27-DEC-19
Iron (Fe)			<50		mg/kg		50	27-DEC-19
Lead (Pb)			<0.50		mg/kg		0.5	27-DEC-19
Lithium (Li)			<2.0		mg/kg		2	27-DEC-19
Magnesium (Mg)			<20		mg/kg		20	27-DEC-19
Manganese (Mn)			<1.0		mg/kg		1	27-DEC-19
Molybdenum (Mo)			<0.10		mg/kg		0.1	27-DEC-19
Nickel (Ni)			<0.50		mg/kg		0.5	27-DEC-19
Phosphorus (P)			<50		mg/kg		50	27-DEC-19
Potassium (K)			<100		mg/kg		100	27-DEC-19
Selenium (Se)			<0.20		mg/kg		0.2	27-DEC-19
Silver (Ag)			<0.10		mg/kg		0.1	27-DEC-19
Sodium (Na)			<50		mg/kg		50	27-DEC-19
Strontium (Sr)			<0.50		mg/kg		0.5	27-DEC-19

		Workorder:	L239427	3 Re	port Date: 0	5-MAR-20	Pa	ige 8 of 1
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-WP	Soil							
Batch R4957756	i							
WG3247479-1 MB								
Sulfur (S)			<1000		mg/kg		1000	27-DEC-19
Thallium (Tl)			<0.050		mg/kg		0.05	27-DEC-19
Tin (Sn)			<2.0		mg/kg		2	27-DEC-19
Titanium (Ti)			<1.0		mg/kg		1	27-DEC-19
Tungsten (W)			<0.50		mg/kg		0.5	27-DEC-19
Uranium (U)			<0.050		mg/kg		0.05	27-DEC-19
Vanadium (V)			<0.20		mg/kg		0.2	27-DEC-19
Zinc (Zn)			<2.0		mg/kg		2	27-DEC-19
Zirconium (Zr)			<1.0		mg/kg		1	27-DEC-19
MOISTURE-WP	Soil							
Batch R4941938								
WG3239944-5 LCS Moisture			100.4		%		90-110	11-DEC-19
WG3239944-4 MB Moisture			<0.10		%		0.1	11-DEC-19
Batch R4943683								
WG3241745-2 LCS Moisture			100.1		%		90-110	13-DEC-19
WG3241745-1 MB Moisture			<0.10		%		0.1	13-DEC-19
PAH,PANH-WP	Soil							
Batch R4948769	1							
WG3246489-3 DUP		L2394273-1						
1-Methyl Naphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	19-DEC-19
2-Methyl Naphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	19-DEC-19
Acenaphthene		<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	19-DEC-19
Acenaphthylene		<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	19-DEC-19
Acridine		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	19-DEC-19
Anthracene		<0.0040	<0.0040	RPD-NA	mg/kg	N/A	50	19-DEC-19
Benzo(a)anthracene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	19-DEC-19
Benzo(a)pyrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	19-DEC-19
Benzo(b&j)fluoranthene)	<0.010	<0.010	RPD-NA	mg/kg	N/A	50	19-DEC-19
Benzo(g,h,i)perylene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	19-DEC-19
Benzo(k)fluoranthene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	19-DEC-19
Chrysene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	19-DEC-19

		Workorder:	L239427	3 Re	eport Date: 0	5-MAR-20	Pa	ige 9 of 1
ſest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH,PANH-WP	Soil							
Batch R4948769	1							
WG3246489-3 DUP Dibenzo(a,h)anthracene	е	L2394273-1 <0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	19-DEC-19
Fluoranthene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	19-DEC-19
Fluorene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	19-DEC-19
Indeno(1,2,3-cd)pyrene	•	<0.010	<0.010	RPD-NA	mg/kg	N/A	50	19-DEC-19
Naphthalene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	19-DEC-19
Phenanthrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	19-DEC-19
Pyrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	19-DEC-19
Quinoline		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	19-DEC-19
WG3246489-4 IRM 1-Methyl Naphthalene		ALS PAH RM	98.1		%		65-130	19-DEC-19
2-Methyl Naphthalene			103.5		%		65-130	19-DEC-19
Acenaphthene			121.0		%		65-130 65-130	19-DEC-19
Acenaphthylene			87.7		%		65-130	19-DEC-19
Anthracene			90.6		%		65-130	19-DEC-19
Benzo(a)anthracene			108.7		%		65-130	19-DEC-19
Benzo(a)pyrene			80.6		%		65-130	19-DEC-19
Benzo(b&j)fluoranthene	9		75.1		%		65-130	19-DEC-19
Benzo(g,h,i)perylene			94.3		%		65-130	19 DEC 19
Benzo(k)fluoranthene			75.8		%		65-130	19 DEC 19
Chrysene			117.0		%		65-130	19 DEC 19
Dibenzo(a,h)anthracene	e		94.5		%		65-130	19 DEC 19
Fluoranthene			92.7		%		65-130	19-DEC-19
Fluorene			96.9		%		65-130	19-DEC-19
Indeno(1,2,3-cd)pyrene			85.6		%		65-130	19-DEC-19
Naphthalene			112.3		%		65-130	19-DEC-19
Phenanthrene			94.9		%		65-130	19-DEC-19
Pyrene			101.8		%		65-130	19-DEC-19
WG3246489-2 LCS			110.1		0/			
1-Methyl Naphthalene			113.1		%		60-130	19-DEC-19
2-Methyl Naphthalene			109.4		%		60-130	19-DEC-19
Acenaphthene			114.7		%		60-130	19-DEC-19
Acenaphthylene			102.9		%		60-130	19-DEC-19
Acridine			114.3		%		60-130	19-DEC-19
Anthracene			112.9		%		60-130	19-DEC-19
Benzo(a)anthracene			120.4		%		60-130	19-DEC-19

	Workorder:	L239427	3	Report Date: 05	5-MAR-20	Pa	age 10 of 1
est Mat	trix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH,PANH-WP Soi	il						
Batch R4948769							
WG3246489-2 LCS		404 5		0/			
Benzo(a)pyrene		101.5		%		60-130	19-DEC-19
Benzo(b&j)fluoranthene		93.4		%		60-130	19-DEC-19
Benzo(g,h,i)perylene		105.1		%		60-130	19-DEC-19
Benzo(k)fluoranthene		110.4		%		60-130	19-DEC-19
Chrysene		117.4		%		60-130	19-DEC-19
Dibenzo(a,h)anthracene		102.1		%		60-130	19-DEC-19
Fluoranthene		111.4		%		60-130	19-DEC-19
Fluorene		105.9		%		60-130	19-DEC-19
Indeno(1,2,3-cd)pyrene		102.4		%		60-130	19-DEC-19
Naphthalene		114.5		%		50-130	19-DEC-19
Phenanthrene		114.6		%		60-130	19-DEC-19
Pyrene		117.5		%		60-130	19-DEC-19
Quinoline		112.2		%		60-130	19-DEC-19
WG3246489-1 MB 1-Methyl Naphthalene		<0.010		mg/kg		0.01	19-DEC-19
2-Methyl Naphthalene		<0.010		mg/kg		0.01	19-DEC-19
Acenaphthene		<0.0050		mg/kg		0.005	19-DEC-19
Acenaphthylene		<0.0050		mg/kg		0.005	19-DEC-19
Acridine		<0.000		mg/kg		0.005	19-DEC-19
Anthracene		<0.0040		mg/kg		0.004	19-DEC-19
Benzo(a)anthracene		<0.010		mg/kg		0.004	
Benzo(a)pyrene		<0.010		mg/kg		0.01	19-DEC-19
Benzo(b&j)fluoranthene		<0.010					19-DEC-19
Benzo(g,h,i)perylene		<0.010		mg/kg		0.01	19-DEC-19
Benzo(k)fluoranthene		<0.010		mg/kg		0.01	19-DEC-19
				mg/kg		0.01	19-DEC-19
Chrysene		<0.010		mg/kg		0.01	19-DEC-19
Dibenzo(a,h)anthracene		<0.0050		mg/kg		0.005	19-DEC-19
Fluoranthene Fluorene		<0.010		mg/kg		0.01	19-DEC-19
		<0.010		mg/kg		0.01	19-DEC-19
Indeno(1,2,3-cd)pyrene		<0.010		mg/kg		0.01	19-DEC-19
Naphthalene		<0.010		mg/kg		0.01	19-DEC-19
Phenanthrene		<0.010		mg/kg		0.01	19-DEC-19
Pyrene Quinoline		<0.010 <0.010		mg/kg mg/kg		0.01 0.01	19-DEC-19 19-DEC-19

		Workorder:	L239427	3 Re	port Date: 0	5-MAR-20	Pa	ge 11 of 18
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH,PANH-WP	Soil							
Batch R49 WG3246489-1 Surrogate: Acen	948769 MB		92.9		%		60.400	
-							60-130	19-DEC-19
Surrogate: Chrys			120.3		%		60-130	19-DEC-19
Surrogate: Naph Surrogate: Phen			101.0 101.7		% %		50-130 60-130	19-DEC-19 19-DEC-19
PCB-ED	Soil							
Batch R49	944999							
WG3243253-3 Aroclor 1260	CRM	PCB_SOIL_C	73.9		%		65-130	17-DEC-19
WG3243253-4 Aroclor 1016	DUP	L2394273-4 <0.010	<0.010	RPD-NA	mg/kg	N/A	50	17-DEC-19
Aroclor 1221		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	17-DEC-19
Aroclor 1232		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	17-DEC-19
Aroclor 1242		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	17-DEC-19
Aroclor 1248		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	17-DEC-19
Aroclor 1254		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	17-DEC-19
Aroclor 1260		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	17-DEC-19
Aroclor 1262		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	17-DEC-19
Aroclor 1268		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	17-DEC-19
WG3243253-2 Aroclor 1016	LCS	LCS_A1016	78.7		%		65-130	17-DEC-19
WG3243253-1 Aroclor 1016	МВ		-0.010		malka			
Aroclor 1221			<0.010 <0.010		mg/kg		0.01	17-DEC-19
Aroclor 1221 Aroclor 1232			<0.010		mg/kg		0.01	17-DEC-19
Aroclor 1232			<0.010		mg/kg		0.01	17-DEC-19
Aroclor 1242 Aroclor 1248			<0.010		mg/kg mg/kg		0.01	17-DEC-19
Aroclor 1248 Aroclor 1254			<0.010		mg/kg mg/kg		0.01	17-DEC-19
Aroclor 1254 Aroclor 1260			<0.010 <0.010		mg/kg mg/kg		0.01	17-DEC-19
Aroclor 1260 Aroclor 1262			<0.010		mg/kg		0.01	17-DEC-19
Aroclor 1262 Aroclor 1268			<0.010 <0.010		mg/kg mg/kg		0.01	17-DEC-19
	chlorobiphenyl		<0.010 83.0		mg/kg %		0.01 65-130	17-DEC-19 17-DEC-19

VOC+F1-HSMS-WP

Soil

		Workorder:	L239427	3 Re	port Date: 0	5-MAR-20	Р	age 12 of 1
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
OC+F1-HSMS-WP	Soil							
Batch R4953041								
WG3247019-3 DUP		L2394273-1						
Acetone		<0.50	<0.50	RPD-NA	mg/kg	N/A	50	20-DEC-19
Benzene		<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	20-DEC-19
Bromobenzene		<0.10	<0.10	RPD-NA	mg/kg	N/A	50	20-DEC-19
Bromochloromethane		<0.10	<0.10	RPD-NA	mg/kg	N/A	50	20-DEC-19
Bromodichloromethane		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
Bromoform		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
Bromomethane		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
n-Butylbenzene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
sec-Butylbenzene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
tert-Butylbenzene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
Carbon disulfide		<0.25	<0.25	RPD-NA	mg/kg	N/A	50	20-DEC-19
Carbon Tetrachloride		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
Chlorobenzene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
Chloroethane		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
Chloroform		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
Chloromethane		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
2-Chlorotoluene		<0.10	<0.10	RPD-NA	mg/kg	N/A	50	20-DEC-19
4-Chlorotoluene		<0.10	<0.10	RPD-NA	mg/kg	N/A	50	20-DEC-19
Dibromochloromethane)	<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
1,2-Dibromo-3-chloropr	opane	<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
1,2-Dibromoethane		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
Dibromomethane		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
1,2-Dichlorobenzene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
1,3-Dichlorobenzene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
1,4-Dichlorobenzene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
Dichlorodifluoromethan	e	<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
1,1-dichloroethane		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
1,2-Dichloroethane		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20 DEC 19
1,1-dichloroethene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
cis-1,2-Dichloroethene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20 DEC-19
trans-1,2-Dichloroethen	e	<0.050	<0.050	RPD-NA	mg/kg	N/A	50 50	20-DEC-19 20-DEC-19
Dichloromethane		<0.10	<0.10	RPD-NA	mg/kg	N/A	50	20-DEC-19 20-DEC-19
1,2-Dichloropropane		<0.050	<0.050	RPD-NA	mg/kg	N/A	50 50	20-DEC-19 20-DEC-19
1,3-Dichloropropane		<0.050	<0.050	RPD-NA	mg/kg	N/A N/A	50 50	20-DEC-19 20-DEC-19

		Workorder:	L2394273	s Re	eport Date: 0	5-MAR-20	Pa	age 13 of 1
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
OC+F1-HSMS-WP	Soil							
Batch R4953041								
WG3247019-3 DUP		L2394273-1						
2,2-Dichloropropane		<0.10	<0.10	RPD-NA	mg/kg	N/A	50	20-DEC-19
1,1-Dichloropropene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
cis-1,3-Dichloropropene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
trans-1,3-Dichloropropene	•	<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
Ethylbenzene		<0.015	<0.015	RPD-NA	mg/kg	N/A	50	20-DEC-19
F1		<10	<10	RPD-NA	mg/kg	N/A	50	20-DEC-19
Hexachlorobutadiene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
Hexane		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
2-Hexanone (Methyl butyl	ketone)	<0.50	<0.50	RPD-NA	mg/kg	N/A	50	20-DEC-19
Isopropylbenzene		<0.10	<0.10	RPD-NA	mg/kg	N/A	50	20-DEC-19
4-Isopropyltoluene		<0.10	<0.10	RPD-NA	mg/kg	N/A	50	20-DEC-19
MEK		<0.50	<0.50	RPD-NA	mg/kg	N/A	50	20-DEC-19
MIBK		<0.50	<0.50	RPD-NA	mg/kg	N/A	50	20-DEC-19
MTBE		<0.20	<0.20	RPD-NA	mg/kg	N/A	50	20-DEC-19
Styrene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
1,1,1,2-Tetrachloroethane	!	<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
1,1,2,2-Tetrachloroethane		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
Tetrachloroethene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
Toluene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
1,2,3-Trichlorobenzene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
1,2,4-Trichlorobenzene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
1,1,1-Trichloroethane		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
1,1,2-Trichloroethane		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
Trichloroethene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
Trichlorofluoromethane		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
1,2,3-Trichloropropane		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-DEC-19
1,2,4-Trimethylbenzene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20 DEC 10 20-DEC-19
1,3,5-Trimethylbenzene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50 50	20-DEC-19 20-DEC-19
Vinyl Chloride		<0.050	<0.050	RPD-NA	mg/kg	N/A	50 50	20-DEC-19 20-DEC-19
M+P-Xylenes		<0.050	<0.050	RPD-NA	mg/kg	N/A	50 50	20-DEC-19 20-DEC-19
o-Xylene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50 50	20-DEC-19 20-DEC-19
-		~0.000	~0.000			(N/ <i>I</i> A	50	20-DEC-19
WG3247019-2 LCS Acetone			107.1		%		70-130	20-DEC-19
Benzene			106.9		%		70-130	20 DEC 13 20-DEC-19

		Workorder:	L239427	'3	Report Date: 08	5-MAR-20	Pa	age 14 of 1
est I	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC+F1-HSMS-WP	Soil							
Batch R4953041								
WG3247019-2 LCS			400 7		0/			
Bromobenzene			103.7		%		70-130	20-DEC-19
Bromochloromethane			110.6		%		70-130	20-DEC-19
Bromodichloromethane			107.5		%		70-130	20-DEC-19
Bromoform			109.0		%		70-130	20-DEC-19
Bromomethane			101.7		%		60-140	20-DEC-19
n-Butylbenzene			108.6		%		70-130	20-DEC-19
sec-Butylbenzene			112.0		%		70-130	20-DEC-19
tert-Butylbenzene			107.1		%		70-130	20-DEC-19
Carbon disulfide			111.6		%		70-130	20-DEC-19
Carbon Tetrachloride			111.0		%		70-130	20-DEC-19
Chlorobenzene			110.1		%		70-130	20-DEC-19
Chloroethane			105.1		%		60-140	20-DEC-19
Chloroform			111.3		%		70-130	20-DEC-19
Chloromethane			129.5		%		60-140	20-DEC-19
2-Chlorotoluene			117.0		%		70-130	20-DEC-19
4-Chlorotoluene			108.6		%		70-130	20-DEC-19
Dibromochloromethane			107.5		%		70-130	20-DEC-19
1,2-Dibromo-3-chloropropa	ane		107.1		%		70-130	20-DEC-19
1,2-Dibromoethane			102.4		%		70-130	20-DEC-19
Dibromomethane			111.1		%		70-130	20-DEC-19
1,2-Dichlorobenzene			111.5		%		70-130	20-DEC-19
1,3-Dichlorobenzene			109.2		%		70-130	20-DEC-19
1,4-Dichlorobenzene			114.7		%		70-130	20-DEC-19
Dichlorodifluoromethane			107.1		%		60-140	20-DEC-19
1,1-dichloroethane			107.9		%		70-130	20-DEC-19
1,2-Dichloroethane			107.1		%		70-130	20-DEC-19
1,1-dichloroethene			108.6		%		70-130	20-DEC-19
cis-1,2-Dichloroethene			111.4		%		70-130	20-DEC-19
trans-1,2-Dichloroethene			106.9		%		70-130	20-DEC-19
Dichloromethane			108.9		%		60-140	20-DEC-19
1,2-Dichloropropane			103.3		%		70-130	20-DEC-19
1,3-Dichloropropane			105.1		%		70-130	20-DEC-19
2,2-Dichloropropane			78.9		%		70-130	20-DEC-19
1,1-Dichloropropene			109.8		%		70-130	20-DEC-19

	Workorder: L23942	73 Report Date: 0	5-MAR-20	Pa	age 15 of 1
est Matrix	Reference Result	Qualifier Units	RPD	Limit	Analyzed
OC+F1-HSMS-WP Soil					
Batch R4953041					
WG3247019-2 LCS	00.0	0/			
cis-1,3-Dichloropropene	86.9	%		70-130	20-DEC-19
trans-1,3-Dichloropropene	82.5	%		70-130	20-DEC-19
Ethylbenzene	101.9	%		70-130	20-DEC-19
Hexachlorobutadiene	116.1	%		70-130	20-DEC-19
Hexane	106.5	%		70-130	20-DEC-19
2-Hexanone (Methyl butyl ketone)	96.1	%		70-130	20-DEC-19
Isopropylbenzene	107.7	%		70-130	20-DEC-19
4-Isopropyltoluene	106.9	%		70-130	20-DEC-19
MEK	97.6	%		70-130	20-DEC-19
МІВК	98.8	%		70-130	20-DEC-19
МТВЕ	107.0	%		70-130	20-DEC-19
Styrene	110.1	%		70-130	20-DEC-19
1,1,1,2-Tetrachloroethane	109.1	%		70-130	20-DEC-19
1,1,2,2-Tetrachloroethane	111.4	%		70-130	20-DEC-19
Tetrachloroethene	112.5	%		70-130	20-DEC-19
Toluene	106.5	%		70-130	20-DEC-19
1,2,3-Trichlorobenzene	105.7	%		70-130	20-DEC-19
1,2,4-Trichlorobenzene	111.3	%		70-130	20-DEC-19
1,1,1-Trichloroethane	110.6	%		70-130	20-DEC-19
1,1,2-Trichloroethane	107.2	%		70-130	20-DEC-19
Trichloroethene	109.0	%		70-130	20-DEC-19
Trichlorofluoromethane	115.4	%		60-140	20-DEC-19
1,2,3-Trichloropropane	108.1	%		70-130	20-DEC-19
1,2,4-Trimethylbenzene	106.4	%		70-130	20-DEC-19
1,3,5-Trimethylbenzene	108.5	%		70-130	20-DEC-19
Vinyl Chloride	124.9	%		60-140	20-DEC-19
M+P-Xylenes	109.8	%		70-130	20-DEC-19
o-Xylene	108.9	%		70-130	20-DEC-19
WG3247019-4 LCS F1	125.5	%		70-130	20-DEC-19
WG3247019-1 MB Acetone	<0.50	mg/kg		0.5	20-DEC-19
Benzene	<0.0050			0.005	20 DEC-19
Bromobenzene	<0.10	mg/kg		0.000	20-DEC-19 20-DEC-19
Bromochloromethane	<0.10	mg/kg		0.1	20-DEC-19 20-DEC-19

	Workorder: L2394	273 Report Date:	05-MAR-20	Page 16 of 18
est Matrix	Reference Result	Qualifier Units	RPD Limit	Analyzed
/OC+F1-HSMS-WP Soil				
Batch R4953041				
WG3247019-1 MB	0.050			
Bromodichloromethane	<0.050	0.0	0.05	20-DEC-19
Bromoform	<0.050	0.0	0.05	20-DEC-19
Bromomethane	<0.050	•••	0.05	20-DEC-19
n-Butylbenzene	<0.050	0.0	0.05	20-DEC-19
sec-Butylbenzene	<0.050	0.0	0.05	20-DEC-19
tert-Butylbenzene	<0.050	0.0	0.05	20-DEC-19
Carbon disulfide	<0.25	mg/kg	0.25	20-DEC-19
Carbon Tetrachloride	<0.050	mg/kg	0.05	20-DEC-19
Chlorobenzene	<0.050	mg/kg	0.05	20-DEC-19
Chloroethane	<0.050	mg/kg	0.05	20-DEC-19
Chloroform	<0.050	mg/kg	0.05	20-DEC-19
Chloromethane	<0.050	mg/kg	0.05	20-DEC-19
2-Chlorotoluene	<0.10	mg/kg	0.1	20-DEC-19
4-Chlorotoluene	<0.10	mg/kg	0.1	20-DEC-19
Dibromochloromethane	<0.050	mg/kg	0.05	20-DEC-19
1,2-Dibromo-3-chloropropane	<0.050	mg/kg	0.05	20-DEC-19
1,2-Dibromoethane	<0.050	mg/kg	0.05	20-DEC-19
Dibromomethane	<0.050	mg/kg	0.05	20-DEC-19
1,2-Dichlorobenzene	<0.050	mg/kg	0.05	20-DEC-19
1,3-Dichlorobenzene	<0.050	mg/kg	0.05	20-DEC-19
1,4-Dichlorobenzene	<0.050	mg/kg	0.05	20-DEC-19
Dichlorodifluoromethane	<0.050	mg/kg	0.05	20-DEC-19
1,1-dichloroethane	<0.050		0.05	20-DEC-19
1,2-Dichloroethane	<0.050	0.0	0.05	20-DEC-19
1,1-dichloroethene	<0.050		0.05	20-DEC-19
cis-1,2-Dichloroethene	<0.050	0.0	0.05	20 DEC 10
trans-1,2-Dichloroethene	<0.050		0.05	20 DEC 10 20-DEC-19
Dichloromethane	<0.10	mg/kg	0.00	20-DEC-19 20-DEC-19
1,2-Dichloropropane	<0.050		0.05	20-DEC-19 20-DEC-19
1,3-Dichloropropane	<0.050		0.05	20-DEC-19 20-DEC-19
2,2-Dichloropropane	<0.10	mg/kg	0.03	20-DEC-19 20-DEC-19
1,1-Dichloropropene	<0.050		0.05	20-DEC-19 20-DEC-19
cis-1,3-Dichloropropene	<0.050			
ola-1,a-pionioroproperie	<0.050	niy/ky	0.05	20-DEC-19

	Workorder: L23942	273 Report Date: 0	5-MAR-20	Pa	ge 17 of 1
est Matrix	Reference Result	Qualifier Units	RPD	Limit	Analyzed
/OC+F1-HSMS-WP Soil					
Batch R4953041 WG3247019-1 MB					
Ethylbenzene	<0.015	mg/kg		0.015	20-DEC-19
F1	<10	mg/kg		10	20-DEC-19
Hexachlorobutadiene	<0.050	mg/kg		0.05	20-DEC-19
Hexane	<0.050	mg/kg		0.05	20-DEC-19
2-Hexanone (Methyl butyl ketone)	<0.50	mg/kg		0.5	20-DEC-19
Isopropylbenzene	<0.10	mg/kg		0.1	20-DEC-19
4-Isopropyltoluene	<0.10	mg/kg		0.1	20-DEC-19
MEK	<0.50	mg/kg		0.5	20-DEC-19
MIBK	<0.50	mg/kg		0.5	20-DEC-19
МТВЕ	<0.20	mg/kg		0.2	20-DEC-19
Styrene	<0.050	mg/kg		0.05	20-DEC-19
1,1,1,2-Tetrachloroethane	<0.050	mg/kg		0.05	20-DEC-19
1,1,2,2-Tetrachloroethane	<0.050	mg/kg		0.05	20-DEC-19
Tetrachloroethene	<0.050	mg/kg		0.05	20-DEC-19
Toluene	<0.050	mg/kg		0.05	20-DEC-19
1,2,3-Trichlorobenzene	<0.050	mg/kg		0.05	20-DEC-19
1,2,4-Trichlorobenzene	<0.050	mg/kg		0.05	20-DEC-19
1,1,1-Trichloroethane	<0.050	mg/kg		0.05	20-DEC-19
1,1,2-Trichloroethane	<0.050	mg/kg		0.05	20-DEC-19
Trichloroethene	<0.050	mg/kg		0.05	20-DEC-19
Trichlorofluoromethane	<0.050	mg/kg		0.05	20-DEC-19
1,2,3-Trichloropropane	<0.050	mg/kg		0.05	20-DEC-19
1,2,4-Trimethylbenzene	<0.050	mg/kg		0.05	20-DEC-19
1,3,5-Trimethylbenzene	<0.050	mg/kg		0.05	20-DEC-19
Vinyl Chloride	<0.050	mg/kg		0.05	20-DEC-19
M+P-Xylenes	<0.050	mg/kg		0.05	20-DEC-19
o-Xylene	<0.050	mg/kg		0.05	20-DEC-19
Surrogate: 1,4-Difluorobenzene (S	SS) 101.1	%		70-130	20-DEC-19
Surrogate: 3,4-Dichlorotoluene (S	S) 126.6	%		70-130	20-DEC-19
Surrogate: 4-Bromofluorobenzene	(SS) 88.4	%		70-130	20-DEC-19

Workorder: L2394273

Report Date: 05-MAR-20

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

December 30, 2019

Mr. Craig Riddell ALS Environmental-Winnipeg MB Unit 12–1329 Niakwa Road East Winnipeg, MB, R2J 3T4

Certificate of Analysis

Project Name:	тох	Workorder:	3077324
Purchase Order:		Workorder ID:	L2394273

Dear Mr. Riddell:

Enclosed are the analytical results for samples received by the laboratory on Tuesday, December 24, 2019.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact Ms. Sarah S Leung (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Environmental.

ALS Spring City: 10 Riverside Drive, Spring City, PA 19475 610-948-4903

CC: Ms. Bea Ryback

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Ms. Sarah S Leung Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3077324 L2394273

Sample ID	Matrix	Date Collected	Date Received	Collected By
L2394273-1 TH19-03@0.8	Solid	12/3/2019 00:00	12/24/2019 08:35	Collected by Client
L2394273-1 TH19-04@0.8	Solid	12/3/2019 00:00	12/24/2019 08:35	Collected by Client
L2394273-1 TH19-07@0.8	Solid	12/3/2019 00:00	12/24/2019 08:35	Collected by Client
L2394273-1 TH19-07@1.5	Solid	12/3/2019 00:00	12/24/2019 08:35	Collected by Client
	L2394273-1 TH19-03@0.8 L2394273-1 TH19-04@0.8 L2394273-1 TH19-07@0.8	L2394273-1 TH19-03@0.8 Solid L2394273-1 TH19-04@0.8 Solid L2394273-1 TH19-07@0.8 Solid	L2394273-1 TH19-03@0.8 Solid 12/3/2019 00:00 L2394273-1 TH19-04@0.8 Solid 12/3/2019 00:00 L2394273-1 TH19-07@0.8 Solid 12/3/2019 00:00	L2394273-1 TH19-03@0.8 Solid 12/3/2019 00:00 12/24/2019 08:35 L2394273-1 TH19-04@0.8 Solid 12/3/2019 00:00 12/24/2019 08:35 L2394273-1 TH19-07@0.8 Solid 12/3/2019 00:00 12/24/2019 08:35

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3077324 L2394273

Notes

- -- Samples collected by ALS personnel are done so in accordance with the procedures set forth in the ALS Field Sampling Plan (20 Field Services Sampling Plan).
- -- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- -- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- -- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- -- The Chain of Custody document is included as part of this report.
- -- All Library Search analytes should be regarded as tentative identifications based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.
- -- Parameters identified as "analyze immediately" require analysis within 15 minutes of collection. Any "analyze immediately" parameters not listed under the header "Field Parameters" are preformed in the laboratory and are therefore analyzed out of hold time.
- -- Method references listed on this report beginning with the prefix "S" followed by a method number (such as S2310B-97)
- refer to methods from "Standard Methods for the Examination of Water and Wastewater".
- -- For microbiological analyses, the "Prepared" value is the date/time into the incubator and the "Analyzed" value is the date/time out the incubator.
- -- An Analysis-Prep Method Cross Reference Table is included after Analytical Results & Qualifiers section in this report.

Standard Acronyms/Flags

- J Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte
- U Indicates that the analyte was Not Detected (ND)
- N Indicates presumptive evidence of the presence of a compound
- MDL Method Detection Limit
- PQL Practical Quantitation Limit
- RDL Reporting Detection Limit
- ND Not Detected indicates that the analyte was Not Detected at the RDL
- Cntr Analysis was performed using this container
- RegLmt Regulatory Limit
- LCS Laboratory Control Sample
- MS Matrix Spike
- MSD Matrix Spike Duplicate
- DUP Sample Duplicate
- %Rec Percent Recovery
- RPD Relative Percent Difference
- LOD DoD Limit of Detection
- LOQ DoD Limit of Quantitation
- DL DoD Detection Limit
- I Indicates reported value is greater than or equal to the Method Detection Limit (MDL) but less than the Report Detection Limit (RDL)
- (S) Surrogate Compound
- NC Not Calculated
- * Result outside of QC limits

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3077324 L2394273

Lab ID: Sample ID:	3077324001 L2394273-1	TH19-03@0.8	3			Date Collected: Date Received:			Matrix:	Solid		
Parameters		Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	
WET CHEMISTRY												
Halogen, Tota (TOX)	l Organic	ND		mg/kg	6.4	SW846 9023			12/30/19 12:2	3 PAG	А	
Moisture		25.3		%	0.1	S2540G-11			12/26/19 09:3	0 AXD		
Total Solids		74.7	1	%	0.1	S2540G-11			12/26/19 09:3	0 AXD		

An \mathcal{S}

Ms. Sarah S Leung Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3077324 L2394273

Lab ID: Sample ID:	3077324002 L2394273-1	2 TH19-04@0.8	3			Date Collected: Date Received:			Matrix: S	Solid		
Parameters		Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	
WET CHEMIS	WET CHEMISTRY											
Halogen, Tota (TOX)	I Organic	ND		mg/kg	5.0	SW846 9023			12/30/19 12:36	PAG	А	
Moisture		9.3		%	0.1	S2540G-11			12/26/19 09:30	AXD		
Total Solids		90.7	1	%	0.1	S2540G-11			12/26/19 09:30	AXD		

An \mathcal{S}

Ms. Sarah S Leung Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3077324 L2394273

Lab ID: Sample ID:	3077324003 L2394273-1	5 TH19-07@0.8	3			Date Collected: Date Received:			Matrix:	Solid		
Parameters		Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	
WET CHEMISTRY												
Halogen, Tota (TOX)	l Organic	ND		mg/kg	4.9	SW846 9023			12/30/19 12:4	8 PAG	А	
Moisture		4.7		%	0.1	S2540G-11			12/26/19 09:3	0 AXD		
Total Solids		95.3	1	%	0.1	S2540G-11			12/26/19 09:3	0 AXD		

An \mathcal{A}

Ms. Sarah S Leung Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3077324 L2394273

Lab ID: 30773 Sample ID: L2394	24004 273-1 TH19-07@1.{	5			Date Collected: Date Received:			Matrix:	Solid		
Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	
WET CHEMISTRY											
Halogen, Total Organ (TOX)	c ND		mg/kg	6.2	SW846 9023			12/30/19 13:0	1 PAG	А	
Moisture	25.8		%	0.1	S2540G-11			12/26/19 09:3	0 AXD		
Total Solids	74.2	1	%	0.1	S2540G-11			12/26/19 09:3	0 AXD		

An \mathcal{S}

Ms. Sarah S Leung Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3077324 L2394273

PARAMETER QUALIFIERS

Lab ID	#	Sample ID	Analytical Method	Analyte						
3077324001	1	L2394273-1 TH19-03@0.8	S2540G-11	Total Solids						
Analyte was analyzed past the 7 day holding time.										
3077324002	1	L2394273-1 TH19-04@0.8	S2540G-11	Total Solids						
Analyte was analy	/zed pas	t the 7 day holding time.								
3077324003	1	L2394273-1 TH19-07@0.8	S2540G-11	Total Solids						
Analyte was analy	/zed pas	t the 7 day holding time.								
3077324004	1	L2394273-1 TH19-07@1.5	S2540G-11	Total Solids						
Analyte was analy	/zed pas	t the 7 day holding time.								

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYSIS - PREP METHOD CROSS REFERENCE TABLE

Workorder: 3077324 L2394273

Lab ID	Sample ID	Analysis Method	Prep Method
3077324001	L2394273-1 TH19-03@0.8	S2540G-11	
3077324001	L2394273-1 TH19-03@0.8	SW846 9023	
3077324002	L2394273-1 TH19-04@0.8	S2540G-11	
3077324002	L2394273-1 TH19-04@0.8	SW846 9023	
3077324003	L2394273-1 TH19-07@0.8	S2540G-11	
3077324003	L2394273-1 TH19-07@0.8	SW846 9023	
3077324004	L2394273-1 TH19-07@1.5	S2540G-11	
3077324004	L2394273-1 TH19-07@1.5	SW846 9023	

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Workorder: 3077324 L2394273

QC Batch: WETC/232356

Analysis Method: S2540G-11

QC Batch Method: S2540G-11

Associated Lab Samples: 3077324001, 3077324002, 3077324003, 3077324004

SAMPLE DUPLICATE: 3065447 ORIGINAL: 3077051001

Parameter	Original Result	Units	DUP Result	RPD	Max RPD	
Moisture	94.0438	%	94.1546	.12	10	
Total Solids	5.9561	%	5.8453	1.88	5	

SAMPLE DUPLICATE: 3065610 ORIGINAL: 3077058001

Demonster	Original Result	11.5%	DUP Result	RPD	Max RPD
Parameter	Result	Units	Result	IN D	IN D
Moisture	95.5028	%	95.5185	.02	10
Total Solids	4.4971	%	4.4814	.35	5

SAMPLE DUPLICATE: 3065448 ORIGINAL: 3077071001

Parameter	Original Result	Units	DUP Result	RPD	Max RPD	
Moisture	97.4313	%	97.3091	.13	10	
Total Solids	2.5686	%	2.6908	4.65	5	

SAMPLE DUPLICATE: 3065449 ORIGINAL: 3077169006

Parameter	Original Result	Units	DUP Result	RPD	Max RPD	
Moisture	5.5294	%	6.7322	19.6*	10	
Total Solids	94.4705	%	93.2677	1.28	5	

SAMPLE DUPLICATE: 3065450 ORIGINAL: 3077324004 Original DUP Max RPD Result Result RPD Parameter Units 25.8211 % Moisture 25.1385 2.68 10 **Total Solids** 74.1788 % 74.8614 .92 5

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Workorder: 3077324 L2394273

SAMPLE DUPLICATE: 306545	1 ORIGINAL	.: 3077383	3009		
Parameter	Original Result	Units	DUP Result	RPD	Max RPD
Moisture	22.3609	%	23.6478	5.59	10
Total Solids	77.639	%	76.3521	1.67	5

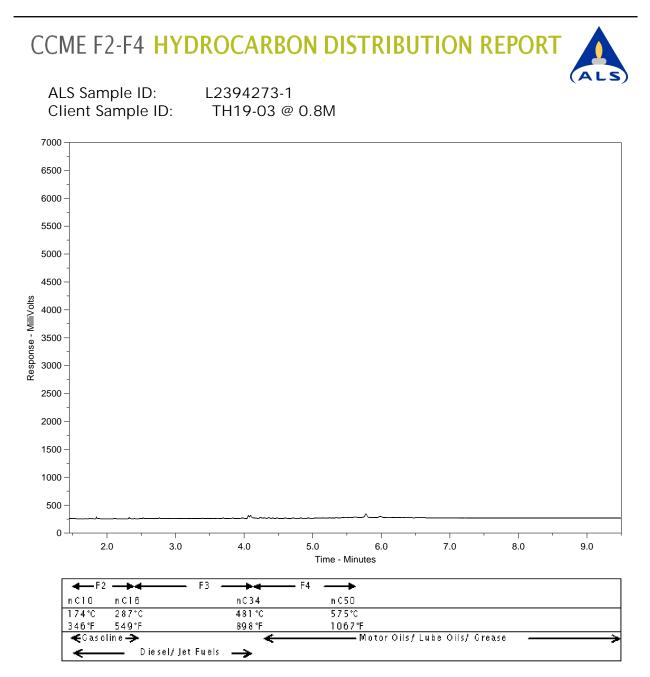
ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

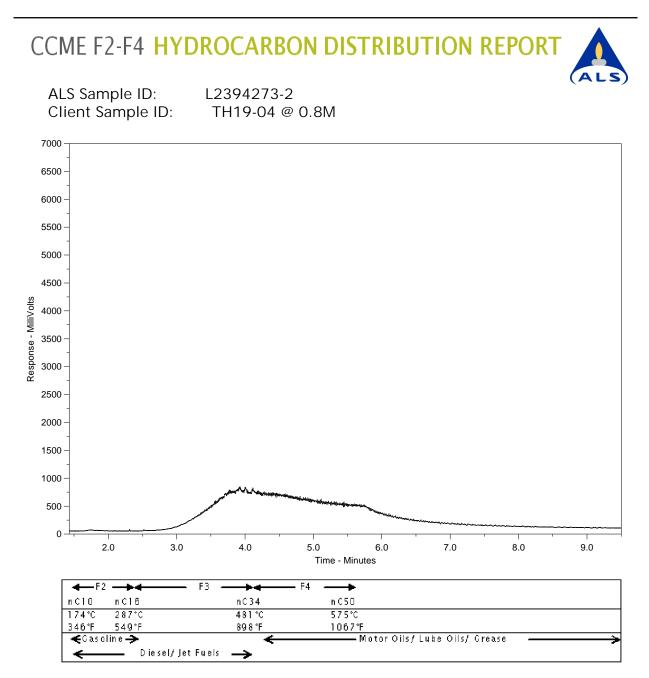
QC Batch Method: SW846		77224002		alysis Meth		SW846 902	3				
Associated Lab Samples: METHOD BLANK: 3067078	3077324001, 30	77324002	, 3077324003	, 30773240	JU4						
WE THOD BEANK. 5007078											
Parameter	Blank Result	Units	Reporting Limit								
Halogen, Total Organic (TOX)	ND	mg/kg	5.0								
ABORATORY CONTROL S	AMPLE: 306707	9									
	LCS %		Spike	LCS	% Rec						
Parameter	Rec	Units	Conc.	Result	Limit						
Halogen, Total Organic (TOX)	104	mg/kg	500	520	90 - 110						
LABORATORY CONTROL S	AMPLE: 306708	C									
Parameter	LCS % Rec	Units	Spike Conc.	LCS Result	% Rec Limit						
Halogen, Total Organic (TOX)	101	mg/kg	500	504	90 - 110						
MATRIX SPIKE: 3067267	DUPLICATE: 30	67268 (DRIGINAL: 30	77324004							
****NOTE - The Original Resi percent recoveries. This resu					the purpose	of calculatin	g Matrix Sp	oike			
Parameter	Original Result	Units	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	
Halogen, Total Organic (TOX)	0	mg/kg	461	415.71	427.74	90.2	92.8	80 - 120	2.85	20	
METHOD BLANK: 3067082											
METHOD BLANK: 3067082 Parameter	Blank Result	Units	Reporting Limit								

ALS Environmental Laboratory Locations Across North America

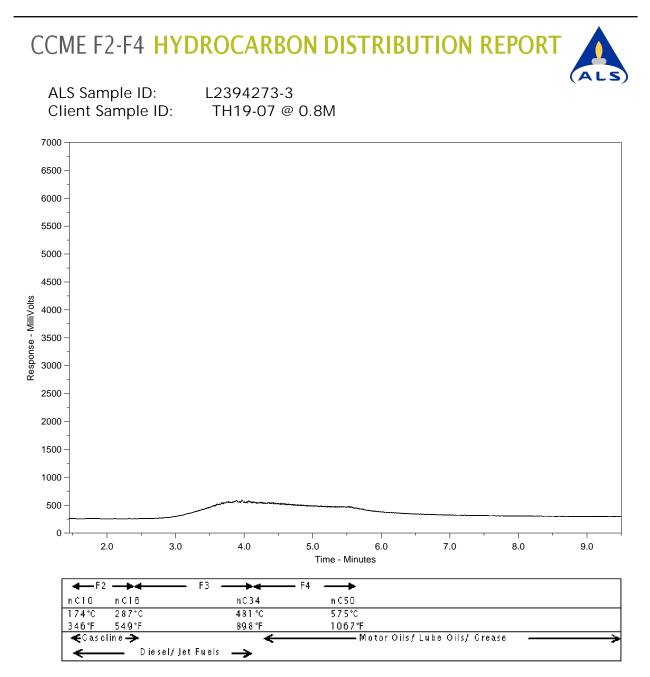

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA CROSS REFERENCE TABLE

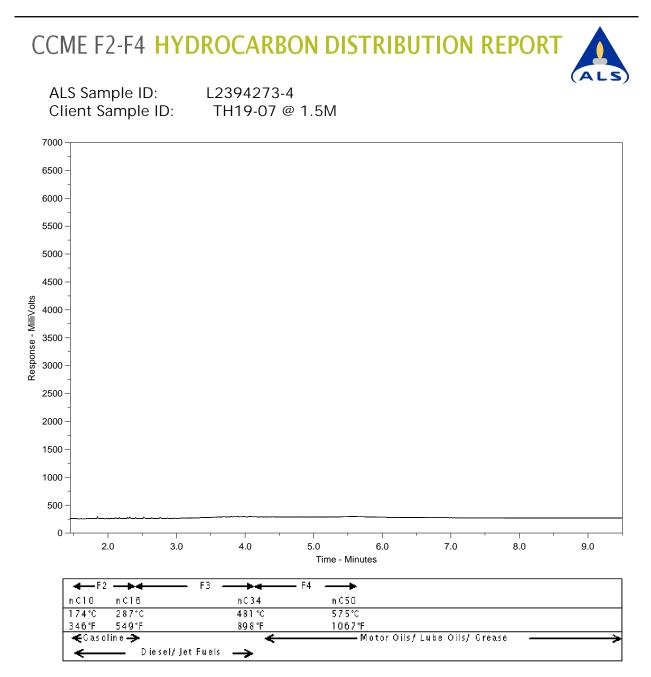
Workorder: 3077324 L2394273


Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
3077324001	L2394273-1 TH19-03@0.8	3		S2540G-11	WETC/232356
3077324002	L2394273-1 TH19-04@0.8	3		S2540G-11	WETC/232356
3077324003	L2394273-1 TH19-07@0.8	3		S2540G-11	WETC/232356
3077324004	L2394273-1 TH19-07@1.	5		S2540G-11	WETC/232356
3077324001	L2394273-1 TH19-03@0.8	3		SW846 9023	WETC/232537
3077324002	L2394273-1 TH19-04@0.8	3		SW846 9023	WETC/232537
3077324003	L2394273-1 TH19-07@0.8	3		SW846 9023	WETC/232537
3077324004	L2394273-1 TH19-07@1.8	5		SW846 9023	WETC/232537

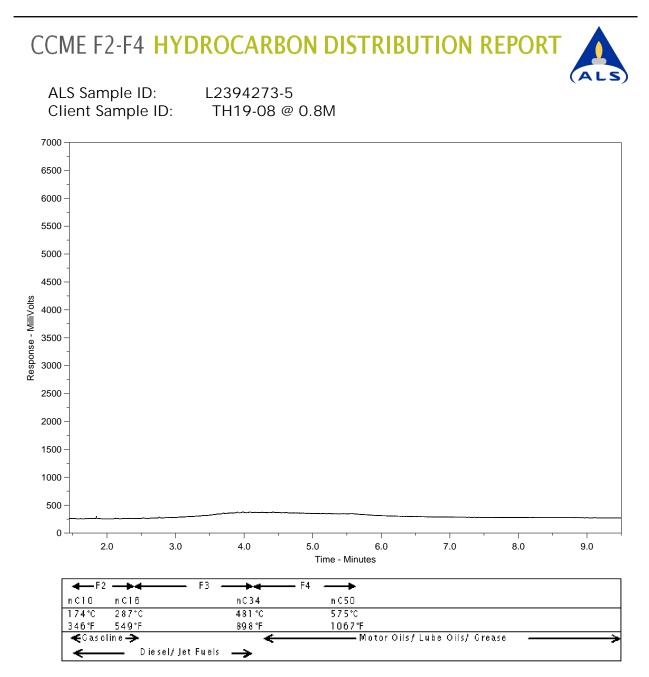
ALS Environmental Laboratory Locations Across North America


The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.


The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.


The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.


The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

COC # _____

1

Page <u>|</u>of <u>|</u>

.

eport to:	Report Fo	ormat / Distributio	n		Ser	vice	Requ	reste	ed:						
ompany: Wood	🔽 Standa	ard f Other			F	Reg	ular S	Servi	ce (l	Defau	lt)				
ontact:	PDF	Excel	T Fax		Γ	Rus	h Ser	vice	(2-3	Days	s)				
ddress: 440 Dovercourt Drive	Email 1:	kevin.beechinor@	woodplc.com		Г	Prio	rity S	ervio	:e (1	Day	efault) Days) Day or ASAP) e (<1 Day / Wkend) - Conta alysis Request				
	Email 2:	justin.huberdeau@	woodplc.com		Г	Eme	rgen	cy S	ervio	ж (<1		ac			
hone: (204)488-2997 Fax: (204)489-8261									An	alysi	s Re	quest			
Ivoice To: 🔽 Same as Report	*		Indicate Bottle:	s: Filtered / Preserved (F/P) $\rightarrow \rightarrow$											
ompany:	Client / P	roject Information	:												
ontact:	Job #:	WX18979	999 Redonda												
ddress:	PO/AFE:				1										1 9
ample	Legal Site	Description:										Ì			
hone: Fax:	Quote #:				1 T										·
Lab Work Order # 2000	ALS		Sampler		- I I									us?	·
(lab use only)	Contact:		(Initials):		Ē				s				1	- do	
Sample Identification		Date	Time	Sample Type	BTEX	PAH	20V	PCB BCB	Metals	ŏ				BZB	
# (This description will appear on the repo	ort)	dd-mmm-yy	hh:mm	(Select from drop-down list)							_			Ï	⊢
TH19-03 @ 0.8 m		03-Dec-19		Soil	X		X	X	X	_		_			┡
TH19-04 @ 0.8 m		03-Dec-19		Soil	X	X	Х	×	X		-+	_	_		┡
		-03-Bead-9-		Soil	-*			-2			_				┢
TH19-07 @ 0.8 m		03-Dec-19		Soil	X		X	X	X		-+	_	_		┢
TH19-07 @ 1.5 m		03-Dec-19		Soil	X	X	х	X	X	<u> </u>		_			┢
TH19-08 @ 0.8 m		03-Dec-19		Soil	X	X		_	X	_					┢
TH19-10 @ 0.8 m		03-Dec-19		Soil	X	X			x						┢
								_			_	_	_		┢
								_				_	_	 	⊢
	· · · · · ·				<u> </u>	<u> </u>									L
Guidelines / Regulations	· · ·			Special Instructions	/Ha	zard	ous I	Jeta	<u></u>						
				DI 60 1-4-1-5	1.54		,		-						_
•	•	-		. Please fill in this form						h f					
By the use of this form the user	Received		Date & Time:	1							tion (Is	huser	nlv) as	100 ca ilore a	-
elinquished Date & Time: y: Justin Huberdeau 09:30	By:	412	Date & Time:	NUC 10 1245		Temp	erature	<u> </u>						a di la d Na di la di	93 6 9
elinguished Date & Time:	Received		Date & Time:	DEC 1 0 2019	1	12	4		Cor	dition	Y/N	in Goo (if no	,		

Wood Environment & Infrastructure Solutions (Winnipeg) ATTN: JUSTIN HUBERDEAU 440 Dovercourt Drive Winnipea MB R3Y 1G4 Date Received: 20-DEC-19 Report Date: 08-MAY-20 15:14 (MT) Version: FINAL REV. 2

Client Phone: 204-488-2997

Certificate of Analysis

Lab Work Order #: L2399352 Project P.O. #: NOT SUBMITTED Job Reference: WX18979 C of C Numbers: Legal Site Desc:

Comments:

8-MAY-2020 AMENDED REPORT - Dioxin & Furan Results removed from Frac-1 to -6

Hua Wo Chemistry Laboratory Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2399352-1 TH19-04							
Sampled By: CLIENT on 20-DEC-19 @ 12:00							
Matrix: GW							
Miscellaneous Parameters							
Extractable Organic Halides (EOX)	See Attached					08-JAN-20	R4965448
Mercury (Hg)-Total			0.0000050	ma/l	03-JAN-20	03-JAN-20	
	0.0000260		0.0000050	mg/L	03-JAN-20	03-JAIN-20	R4958945
Total Metals in Water by CRC ICPMS Aluminum (AI)-Total	0 40	DLM	0.020	ma/l	08-JAN-20	08-JAN-20	D4065224
Antimony (Sb)-Total	8.42 <0.0010	DLM	0.030	mg/L	08-JAN-20 08-JAN-20	08-JAN-20 08-JAN-20	R4965231
Arsenic (As)-Total	<0.0010	DLM	0.0010 0.0010	mg/L	08-JAN-20 08-JAN-20	08-JAN-20 08-JAN-20	R4965231
Barium (Ba)-Total	0.198	DLM	0.0010	mg/L	08-JAN-20 08-JAN-20	08-JAN-20 08-JAN-20	R4965231
Beryllium (Be)-Total		DLM		mg/L			R4965231
	< 0.0010	DLM	0.0010	mg/L	08-JAN-20	08-JAN-20	R4965231
Bismuth (Bi)-Total	< 0.00050	DLM	0.00050	mg/L	08-JAN-20	08-JAN-20	R4965231
Boron (B)-Total	0.27		0.10	mg/L	08-JAN-20	08-JAN-20	R4965231
Cadmium (Cd)-Total	0.000337	DLM	0.000050	mg/L	08-JAN-20	08-JAN-20	R4965231
Calcium (Ca)-Total	361	DLM	0.50	mg/L	08-JAN-20	08-JAN-20	R4965231
Cesium (Cs)-Total	0.00129	DLM	0.00010	mg/L	08-JAN-20	08-JAN-20	R4965231
Chromium (Cr)-Total	0.0163	DLM	0.0010	mg/L	08-JAN-20	08-JAN-20	R4965231
Cobalt (Co)-Total	0.0228	DLM	0.0010	mg/L	08-JAN-20	08-JAN-20	R4965231
Copper (Cu)-Total	0.0318	DLM	0.0050	mg/L	08-JAN-20	08-JAN-20	R4965231
Iron (Fe)-Total	12.6	DLM	0.10	mg/L	08-JAN-20	08-JAN-20	R4965231
Lead (Pb)-Total	0.0184	DLM	0.00050	mg/L	08-JAN-20	08-JAN-20	R4965231
Lithium (Li)-Total	0.360	DLM	0.010	mg/L	08-JAN-20	08-JAN-20	R4965231
Magnesium (Mg)-Total	282	DLM	0.050	mg/L	08-JAN-20	08-JAN-20	R4965231
Manganese (Mn)-Total	4.10	DLM	0.0010	mg/L	08-JAN-20	08-JAN-20	R4965231
Molybdenum (Mo)-Total	0.00371	DLM	0.00050	mg/L	08-JAN-20	08-JAN-20	R4965231
Nickel (Ni)-Total	0.0409	DLM	0.0050	mg/L	08-JAN-20	08-JAN-20	R4965231
Potassium (K)-Total	7.21	DLM	0.50	mg/L	08-JAN-20	08-JAN-20	R4965231
Phosphorus (P)-Total	0.33	DLM	0.30	mg/L	08-JAN-20	08-JAN-20	R4965231
Rubidium (Rb)-Total	0.0184	DLM	0.0020	mg/L	08-JAN-20	08-JAN-20	R4965231
Selenium (Se)-Total	<0.00050	DLM	0.00050	mg/L	08-JAN-20	08-JAN-20	R4965231
Silicon (Si)-Total	32.3	DLM	1.0	mg/L	08-JAN-20	08-JAN-20	R4965231
Silver (Ag)-Total	0.00012	DLM	0.00010	mg/L	08-JAN-20	08-JAN-20	R4965231
Sodium (Na)-Total	188	DLM	0.50	mg/L	08-JAN-20	08-JAN-20	R4965231
Strontium (Sr)-Total	1.83	DLM	0.0020	mg/L	08-JAN-20	08-JAN-20	R4965231
Sulfur (S)-Total	425	DLM	5.0	mg/L	08-JAN-20	08-JAN-20	R4965231
Tellurium (Te)-Total	<0.0020	DLM	0.0020	mg/L	08-JAN-20	08-JAN-20	R4965231
Thallium (TI)-Total	0.00016	DLM	0.00010	mg/L	08-JAN-20	08-JAN-20	R4965231
Thorium (Th)-Total	0.0031	DLM	0.0010	mg/L	08-JAN-20	08-JAN-20	R4965231
Tin (Sn)-Total	<0.0010	DLM	0.0010	mg/L	08-JAN-20	08-JAN-20	R4965231
Titanium (Ti)-Total	0.165	DLM	0.0030	mg/L	08-JAN-20	08-JAN-20	R4965231
Tungsten (W)-Total	<0.0010	DLM	0.0010	mg/L	08-JAN-20	08-JAN-20	R4965231
Uranium (U)-Total	0.0398	DLM	0.00010	mg/L	08-JAN-20	08-JAN-20	R4905231 R4965231
Vanadium (V)-Total	0.0398	DLM	0.00010	mg/L	08-JAN-20	08-JAN-20 08-JAN-20	R4965231
Zinc (Zn)-Total	0.167	DLM	0.0050		08-JAN-20	08-JAN-20 08-JAN-20	R4965231 R4965231
Zirconium (Zr)-Total		DLM		mg/L	08-JAN-20	08-JAN-20 08-JAN-20	
	0.0026		0.0020	mg/L	00-JAIN-20	00-JAIN-20	R4965231
Polyaromatic Hydrocarbons (PAHs)	<0.000000		0.000000	ma/l	27-DEC 10	03-1411 20	D4050044
1-Methyl Naphthalene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
2-Methyl Naphthalene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Acenaphthene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Acenaphthylene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Anthracene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Acridine	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Benzo(a)anthracene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Benzo(a)pyrene	0.000084		0.0000050	mg/L	27-DEC-19	03-JAN-20	R4959944

 * Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2399352-1 TH19-04							
Sampled By: CLIENT on 20-DEC-19 @ 12:00							
Matrix: GW							
Polyaromatic Hydrocarbons (PAHs)							
Benzo(b&j)fluoranthene	0.000014	EMPC	0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Benzo(g,h,i)perylene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Benzo(k)fluoranthene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Chrysene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Dibenzo(a,h)anthracene	<0.000050		0.0000050	mg/L	27-DEC-19	03-JAN-20	R4959944
Fluoranthene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Fluorene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Indeno(1,2,3-cd)pyrene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Naphthalene	<0.000050		0.000050	mg/L	27-DEC-19	03-JAN-20	R4959944
Phenanthrene	<0.000050		0.000050	mg/L	27-DEC-19	03-JAN-20	R4959944
Pyrene	0.000018		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Quinoline	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
B(a)P Total Potency Equivalent	<0.000030		0.000030	mg/L	27-DEC-19	03-JAN-20	R4959944
Surrogate: Acenaphthene d10	85.1		60-130	%	27-DEC-19	03-JAN-20	R4959944
Surrogate: Acridine d9	75.0		60-130	%	27-DEC-19	03-JAN-20	R4959944
Surrogate: Chrysene d12	95.3		60-130	%	27-DEC-19	03-JAN-20	R4959944
Surrogate: Naphthalene d8	77.9		50-130	%	27-DEC-19	03-JAN-20	R4959944
Surrogate: Phenanthrene d10	87.4		60-130	%	27-DEC-19	03-JAN-20	R4959944
VOC plus F1 to F4							
CCME PHC F2-F4 in Water							
F2 (C10-C16)	<0.10		0.10	mg/L	21-DEC-19	28-DEC-19	R4957846
F3 (C16-C34)	1.26		0.25	mg/L	21-DEC-19	28-DEC-19	R4957846
F4 (C34-C50)	0.66		0.25	mg/L	21-DEC-19	28-DEC-19	R4957846
Surrogate: 2-Bromobenzotrifluoride	104.0		60-140	%	21-DEC-19	28-DEC-19	R4957846
CCME Total Hydrocarbons							
F1-BTEX	<0.10		0.10	mg/L		07-JAN-20	
F2-Naphth	<0.10		0.10	mg/L		07-JAN-20	
F3-PAH	1.26		0.25	mg/L		07-JAN-20	
Total Hydrocarbons (C6-C50)	1.92		0.38	mg/L		07-JAN-20	
Sum of Xylene Isomer Concentrations Xylenes (Total)	<0.00064		0.00064	mg/L		03-JAN-20	
Total Trihalomethanes (THMs)				0			
Total THMs	<0.0013		0.0013	mg/L		03-JAN-20	
VOC plus F1 by GCMS				0			
Acetone	<0.050		0.050	mg/L		31-DEC-19	R4958822
Benzene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Bromobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Bromochloromethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Bromodichloromethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Bromoform	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Bromomethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
n-Butylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
sec-Butylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
tert-Butylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Carbon disulfide	<0.0050		0.0050	mg/L		31-DEC-19	R4958822
Carbon Tetrachloride	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Chlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Chloroethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Chloroform	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Chloromethane	<0.0050		0.0050	mg/L		31-DEC-19	R4958822
2-Chlorotoluene	<0.020		0.020	mg/L		31-DEC-19	R4958822
4-Chlorotoluene	< 0.0010		0.0010	mg/L		31-DEC-19	R4958822

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2399352-1 TH19-04							
Sampled By: CLIENT on 20-DEC-19 @ 12:00							
Matrix: GW							
VOC plus F1 by GCMS							
Dibromochloromethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,2-Dibromo-3-chloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2-Dibromoethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Dibromomethane	< 0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2-Dichlorobenzene	< 0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,3-Dichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,4-Dichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Dichlorodifluoromethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1-dichloroethane	<0.00050	0	0.00050	mg/L		31-DEC-19	R4958822
1,2-Dichloroethane	<0.00050	0	0.00050	mg/L		31-DEC-19	R4958822
1,1-dichloroethene	<0.00050	(0.00050	mg/L		31-DEC-19	R4958822
cis-1,2-Dichloroethene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
trans-1,2-Dichloroethene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Dichloromethane	<0.0050		0.0050	mg/L		31-DEC-19	R4958822
1,2-Dichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,3-Dichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
2,2-Dichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1-Dichloropropene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
cis-1,3-Dichloropropene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
trans-1,3-Dichloropropene	< 0.0010		0.0010	mg/L		31-DEC-19	R4958822
Ethylbenzene F1	< 0.00050		0.00050	mg/L		31-DEC-19	R4958822
Hexachlorobutadiene	<0.10		0.10	mg/L		31-DEC-19 31-DEC-19	R4958822
Hexane	<0.0010 <0.0010		0.0010 0.0010	mg/L mg/L		31-DEC-19 31-DEC-19	R4958822 R4958822
2-Hexanone (Methyl butyl ketone)	<0.020		0.0010	mg/L		31-DEC-19	R4958822
Isopropylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
4-Isopropyltoluene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
MEK	<0.020		0.020	mg/L		31-DEC-19	R4958822
MIBK	<0.020		0.020	mg/L		31-DEC-19	R4958822
MTBE	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Styrene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1,1,2-Tetrachloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,1,2,2-Tetrachloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Tetrachloroethene	<0.00050	0	0.00050	mg/L		31-DEC-19	R4958822
Toluene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,2,3-Trichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2,4-Trichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1,1-Trichloroethane	<0.00050	(0.00050	mg/L		31-DEC-19	R4958822
1,1,2-Trichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Trichloroethene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Trichlorofluoromethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2,3-Trichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2,4-Trimethylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,3,5-Trimethylbenzene	< 0.0010		0.0010	mg/L		31-DEC-19	R4958822
Vinyl Chloride	< 0.00050		0.00050	mg/L		31-DEC-19	R4958822
M+P-Xylenes	<0.00040		0.00040	mg/L		31-DEC-19	R4958822
o-Xylene Surrogate: 4-Bromofluorohenzene (SS)	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Surrogate: 4-Bromofluorobenzene (SS) Surrogate: 1,4-Difluorobenzene (SS)	88.1		70-130	% %		31-DEC-19 31-DEC-19	R4958822
Surrogate: 3,4-Dichlorotoluene (SS)	98.8 81.8		70-130 70-130	%		31-DEC-19 31-DEC-19	R4958822 R4958822
	01.0		10-130	/0		51-020-19	174300022

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
_2399352-2 TH19-03							
Sampled By: CLIENT on 20-DEC-19 @ 12:30							
Matrix: GW							
Miscellaneous Parameters							
Extractable Organic Halides (EOX)	See Attached					08-JAN-20	R4965448
Mercury (Hg)-Total	<0.0000050		0.0000050	mg/L	03-JAN-20	03-JAN-20	R4958945
Total Metals in Water by CRC ICPMS	<0.0000030		0.0000050	iiig/L	00 0/11 20	00 0411 20	114330343
Aluminum (Al)-Total	395	DLM	0.30	mg/L	08-JAN-20	08-JAN-20	R4965231
Antimony (Sb)-Total	<0.010	DLM	0.010	mg/L	08-JAN-20	08-JAN-20	R4965231
Arsenic (As)-Total	0.289	DLM	0.010	mg/L	08-JAN-20	08-JAN-20	R4965231
Barium (Ba)-Total	6.79	DLM	0.010	mg/L	08-JAN-20	08-JAN-20	R4965231
Beryllium (Be)-Total	0.021	DLM	0.010	mg/L	08-JAN-20	08-JAN-20	R4965231
Bismuth (Bi)-Total	0.0063	DLM	0.0050	mg/L	08-JAN-20	08-JAN-20	R4965231
Boron (B)-Total	1.1	DLM	1.0	mg/L	08-JAN-20	08-JAN-20	R4965231
Cadmium (Cd)-Total	0.0136	DLM	0.00050	mg/L	08-JAN-20	08-JAN-20	R4965231
Calcium (Ca)-Total	9510	DLM	5.0	mg/L	08-JAN-20	08-JAN-20	R4965231 R4965231
Cesium (Cs)-Total	0.0525	DLM	0.0010	mg/L	08-JAN-20 08-JAN-20	08-JAN-20 08-JAN-20	R496523
Chromium (Cr)-Total	0.0525	DLM	0.0010	mg/L	08-JAN-20 08-JAN-20	08-JAN-20 08-JAN-20	R496523
Cobalt (Co)-Total	0.822	DLM	0.010	-	08-JAN-20 08-JAN-20	08-JAN-20 08-JAN-20	
Copper (Cu)-Total	0.360	DLM	0.010	mg/L mg/L	08-JAN-20 08-JAN-20	08-JAN-20 08-JAN-20	R496523 ² R496523 ²
Iron (Fe)-Total	631	DLM	1.0	-	08-JAN-20	08-JAN-20 08-JAN-20	
Lead (Pb)-Total		DLM		mg/L			R496523
Lithium (Li)-Total	0.409	DLM	0.0050	mg/L	08-JAN-20	08-JAN-20	R496523
Magnesium (Mg)-Total	1.33	DLM	0.10	mg/L	08-JAN-20	08-JAN-20	R496523
	5210	DLM	0.50	mg/L	08-JAN-20	08-JAN-20	R496523
Manganese (Mn)-Total	28.9	DLM	0.010	mg/L	08-JAN-20	08-JAN-20	R496523
Molybdenum (Mo)-Total Nickel (Ni)-Total	0.0094	DLM	0.0050	mg/L	08-JAN-20	08-JAN-20	R496523
	1.02	DLM	0.050	mg/L	08-JAN-20 08-JAN-20	08-JAN-20	R496523
Potassium (K)-Total Phosphorus (P)-Total	96.2	DLM	5.0	mg/L		08-JAN-20	R4965231
Rubidium (Rb)-Total	30.6 0.862	DLM	3.0 0.020	mg/L	08-JAN-20 08-JAN-20	08-JAN-20 08-JAN-20	R496523
Selenium (Se)-Total		DLM		mg/L	08-JAN-20	08-JAN-20 08-JAN-20	R496523
Silicon (Si)-Total	<0.0050	DLM	0.0050	mg/L	08-JAN-20 08-JAN-20	08-JAN-20 08-JAN-20	R496523
Silver (Ag)-Total	633	DLM	10	mg/L			R496523
	0.0046	DLM	0.0010	mg/L	08-JAN-20	08-JAN-20	R496523
Sodium (Na)-Total	602	DLM	5.0	mg/L	08-JAN-20	08-JAN-20	R496523
Strontium (Sr)-Total	11.8	DLM	0.020	mg/L	08-JAN-20	08-JAN-20	R496523
Sulfur (S)-Total	851	DLM	50	mg/L	08-JAN-20	08-JAN-20	R496523
Tellurium (Te)-Total	< 0.020		0.020	mg/L	08-JAN-20	08-JAN-20	R496523
Thallium (TI)-Total	0.0087	DLM DLM	0.0010	mg/L	08-JAN-20	08-JAN-20	R496523
Thorium (Th)-Total	0.194		0.010	mg/L	08-JAN-20	08-JAN-20	R496523
Tin (Sn)-Total	<0.010	DLM	0.010	mg/L	08-JAN-20	08-JAN-20	R496523
Titanium (Ti)-Total	4.64	DLM	0.030	mg/L	08-JAN-20	08-JAN-20	R496523
Tungsten (W)-Total	< 0.010	DLM	0.010	mg/L	08-JAN-20	08-JAN-20	R496523
Uranium (U)-Total	0.168	DLM	0.0010	mg/L	08-JAN-20	08-JAN-20	R496523
Vanadium (V)-Total	1.20	DLM	0.050	mg/L	08-JAN-20	08-JAN-20	R496523
Zinc (Zn)-Total	1.70	DLM	0.30	mg/L	08-JAN-20	08-JAN-20	R496523
Zirconium (Zr)-Total	0.053	DLM	0.020	mg/L	08-JAN-20	08-JAN-20	R496523
Polyaromatic Hydrocarbons (PAHs)	0.000000		0.000000	/		00 1411 00	DAGESS
1-Methyl Naphthalene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
2-Methyl Naphthalene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Acenaphthene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R495994
Acenaphthylene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Anthracene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Acridine	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Benzo(a)anthracene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Benzo(a)pyrene	<0.000050		0.0000050	mg/L	27-DEC-19	03-JAN-20	R4959944

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2399352-2 TH19-03							
Sampled By: CLIENT on 20-DEC-19 @ 12:30							
Matrix: GW							
Polyaromatic Hydrocarbons (PAHs)							
Benzo(b&j)fluoranthene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Benzo(g,h,i)perylene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Benzo(k)fluoranthene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Chrysene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Dibenzo(a,h)anthracene	<0.000050		0.0000050	mg/L	27-DEC-19	03-JAN-20	R4959944
Fluoranthene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Fluorene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Indeno(1,2,3-cd)pyrene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Naphthalene	<0.000050		0.000050	mg/L	27-DEC-19	03-JAN-20	R4959944
Phenanthrene	<0.000050		0.000050	mg/L	27-DEC-19	03-JAN-20	R4959944
Pyrene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Quinoline	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
B(a)P Total Potency Equivalent	<0.000030		0.000030	mg/L	27-DEC-19	03-JAN-20	R4959944
Surrogate: Acenaphthene d10	85.6		60-130	%	27-DEC-19	03-JAN-20	R4959944
Surrogate: Acridine d9	85.6		60-130	%	27-DEC-19	03-JAN-20	R4959944
Surrogate: Chrysene d12	116.7		60-130	%	27-DEC-19	03-JAN-20	R4959944
Surrogate: Naphthalene d8	84.6		50-130	%	27-DEC-19	03-JAN-20	R4959944
Surrogate: Phenanthrene d10	92.0		60-130	%	27-DEC-19	03-JAN-20	R4959944
VOC plus F1 to F4							
CCME PHC F2-F4 in Water							D / 0 0 / 0
F2 (C10-C16)	<0.10		0.10	mg/L	21-DEC-19	28-DEC-19	R4957846
F3 (C16-C34)	<0.25		0.25	mg/L	21-DEC-19	28-DEC-19	R4957846
F4 (C34-C50) Surrogata: 2 Bromohonzatrifluorida	<0.25		0.25	mg/L %	21-DEC-19	28-DEC-19	R4957846
Surrogate: 2-Bromobenzotrifluoride	101.8		60-140	70	21-DEC-19	28-DEC-19	R4957846
CCME Total Hydrocarbons F1-BTEX	<0.10		0.10	mg/L		07-JAN-20	
F2-Naphth	<0.10		0.10	mg/L		07-JAN-20	
F3-PAH	<0.10		0.10	mg/L		07-JAN-20	
Total Hydrocarbons (C6-C50)	<0.25		0.23	mg/L		07-JAN-20	
Sum of Xylene Isomer Concentrations	<0.50		0.50	iiig/L		07-07-11-20	
Xylenes (Total)	<0.00064		0.00064	mg/L		03-JAN-20	
Total Trihalomethanes (THMs)							
Total THMs	<0.0013		0.0013	mg/L		03-JAN-20	
VOC plus F1 by GCMS							
Acetone	<0.050		0.050	mg/L		31-DEC-19	R4958822
Benzene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Bromobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Bromochloromethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Bromodichloromethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Bromoform	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Bromomethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
n-Butylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
sec-Butylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
tert-Butylbenzene	< 0.0010		0.0010	mg/L		31-DEC-19	R4958822
Carbon disulfide	< 0.0050		0.0050	mg/L		31-DEC-19	R4958822
Carbon Tetrachloride	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Chlorobenzene	< 0.0010		0.0010	mg/L		31-DEC-19	R4958822
Chloroethane	< 0.0010		0.0010	mg/L		31-DEC-19	R4958822
Chloroform	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Chloromethane	< 0.0050		0.0050	mg/L		31-DEC-19	R4958822
2-Chlorotoluene	<0.020		0.020	mg/L		31-DEC-19	R4958822
4-Chlorotoluene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
.2399352-2 TH19-03							
Sampled By: CLIENT on 20-DEC-19 @ 12:30							
Matrix: GW							
VOC plus F1 by GCMS							
Dibromochloromethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,2-Dibromo-3-chloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2-Dibromoethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Dibromomethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2-Dichlorobenzene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,3-Dichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,4-Dichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Dichlorodifluoromethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1-dichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,2-Dichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,1-dichloroethene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
cis-1,2-Dichloroethene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
trans-1,2-Dichloroethene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Dichloromethane	<0.0050		0.0050	mg/L		31-DEC-19	R4958822
1,2-Dichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,3-Dichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
2,2-Dichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1-Dichloropropene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
cis-1,3-Dichloropropene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
trans-1,3-Dichloropropene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Ethylbenzene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
F1	<0.10		0.10	mg/L		31-DEC-19	R4958822
Hexachlorobutadiene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Hexane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
2-Hexanone (Methyl butyl ketone)	<0.020		0.020	mg/L		31-DEC-19	R4958822
Isopropylbenzene	< 0.0010		0.0010	mg/L		31-DEC-19	R4958822
4-Isopropyltoluene MEK	<0.0010		0.0010	mg/L		31-DEC-19 31-DEC-19	R4958822 R4958822
MIBK	<0.020 <0.020		0.020 0.020	mg/L		31-DEC-19 31-DEC-19	R4958822 R4958822
MTBE	<0.020		0.020	mg/L mg/L		31-DEC-19 31-DEC-19	R4958822 R4958822
Styrene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,1,1,2-Tetrachloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,1,2,2-Tetrachloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Tetrachloroethene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Toluene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,2,3-Trichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2,4-Trichlorobenzene	< 0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1,1-Trichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,1,2-Trichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Trichloroethene	< 0.00050		0.00050	mg/L		31-DEC-19	R4958822
Trichlorofluoromethane	< 0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2,3-Trichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2,4-Trimethylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,3,5-Trimethylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Vinyl Chloride	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
M+P-Xylenes	<0.00040		0.00040	mg/L		31-DEC-19	R4958822
o-Xylene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Surrogate: 4-Bromofluorobenzene (SS)	88.0		70-130	%		31-DEC-19	R4958822
Surrogate: 1,4-Difluorobenzene (SS)	98.9		70-130	%		31-DEC-19	R4958822
Surrogate: 3,4-Dichlorotoluene (SS)	91.5		70-130	%		31-DEC-19	R4958822

Sample Details/Parameters	Result	Qualifier'	* D.L.	Units	Extracted	Analyzed	Batch
_2399352-3 TH19-10							
Sampled By: CLIENT on 20-DEC-19 @ 13:00							
Matrix: GW							
Miscellaneous Parameters							
Extractable Organic Halides (EOX)	See Attached					08-JAN-20	R4965448
Mercury (Hg)-Total	0.0000090		0.0000050	mg/L	03-JAN-20	03-JAN-20	R4958945
Total Metals in Water by CRC ICPMS	0.0000030		0.0000050	iiig/L	00 0/11 20	00 0711 20	114330340
Aluminum (Al)-Total	0.302	DLM	0.030	mg/L	08-JAN-20	08-JAN-20	R4965231
Antimony (Sb)-Total	0.0016	DLM	0.0010	mg/L	08-JAN-20	08-JAN-20	R4965231
Arsenic (As)-Total	0.0010	DLM	0.0010	mg/L	08-JAN-20	08-JAN-20	R4965231
Barium (Ba)-Total	0.0500	DLM	0.0010	mg/L	08-JAN-20	08-JAN-20	R4965231
Beryllium (Be)-Total	<0.0010	DLM	0.0010	mg/L	08-JAN-20	08-JAN-20	R4965231
Bismuth (Bi)-Total	<0.00050	DLM	0.00050	mg/L	08-JAN-20	08-JAN-20	R496523
Boron (B)-Total	0.42	DLM	0.00030	mg/L	08-JAN-20	08-JAN-20	R4965231
Cadmium (Cd)-Total	0.00140	DLM	0.000050	mg/L	08-JAN-20	08-JAN-20	R496523
Calcium (Ca)-Total	415	DLM	0.000050	mg/L	08-JAN-20 08-JAN-20	08-JAN-20 08-JAN-20	R496523
Cesium (Cs)-Total	<0.00010	DLM	0.50	mg/L	08-JAN-20 08-JAN-20	08-JAN-20 08-JAN-20	R496523
Chromium (Cr)-Total	<0.00010	DLM	0.00010	-	08-JAN-20 08-JAN-20	08-JAN-20 08-JAN-20	
Cobalt (Co)-Total		DLM	0.0010	mg/L	08-JAN-20 08-JAN-20	08-JAN-20 08-JAN-20	R496523
Copper (Cu)-Total	0.0024 0.0312	DLM	0.0010	mg/L mg/L	08-JAN-20 08-JAN-20	08-JAN-20 08-JAN-20	R496523 R496523
Iron (Fe)-Total	0.0312	DLM	0.0050	-	08-JAN-20 08-JAN-20	08-JAN-20 08-JAN-20	
Lead (Pb)-Total		DLM	1 1	mg/L			R496523
Lithium (Li)-Total	0.0207	DLM	0.00050	mg/L	08-JAN-20	08-JAN-20	R496523
	0.639	DLM	0.010	mg/L	08-JAN-20	08-JAN-20	R496523
Magnesium (Mg)-Total	314		0.050	mg/L	08-JAN-20	08-JAN-20	R496523
Manganese (Mn)-Total	1.17	DLM	0.0010	mg/L	08-JAN-20	08-JAN-20	R496523
Molybdenum (Mo)-Total	0.00296	DLM DLM	0.00050	mg/L	08-JAN-20	08-JAN-20	R496523
Nickel (Ni)-Total	0.0302		0.0050	mg/L	08-JAN-20	08-JAN-20	R496523
Potassium (K)-Total	7.85	DLM	0.50	mg/L	08-JAN-20	08-JAN-20	R496523
Phosphorus (P)-Total	<0.30	DLM	0.30	mg/L	08-JAN-20	08-JAN-20	R496523
Rubidium (Rb)-Total	0.0026	DLM	0.0020	mg/L	08-JAN-20	08-JAN-20	R496523
Selenium (Se)-Total	<0.00050	DLM	0.00050	mg/L	08-JAN-20	08-JAN-20	R496523
Silicon (Si)-Total	12.9	DLM	1.0	mg/L	08-JAN-20	08-JAN-20	R496523
Silver (Ag)-Total	<0.00010	DLM	0.00010	mg/L	08-JAN-20	08-JAN-20	R496523
Sodium (Na)-Total	259	DLM	0.50	mg/L	08-JAN-20	08-JAN-20	R496523
Strontium (Sr)-Total	2.75	DLM	0.0020	mg/L	08-JAN-20	08-JAN-20	R496523
Sulfur (S)-Total	699	DLM	5.0	mg/L	08-JAN-20	08-JAN-20	R496523
Tellurium (Te)-Total	<0.0020	DLM	0.0020	mg/L	08-JAN-20	08-JAN-20	R496523
Thallium (TI)-Total	<0.00010	DLM	0.00010	mg/L	08-JAN-20	08-JAN-20	R496523
Thorium (Th)-Total	<0.0010	DLM	0.0010	mg/L	08-JAN-20	08-JAN-20	R496523
Tin (Sn)-Total	0.0031	DLM	0.0010	mg/L	08-JAN-20	08-JAN-20	R496523
Titanium (Ti)-Total	0.0128	DLM	0.0030	mg/L	08-JAN-20	08-JAN-20	R496523
Tungsten (W)-Total	<0.0010	DLM	0.0010	mg/L	08-JAN-20	08-JAN-20	R496523
Uranium (U)-Total	0.0969	DLM	0.00010	mg/L	08-JAN-20	08-JAN-20	R496523
Vanadium (V)-Total	<0.0050	DLM	0.0050	mg/L	08-JAN-20	08-JAN-20	R496523
Zinc (Zn)-Total	0.522	DLM	0.030	mg/L	08-JAN-20	08-JAN-20	R496523
Zirconium (Zr)-Total	<0.0020	DLM	0.0020	mg/L	08-JAN-20	08-JAN-20	R496523
Polyaromatic Hydrocarbons (PAHs)							
1-Methyl Naphthalene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
2-Methyl Naphthalene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Acenaphthene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Acenaphthylene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R495994
Anthracene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Acridine	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R495994
Benzo(a)anthracene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R495994
Benzo(a)pyrene	<0.000050	1	0.0000050	mg/L	27-DEC-19	03-JAN-20	R4959944

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2399352-3 TH19-10							
Sampled By: CLIENT on 20-DEC-19 @ 13:00							
Matrix: GW							
Polyaromatic Hydrocarbons (PAHs)							
Benzo(b&j)fluoranthene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Benzo(g,h,i)perylene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Benzo(k)fluoranthene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Chrysene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Dibenzo(a,h)anthracene	<0.000050		0.0000050	mg/L	27-DEC-19	03-JAN-20	R4959944
Fluoranthene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Fluorene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Indeno(1,2,3-cd)pyrene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Naphthalene	<0.000050		0.000050	mg/L	27-DEC-19	03-JAN-20	R4959944
Phenanthrene	<0.000050		0.000050	mg/L	27-DEC-19	03-JAN-20	R4959944
Pyrene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Quinoline	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
B(a)P Total Potency Equivalent	<0.000030		0.000030	mg/L	27-DEC-19	03-JAN-20	R4959944
Surrogate: Acenaphthene d10	86.7		60-130	%	27-DEC-19	03-JAN-20	R4959944
Surrogate: Acridine d9 Surrogate: Chrysene d12	89.3		60-130	%	27-DEC-19 27-DEC-19	03-JAN-20	R4959944
Surrogate: Naphthalene d8	100.6 80.3		60-130 50-130	% %	27-DEC-19 27-DEC-19	03-JAN-20 03-JAN-20	R4959944 R4959944
Surrogate: Phenanthrene d10	90.2		50-130 60-130	%	27-DEC-19 27-DEC-19	03-JAN-20 03-JAN-20	R4959944 R4959944
VOC plus F1 to F4	90.2		00-130	70	27-020-19	03-3711-20	R4959944
CCME PHC F2-F4 in Water							
F2 (C10-C16)	<0.10		0.10	mg/L	21-DEC-19	28-DEC-19	R4957846
F3 (C16-C34)	<0.25		0.25	mg/L	21-DEC-19	28-DEC-19	R4957846
F4 (C34-C50)	<0.25		0.25	mg/L	21-DEC-19	28-DEC-19	R4957846
Surrogate: 2-Bromobenzotrifluoride	101.8		60-140	%	21-DEC-19	28-DEC-19	R4957846
CCME Total Hydrocarbons							
F1-BTEX	<0.10		0.10	mg/L		07-JAN-20	
F2-Naphth	<0.10		0.10	mg/L		07-JAN-20	
F3-PAH	<0.25		0.25	mg/L		07-JAN-20	
Total Hydrocarbons (C6-C50)	<0.38		0.38	mg/L		07-JAN-20	
Sum of Xylene Isomer Concentrations Xylenes (Total)	<0.00064		0.00064	mg/L		03-JAN-20	
Total Trihalomethanes (THMs)				5		-	
Total THMs	<0.0013		0.0013	mg/L		03-JAN-20	
VOC plus F1 by GCMS							
Acetone	<0.050		0.050	mg/L		31-DEC-19	R4958822
Benzene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Bromobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Bromochloromethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Bromodichloromethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Bromoform	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Bromomethane	< 0.0010		0.0010	mg/L		31-DEC-19	R4958822
n-Butylbenzene	< 0.0010		0.0010	mg/L		31-DEC-19	R4958822
sec-Butylbenzene tert-Butylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Carbon disulfide	<0.0010		0.0010	mg/L mg/l		31-DEC-19 31-DEC-19	R4958822
Carbon Tetrachloride	<0.0050 <0.00050		0.0050 0.00050	mg/L mg/L		31-DEC-19 31-DEC-19	R4958822 R4958822
Chlorobenzene	<0.00050		0.00050	mg/L		31-DEC-19 31-DEC-19	R4958822 R4958822
Chloroethane	<0.0010		0.0010	mg/L		31-DEC-19 31-DEC-19	R4958822
Chloroform	<0.0010		0.00050	mg/L		31-DEC-19 31-DEC-19	R4958822
Chloromethane	<0.0050		0.00050	mg/L		31-DEC-19	R4958822
2-Chlorotoluene	<0.000		0.020	mg/L		31-DEC-19	R4958822
4-Chlorotoluene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
_2399352-3 TH19-10							
Sampled By: CLIENT on 20-DEC-19 @ 13:00							
Matrix: GW							
VOC plus F1 by GCMS							
Dibromochloromethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,2-Dibromo-3-chloropropane	< 0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2-Dibromoethane	< 0.0010		0.0010	mg/L		31-DEC-19	R4958822
Dibromomethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2-Dichlorobenzene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,3-Dichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,4-Dichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Dichlorodifluoromethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1-dichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,2-Dichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,1-dichloroethene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
cis-1,2-Dichloroethene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
trans-1,2-Dichloroethene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Dichloromethane	<0.0050		0.0050	mg/L		31-DEC-19	R4958822
1,2-Dichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,3-Dichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
2,2-Dichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1-Dichloropropene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
cis-1,3-Dichloropropene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
trans-1,3-Dichloropropene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Ethylbenzene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
F1	<0.10		0.10	mg/L		31-DEC-19	R4958822
Hexachlorobutadiene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Hexane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
2-Hexanone (Methyl butyl ketone)	<0.020		0.020	mg/L		31-DEC-19	R4958822
Isopropylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
4-Isopropyltoluene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
MEK	<0.020		0.020	mg/L		31-DEC-19	R4958822
MIBK	<0.020		0.020	mg/L		31-DEC-19	R4958822
MTBE	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Styrene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1,1,2-Tetrachloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,1,2,2-Tetrachloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Tetrachloroethene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Toluene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,2,3-Trichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2,4-Trichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1,1-Trichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,1,2-Trichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Trichloroethene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Trichlorofluoromethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2,3-Trichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2,4-Trimethylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,3,5-Trimethylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Vinyl Chloride	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
M+P-Xylenes	<0.00040		0.00040	mg/L		31-DEC-19	R4958822
o-Xylene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Surrogate: 4-Bromofluorobenzene (SS)	71.5		70-130	%		31-DEC-19	R4958822
Surrogate: 1,4-Difluorobenzene (SS)	95.3		70-130	%		31-DEC-19	R4958822
Surrogate: 3,4-Dichlorotoluene (SS)	71.4		70-130	%		31-DEC-19	R4958822

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
_2399352-4 TH19-08							
Sampled By: CLIENT on 20-DEC-19 @ 13:30							
Matrix: GW							
Miscellaneous Parameters							
Extractable Organic Halides (EOX)	See Attached					08-JAN-20	R4965448
Mercury (Hg)-Total	0.0000590		0.0000050	mg/L	03-JAN-20	03-JAN-20	R4958945
	0.0000590		0.0000050	iiig/∟	03-JAN-20	03-3711-20	R490094
Total Metals in Water by CRC ICPMS Aluminum (AI)-Total	10.9	DLM	0.030	mg/L	09-JAN-20	09-JAN-20	R4966116
Antimony (Sb)-Total	<0.0010	DLM	0.000	mg/L	09-JAN-20	09-JAN-20	R4966116
Arsenic (As)-Total	0.0076	DLM	0.0010	mg/L	09-JAN-20 09-JAN-20	09-JAN-20	R4966116
Barium (Ba)-Total	0.187	DLM	0.0010	mg/L	09-JAN-20	09-JAN-20	R4966116
Beryllium (Be)-Total	<0.0010	DLM	0.0010	•	09-JAN-20 09-JAN-20	09-JAN-20	R4966116
Bismuth (Bi)-Total		DLM		mg/L	09-JAN-20 09-JAN-20	09-JAN-20 09-JAN-20	
Boron (B)-Total	<0.00050 0.34	DLM	0.00050 0.10	mg/L	09-JAN-20 09-JAN-20	09-JAN-20 09-JAN-20	R4966110 R4966110
		DLM		mg/L			
Cadmium (Cd)-Total Calcium (Ca)-Total	0.000406	DLM	0.000050	mg/L	09-JAN-20	09-JAN-20 09-JAN-20	R4966116
Cesium (Cs)-Total	469	DLM	0.50	mg/L	09-JAN-20 09-JAN-20		R496611
	0.00181	DLM	0.00010	mg/L		09-JAN-20	R496611
Chromium (Cr)-Total	0.0228		0.0010	mg/L	09-JAN-20	09-JAN-20	R496611
Cobalt (Co)-Total	0.0172	DLM	0.0010	mg/L	09-JAN-20	09-JAN-20	R496611
Copper (Cu)-Total	0.0414	DLM DLM	0.0050	mg/L	09-JAN-20	09-JAN-20	R496611
Iron (Fe)-Total	16.6		0.10	mg/L	09-JAN-20	09-JAN-20	R496611
Lead (Pb)-Total	0.0286	DLM	0.00050	mg/L	09-JAN-20	09-JAN-20	R496611
Lithium (Li)-Total	0.558	DLM	0.010	mg/L	09-JAN-20	09-JAN-20	R496611
Magnesium (Mg)-Total	307	DLM	0.050	mg/L	09-JAN-20	09-JAN-20	R496611
Manganese (Mn)-Total	2.38	DLM	0.0010	mg/L	09-JAN-20	09-JAN-20	R496611
Molybdenum (Mo)-Total	0.00558	DLM	0.00050	mg/L	09-JAN-20	09-JAN-20	R496611
Nickel (Ni)-Total	0.0401	DLM	0.0050	mg/L	09-JAN-20	09-JAN-20	R4966116
Potassium (K)-Total	7.63	DLM	0.50	mg/L	09-JAN-20	09-JAN-20	R496611
Phosphorus (P)-Total	0.35	DLM	0.30	mg/L	09-JAN-20	09-JAN-20	R4966116
Rubidium (Rb)-Total	0.0236	DLM	0.0020	mg/L	09-JAN-20	09-JAN-20	R4966116
Selenium (Se)-Total	<0.00050	DLM	0.00050	mg/L	09-JAN-20	09-JAN-20	R4966116
Silicon (Si)-Total	35.2	DLM	1.0	mg/L	09-JAN-20	09-JAN-20	R4966116
Silver (Ag)-Total	0.00018	DLM	0.00010	mg/L	09-JAN-20	09-JAN-20	R4966110
Sodium (Na)-Total	229	DLM	0.50	mg/L	09-JAN-20	09-JAN-20	R4966116
Strontium (Sr)-Total	2.37	DLM	0.0020	mg/L	09-JAN-20	09-JAN-20	R4966116
Sulfur (S)-Total	578	DLM	5.0	mg/L	09-JAN-20	09-JAN-20	R496611
Tellurium (Te)-Total	<0.0020	DLM	0.0020	mg/L	09-JAN-20	09-JAN-20	R496611
Thallium (TI)-Total	0.00020	DLM	0.00010	mg/L	09-JAN-20	09-JAN-20	R496611
Thorium (Th)-Total	0.0042	DLM	0.0010	mg/L	09-JAN-20	09-JAN-20	R496611
Tin (Sn)-Total	0.0016	DLM	0.0010	mg/L	09-JAN-20	09-JAN-20	R496611
Titanium (Ti)-Total	0.220	DLM	0.0030	mg/L	09-JAN-20	09-JAN-20	R4966116
Tungsten (W)-Total	<0.0010	DLM	0.0010	mg/L	09-JAN-20	09-JAN-20	R4966116
Uranium (U)-Total	0.0618	DLM	0.00010	mg/L	09-JAN-20	09-JAN-20	R4966116
Vanadium (V)-Total	0.0365	DLM	0.0050	mg/L	09-JAN-20	09-JAN-20	R4966116
Zinc (Zn)-Total	0.162	DLM	0.030	mg/L	09-JAN-20	09-JAN-20	R496611
Zirconium (Zr)-Total	0.0037	DLM	0.0020	mg/L	09-JAN-20	09-JAN-20	R4966116
Polyaromatic Hydrocarbons (PAHs)							
1-Methyl Naphthalene	<0.000060	DLM	0.000060	mg/L	27-DEC-19	03-JAN-20	R4959944
2-Methyl Naphthalene	<0.000060	DLM	0.000060	mg/L	27-DEC-19	03-JAN-20	R4959944
Acenaphthene	<0.000060	DLM	0.000060	mg/L	27-DEC-19	03-JAN-20	R4959944
Acenaphthylene	<0.000060	DLM	0.000060	mg/L	27-DEC-19	03-JAN-20	R495994
Anthracene	<0.000030	DLM	0.000030	mg/L	27-DEC-19	03-JAN-20	R495994
Acridine	<0.000060	DLM	0.000060	mg/L	27-DEC-19	03-JAN-20	R495994
Benzo(a)anthracene	<0.000030	DLM	0.000030	mg/L	27-DEC-19	03-JAN-20	R495994
Benzo(a)pyrene	<0.000015	DLM	0.000015	mg/L	27-DEC-19	03-JAN-20	R4959944

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2399352-4 TH19-08							
Sampled By: CLIENT on 20-DEC-19 @ 13:30							
Matrix: GW							
Polyaromatic Hydrocarbons (PAHs)							
Benzo(b&j)fluoranthene	<0.000030	DLM	0.000030	mg/L	27-DEC-19	03-JAN-20	R4959944
Benzo(g,h,i)perylene	<0.000060	DLM	0.000060	mg/L	27-DEC-19	03-JAN-20	R4959944
Benzo(k)fluoranthene	<0.000030	DLM	0.000030	mg/L	27-DEC-19	03-JAN-20	R4959944
Chrysene	<0.000060	DLM	0.000060	mg/L	27-DEC-19	03-JAN-20	R4959944
Dibenzo(a,h)anthracene	<0.000015	DLM	0.000015	mg/L	27-DEC-19	03-JAN-20	R4959944
Fluoranthene	<0.000060	DLM	0.000060	mg/L	27-DEC-19	03-JAN-20	R4959944
Fluorene	<0.000060	DLM	0.000060	mg/L	27-DEC-19	03-JAN-20	R4959944
Indeno(1,2,3-cd)pyrene	<0.000060	DLM	0.000060	mg/L	27-DEC-19	03-JAN-20	R4959944
Naphthalene	<0.00015	DLM	0.00015	mg/L	27-DEC-19	03-JAN-20	R4959944
Phenanthrene	<0.00015	DLM	0.00015	mg/L	27-DEC-19	03-JAN-20	R4959944
Pyrene	<0.000030	DLM	0.000030	mg/L	27-DEC-19	03-JAN-20	R4959944
Quinoline	<0.000050	DLM	0.000060	mg/L	27-DEC-19	03-JAN-20	R4959944
B(a)P Total Potency Equivalent	<0.000030		0.000030	mg/L	27-DEC-19	03-JAN-20	R4959944
Surrogate: Acenaphthene d10	108.6		60-130	% %	27-DEC-19	03-JAN-20	R4959944
Surrogate: Accidine d9	111.9		60-130 60-130	%	27-DEC-19	03-JAN-20	R4959944
Surrogate: Chrysene d12	109.9		60-130 60-130	%	27-DEC-19 27-DEC-19	03-JAN-20	R4959944
Surrogate: Naphthalene d8	109.6		50-130	%	27-DEC-19	03-JAN-20	R4959944
Surrogate: Phenanthrene d10	120.9		60-130	%	27-DEC-19	03-JAN-20	R4959944
VOC plus F1 to F4	120.9		00-130	70	21-020-19	03-3711-20	R4909944
CCME PHC F2-F4 in Water							
F2 (C10-C16)	<0.50	DLM	0.50	mg/L	21-DEC-19	28-DEC-19	R4957846
F3 (C16-C34)	57.2	DLM	1.3	mg/L	21-DEC-19	28-DEC-19	R4957846
F4 (C34-C50)	74.0	DLM	1.3	mg/L	21-DEC-19	28-DEC-19	R4957846
Surrogate: 2-Bromobenzotrifluoride	100.1	DEM	60-140	///g/∟ %	21-DEC-19	28-DEC-19	R4957846
CCME Total Hydrocarbons	100.1		00-140	70	21 020 15	20 020 15	114337040
F1-BTEX	<0.10		0.10	mg/L		07-JAN-20	
F2-Naphth	<0.10		0.10	mg/L		07-JAN-20	
F3-PAH	57.2		1.3	mg/L		07-JAN-20	
Total Hydrocarbons (C6-C50)	131		1.3	mg/L		07-JAN-20	
Sum of Xylene Isomer Concentrations	151		1.0	iiig/L		07-3711-20	
Xylenes (Total)	<0.00064		0.00064	mg/L		03-JAN-20	
Total Trihalomethanes (THMs)							
Total THMs	<0.0013		0.0013	mg/L		03-JAN-20	
VOC plus F1 by GCMS							
Acetone	<0.050		0.050	mg/L		31-DEC-19	R4958822
Benzene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Bromobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Bromochloromethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Bromodichloromethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Bromoform	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Bromomethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
n-Butylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
sec-Butylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
tert-Butylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Carbon disulfide	<0.0050		0.0050	mg/L		31-DEC-19	R4958822
Carbon Tetrachloride	< 0.00050		0.00050	mg/L		31-DEC-19	R4958822
Chlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Chloroethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Chloroform	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Chloromethane	<0.00050		0.00050	mg/L		31-DEC-19 31-DEC-19	R4958822
2-Chlorotoluene	<0.0030		0.0050	mg/L		31-DEC-19 31-DEC-19	R4958822
4-Chlorotoluene				-		31-DEC-19 31-DEC-19	
	<0.0010	1	0.0010	mg/L		31-DEC-19	R4958822

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2399352-4 TH19-08							
Sampled By: CLIENT on 20-DEC-19 @ 13:30							
Matrix: GW							
VOC plus F1 by GCMS							
Dibromochloromethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,2-Dibromo-3-chloropropane	< 0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2-Dibromoethane	< 0.0010		0.0010	mg/L		31-DEC-19	R4958822
Dibromomethane	< 0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2-Dichlorobenzene	< 0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,3-Dichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,4-Dichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Dichlorodifluoromethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1-dichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,2-Dichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,1-dichloroethene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
cis-1,2-Dichloroethene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
trans-1,2-Dichloroethene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Dichloromethane	<0.0050		0.0050	mg/L		31-DEC-19	R4958822
1,2-Dichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,3-Dichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
2,2-Dichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1-Dichloropropene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
cis-1,3-Dichloropropene	<0.0020	DLCI	0.0020	mg/L		31-DEC-19	R4958822
trans-1,3-Dichloropropene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Ethylbenzene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
F1	<0.10		0.10	mg/L		31-DEC-19	R4958822
Hexachlorobutadiene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Hexane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
2-Hexanone (Methyl butyl ketone)	<0.020		0.020	mg/L		31-DEC-19	R4958822
Isopropylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
4-Isopropyltoluene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
MEK	<0.020		0.020	mg/L		31-DEC-19	R4958822
MIBK	<0.020		0.020	mg/L		31-DEC-19	R4958822
MTBE	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Styrene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1,1,2-Tetrachloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,1,2,2-Tetrachloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Tetrachloroethene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Toluene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,2,3-Trichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2,4-Trichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1,1-Trichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,1,2-Trichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Trichloroethene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Trichlorofluoromethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2,3-Trichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2,4-Trimethylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,3,5-Trimethylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Vinyl Chloride	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
M+P-Xylenes	<0.00040		0.00040	mg/L		31-DEC-19	R4958822
o-Xylene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Surrogate: 4-Bromofluorobenzene (SS)	87.8		70-130	%		31-DEC-19	R4958822
Surrogate: 1,4-Difluorobenzene (SS)	97.3		70-130	%		31-DEC-19	R4958822
Surrogate: 3,4-Dichlorotoluene (SS)	86.7		70-130	%		31-DEC-19	R4958822

Sample Details/Parameters	Result	Qualifier'	* D.L.	Units	Extracted	Analyzed	Batch
2399352-5 TH19-07							
Sampled By: CLIENT on 20-DEC-19 @ 14:00							
Aatrix: GW							
Miscellaneous Parameters							
Extractable Organic Halides (EOX)	See Attached					08-JAN-20	R4965448
Mercury (Hg)-Total	0.0000290		0.0000050	mg/L	03-JAN-20	03-JAN-20	R4958945
	0.0000290		0.0000050	mg/∟	03-JAN-20	03-3411-20	R4900940
Total Metals in Water by CRC ICPMS Aluminum (AI)-Total	28.2	DLM	0.030	mg/L	09-JAN-20	09-JAN-20	R4966116
Antimony (Sb)-Total	<0.0010	DLM	0.030	mg/L	09-JAN-20 09-JAN-20	09-JAN-20	R4966116
Arsenic (As)-Total	0.0246	DLM	0.0010	mg/L	09-JAN-20 09-JAN-20	09-JAN-20	R4966116
Barium (Ba)-Total	0.398	DLM	0.0010	mg/L	09-JAN-20	09-JAN-20	R4966116
Beryllium (Be)-Total	0.0017	DLM	0.0010	-	09-JAN-20 09-JAN-20	09-JAN-20	R4966116
Bismuth (Bi)-Total		DLM		mg/L	09-JAN-20 09-JAN-20	09-JAN-20 09-JAN-20	
	0.00052		0.00050	mg/L			R4966116
Boron (B)-Total	0.23	DLM	0.10	mg/L	09-JAN-20	09-JAN-20	R4966116
Cadmium (Cd)-Total Calcium (Ca)-Total	0.00117		0.000050	mg/L	09-JAN-20	09-JAN-20 09-JAN-20	R4966116
	859		0.50	mg/L	09-JAN-20		R4966116
Cesium (Cs)-Total	0.00401		0.00010	mg/L	09-JAN-20	09-JAN-20	R4966110
Chromium (Cr)-Total	0.0598	DLM	0.0010	mg/L	09-JAN-20	09-JAN-20	R4966116
Cobalt (Co)-Total	0.0227	DLM	0.0010	mg/L	09-JAN-20	09-JAN-20	R4966116
Copper (Cu)-Total	0.0846	DLM	0.0050	mg/L	09-JAN-20	09-JAN-20	R496611
Iron (Fe)-Total	58.6	DLM	0.10	mg/L	09-JAN-20	09-JAN-20	R496611
Lead (Pb)-Total	0.0406	DLM	0.00050	mg/L	09-JAN-20	09-JAN-20	R4966110
Lithium (Li)-Total	0.638	DLM	0.010	mg/L	09-JAN-20	09-JAN-20	R4966110
Magnesium (Mg)-Total	551	DLM	0.050	mg/L	09-JAN-20	09-JAN-20	R4966116
Manganese (Mn)-Total	2.31	DLM	0.0010	mg/L	09-JAN-20	09-JAN-20	R4966116
Molybdenum (Mo)-Total	0.00379	DLM	0.00050	mg/L	09-JAN-20	09-JAN-20	R4966116
Nickel (Ni)-Total	0.0811	DLM	0.0050	mg/L	09-JAN-20	09-JAN-20	R4966116
Potassium (K)-Total	10.8	DLM	0.50	mg/L	09-JAN-20	09-JAN-20	R4966116
Phosphorus (P)-Total	1.86	DLM	0.30	mg/L	09-JAN-20	09-JAN-20	R4966116
Rubidium (Rb)-Total	0.0495	DLM	0.0020	mg/L	09-JAN-20	09-JAN-20	R4966116
Selenium (Se)-Total	0.00078	DLM	0.00050	mg/L	09-JAN-20	09-JAN-20	R4966116
Silicon (Si)-Total	67.4	DLM	1.0	mg/L	09-JAN-20	09-JAN-20	R4966116
Silver (Ag)-Total	0.00035	DLM	0.00010	mg/L	09-JAN-20	09-JAN-20	R4966116
Sodium (Na)-Total	260	DLM	0.50	mg/L	09-JAN-20	09-JAN-20	R4966116
Strontium (Sr)-Total	2.61	DLM	0.0020	mg/L	09-JAN-20	09-JAN-20	R4966116
Sulfur (S)-Total	520	DLM	5.0	mg/L	09-JAN-20	09-JAN-20	R496611
Tellurium (Te)-Total	<0.0020	DLM	0.0020	mg/L	09-JAN-20	09-JAN-20	R496611
Thallium (TI)-Total	0.00062	DLM	0.00010	mg/L	09-JAN-20	09-JAN-20	R4966116
Thorium (Th)-Total	0.0150	DLM	0.0010	mg/L	09-JAN-20	09-JAN-20	R4966116
Tin (Sn)-Total	0.0017	DLM	0.0010	mg/L	09-JAN-20	09-JAN-20	R4966116
Titanium (Ti)-Total	0.321	DLM	0.0030	mg/L	09-JAN-20	09-JAN-20	R4966110
Tungsten (W)-Total	<0.0010	DLM	0.0010	mg/L	09-JAN-20	09-JAN-20	R4966116
Uranium (U)-Total	0.0977	DLM	0.00010	mg/L	09-JAN-20	09-JAN-20	R4966116
Vanadium (V)-Total	0.0946	DLM	0.0050	mg/L	09-JAN-20	09-JAN-20	R4966116
Zinc (Zn)-Total	0.247	DLM	0.030	mg/L	09-JAN-20	09-JAN-20	R4966116
Zirconium (Zr)-Total	0.0051	DLM	0.0020	mg/L	09-JAN-20	09-JAN-20	R4966116
Polyaromatic Hydrocarbons (PAHs) 1-Methyl Naphthalene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
2-Methyl Naphthalene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Acenaphthene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Acenaphthylene	<0.000020		0.000020	mg/L	27-DEC-19 27-DEC-19	03-JAN-20	R4959944
Anthracene	<0.000020		0.000020	mg/L	27-DEC-19 27-DEC-19	03-JAN-20 03-JAN-20	R4959944
Acridine				-	27-DEC-19 27-DEC-19	03-JAN-20 03-JAN-20	
	<0.000020		0.000020	mg/L			R4959944
Benzo(a)anthracene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Benzo(a)pyrene	0.000066		0.0000050	mg/L	27-DEC-19	03-JAN-20	R4959944

Sample Details/Parameters	Result	Qualifier* D.I	Units	Extracted	Analyzed	Batch
L2399352-5 TH19-07						
Sampled By: CLIENT on 20-DEC-19 @ 14:00						
Matrix: GW						
Polyaromatic Hydrocarbons (PAHs) Benzo(b&j)fluoranthene	<0.000010	0.000	010 mg/L	27-DEC-19	03-JAN-20	R4959944
Benzo(g,h,i)perylene	<0.000010	0.000	-	27-DEC-19 27-DEC-19	03-JAN-20	R4959944
Benzo(k)fluoranthene	<0.000020	0.000	_	27-DEC-19	03-JAN-20	R4959944
Chrysene	<0.000010	0.000	-	27-DEC-19	03-JAN-20	R4959944
Dibenzo(a,h)anthracene	<0.000020	0.000	U U	27-DEC-19	03-JAN-20	R4959944
Fluoranthene	<0.000030	0.000	U U	27-DEC-19	03-JAN-20	R4959944
Fluorene	<0.000020	0.000	U U	27-DEC-19	03-JAN-20	R4959944
Indeno(1,2,3-cd)pyrene	<0.000020	0.000	U U	27-DEC-19	03-JAN-20	R4959944
Naphthalene	<0.000050	0.000	U U	27-DEC-19	03-JAN-20	R4959944
Phenanthrene	<0.000050	0.000	-	27-DEC-19 27-DEC-19	03-JAN-20	R4959944
Pyrene	0.000022	0.000	U U	27-DEC-19 27-DEC-19	03-JAN-20	R4959944
Quinoline	<0.000022	0.000		27-DEC-19 27-DEC-19	03-JAN-20 03-JAN-20	R4959944 R4959944
B(a)P Total Potency Equivalent	<0.000020	0.000	-	27-DEC-19 27-DEC-19	03-JAN-20 03-JAN-20	R4959944 R4959944
Surrogate: Acenaphthene d10	<0.000030	60-1		27-DEC-19 27-DEC-19	03-JAN-20 03-JAN-20	R4959944 R4959944
Surrogate: Acridine d9	91.5	60-1		27-DEC-19 27-DEC-19	03-JAN-20 03-JAN-20	R4959944 R4959944
Surrogate: Chrysene d12	91.5	60-1		27-DEC-19 27-DEC-19	03-JAN-20 03-JAN-20	R4959944 R4959944
Surrogate: Naphthalene d8	85.6			27-DEC-19 27-DEC-19	03-JAN-20	R4959944 R4959944
Surrogate: Phenanthrene d10	100.8	50-1 60-1		27-DEC-19 27-DEC-19	03-JAN-20 03-JAN-20	
-	100.8	00-	30 %	27-DEC-19	03-JAN-20	R4959944
VOC plus F1 to F4						
CCME PHC F2-F4 in Water	0.40		0	21-DEC-19		D 4057040
F2 (C10-C16) F3 (C16-C34)	<0.10	0.1	U U	21-DEC-19 21-DEC-19	28-DEC-19 28-DEC-19	R4957846
F3 (C16-C34) F4 (C34-C50)	0.98	0.2	U U			R4957846
	0.83	0.2	Ŭ	21-DEC-19	28-DEC-19 28-DEC-19	R4957846
Surrogate: 2-Bromobenzotrifluoride	102.1	60-1	40 %	21-DEC-19	20-DEC-19	R4957846
CCME Total Hydrocarbons F1-BTEX	-0.10		0 ma/l		07 14 1 20	
F1-B1EA F2-Naphth	<0.10	0.1	Ŭ		07-JAN-20	
F3-PAH	<0.10	0.1	Ŭ		07-JAN-20	
-	0.98	0.2	0		07-JAN-20	
Total Hydrocarbons (C6-C50)	1.81	0.3	38 mg/L		07-JAN-20	
Sum of Xylene Isomer Concentrations Xylenes (Total)	<0.00064	0.00	064 mg/L		03-JAN-20	
Total Trihalomethanes (THMs)			Ū Ū			
Total THMs	<0.0013	0.00)13 mg/L		03-JAN-20	
VOC plus F1 by GCMS			-			
Acetone	<0.050	0.0	50 mg/L		31-DEC-19	R4958822
Benzene	<0.00050	0.00	-		31-DEC-19	R4958822
Bromobenzene	<0.0010	0.00	-		31-DEC-19	R4958822
Bromochloromethane	<0.0010	0.00	-		31-DEC-19	R4958822
Bromodichloromethane	<0.00050	0.00	-		31-DEC-19	R4958822
Bromoform	<0.0010	0.00	-		31-DEC-19	R4958822
Bromomethane	< 0.0010	0.00	Ũ		31-DEC-19	R4958822
n-Butylbenzene	<0.0010	0.00	-		31-DEC-19	R4958822
sec-Butylbenzene	<0.0010	0.00	Ũ		31-DEC-19	R4958822
tert-Butylbenzene	<0.0010	0.00	-		31-DEC-19	R4958822
Carbon disulfide	< 0.0050	0.00	Ũ		31-DEC-19	R4958822
Carbon Tetrachloride	<0.00050	0.00	-		31-DEC-19	R4958822
Chlorobenzene	<0.0010	0.00	-		31-DEC-19	R4958822
Chloroethane	<0.0010	0.00	-		31-DEC-19	R4958822
Chloroform	<0.00050	0.00	Ũ		31-DEC-19	R4958822
Chloromethane	<0.0050	0.00			31-DEC-19	R4958822
2-Chlorotoluene	<0.0050	0.00	Ũ		31-DEC-19 31-DEC-19	R4958822
4-Chlorotoluene			Ũ			
4-01101010101010	<0.0010	0.00)10 mg/L		31-DEC-19	R4958822

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
.2399352-5 TH19-07							
Sampled By: CLIENT on 20-DEC-19 @ 14:00							
Matrix: GW							
VOC plus F1 by GCMS							
Dibromochloromethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,2-Dibromo-3-chloropropane	<0.00000		0.0010	mg/L		31-DEC-19	R4958822
1,2-Dibromoethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Dibromomethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2-Dichlorobenzene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,3-Dichlorobenzene	<0.00030		0.00000	mg/L		31-DEC-19	R4958822
1,4-Dichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Dichlorodifluoromethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1-dichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,2-Dichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822 R4958822
1,1-dichloroethene				-		31-DEC-19	
cis-1,2-Dichloroethene	< 0.00050		0.00050 0.0010	mg/L		31-DEC-19 31-DEC-19	R4958822 R4958822
trans-1,2-Dichloroethene	<0.0010			mg/L		31-DEC-19 31-DEC-19	R4958822 R4958822
Dichloromethane	<0.0010		0.0010	mg/L			
	<0.0050		0.0050	mg/L		31-DEC-19	R4958822
1,2-Dichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,3-Dichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
2,2-Dichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1-Dichloropropene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
cis-1,3-Dichloropropene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
trans-1,3-Dichloropropene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Ethylbenzene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
F1	<0.10		0.10	mg/L		31-DEC-19	R4958822
Hexachlorobutadiene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Hexane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
2-Hexanone (Methyl butyl ketone)	<0.020		0.020	mg/L		31-DEC-19	R4958822
Isopropylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
4-Isopropyltoluene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
MEK	<0.020		0.020	mg/L		31-DEC-19	R4958822
MIBK	<0.020		0.020	mg/L		31-DEC-19	R4958822
МТВЕ	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Styrene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1,1,2-Tetrachloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,1,2,2-Tetrachloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Tetrachloroethene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Toluene	0.00115		0.00050	mg/L		31-DEC-19	R4958822
1,2,3-Trichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2,4-Trichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1,1-Trichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,1,2-Trichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Trichloroethene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Trichlorofluoromethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2,3-Trichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2,4-Trimethylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,3,5-Trimethylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Vinyl Chloride	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
M+P-Xylenes	<0.00040		0.00040	mg/L		31-DEC-19	R4958822
o-Xylene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Surrogate: 4-Bromofluorobenzene (SS)	89.2		70-130	%		31-DEC-19	R4958822
Surrogate: 1,4-Difluorobenzene (SS)	98.2		70-130	%		31-DEC-19	R4958822
Surrogate: 3,4-Dichlorotoluene (SS)	87.1		70-130	%		31-DEC-19	R4958822

1						1
See Attached					08- IAN-20	R4965448
		0 0000050		02 14 11 20		
<0.0000050		0.0000050	mg/∟	03-JAN-20	03-JAN-20	R4958945
0.040		0.0000		00 14 11 20	00 14 11 20	D 4000440
			-			R4966116
			-			R4966116
			-			R4966116
			-			R4966116
			-			R4966116
			-			R4966116
			-			R4966116
			-			R4966116
			-			R4966116
			-			R4966116
			-			R4966116
0.00053			-			R4966116
		0.00050	-			R4966116
			-			R4966116
0.00110		0.000050	-			R4966116
0.443		0.010	mg/L	09-JAN-20		R4966116
363		0.050	mg/L	09-JAN-20	09-JAN-20	R4966116
0.100		0.00010	mg/L	09-JAN-20	09-JAN-20	R4966116
0.00538		0.000050	mg/L	09-JAN-20	09-JAN-20	R4966116
0.0116		0.00050	mg/L	09-JAN-20	09-JAN-20	R4966116
7.24		0.050	mg/L	09-JAN-20	09-JAN-20	R4966116
0.098		0.030	mg/L	09-JAN-20	09-JAN-20	R4966116
0.00190		0.00020	mg/L	09-JAN-20	09-JAN-20	R4966116
0.00918		0.000050	mg/L	09-JAN-20	09-JAN-20	R4966116
11.4		0.10	mg/L	09-JAN-20	09-JAN-20	R4966116
0.000023		0.000010	mg/L	09-JAN-20	09-JAN-20	R4966116
169		0.050	mg/L	09-JAN-20	09-JAN-20	R4966116
2.19		0.00020	mg/L	09-JAN-20	09-JAN-20	R4966116
557		5.0	mg/L	09-JAN-20	09-JAN-20	R4966116
0.00021		0.00020	mg/L	09-JAN-20	09-JAN-20	R4966116
0.000028		0.000010	mg/L	09-JAN-20	09-JAN-20	R4966116
0.00018		0.00010	mg/L	09-JAN-20	09-JAN-20	R4966116
0.00166		0.00010	mg/L	09-JAN-20	09-JAN-20	R4966116
0.0149		0.00030	mg/L	09-JAN-20	09-JAN-20	R4966116
<0.00010		0.00010	mg/L	09-JAN-20	09-JAN-20	R4966116
0.145		0.000010	mg/L	09-JAN-20	09-JAN-20	R4966116
0.00191		0.00050	mg/L	09-JAN-20	09-JAN-20	R4966116
0.0187		0.0030	mg/L	09-JAN-20	09-JAN-20	R4966116
0.00143		0.00020	mg/L	09-JAN-20	09-JAN-20	R4966116
_		-	č			
<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
	1 1		5	27-DEC-19	03-JAN-20	R4959944
	0.00786 0.559 0.00110 0.443 363 0.100 0.00538 0.0116 7.24 0.098 0.00190 0.00918 11.4 0.000023 169 2.19 557 0.00021 0.00021 0.00028 0.0018 0.00166 0.0149 <0.00018 0.00143 <0.000143 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020	<0.0000050 0.340 0.00109 0.0436 <0.00010 <0.000050 0.177 0.000133 342 0.000053 0.00203 0.00203 0.00786 0.559 0.00110 0.443 363 0.100 0.00538 0.0116 7.24 0.098 0.0116 7.24 0.098 0.00190 0.00918 11.4 0.000023 169 2.19 557 0.00021 0.00021 0.00023 169 2.19 557 0.00021 0.00023 169 2.19 557 0.00021 0.00028 0.0018 0.0018 0.0018 0.00143 <0.00143 <0.00010 0.145 0.00143 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.000020 <0.0000020 <0.000020 <0.000020 <0.000000000	<0.0000050	<0.0000050	<0.0000050	<0.000050

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2399352-6 DUP1							
Sampled By: CLIENT on 20-DEC-19 @ 12:45							
Matrix: GW							
Polyaromatic Hydrocarbons (PAHs)							
Benzo(b&j)fluoranthene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Benzo(g,h,i)perylene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Benzo(k)fluoranthene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Chrysene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Dibenzo(a,h)anthracene	<0.000050		0.0000050	mg/L	27-DEC-19	03-JAN-20	R4959944
Fluoranthene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Fluorene	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
Indeno(1,2,3-cd)pyrene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Naphthalene	<0.000050		0.000050	mg/L	27-DEC-19	03-JAN-20	R4959944
Phenanthrene	<0.000050		0.000050	mg/L	27-DEC-19	03-JAN-20	R4959944
Pyrene	<0.000010		0.000010	mg/L	27-DEC-19	03-JAN-20	R4959944
Quinoline	<0.000020		0.000020	mg/L	27-DEC-19	03-JAN-20	R4959944
B(a)P Total Potency Equivalent	<0.000030		0.000030	mg/L	27-DEC-19	03-JAN-20	R4959944
Surrogate: Acenaphthene d10	90.5		60-130	%	27-DEC-19	03-JAN-20	R4959944
Surrogate: Acridine d9	93.5		60-130	%	27-DEC-19	03-JAN-20	R4959944
Surrogate: Chrysene d12	108.8		60-130	%	27-DEC-19	03-JAN-20	R4959944
Surrogate: Naphthalene d8	93.4		50-130	%	27-DEC-19	03-JAN-20	R4959944
Surrogate: Phenanthrene d10	100.3		60-130	%	27-DEC-19	03-JAN-20	R4959944
VOC plus F1 to F4							
CCME PHC F2-F4 in Water F2 (C10-C16)	-0.10		0.10	ma/l	21-DEC-19	28-DEC-19	D4057046
F3 (C16-C34)	<0.10 <0.25		0.10 0.25	mg/L	21-DEC-19 21-DEC-19	28-DEC-19 28-DEC-19	R4957846 R4957846
F4 (C34-C50)	<0.25 <0.25		0.25	mg/L mg/L	21-DEC-19 21-DEC-19	28-DEC-19 28-DEC-19	R4957846 R4957846
Surrogate: 2-Bromobenzotrifluoride	<0.25 102.9		60-140	mg/∟ %	21-DEC-19 21-DEC-19	28-DEC-19 28-DEC-19	R4957846
CCME Total Hydrocarbons	102.9		00-140	70	21-020-19	20-DEC-19	114937 840
F1-BTEX	<0.10		0.10	mg/L		07-JAN-20	
F2-Naphth	<0.10		0.10	mg/L		07-JAN-20	
F3-PAH	<0.25		0.25	mg/L		07-JAN-20	
Total Hydrocarbons (C6-C50)	<0.38		0.38	mg/L		07-JAN-20	
Sum of Xylene Isomer Concentrations				5			
Xylenes (Total)	<0.00064		0.00064	mg/L		03-JAN-20	
Total Trihalomethanes (THMs)							
Total THMs	<0.0013		0.0013	mg/L		03-JAN-20	
VOC plus F1 by GCMS							
Acetone	<0.050		0.050	mg/L		31-DEC-19	R4958822
Benzene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Bromobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Bromochloromethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Bromodichloromethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Bromoform	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Bromomethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
n-Butylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
sec-Butylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
tert-Butylbenzene Carbon disulfide	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Carbon disuitide Carbon Tetrachloride	<0.0050		0.0050	mg/L		31-DEC-19	R4958822
Carbon Tetrachloride Chlorobenzene	< 0.00050		0.00050	mg/L		31-DEC-19	R4958822
Chloroethane	<0.0010		0.0010	mg/L		31-DEC-19 31-DEC-19	R4958822
Chloroform	<0.0010 <0.00050		0.0010 0.00050	mg/L		31-DEC-19 31-DEC-19	R4958822
	<0.00050 <0.0050		0.00050	mg/L mg/L		31-DEC-19 31-DEC-19	R4958822 R4958822
Chloromethane			0.0000	IIIU/L	1	JI-DEC-19	1 K49000ZZ
Chloromethane 2-Chlorotoluene	<0.000		0.020	mg/L		31-DEC-19	R4958822

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2399352-6 DUP1							
Sampled By: CLIENT on 20-DEC-19 @ 12:45							
Matrix: GW							
VOC plus F1 by GCMS Dibromochloromethane	-0.00050		0.00050	ma/l		31-DEC-19	D 4050000
1,2-Dibromo-3-chloropropane	< 0.00050		0.00050	mg/L		31-DEC-19 31-DEC-19	R4958822
1,2-Dibromoethane	<0.0010 <0.0010		0.0010 0.0010	mg/L mg/L		31-DEC-19 31-DEC-19	R4958822 R4958822
Dibromomethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822 R4958822
1,2-Dichlorobenzene	<0.0010		0.00050	mg/L		31-DEC-19	R4958822 R4958822
1,3-Dichlorobenzene	<0.00050		0.00050	mg/L		31-DEC-19 31-DEC-19	R4958822 R4958822
1,4-Dichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Dichlorodifluoromethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1-dichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,2-Dichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,1-dichloroethene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
cis-1,2-Dichloroethene	<0.0010		0.00030	mg/L		31-DEC-19	R4958822
trans-1,2-Dichloroethene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Dichloromethane	<0.0010		0.0050	mg/L		31-DEC-19	R4958822
1,2-Dichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,3-Dichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
2,2-Dichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1-Dichloropropene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
cis-1,3-Dichloropropene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
trans-1,3-Dichloropropene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Ethylbenzene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
F1	<0.000000		0.10	mg/L		31-DEC-19	R4958822
Hexachlorobutadiene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Hexane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
2-Hexanone (Methyl butyl ketone)	<0.020		0.020	mg/L		31-DEC-19	R4958822
Isopropylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
4-Isopropyltoluene	< 0.0010		0.0010	mg/L		31-DEC-19	R4958822
MEK	<0.020		0.020	mg/L		31-DEC-19	R4958822
MIBK	<0.020		0.020	mg/L		31-DEC-19	R4958822
MTBE	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Styrene	< 0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1,1,2-Tetrachloroethane	< 0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,1,2,2-Tetrachloroethane	< 0.00050		0.00050	mg/L		31-DEC-19	R4958822
Tetrachloroethene	< 0.00050		0.00050	mg/L		31-DEC-19	R4958822
Toluene	0.00070		0.00050	mg/L		31-DEC-19	R4958822
1,2,3-Trichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2,4-Trichlorobenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,1,1-Trichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
1,1,2-Trichloroethane	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Trichloroethene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Trichlorofluoromethane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2,3-Trichloropropane	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,2,4-Trimethylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
1,3,5-Trimethylbenzene	<0.0010		0.0010	mg/L		31-DEC-19	R4958822
Vinyl Chloride	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
M+P-Xylenes	<0.00040		0.00040	mg/L		31-DEC-19	R4958822
o-Xylene	<0.00050		0.00050	mg/L		31-DEC-19	R4958822
Surrogate: 4-Bromofluorobenzene (SS)	87.0		70-130	%		31-DEC-19	R4958822
Surrogate: 1,4-Difluorobenzene (SS)	90.7		70-130	%		31-DEC-19	R4958822
Surrogate: 3,4-Dichlorotoluene (SS)	90.7		70-130	%		31-DEC-19	R4958822
Surrogate: 3,4-Dichlorotoluene (SS)	90.7		70-130	%		31-DEC-19	K49588

Sample Parameter Qualifier Key:

Description
Detection Limit Raised: Chromatographic Interference due to co-elution.
Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
Estimated Maximum Possible Concentration. Parameter detected but didn't meet all criteria for positive identification.
Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method Reference	es:		
ALS Test Code	Matrix	Test Description	Method Reference**
DX-1613B-HRMS-BU	Water	Dioxins and Furans HR 1613B	USEPA 1613B
			liquid portion is extracted by liquid/liquid extraction using d in volume and analyzed by isotope-dilution GC/HRMS
EOX-MP	Misc.	Extractable Organic Halides (EOX)	SEE SUBLET LAB REPORT
The material is extracted v	with ethyl ace	etate then the extract is analyzed on the TOX	(Total Organic Halides) instrument.
F1-F4-CALC-WP	Water	CCME Total Hydrocarbons	CCME CWS-PHC, Pub #1310, Dec 2001-L
Analytical methods used f	or analysis o	f CCME Petroleum Hydrocarbons have been	validated and comply with the Reference Method for the CWS PHC.
the gravimetric heavy hyd	rocarbons ca	nnot be added to the $C6$ to C50 hydrocarbon	ults must be used in any application of the CWS PHC guidelines and ns. re the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has
represents a result where	the sum of B		It where Naphthalene has been subtracted from F2. F3-PAH (b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, cted from F3.
 All extraction and analy Instrument performance 	sis holding ti	g quality control criteria have been met for th mes were met. sponse factors for C6 and C10 within 30% of 15% throughout the calibration range.	
 All extraction and analy Instrument performance Instrument performance 	sis holding ti e showing C1 e showing the	0, C16 and C34 response factors within 10%	6 of their average. age of the C10, C16 and C34 response factors.
F2-F4-FID-WP	Water	CCME PHC F2-F4 in Water	EPA 3511
		letermined by liquid-liquid micro-scale solven with flame ionization detection (GC-FID) anal	t extraction using a reciprocal shaker extraction apparatus prior to ysis.
HG-T-CVAA-WP	Water	Mercury Total	EPA 1631E (mod)
Water samples undergo a	cold-oxidatio	on using bromine monochloride prior to reduc	ction with stannous chloride, and analyzed by CVAAS.
MET-T-CCMS-WP	Water	Total Metals in Water by CRC ICPMS	EPA 200.2/6020B (mod.)
Water samples are digest	ed with nitric	and hydrochloric acids, and analyzed by CR	C ICPMS.
Method Limitation (re: Sul	fur): Sulfide a	and volatile sulfur species may not be recove	red by this method.
PAH,PANH-WP	Water	Polyaromatic Hydrocarbons (PAHs)	EPA 3511/8270D (mod)
		hexane micro-extraction technique, with ana (j)fluoranthene is reported as part of the benz	alysis by GC/MS. Because the two isomers cannot be readily co(b)fluoranthene parameter.
THM-SUM-CALC-WP	Water	Total Trihalomethanes (THMs)	CALCULATION
		ents the sum of bromodichloromethane, brom tion limit (DL) are treated as zero.	oform, chlorodibromomethane and chloroform. For the purpose of
VOC+F1-HSMS-WP	Water	VOC plus F1 by GCMS	EPA 8260C / EPA 5021A
In this method samples ar detectors.	re analyzed	using a headspace autosampler interfaced to	a dual column gas chromatograph with MS and Flame Ionization
XYLENES-SUM-CALC-	Water	Sum of Xylene Isomer Concentrations	CALCULATED RESULT

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**

WP

Total xylenes represents the sum of o-xylene and m&p-xylene.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
BU	ALS ENVIRONMENTAL - BURLINGTON, ONTARIO, CANADA
MP	ALS ENVIRONMENTAL - MIDDLETOWN, PENNSYLVANIA, USA
WP	ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Magnesium (Mg)-Total

Manganese (Mn)-Total

Quality Control Report

Workorder: L2399352 Report Date: 08-MAY-20 Page 1 of 12 Wood Environment & Infrastructure Solutions (Winnipeg) Client: 440 Dovercourt Drive Winnipeg MB R3Y 1G4 JUSTIN HUBERDEAU Contact: Test Matrix Reference Result Qualifier Units RPD Limit Analyzed F2-F4-FID-WP Water Batch R4957846 WG3247997-2 LCS F2 (C10-C16) % 103.5 70-130 28-DEC-19 F3 (C16-C34) % 95.7 70-130 28-DEC-19 F4 (C34-C50) 95.5 % 70-130 28-DEC-19 WG3247997-1 MB F2 (C10-C16) <0.10 mg/L 0.1 28-DEC-19 F3 (C16-C34) <0.25 mg/L 0.25 28-DEC-19 F4 (C34-C50) <0.25 mg/L 0.25 28-DEC-19 Surrogate: 2-Bromobenzotrifluoride 104.1 % 60-140 28-DEC-19 HG-T-CVAA-WP Water Batch R4958945 WG3252603-6 LCS Mercury (Hg)-Total 100.0 % 80-120 03-JAN-20 WG3252603-5 MB Mercury (Hg)-Total < 0.0000050 mg/L 0.000005 03-JAN-20 MET-T-CCMS-WP Water Batch R4965231 WG3253967-2 LCS Aluminum (Al)-Total 104.5 % 80-120 08-JAN-20 Antimony (Sb)-Total 99.5 % 80-120 08-JAN-20 Arsenic (As)-Total 97.7 % 80-120 08-JAN-20 Barium (Ba)-Total 97.6 % 80-120 08-JAN-20 Beryllium (Be)-Total 97.5 % 80-120 08-JAN-20 Bismuth (Bi)-Total % 96.8 80-120 08-JAN-20 Boron (B)-Total 88.6 % 80-120 08-JAN-20 Cadmium (Cd)-Total 97.9 % 80-120 08-JAN-20 Calcium (Ca)-Total 97.7 % 80-120 08-JAN-20 Cesium (Cs)-Total 99.6 % 80-120 08-JAN-20 Chromium (Cr)-Total 97.9 % 80-120 08-JAN-20 Cobalt (Co)-Total 97.8 % 80-120 08-JAN-20 Copper (Cu)-Total 95.2 % 80-120 08-JAN-20 Iron (Fe)-Total 88.2 % 80-120 08-JAN-20 Lead (Pb)-Total % 98.5 80-120 08-JAN-20 Lithium (Li)-Total 95.5 % 80-120 08-JAN-20

114.4

101.4

%

%

80-120

80-120

08-JAN-20

08-JAN-20

			L239935			8-MAY-20		ge 2 of
Fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WP	Water							
Batch R496523	31							
WG3253967-2 LCS Molybdenum (Mo)-To			97.9		%		00.400	
Nickel (Ni)-Total	Jiai		97.9 94.3		%		80-120	08-JAN-20
Potassium (K)-Total			94.3 92.0		%		80-120	08-JAN-20
Phosphorus (P)-Total	I		92.0 106.9		%		80-120 80-120	08-JAN-20
Rubidium (Rb)-Total			99.3		%			08-JAN-20
Selenium (Se)-Total			95.8		%		80-120 80-120	08-JAN-20 08-JAN-20
Silicon (Si)-Total			103.6		%		80-120	08-JAN-20
Silver (Ag)-Total			95.0		%		80-120 80-120	08-JAN-20
Sodium (Na)-Total			101.5		%		80-120	08-JAN-20
Strontium (Sr)-Total			98.2		%		80-120	08-JAN-20
Sulfur (S)-Total			96.4		%		80-120	08-JAN-20
Tellurium (Te)-Total			94.8		%		80-120	08-JAN-20
Thallium (TI)-Total			96.5		%		80-120	08-JAN-20
Thorium (Th)-Total			97.3		%		80-120	08-JAN-20
Tin (Sn)-Total			96.2		%		80-120	08-JAN-20
Titanium (Ti)-Total			94.9		%		80-120	08-JAN-20
Tungsten (W)-Total			98.2		%		80-120	08-JAN-20
Uranium (U)-Total			98.4		%		80-120	08-JAN-20
Vanadium (V)-Total			98.2		%		80-120	08-JAN-20
Zinc (Zn)-Total			93.7		%		80-120	08-JAN-20
Zirconium (Zr)-Total			89.7		%		80-120	08-JAN-20
WG3253967-1 MB								
Aluminum (Al)-Total			<0.0030		mg/L		0.003	08-JAN-20
Antimony (Sb)-Total			<0.00010)	mg/L		0.0001	08-JAN-20
Arsenic (As)-Total			<0.00010)	mg/L		0.0001	08-JAN-20
Barium (Ba)-Total			<0.00010)	mg/L		0.0001	08-JAN-20
Beryllium (Be)-Total			<0.00010)	mg/L		0.0001	08-JAN-20
Bismuth (Bi)-Total			<0.00005	50	mg/L		0.00005	08-JAN-20
Boron (B)-Total			<0.010		mg/L		0.01	08-JAN-20
Cadmium (Cd)-Total			<0.00000	050	mg/L		0.000005	08-JAN-20
Calcium (Ca)-Total			<0.050		mg/L		0.05	08-JAN-20
Cesium (Cs)-Total			<0.00001	0	mg/L		0.00001	08-JAN-20
Chromium (Cr)-Total			<0.00010)	mg/L		0.0001	08-JAN-20
Cobalt (Co)-Total			<0.00010)	mg/L		0.0001	08-JAN-20

		Workorder:	L239935	2	Report Date: 08	3-MAY-20	Pa	ge 3 of 1
lest .	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WP	Water							
Batch R496523	1							
WG3253967-1 MB			0 00050					
Copper (Cu)-Total			<0.00050		mg/L		0.0005	08-JAN-20
Iron (Fe)-Total			<0.010	-	mg/L		0.01	08-JAN-20
Lead (Pb)-Total			<0.00005	0	mg/L		0.00005	08-JAN-20
Lithium (Li)-Total			<0.0010		mg/L		0.001	08-JAN-20
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	08-JAN-20
Manganese (Mn)-Tota			<0.00010		mg/L		0.0001	08-JAN-20
Molybdenum (Mo)-Tota	al		<0.00005		mg/L		0.00005	08-JAN-20
Nickel (Ni)-Total			<0.00050		mg/L		0.0005	08-JAN-20
Potassium (K)-Total			<0.050		mg/L		0.05	08-JAN-20
Phosphorus (P)-Total			<0.030		mg/L		0.03	08-JAN-20
Rubidium (Rb)-Total			<0.00020		mg/L		0.0002	08-JAN-20
Selenium (Se)-Total			<0.00005	0	mg/L		0.00005	08-JAN-20
Silicon (Si)-Total			<0.10		mg/L		0.1	08-JAN-20
Silver (Ag)-Total			<0.00001	0	mg/L		0.00001	08-JAN-20
Sodium (Na)-Total			<0.050		mg/L		0.05	08-JAN-20
Strontium (Sr)-Total			<0.00020		mg/L		0.0002	08-JAN-20
Sulfur (S)-Total			<0.50		mg/L		0.5	08-JAN-20
Tellurium (Te)-Total			<0.00020		mg/L		0.0002	08-JAN-20
Thallium (TI)-Total			<0.00001	0	mg/L		0.00001	08-JAN-20
Thorium (Th)-Total			<0.00010		mg/L		0.0001	08-JAN-20
Tin (Sn)-Total			<0.00010		mg/L		0.0001	08-JAN-20
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	08-JAN-20
Tungsten (W)-Total			<0.00010		mg/L		0.0001	08-JAN-20
Uranium (U)-Total			<0.00001	0	mg/L		0.00001	08-JAN-20
Vanadium (V)-Total			<0.00050		mg/L		0.0005	08-JAN-20
Zinc (Zn)-Total			<0.0030		mg/L		0.003	08-JAN-20
Zirconium (Zr)-Total			<0.00020		mg/L		0.0002	08-JAN-20
Batch R4966116	5							
WG3254563-2 LCS								
Aluminum (Al)-Total			93.0		%		80-120	09-JAN-20
Antimony (Sb)-Total			98.0		%		80-120	09-JAN-20
Arsenic (As)-Total			97.9		%		80-120	09-JAN-20
Barium (Ba)-Total			100.9		%		80-120	09-JAN-20
Beryllium (Be)-Total			84.6		%		80-120	09-JAN-20

	Workorder: L23993	52 Report Date: 0		Page 4 of		
est Matrix	Reference Result	Qualifier Units	RPD Limit	t Analyzed		
IET-T-CCMS-WP Water	r					
Batch R4966116						
WG3254563-2 LCS Bismuth (Bi)-Total	96.7	%	00.4			
Boron (B)-Total	90.7 81.8	%	80-1			
Cadmium (Cd)-Total	103.0	%	80-1			
Calcium (Ca)-Total	93.6	%	80-1			
Cesium (Cs)-Total	100.1	%	80-1			
Chromium (Cr)-Total	97.9	%	80-1			
Cobalt (Co)-Total	100.7	%	80-1			
	98.4	%	80-1			
Copper (Cu)-Total	98.4 93.1	%	80-1			
Iron (Fe)-Total	95.7	%	80-1			
Lead (Pb)-Total Lithium (Li)-Total	95.7 85.3	%	80-1			
	104.5	%	80-1			
Magnesium (Mg)-Total Manganese (Mn)-Total	99.2	%	80-1			
Molybdenum (Mo)-Total	99.2 96.4	%	80-1			
	90.4 97.9	%	80-1			
Nickel (Ni)-Total Potassium (K)-Total	97.9 98.0	%	80-1			
Phosphorus (P)-Total	99.6	%	80-1			
			80-1			
Rubidium (Rb)-Total	99.0	%	80-1			
Selenium (Se)-Total	98.9	%	80-1			
Silicon (Si)-Total	90.4	%	80-1			
Silver (Ag)-Total	96.6	%	80-1			
Sodium (Na)-Total	97.1	%	80-1			
Strontium (Sr)-Total	99.5	%	80-1			
Sulfur (S)-Total	91.0	%	80-1			
Tellurium (Te)-Total	98.0	%	80-1			
Thallium (TI)-Total	94.3	%	80-1			
Thorium (Th)-Total	99.0	%	80-1			
Tin (Sn)-Total	96.4	%	80-1			
Titanium (Ti)-Total	96.5	%	80-1			
Tungsten (W)-Total	95.4	%	80-1			
Uranium (U)-Total	104.4	%	80-1			
Vanadium (V)-Total	95.6	%	80-1			
Zinc (Zn)-Total Zirconium (Zr)-Total	97.4 95.3	%	80-1	20 09-JAN-20		

Defense D	Overall floor 11.14		
Reference Result	e Qualifier Units	RPD Limit	Analyzed
-0.00	20 ~~~//	0.000	
	5		
	.		
	•		
	5		
	5		
	5		
			09-JAN-20
	5		
	5		09-JAN-20
	5		
	5		
	5		
	•		
	0		09-JAN-20
	5		
	5		
	•		
	5	0.000	09-JAN-20
	č	0.000	005 09-JAN-20
	5	0.000	05 09-JAN-20
	5	0.05	09-JAN-20
	•	0.03	09-JAN-20
	5	0.000	02 09-JAN-20
<0.000	0050 mg/L	0.000	005 09-JAN-20
<0.10	mg/L	0.1	09-JAN-20
<0.000	0010 mg/L	0.000	09-JAN-20
< 0.050) mg/L	0.05	09-JAN-20
<0.000	020 mg/L	0.000	09-JAN-20
<0.50	mg/L	0.5	09-JAN-20
<0.000	020 mg/L	0.000	09-JAN-20
<0.000	0010 mg/L	0.000	09-JAN-20
<0.000	010 mg/L	0.000	09-JAN-20
<0.000	010 mg/L	0.000	09-JAN-20
	 <0.000 <0.00	<0.0030	<0.0030

			1.000000-	-	- -		_	_
		Workorder	: L2399352	2	Report Date: 08	3-MAY-20	Pa	ge 6 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
IET-T-CCMS-WP	Water							
Batch R49661	16							
WG3254563-1 MB Tungsten (W)-Total			<0.00010		ma/l		0.0001	
Uranium (U)-Total			<0.00010	۰	mg/L		0.0001 0.00001	09-JAN-20
Vanadium (V)-Total			<0.00050	5	mg/L mg/L			09-JAN-20
Zinc (Zn)-Total			<0.00030		mg/L		0.0005 0.003	09-JAN-20
Zirconium (Zr)-Total			<0.0030		mg/L		0.003	09-JAN-20 09-JAN-20
	Water				<u>9</u> , <u>–</u>		0.0002	00 0/11/20
PAH,PANH-WP Batch R495994								
WG3249948-2 LCS								
1-Methyl Naphthalene	9		111.2		%		60-130	03-JAN-20
2-Methyl Naphthalene	e		100.8		%		60-130	03-JAN-20
Acenaphthene			112.7		%		60-130	03-JAN-20
Acenaphthylene			98.6		%		60-130	03-JAN-20
Anthracene			86.7		%		60-130	03-JAN-20
Acridine			96.9		%		60-130	03-JAN-20
Benzo(a)anthracene			112.6		%		60-130	03-JAN-20
Benzo(a)pyrene			92.9		%		60-130	03-JAN-20
Benzo(b&j)fluoranthe	ne		116.3		%		60-130	03-JAN-20
Benzo(g,h,i)perylene			112.8		%		60-130	03-JAN-20
Benzo(k)fluoranthene	•		109.4		%		60-130	03-JAN-20
Chrysene			113.3		%		60-130	03-JAN-20
Dibenzo(a,h)anthrace	ene		108.7		%		60-130	03-JAN-20
Fluoranthene			114.0		%		60-130	03-JAN-20
Fluorene			98.6		%		60-130	03-JAN-20
Indeno(1,2,3-cd)pyrei	ne		102.0		%		60-130	03-JAN-20
Naphthalene			113.8		%		50-130	03-JAN-20
Phenanthrene			117.3		%		60-130	03-JAN-20
Pyrene			112.8		%		60-130	03-JAN-20
Quinoline			107.9		%		60-130	03-JAN-20
WG3249948-1 MB			0.00000	~				
1-Methyl Naphthalene			<0.000020		mg/L		0.00002	03-JAN-20
2-Methyl Naphthalene	9		<0.000020		mg/L		0.00002	03-JAN-20
Acenaphthene			<0.000020		mg/L		0.00002	03-JAN-20
Acenaphthylene			<0.000020		mg/L		0.00002	03-JAN-20
Anthracene			<0.000010)	mg/L		0.00001	03-JAN-20

		Workorder	: L239935	2	Report Date: 0	8-MAY-20	Pa	ge 7 of
est M	atrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH,PANH-WP W	/ater							
Batch R4959944								
WG3249948-1 MB								
Acridine			<0.00002		mg/L		0.00002	03-JAN-20
Benzo(a)anthracene			<0.00001		mg/L		0.00001	03-JAN-20
Benzo(a)pyrene			<0.00000		mg/L		0.000005	03-JAN-20
Benzo(b&j)fluoranthene			<0.00001		mg/L		0.00001	03-JAN-20
Benzo(g,h,i)perylene			<0.00002		mg/L		0.00002	03-JAN-20
Benzo(k)fluoranthene			<0.00001	0	mg/L		0.00001	03-JAN-20
Chrysene			<0.00002	20	mg/L		0.00002	03-JAN-20
Dibenzo(a,h)anthracene			<0.00000)5C	mg/L		0.000005	03-JAN-20
Fluoranthene			<0.00002	20	mg/L		0.00002	03-JAN-20
Fluorene			<0.00002	20	mg/L		0.00002	03-JAN-20
Indeno(1,2,3-cd)pyrene			<0.00001	0	mg/L		0.00001	03-JAN-20
Naphthalene			<0.00005	50	mg/L		0.00005	03-JAN-20
Phenanthrene			<0.00005	50	mg/L		0.00005	03-JAN-20
Pyrene			<0.00001	0	mg/L		0.00001	03-JAN-20
Quinoline			<0.00002	20	mg/L		0.00002	03-JAN-20
Surrogate: Acenaphthene d	10		98.0		%		60-130	03-JAN-20
Surrogate: Acridine d9			88.1		%		60-130	03-JAN-20
Surrogate: Chrysene d12			99.6		%		60-130	03-JAN-20
Surrogate: Naphthalene d8			95.4		%		50-130	03-JAN-20
Surrogate: Phenanthrene d?	10		101.4		%		60-130	03-JAN-20
/OC+F1-HSMS-WP W	/ater							
Batch R4958822								
WG3250785-2 LCS								
Acetone			95.5		%		70-130	02-JAN-20
Benzene			96.9		%		70-130	02-JAN-20
Bromobenzene			104.0		%		70-130	02-JAN-20
Bromochloromethane			87.9		%		70-130	02-JAN-20
Bromodichloromethane			101.3		%		70-130	02-JAN-20
Bromoform			97.0		%		70-130	02-JAN-20
Bromomethane			97.9		%		60-140	02-JAN-20
n-Butylbenzene			120.9		%		70-130	02-JAN-20
sec-Butylbenzene			124.1		%		70-130	02-JAN-20
tert-Butylbenzene			121.4		%		70-130	02-JAN-20
Carbon disulfide			111.2		%		70-130	02-JAN-20

	Workorder	: L239935	52	Report Date: 0	8-MAY-20	Pa	age 8 of 1
Test Ma	trix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC+F1-HSMS-WP Wa	ater						
Batch R4958822							
WG3250785-2 LCS		444.0		0/			
Carbon Tetrachloride		111.6		%		70-130	02-JAN-20
Chlorobenzene		107.1		%		70-130	02-JAN-20
Chloroethane		99.1		%		60-140	02-JAN-20
Chloroform		90.9		%		70-130	02-JAN-20
Chloromethane		118.0		%		60-140	02-JAN-20
2-Chlorotoluene		117.5		%		70-130	02-JAN-20
4-Chlorotoluene		118.1		%		70-130	02-JAN-20
Dibromochloromethane		99.3		%		70-130	02-JAN-20
1,2-Dibromo-3-chloropropane	9	96.3		%		70-130	02-JAN-20
1,2-Dibromoethane		90.3		%		70-130	02-JAN-20
Dibromomethane		100.4		%		70-130	02-JAN-20
1,2-Dichlorobenzene		108.2		%		70-130	02-JAN-20
1,3-Dichlorobenzene		111.9		%		70-130	02-JAN-20
1,4-Dichlorobenzene		114.5		%		70-130	02-JAN-20
Dichlorodifluoromethane		132.0		%		60-140	02-JAN-20
1,1-dichloroethane		109.1		%		70-130	02-JAN-20
1,2-Dichloroethane		85.4		%		70-130	02-JAN-20
1,1-dichloroethene		106.6		%		70-130	02-JAN-20
cis-1,2-Dichloroethene		103.2		%		70-130	02-JAN-20
trans-1,2-Dichloroethene		112.5		%		70-130	02-JAN-20
Dichloromethane		105.0		%		70-130	02-JAN-20
1,2-Dichloropropane		98.9		%		70-130	02-JAN-20
1,3-Dichloropropane		90.9		%		70-130	02-JAN-20
2,2-Dichloropropane		118.8		%		70-130	02-JAN-20
1,1-Dichloropropene		113.0		%		70-130	02-JAN-20
cis-1,3-Dichloropropene		100.7		%		70-130	02-JAN-20
trans-1,3-Dichloropropene		94.0		%		70-130	02-JAN-20
Ethylbenzene		112.5		%		70-130	02-JAN-20
Hexachlorobutadiene		112.8		%		70-130	02-JAN-20
Hexane		115.9		%		70-130	02-JAN-20
2-Hexanone (Methyl butyl ke	tone)	108.9		%		70-130	02-JAN-20
Isopropylbenzene		119.7		%		70-130	02-JAN-20
4-Isopropyltoluene		121.6		%		70-130	02-JAN-20
MEK		114.1		%		70-130	02-JAN-20

		Workorder:	L239935	52	Report Date: 0	8-MAY-20	Pa	age 9 of 1
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
/OC+F1-HSMS-WP	Water							
Batch R495882	2							
WG3250785-2 LCS			100.0		0/			
MIBK			108.2		%		70-130	02-JAN-20
MTBE			110.5		%		70-130	02-JAN-20
Styrene			111.6		%		70-130	02-JAN-20
1,1,1,2-Tetrachloroeth			105.9		%		70-130	02-JAN-20
1,1,2,2-Tetrachloroeth	ane		90.8		%		70-130	02-JAN-20
Tetrachloroethene			106.0		%		70-130	02-JAN-20
Toluene			99.96		%		70-130	02-JAN-20
1,2,3-Trichlorobenzen	е		101.4		%		70-130	02-JAN-20
1,2,4-Trichlorobenzen	e		102.4		%		70-130	02-JAN-20
1,1,1-Trichloroethane			119.0		%		70-130	02-JAN-20
1,1,2-Trichloroethane			96.3		%		70-130	02-JAN-20
Trichloroethene			119.7		%		70-130	02-JAN-20
Trichlorofluoromethan	е		108.8		%		60-140	02-JAN-20
1,2,3-Trichloropropane	e		98.9		%		70-130	02-JAN-20
1,2,4-Trimethylbenzen	e		119.9		%		70-130	02-JAN-20
1,3,5-Trimethylbenzen	e		121.8		%		70-130	02-JAN-20
Vinyl Chloride			113.5		%		60-140	02-JAN-20
M+P-Xylenes			102.4		%		70-130	02-JAN-20
o-Xylene			110.4		%		70-130	02-JAN-20
WG3250785-4 LCS					24			
F1			92.0		%		70-130	02-JAN-20
WG3250785-1 MB Acetone			<0.050		mg/L		0.05	30-DEC-19
Benzene			<0.00050	h	mg/L			
Bromobenzene			<0.00030	5	mg/L		0.0005 0.001	30-DEC-19
Bromochloromethane			<0.0010		mg/L			30-DEC-19
Bromodichloromethan	0		<0.00050	h	mg/L		0.001 0.0005	30-DEC-19
Bromoform	C		<0.00030	5				30-DEC-19
Bromomethane			<0.0010		mg/L		0.001	30-DEC-19
					mg/L		0.001	30-DEC-19
n-Butylbenzene			<0.0010		mg/L		0.001	30-DEC-19
sec-Butylbenzene			<0.0010		mg/L		0.001	30-DEC-19
tert-Butylbenzene			<0.0010		mg/L		0.001	30-DEC-19
Carbon disulfide			<0.0050	_	mg/L		0.005	30-DEC-19
Carbon Tetrachloride			<0.00050)	mg/L		0.0005	30-DEC-19
Chlorobenzene			<0.0010		mg/L		0.001	30-DEC-19

	١	Norkorder:	L2399352	2	Report Date: 08	-MAY-20	Pa	age 10 of 1
est M	atrix F	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC+F1-HSMS-WP W	/ater							
Batch R4958822								
WG3250785-1 MB			0.0040					
Chloroethane			<0.0010		mg/L		0.001	30-DEC-19
Chloroform			<0.00050		mg/L		0.0005	30-DEC-19
Chloromethane			<0.0050		mg/L		0.005	30-DEC-19
2-Chlorotoluene			<0.020		mg/L		0.02	30-DEC-19
4-Chlorotoluene			<0.0010		mg/L		0.001	30-DEC-19
Dibromochloromethane			<0.00050		mg/L		0.0005	30-DEC-19
1,2-Dibromo-3-chloropropar	ne		<0.0010		mg/L		0.001	30-DEC-19
1,2-Dibromoethane			<0.0010		mg/L		0.001	30-DEC-19
Dibromomethane			<0.0010		mg/L		0.001	30-DEC-19
1,2-Dichlorobenzene			<0.00050		mg/L		0.0005	30-DEC-19
1,3-Dichlorobenzene			<0.0010		mg/L		0.001	30-DEC-19
1,4-Dichlorobenzene			<0.0010		mg/L		0.001	30-DEC-19
Dichlorodifluoromethane			<0.0010		mg/L		0.001	30-DEC-19
1,1-dichloroethane			<0.00050		mg/L		0.0005	30-DEC-19
1,2-Dichloroethane			<0.00050		mg/L		0.0005	30-DEC-19
1,1-dichloroethene			<0.00050		mg/L		0.0005	30-DEC-19
cis-1,2-Dichloroethene			<0.0010		mg/L		0.001	30-DEC-19
trans-1,2-Dichloroethene			<0.0010		mg/L		0.001	30-DEC-19
Dichloromethane			<0.0050		mg/L		0.005	30-DEC-19
1,2-Dichloropropane			<0.0010		mg/L		0.001	30-DEC-19
1,3-Dichloropropane			<0.0010		mg/L		0.001	30-DEC-19
2,2-Dichloropropane			<0.0020		mg/L		0.002	30-DEC-19
1,1-Dichloropropene			<0.0010		mg/L		0.001	30-DEC-19
cis-1,3-Dichloropropene			<0.0020		mg/L		0.002	30-DEC-19
trans-1,3-Dichloropropene			<0.0020		mg/L		0.002	30-DEC-19
Ethylbenzene			<0.00050		mg/L		0.0005	30-DEC-19
F1			<0.10		mg/L		0.1	30-DEC-19
Hexachlorobutadiene			<0.0020		mg/L		0.002	30-DEC-19
Hexane			<0.0010		mg/L		0.001	30-DEC-19
2-Hexanone (Methyl butyl ke	etone)		<0.020		mg/L		0.02	30-DEC-19
Isopropylbenzene			<0.0010		mg/L		0.001	30-DEC-19
4-Isopropyltoluene			<0.0010		mg/L		0.001	30-DEC-19
MEK			<0.020		mg/L		0.02	30-DEC-19
MIBK			<0.020		mg/L		0.02	30-DEC-19

		Workorder:	L2399352	2	Report Date: 08	-MAY-20	Pa	ige 11 of 12
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC+F1-HSMS-WP	Water							
Batch R4958822								
WG3250785-1 MB MTBE			<0.00050		mg/L		0.0005	30-DEC-19
Styrene			<0.0010		mg/L		0.001	30-DEC-19
1,1,1,2-Tetrachloroethar	ne		<0.00050		mg/L		0.0005	30-DEC-19
1,1,2,2-Tetrachloroethar	ne		<0.00050		mg/L		0.0005	30-DEC-19
Tetrachloroethene			<0.00050		mg/L		0.0005	30-DEC-19
Toluene			<0.00050		mg/L		0.0005	30-DEC-19
1,2,3-Trichlorobenzene			<0.0010		mg/L		0.001	30-DEC-19
1,2,4-Trichlorobenzene			<0.0010		mg/L		0.001	30-DEC-19
1,1,1-Trichloroethane			<0.00050		mg/L		0.0005	30-DEC-19
1,1,2-Trichloroethane			<0.00050		mg/L		0.0005	30-DEC-19
Trichloroethene			<0.00050		mg/L		0.0005	30-DEC-19
Trichlorofluoromethane			<0.0010		mg/L		0.001	30-DEC-19
1,2,3-Trichloropropane			<0.0010		mg/L		0.001	30-DEC-19
1,2,4-Trimethylbenzene			<0.0010		mg/L		0.001	30-DEC-19
1,3,5-Trimethylbenzene			<0.0010		mg/L		0.001	30-DEC-19
Vinyl Chloride			<0.00050		mg/L		0.0005	30-DEC-19
M+P-Xylenes			<0.00040		mg/L		0.0004	30-DEC-19
o-Xylene			<0.00050		mg/L		0.0005	30-DEC-19
Surrogate: 4-Bromofluor	robenzene (SS)		88.9		%		70-130	30-DEC-19
Surrogate: 1,4-Difluorob	enzene (SS)		99.5		%		70-130	30-DEC-19
Surrogate: 3,4-Dichlorot	oluene (SS)		103.0		%		70-130	30-DEC-19

Workorder: L2399352

Report Date: 08-MAY-20

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

January 8, 2020

Ms. Judy Dalmaijer ALS Environmental-Winnipeg MB Unit 12–1329 Niakwa Road East Winnipeg, MB, R2J 3T4

Certificate of Analysis

Project Name:	тох	Workorder:	3077356
Purchase Order:		Workorder ID:	L2399352

Dear Ms. Dalmaijer:

Enclosed are the analytical results for samples received by the laboratory on Tuesday, December 24, 2019.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact Ms. Sarah S Leung (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Environmental.

ALS Spring City: 10 Riverside Drive, Spring City, PA 19475 610-948-4903

CC: Ms. Bea Ryback , Mr. Craig Riddell

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Ms. Sarah S Leung Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3077356 L2399352

Lab ID	Sample ID	Matrix	Date Collected	Date Received	Collected By
3077356001	L2399352-1 TH19-04	Water	12/20/2019 00:00	12/24/2019 11:04	Collected by Client
3077356002	L2399352-2 TH19-03	Water	12/20/2019 00:00	12/24/2019 11:04	Collected by Client
3077356003	L2399352-3 TH19-10	Water	12/20/2019 00:00	12/24/2019 11:04	Collected by Client
3077356004	L2399352-4 TH19-08	Water	12/20/2019 00:00	12/24/2019 11:04	Collected by Client
3077356005	L2399352-5 TH19-07	Water	12/20/2019 00:00	12/24/2019 11:04	Collected by Client
3077356006	L2399352-6 DUP1	Water	12/20/2019 00:00	12/24/2019 11:04	Collected by Client

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3077356 L2399352

Notes

- -- Samples collected by ALS personnel are done so in accordance with the procedures set forth in the ALS Field Sampling Plan (20 Field Services Sampling Plan).
- -- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- -- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- -- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- -- The Chain of Custody document is included as part of this report.
- -- All Library Search analytes should be regarded as tentative identifications based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.
- -- Parameters identified as "analyze immediately" require analysis within 15 minutes of collection. Any "analyze immediately" parameters not listed under the header "Field Parameters" are preformed in the laboratory and are therefore analyzed out of hold time.
- -- Method references listed on this report beginning with the prefix "S" followed by a method number (such as S2310B-97)
- refer to methods from "Standard Methods for the Examination of Water and Wastewater".
- -- For microbiological analyses, the "Prepared" value is the date/time into the incubator and the "Analyzed" value is the date/time out the incubator.
- -- An Analysis-Prep Method Cross Reference Table is included after Analytical Results & Qualifiers section in this report.

Standard Acronyms/Flags

- J Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte
- U Indicates that the analyte was Not Detected (ND)
- N Indicates presumptive evidence of the presence of a compound
- MDL Method Detection Limit
- PQL Practical Quantitation Limit
- RDL Reporting Detection Limit
- ND Not Detected indicates that the analyte was Not Detected at the RDL
- Cntr Analysis was performed using this container
- RegLmt Regulatory Limit
- LCS Laboratory Control Sample
- MS Matrix Spike
- MSD Matrix Spike Duplicate
- DUP Sample Duplicate
- %Rec Percent Recovery
- RPD Relative Percent Difference
- LOD DoD Limit of Detection
- LOQ DoD Limit of Quantitation
- DL DoD Detection Limit
- I Indicates reported value is greater than or equal to the Method Detection Limit (MDL) but less than the Report Detection Limit (RDL)
- (S) Surrogate Compound
- NC Not Calculated
- * Result outside of QC limits

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3077356 L2399352

Lab ID: 307735600 Sample ID: L2399352-					Date Collected: Date Received:			Matrix:	Water		
Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	
WET CHEMISTRY Halogen, Total Organic (TOX)	58.4		ug/L	20.0	SW846 9020B			1/8/20 11:51	I PAG	A	

Ant 8

Ms. Sarah S Leung Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3077356 L2399352

Lab ID: 307735 Sample ID: L23993	6002 52-2 TH19-03				Date Collected: Date Received:			Matrix:	Water		
Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	
WET CHEMISTRY Halogen, Total Organie (TOX)	51.0		ug/L	20.0	SW846 9020B			1/8/20 12:1	8 PAG	A	

Ant 8

Ms. Sarah S Leung Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3077356 L2399352

	7356003 99352-3 TH19-10				Date Collected: Date Received:			Matrix:	Water		
Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	
WET CHEMISTRY Halogen, Total Orga (TOX)	anic 82.4		ug/L	20.0	SW846 9020B			1/8/20 12:48	B PAG	A	

Anh 8

Ms. Sarah S Leung Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3077356 L2399352

	077356004 .2399352-4 T	H19-08				Date Collected: Date Received:			Matrix:	Water		
Parameters		Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	
WET CHEMISTF Halogen, Total O (TOX)		ND		ug/L	20.0	SW846 9020B			1/8/20 14:20	6 PAG	A	

Ant 8

Ms. Sarah S Leung Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3077356 L2399352

Lab ID: 3077356 Sample ID: L239935	005 2-5 TH19-07				Date Collected: Date Received:			Matrix:	Water		
Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	
WET CHEMISTRY Halogen, Total Organic (TOX)	77.8		ug/L	20.0	SW846 9020B			1/8/20 14:50	6 PAG	A	

Anh 8

Ms. Sarah S Leung Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3077356 L2399352

Lab ID: 3077356006 Sample ID: L2399352-6					Date Collected: Date Received:			Matrix:	Water		
Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	
WET CHEMISTRY Halogen, Total Organic (TOX)	54.6		ug/L	20.0	SW846 9020B			1/8/20 15:27	7 PAG	A	

Ant 8

Ms. Sarah S Leung Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYSIS - PREP METHOD CROSS REFERENCE TABLE

Workorder: 3077356 L2399352

Lab ID	Sample ID	Analysis Method	Prep Method
3077356001	L2399352-1 TH19-04	SW846 9020B	
3077356002	L2399352-2 TH19-03	SW846 9020B	
3077356003	L2399352-3 TH19-10	SW846 9020B	
3077356004	L2399352-4 TH19-08	SW846 9020B	
3077356005	L2399352-5 TH19-07	SW846 9020B	
3077356006	L2399352-6 DUP1	SW846 9020B	

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

Workorder: 3077356 L2399352

QC Batch: WETC/232874

Analysis Method: SW846 9020B

QC Batch Method: SW846 9020B

Associated Lab Samples: 3077356001, 3077356002, 3077356003, 3077356004, 3077356005, 3077356006

LABORATORY CONTROL	SAMPLE: 3070457				
Parameter	LCS % Rec	Units	Spike Conc.	LCS Result	% Rec Limit
Halogen, Total Organic (TOX)	97	ug/L	100	97.0	80 - 120

METHOD	BLANK:	3070459
ME HIOD		0010400

Parameter	Blank Result	Units	Reporting Limit	
Halogen, Total Organic (TOX)	ND	ug/L	200	

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 3077356 L2399352

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
3077356001	L2399352-1 TH19-04			SW846 9020B	WETC/232874
3077356002	L2399352-2 TH19-03			SW846 9020B	WETC/232874
3077356003	L2399352-3 TH19-10			SW846 9020B	WETC/232874
3077356004	L2399352-4 TH19-08			SW846 9020B	WETC/232874
3077356005	L2399352-5 TH19-07			SW846 9020B	WETC/232874
3077356006	L2399352-6 DUP1			SW846 9020B	WETC/232874

ALS Environmental Laboratory Locations Across North America

3077356 L2399352 WINNIPEG

WP-SHIPTO-SU-MON

Subcontract Request Form

Subcontract To:

ALS ENVIRONMENTAL - MIDDLETOWN, PENNSYLVANIA, USA

34 DOGWOOD LANE MIDDLETOWN, PENNSYLVANIA 17057

NOTES: Please reference on final report and invoice: PO# <u>L2399</u>.⁻⁻ ALS requires QC data to be provided with your final results.

Please see enclosed	<u>6</u> sample(s) in <u>6</u> Container(s)	
SAMPLE NUMBER	ANALYTICAL REQUIRED	DATE SAMPLED Priorit DUE DATE Flag
L2399352-1 TH19-04	Extractable Organic Halides (EOX) (EOX-MP 14)	12/ 20/ 2019 1/17/2020
L2399352-2 TH19-03	Extractable Organic Halides (EOX) (EOX-MP 14)	12/ 20/ 2019 1/17/2020
L2399352-3 TH19-10	Extractable Organic Halides (EOX) (EOX-MP 14)	12/ 20/ 2019 1/17/2020
L2399352-4 TH19-08	Extractable Organic Halides (EOX) (EOX-MP 14)	12/ 20/ 2019 1/17/2020
L2399352-5 TH19-09 T W12 H-11	Extractable Organic Halides (EOX) (EOX-MP 14)	12/ 20/ 2019 1/17/2020
L2399352-6 DUP1	Extractable Organic Halides (EOX) (EOX-MP 14)	12/ 20/ 2019 1/17/2020

m2nm

riday, December 20, 2019 2:43 PM

6. 318

- \$

Subcontract Request Form

Subcontract To:

ALS ENVIRONMENTAL - MIDDLETOWN, PENNSYLVANIA, USA

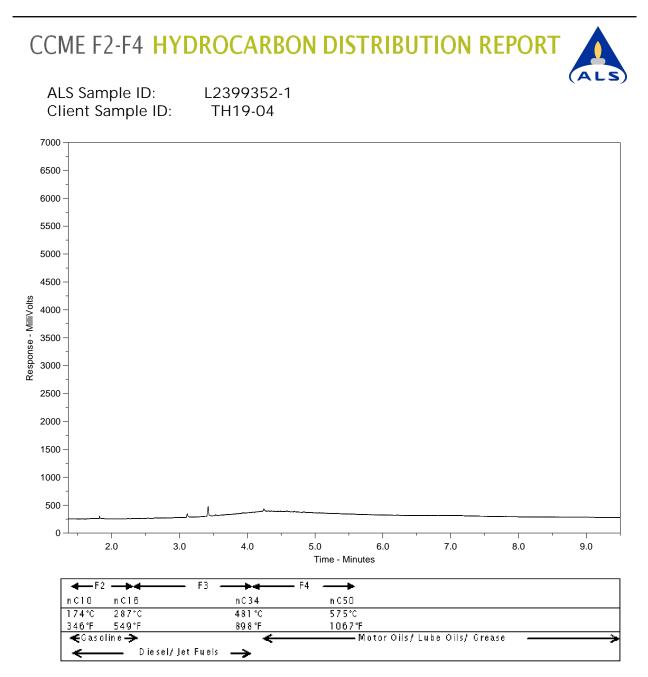
34 DOGWOOD LANE MIDDLETOWN, PENNSYLVANIA 17057

Subcontract Info Contact:	Judy Dalmaijer (204) 255-9749
Analysis and reporting info contact:	Judy Dalmaijer
	12-1329 NIAKWA ROAD E
	WINNIPEG, MB R2J3T4

Phone: (204) 255-9749

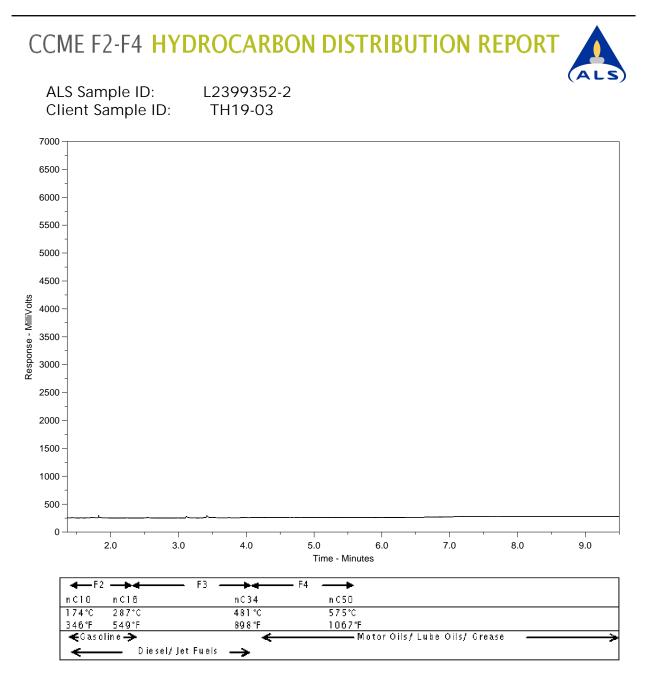
Email: Judy.Dalmaijer@alsglobal.com

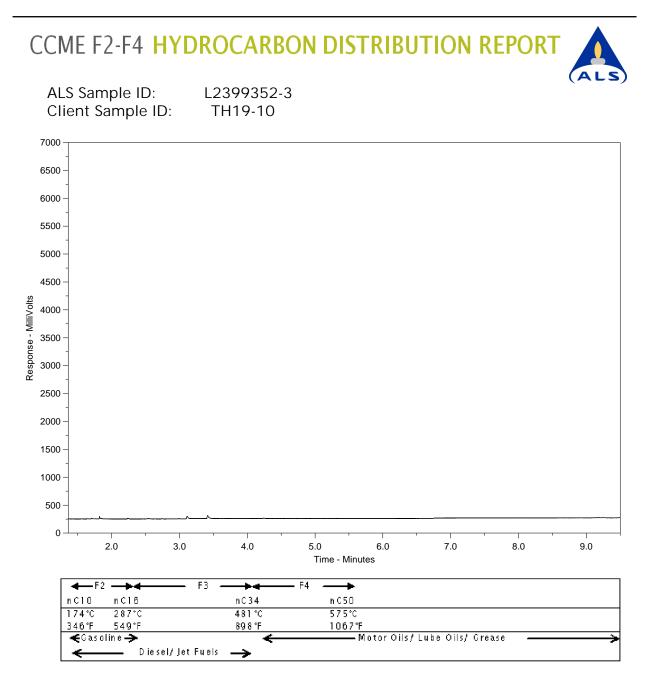
Please email	confirmation of receipt to:	Judy.Dalmaijer@	alsglobal.com
Shipped By:	(ce	Date Shipped:	23/12
Received By:	FEDAX	Date Received:	
Verified By: RecC	CUNOIN ALS MOT	_Date V erifie d: LUO Temperature:	12:2479 1164
Comple Taba	the Territory	3	


Sample Integrity Issues:

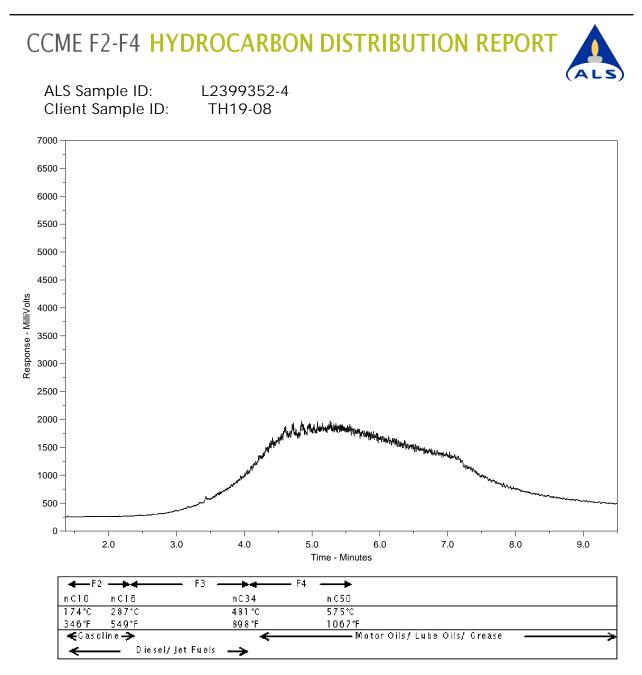
riday, December 20, 2019 2:43 PM

301 Fulling Mill Road Middletown, PA 17057 P: (717) 944-5541 F: (717) 944-1430

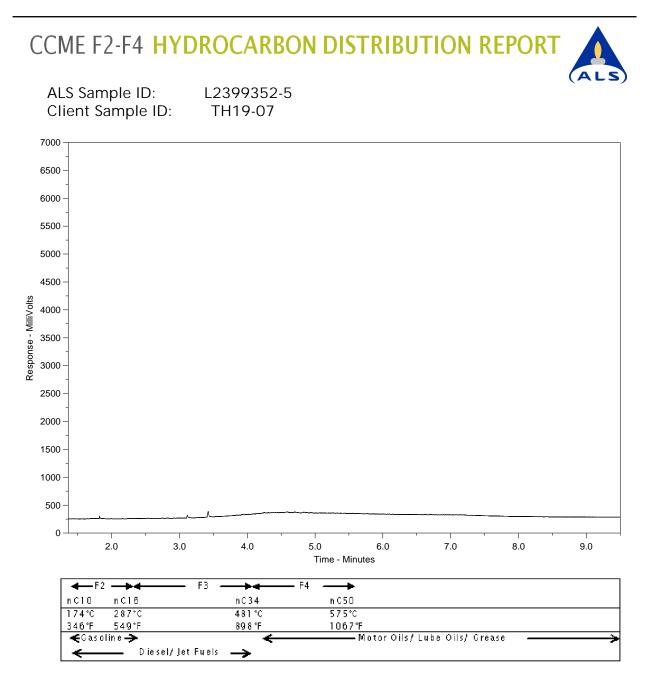

Clippit: Work Order #: 3047 354 Initials: Date: HUS With Ni page W Initials: W Initials: W 1. Were airbills / tracking numbers present and recorded? NONE ED NONE ED NONE 2. Are Custody Seals on shipping containers intact? ED NONE ED NONE ED NONE 3. Are Custody Seals on shipping containers intact? ED NO NO So No NO 5. Are the COC contain date and time of sample collection for all samples? FS ED NO 5. Does the COC contain date and time of sample collection for all samples? FS ED So 5. Does the COC contain sample collectors name? FS ED SO	1.000.000	> P: (717) 944-1450			
1. Were airbills / tracking numbers present and recorded? NONE Image: None of the second	Client:	Lineter	Work Order #: 2M122A2	1. 10 10 CONTRACT	
2. Are Custody Seals on shipping containers intact? Image: Containers intact: Containe intry intact: Containe intry intact: Containe intact: Containers int	HW	Winnipeg	<u> </u>	[W]	10 Mgg
Tracking number: 19-10/02_F445_15_0_0740_455716 2. Are Custody Seals on sample containers intac? 000000000000000000000000000000000000	1. Were air	bills / tracking numbers presen	t and recorded?	NC	NE VES NO
2. Are Custody Seals on shipping containers intact?		n na her felte senere en Ersenbetten met her en 19.76 met	Tracking number: 12-0/02 F45 15	67264576	
3. Are Custody Seals on sample containers intact? Image: Containers and Containers andecontandere and Containers and Containers and Containe	2. Are Cust	ody Seals on shipping containe	rs intact?		NE YES NO
4. Is there a COC (Chain-of-Custody) present?					
Sa. Does the COC contain date and time of sample collection for all samples? (***) NO Sb. Does the COC contain date and time of sample collection for all sample? (***) (***) Sc. Does the COC contain date and time of sample collection for all sample? (***) (***) Sc. Does the COC contain date and time of sample collection for all bottles? (***) (***) Sc. Does the COC note the number of bottles submitted for each sample? (***) (***) Sc. Does the COC note the number of bottles submitted for each sample? (***) (***) Sp. Does the COC note the matrix of the sample(s)? (***) (***) (***) Sg. Does the COC note the proper containers for the requested analyses, with sufficient volume? N/A N/A No No (***) NO NO 8. Are all samples placed in the proper containers for the requested analyses, with sufficient volume? N/A NO 10. Did ver creative trip blacks (a piples only for methods EPA 504, EPA 524.2 and 1631E (LL Hg)? (***) NO 10. Did ver creative trip black (a piples only for methods EPA 504, EPA 524.2 and 1631E (LL Hg)? (***) NO 11. Were the samples required for SDWA compliance reporting? (***) NO NO 12. Were all saqueo					
Sb. Does the COC contain sample collectors name? YS Sc. Does the COC contain sample collectors name? YS Sd. Does the COC contain sample collectors name? YS Sd. Does the COC note the type of sample (name) YS Sd. Does the COC note the type of sample (name) YS Sd. Does the COC note the type of sample (name) YS Sd. Does the COC note the type of sample (name) YS Sd. Does the COC note the type of sample (name) YS Sd. Does the COC note the type of sample (name) YS Sd. Does the COC note the type of sample (name) YS Sd. Does the COC note the proper containers for the requested analyses, with sufficient volume? NA Sd. Prose the coc note the proper containers for the requested analyses? NN Se. Are all samples preceived intact and headspace free when required? (not broken, leaking, frozen, etc.) NN NO No NO 10. Did we receive trip blanks (applies only for methods EPA 504, EPA 524.2 and 1631E (LL Hg?)? YS NN 110. Were the samples received for SDMA compliance reporting? NA YS NO 124. Were sample temperatures for SDMA compliance reporting? NA YS NO 135. Did the client provide the SDWA samp	5. Are the (COC and bottle labels complete	, legible and in agreement?		YES 🚱
Sc. Does the COC contain sample collectors name? YES Sd. Does the COC note the type(s) of preservation for all bottles? YES St. Does the COC note the number of bottles submitted for each sample? YES Sf. Does the COC note the matrix of the sample(s?) NA So. Does the COC note the matrix of the sample(s?) NA So. Does the COC note the matrix of the sample(s?) NA So. Does the COC note the matrix of the sample(s?) NA So. Does the COC note the matrix of the sample(s?) NA So. Does the COC note the matrix of the sample(s?) NA So. Does the COC note the matrix of the sample(s?) NA So. Does the COC note the matrix of the sample(s?) NA So. The matrix of the samples within holding times for the requested analyses, with sufficient volume? NO NO NO NO So. Does the cortainers received intact and headspace free when required? (not broken, leaking, frozen, etc.) NO 10. Were the samples DW matrix? If YES, MI our Reportable Drinking Water questions below YES NO 13. Are the samples required for SDWA compliance reporting? N/A YES NO 13b. Did the client provide the SDWA sample sples pH 5:9? N/A YES NO <					
5d. Does the COC note the type(s) of preservation for all bottles? YES 5e. Does the COC note the number of bottles submitted for each sample? YES 5f. Does the COC note the number of bottles submitted for each sample? YES 5g. Does the COC note the number of bottles submitted for each sample? YES 6. Are all aqueous samples requiring preservation preserved correctly? N/A 7. Were all samples placed in the proper containers for the requested analyses, with sufficient volume? NO 9. Were all samples containers received intact and headspace free when required? (not broken, leaking, frozen, etc.) NO 10. Did we receive trip blanks (applies only for methods EPA S04, EPA S24.2 and 1631E (LL Haj? YES NO 11. Were the samples received on ice? YES NO NO 12. Were samples received on ice? YES NO NO 13. Are the samples received on ice? YES NO 13a. Are the samples for SDWA compliance reporting? N/A YES NO 13b. Did the client provide a SDWA sample location ID/Description? N/A YES NO 13c. Are all aqueous uppreserved SDWA sample location ID/Description? N/A YES NO 13c. Did the client provide the SDWA sample location ID/Description? N/A <td></td> <td></td> <td></td> <td></td> <td></td>					
Se. Does the COC note the number of bottles submitted for each sample? YES Sf. Does the COC note the type of sample, composite or grab? YES Sg. Does the COC note the type of sample, composite or grab? YES G. Are all aqueous samples requiring preservation preserved correctly? N/A So. More the samples prediving preservation preserved correctly? N/A Were all samples placed in the proper containers for the requested analyses, with sufficient volume? NO No 9. Were all samples predivides only for methods EPA 504, EPA 524.2 and 1631E (LL Hg)? NO 10. Did we receive trip blanks (applies only for methods EPA 504, EPA 524.2 and 1631E (LL Hg)? NO 11. Were the samples received on ice? NO 12. Were samples required for SDWA compliance reporting? NA 13. Are the samples required for SDWA compliance reporting? NA 13. Are the client provide the SDWA sample ocation ID/Description? N/A 13. Did the client provide the SDWA sample location ID/Description? N/A 13. Did the client provide the SDWA sample location ID/Description? N/A 13. Did the client provide the SDWA sample location ID/Description? N/A 13. Did the client provide the SDWA sample location ID/Description? N/A 13. Did the client provide the SDWA sample tope (D	1				
Sf. Does the COC note the matrix of the sample(s) YES Sg. Does the COC note the matrix of the sample(s) YES Are all aqueous samples requiring preservation preserved correctly? N/A Were all samples placed in the proper containers for the requested analyses, with sufficient volume? N/A S. Are all aqueous samples required in the proper containers for the requested analyses, with sufficient volume? N/A S. Are all samples obtainers received intact and headspace free when required? (not broken, leaking, frozen, etc.) NO S. Were all sample containers received intext and headspace free when required? (not broken, leaking, frozen, etc.) NO 10. Did we receive trip blanks (applies only for methods EPA 504, EPA 524.2 and 1631E (LL Hg)? NO 11. Were the samples required for SDWA compliance reporting? N/A 12. Were sample temperatures measured at 0.0-6.0°C NO 13a. Are the samples DW matrix 21 M YES, fill out Reportable Drinking Water questions below. YES NO 13a. Are the samples barequired for SDWA compliance reporting? N/A YES NO 13b. Did the client provide a SDWA samples pH 5-9? N/A YES NO 13c. Are all aqueous unpreserved SDWA sample type (D, E, R, C, P, S)? NA YES NO 13c. Did the client provide the SDWA sample type (D,					
Sg. Does the COC note the matrix of the sample(s) YIS YIS 6. Are all aqueous samples requiring preservation preserved correctly? N/A YIS NO NVere all samples placed in the proper containers for the requested analyses, with sufficient volume? NO NO 9. Were all samples containers received intact and headspace free when required? (not broken, leaking, frozen, etc.) YES NO 9. Were all samples containers received intact and headspace free when required? (not broken, leaking, frozen, etc.) YES NO 10. Did we receive trip blanks (applies only for methods EPA 504, EPA 524.2 and 1631E (LL Hg)? YES NO 11. Were the samples received at 0.0-6.0°C YES NO 12. Were sample tomperatures measured at 0.0-6.0°C YES NO 13. Are the samples required for SDWA compliance reporting? N/A YES NO 13b. Did the client provide a SDWA sample bar pH 5-9? N/A YES NO 13c. Are all aqueous unpreserved SDWA sample top (D, E, R, C, P, S)? NA YES NO 13c. Did the client provide the SDWA sample top (D, E, R, C, P, S)? NA YES NO 13d. Did the client provide the SDWA sample top (D, E, R, C, P, S)? YES NO 13c. Did the client provide the SD					YES (NOS
6. Are all aqueous samples requiring preservation preserved correctly? N/A N/A N/A N/A 7. Were all samples placed in the proper containers for the requested analyses, with sufficient volume? N/A N/A N/A N/A 8. Are all samples within holding times for the requested analyses, with sufficient volume? N/A N/A N/A N/A 9. Were all sample containers received intact and headspace free when required? (not broken, leaking, frozen, etc.) N/A N/B N/A 10. Did we receive trip blanks (applies only for methods EPA 504, EPA 524.2 and 1631E (LL Hg?) VES N/A 11. Were asamples received on ice? N/A N/A N/A 12. Were samples traceived at 0.0-6.0°C N/A N/S N/A 13. Are the samples required for SDWA compliance reporting? N/A YES N/A 13. Are the samples required for SDWA sample potation ID/Description? N/A YES N/A 13. Did the client provide the SDWA sample location ID/Description? N/A YES N/A 13. Did the client provide the SDWA sample type (D, E, R, C, P, S)? YES N/A YES N/A 13. Did the client provide the SDWA sample type (D, E, R, C, P, S)? YES N/A YES <t< td=""><td></td><td></td><td></td><td></td><td>YES NO</td></t<>					YES NO
7. Were all samples placed in the proper containers for the requested analyses, with sufficient volume? Image: Solution of the requested analyses? 8. Are all samples outsiners received intact and headspace free when required? (not broken, leaking, frozen, etc.) Image: Solution of the requested analyses? 9. Were all samples containers received intact and headspace free when required? (not broken, leaking, frozen, etc.) Image: Solution of the requested analyses? 9. Were all samples containers received intact and headspace free when required? (not broken, leaking, frozen, etc.) Image: Solution of the requested analyses? 10. Did we receive trip blanks (applies only for methods EPA 504, EPA 524.2 and 1631E (LL Hg)? Image: Solution of the Solution of the requested at 0.0-6.0°C 11. Were the samples required at 0.0-6.0°C Image: Solution of the sample sequired for SDWA compliance reporting? No 13a. Are the samples required for SDWA compliance reporting? N/A YES NO 13b. Did the client provide at SDWA sample ps pl 5-9? N/A YES NO 13c. Are all aqueous unpreserved SDWA sample type (D, E, R, C, P, S)? NO N/A YES NO 13e. Did the client provide the SDWA sample type (D, E, R, C, P, S)? NO N/A YES NO Cooler #: // Temperature (°C): G Cooler					
8. Are all samples within holding times for the requested analyses? No 9. Were all sample containers received intact and headspace free when required? (not broken, leaking, frozen, etc.) No 10. Did we receive trip blanks (applies only for methods EPA 504, EPA 524.2 and 1631E (LL Hg)? YE NO 11. Were the samples received on ice? YE NO 12. Were sample temperatures measured at 0.0-6.0°C YE NO 13. Are the samples required for SDWA compliance reporting? YA YE NO 13. Are the samples required for SDWA compliance reporting? YA YE NO 13. Are the samples required SDWA samples pH 5-9? N/A YES NO 13. Did the client provide a SDWA sample location ID/Description? N/A YES NO 13. Are the sample required for all NO responses above and any sample non-conformance): Addied (uCi): YES NO 13. Cooler #: // // YES NO YES NO 13. Cooler #: // // // YES NO 13. Did the client provide the SDWA sample top (D, E, R, C, P, S)? YES NO YES NO 13. Did the client provide the SDWA Sample solocation ID/Description?					
9. Were all sample containers received intact and headspace free when required? (not broken, leaking, frozen, etc.)					
10. Did we receive trip blanks (applies only for methods EPA 504, EPA 524.2 and 1631E (LL Hg)?					
11. Were the samples received on ice?		그는 아님, 그는 아이에 가지 않는 것이 같이 많이 많이 많이 많이 많이 했다. 것이 같이 많이			
12. Were samples temperatures measured at 0.0-6.0°C					
13. Are the samples DW matrix ? If YES, fill out Reportable Drinking Water questions below					
13b. Did the client provide a SDWA PWS ID#?					
13c. Are all aqueous unpreserved SDWA samples pH 5-9? N/A YES NO 13d. Did the client provide the SDWA sample location ID/Description? N/A YES NO 13e. Did the client provide the SDWA sample type (D, E, R, C, P, S)? N/A YES NO Cooler #: / / //A YES NO Cooler #: / //A YES NO Temperature (*C): G	13a. Are	e the samples required for SDW	/A compliance reporting?		A YES NO
13d. Did the client provide the SDWA sample location ID/Description? N/A YES NO 13e. Did the client provide the SDWA sample type (D, E, R, C, P, S)? N/A YES NO Cooler #: // Temperature (°C): G Thermometer ID: 3/b				1.	A YES NO
13e. Did the client provide the SDWA sample type (D, E, R, C, P, S)?					A YES NO
Cooler #: _/ Temperature (°C): Thermometer ID: Radiological (µCi): COMMENTS (Required for all NO responses above and any sample non-conformance): Added # buttles. Waters - Net Dw. No cles. No cellecter No -times.				1	
Temperature (°C): 6 Thermometer ID: 3/4 Radiological (µCi): COMMENTS (Required for all NO responses above and any sample non-conformance): Added # battles. Waters - not Dw. No cles. No cellecter_ No times.	13e. Die	the client provide the SDWA s	ample type (D, E, R, C, P, S)?		A YES NO
Temperature (°C): 6 Thermometer ID: 3/4 Radiological (µCi): COMMENTS (Required for all NO responses above and any sample non-conformance): Added # bittles. Waters - not Dw. No cles. No cellecter_ No times.	<u> </u>	1			
Thermometer ID: 315 Radiological (µCi): COMMENTS (Required for all NO responses above and any sample non-conformance): Added # buttles. Waters - net Dw. No cles. No collector- No times.		Cooler #:			
Thermometer ID: 315 Radiological (µCi): COMMENTS (Required for all NO responses above and any sample non-conformance): Added # buttles. Waters - net Dw. No cles. No cellecter_ No times.		Temperature (°C): 6			
Radiological (µCi): COMMENTS (Required for all NO responses above and any sample non-conformance): Added # buttles. Waters - not Dw. No cla. No collector_ No -times.	1				
COMMENTS (Required for all NO responses above and any sample non-conformance): Added # buttles. Waters-net-Dw. No cla. No collector_ No -times.		Thermometer ID: 5/6			
COMMENTS (Required for all NO responses above and any sample non-conformance): Added # battles. Waters-uct Dw. No cle. No collector_ No times.		Padiological (uCi):			
Added # buttles. Waters-not-Dw. No cles. No clieder_ No times.					
Added # buttles. Waters-not-Dw. No cles. No clieder_ No times.	СОММЕ	NTS (Required for all	NO responses above and any sam	ple non-conforman	ce):
No times.	Publi	20 It buttle	S. Waters- Int DW. KIN	cla. No a	lecter
	PLICE				
Rev. 4/29/2019	NO	times.			
Rev. 4/29/2019					
Rev. 4/29/2019					
Rev. 4/29/2019	1				
Rev. 4/29/2019	1				
Rev. 4/29/2019	1				
		1			Rev. 4/29/2019


The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

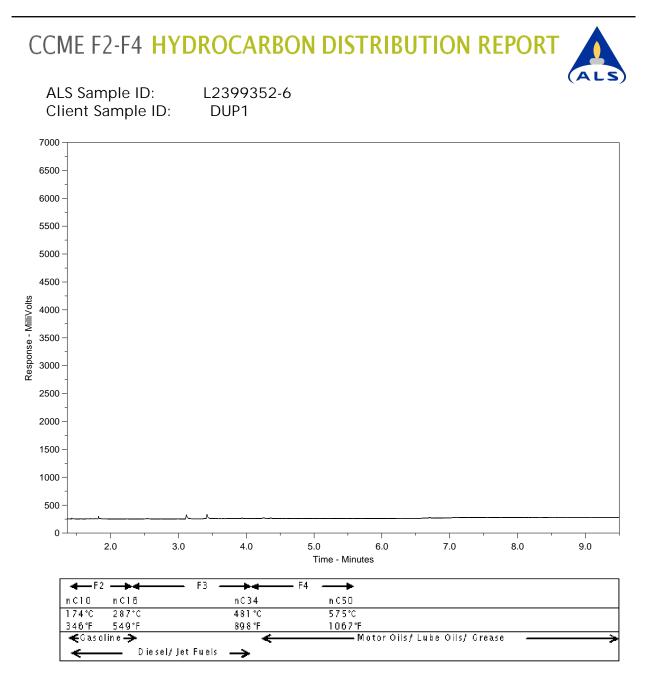
Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.


The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.


The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.


The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

	Environmental		ody (COC) / quest Form Free: 1 800 66			L2399	352	COFC				COC Nu	mber: 1 Page	7 - 1 • 		261 	15		
Report To	Contact and company name below will appe	ear on the final report		Report Forma	at / Distribution		<u> </u>	s	elect Servi	e Level i	Below - C	ontact y	our AM to	confirm a	II E&P T	ATs (sur	charges r	may apply)	
Сотралу:	Mood		Select Report For	rmat: VPDF	EXCEL EC	D (DIGITAL)	_	R	egular (R)		Standard TA	T if receiv	ed by 3 pm	- business (days - no	surcharge	s apply		
Contact:	Tustin Huberc	leau	Quality Control (C	C) Report with Re	/] NO	[<u>د</u> 4 d	ay [P4-20%	6]		18	usiness	day [E - 1	100%]			•	
Phone:			Compare Resu	lts to Criteria on Report	- provide details below if	box checked		រីខ្លីខ្លី 3 d	ay [P3-25%	6]		San	ie Day, W	eekend (or Stati	utory hr	oliday [E2	2 -200%	_
	Company address below will appear on the fina	al report	Select Distributio	n: 🗹 EMALL		FAX		1 a	ay [P2-50%	6]		i (Lat	poratory	opening	fees ma	ay apply	/)]		L
Street:	440 Dover com	r -	Email 1 or Fax.	Milin.h	uberdea	IL QI	NO	<u>ad</u> %	an (1 m A	quired for	all E&P T/	Ts:				mm-yy	hh:mm		
City/Province:	WIDG, MB		Email 2	eloco(1)	10 woo	101	- 0	(D'yracador		formed acc	ording to the	eervice let	el selected, ;	you will be c	contacted.				
Postal Code:	wpg,	<u> </u>	Email 3			A P U			Z,				nalysis R			·			
Invoice To	Same as Report To	, NO		Invoice C	istribution				- - 	dicate Filte	red (F), Pre		or Filtered		ved (F/P) I	below			
		NO	Select Invoice Dis			FAX		<u>ຍ</u>	ार्श्व	Ŧ			<u> </u>		TT		<u> </u>		ins)
Company:			Email 1 or Fax					ONTAINERS FLIR ANS		Ē		1	┿┿		╉──╉			1	ictio
Contact:			Email 2					ΞĮ ā			r I	さ						P	str
	Project Information			il and Gas Requir	ed Fields (client us	e)		UTAINE	(j=),							• •	• ·	1	al L
ALS Account # /			AFE/Cost Center:	ii aliu Gas (tequi	PO#	.ej		517		٥ľ Ľ		-					<u>'</u> 10 :	NO.	Sec.
	(1897-9	· · · · ·	Major/Minor Code:		Routing Code:				ୗଡ଼ୗ	9 0	4	-				- - -	H	0	2 8
PO/AFE:			Requisitioner:		Kodung Code.			at+	. 1			7				. *	9	S	(se
LSD:				<u> </u>				ˈö₽ŷ	e e c	240	2	51					2 3	Ш	AR
LSD.			Location:		1				5	35	L L	2					· [.	_	Į₹
ALS Lab Wor	k Order # (lab use only):		ALS Contact:		Sampler:			NUMBER	EOX/Total	Metals	Ŧ	Ę						AMPLE	بیه SUSPECTED HAZARD (see Special Instructions)
ALS Sample #	Sample Identification	n and/or Coordinates		Date	Time	Sample '	Type	513	ô a	25	4	Š							SPE
(lab use only)		appear on the report)		(dd-mmm-yy)	(hh:mm)			Z 9		-	<u>a</u> ;	2						S I	. Su
	77419-04			20-12-1	19 12:00	l Gr	い	$ \times$	$ \mathbf{X} $	×k	X	≺							
	TH19-02			1	12:30	1		X	XX		X	X							
The second of	THUG 10				13:00			- v		, <u>v</u>	V		1+-		+ +	-			
	TH19-06		• ·						1613		C H	<u></u>			┾╌╍┥	┍┈┼╴	<u> </u>		<u> </u>
and the second second					13:30			<u> X</u>	+		XZ	<u>}</u>				$ \rightarrow $	<u> </u>		
en e	<u>TH19-07</u>		·		14:00			×	XX	$\langle X \rangle$	X	<u><</u>						<u> </u>	
	PUPI				12:45		1		X	(X)	XV	<u> </u>		Î					
	•	<u> </u>													+-+				+
	<u> </u>		<u></u> .									_	+	_	+		-+-	<u>├</u> ──	
			<u> </u>		- <u> </u> .				+ +				╉──┤		- 	┌──┼─		╂───	
				 	<u> </u>	Ļ							+ +		\downarrow	$ \longrightarrow $		┣───	
		Special Instructions / Special Instructions	Specify Criteria to	add on report by cli	cking on the drop-do	wn list belo	w			S	MPLE	ONDIT	ON AS R	ECEIVED) (lab u	se only)		
	g Water (DW) Samples ¹ (client use)		(elec	tronic COC only)				Frozen			SI	Obser	vations	Yes	Ē]	No		
	from a Regulated DW System?	THIR OF	linite	d came	06170	5		ice Packs	🔲 - Io	e Cubes	🗖 ci	istody s	eal intact	Yes]	No		
	та 🗸 но 🖓		E con	C GUIN	1 m 01 2	IOF		Cooling In	itiated 🛛	<u>ה</u>									
Are samples for h	uman consumption/ use?	Vioxans +	TURIN	-t-m				P1 0	INITIAL CO		PERATUR	S "C			FINAL C	DOOLER 1	TEMPERAT	JRES °C	
YE	s Ko	PLEASE	CKON	XETERI	ent.	hnp	r Y	<u> </u>	2.6						Ţ				
	SHIPMENT RELEASE (client use)	WITH	Accht	THEAL SHIPME	NT RECEPTION (la	b use only)				FI	VAL SH	IPMENT	RECEPT	ION (la)	b use o	nly)		
Released by:	Date:	Time:	Received by:		Date	20	:	Time:	Receive	d by:			Date:					Time:	
<u>A-</u> Q1	<u>11 11</u>		1 CV	<u> </u>				<u> 325</u>	1										
EFER TO BACK F	PAGE FOR ALS LOCATIONS AND SAMPLING IN	FORMATION		WE	ITE LABORATORY	COPY Y	FILOW	- CLIENT I	COPY										NE 2018 F

.

• ---÷

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

ą,

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

_ ...

1.0

Wood Environment & Infrastructure Solutions (Winnipeg) ATTN: KEVIN BEECHINOR 440 Dovercourt Drive Winniped MB R3Y 1G4 Date Received:08-JAN-20Report Date:08-MAY-20 15:16 (MT)Version:FINAL REV. 2

Client Phone: 204-488-2997

Certificate of Analysis

Lab Work Order #: L2403662 Project P.O. #: NOT SUBMITTED Job Reference: WX18979 C of C Numbers: Legal Site Desc:

Comments:

8-MAY-2020 AMENDED REPORT - Dioxin & Furan Results removed from report for frac -1 only

Hua Wo Chemistry Laboratory Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details/Parameters	Result	Qualifier* D.L.	Units	Extracted	Analyzed	Batch
L2403662-1 TH19-01						
Sampled By: CLIENT on 08-JAN-20 @ 13:30						
Matrix: GW						
Matrix. Ow Miscellaneous Parameters						
Extractable Organic Halides (EOX)	See Attached				15-JAN-20	R4972120
		0.0000050	ma/l	14 JAN 20		
Mercury (Hg)-Total	<0.0000050	0.0000050	mg/L	14-JAN-20	14-JAN-20	R4969808
Total Metals in Water by CRC ICPMS Aluminum (Al)-Total	0.402	0.0020	ma/l	31-JAN-20	02 EEP 20	D 4007607
	0.102	0.0030	mg/L	31-JAN-20 31-JAN-20	03-FEB-20	R4987627
Antimony (Sb)-Total Arsenic (As)-Total	0.00026	0.00010	mg/L		03-FEB-20	R4987627
Barium (Ba)-Total	0.00093	0.00010	mg/L	31-JAN-20 31-JAN-20	03-FEB-20	R4987627
Beryllium (Be)-Total	0.0315	0.00010	mg/L		03-FEB-20	R4987627
•	< 0.00010	0.00010	mg/L	31-JAN-20	03-FEB-20	R4987627
Bismuth (Bi)-Total	<0.000050	0.000050	mg/L	31-JAN-20	03-FEB-20	R4987627
Boron (B)-Total	0.173	0.010	mg/L	31-JAN-20	03-FEB-20	R4987627
Cadmium (Ca)-Total	0.000196	0.0000050	mg/L	31-JAN-20	03-FEB-20	R4987627
Calcium (Ca)-Total	514	0.50	mg/L	31-JAN-20	05-FEB-20	R4990584
Cesium (Cs)-Total	0.000021	0.000010	mg/L	31-JAN-20	03-FEB-20	R4987627
Chromium (Cr)-Total	0.00078	0.00010	mg/L	31-JAN-20	03-FEB-20	R4987627
Cobalt (Co)-Total	0.00552	0.00010	mg/L	31-JAN-20	03-FEB-20	R4987627
Copper (Cu)-Total	0.00618	0.00050	mg/L	31-JAN-20	03-FEB-20	R4987627
Iron (Fe)-Total	0.187	0.010	mg/L	31-JAN-20	03-FEB-20	R4987627
Lead (Pb)-Total	0.000404	0.000050	mg/L	31-JAN-20	03-FEB-20	R4987627
Lithium (Li)-Total	0.612	0.0010	mg/L	31-JAN-20	03-FEB-20	R4987627
Magnesium (Mg)-Total	407	0.050	mg/L	31-JAN-20	05-FEB-20	R4990584
Manganese (Mn)-Total	3.56	0.00010	mg/L	31-JAN-20	03-FEB-20	R4987627
Molybdenum (Mo)-Total	0.00339	0.000050	mg/L	31-JAN-20	03-FEB-20	R4987627
Nickel (Ni)-Total	0.0208	0.00050	mg/L	31-JAN-20	03-FEB-20	R4987627
Potassium (K)-Total	11.4	0.050	mg/L	31-JAN-20	03-FEB-20	R4987627
Phosphorus (P)-Total	0.091	0.030	mg/L	31-JAN-20	03-FEB-20	R4987627
Rubidium (Rb)-Total	0.00177	0.00020	mg/L	31-JAN-20	03-FEB-20	R4987627
Selenium (Se)-Total	0.00214	0.000050	mg/L	31-JAN-20	03-FEB-20	R4987627
Silicon (Si)-Total	11.2	0.10	mg/L	31-JAN-20	03-FEB-20	R4987627
Silver (Ag)-Total	0.000019	0.000010	mg/L	31-JAN-20	03-FEB-20	R4987627
Sodium (Na)-Total	291	0.050	mg/L	31-JAN-20	03-FEB-20	R4987627
Strontium (Sr)-Total	3.37	0.00020	mg/L	31-JAN-20	03-FEB-20	R4987627
Sulfur (S)-Total	1010	5.0	mg/L	31-JAN-20	05-FEB-20	R4990584
Tellurium (Te)-Total	0.00022	0.00020	mg/L	31-JAN-20	03-FEB-20	R4987627
Thallium (TI)-Total	0.000020	0.000010	mg/L	31-JAN-20	03-FEB-20	R4987627
Thorium (Th)-Total	<0.00010	0.00010	mg/L	31-JAN-20	03-FEB-20	R4987627
Tin (Sn)-Total	0.00841	0.00010	mg/L	31-JAN-20	03-FEB-20	R4987627
Titanium (Ti)-Total	0.00413	0.00030	mg/L	31-JAN-20	03-FEB-20	R4987627
Tungsten (W)-Total	<0.00010	0.00010	mg/L	31-JAN-20	03-FEB-20	R4987627
Uranium (U)-Total	0.110	0.000010	mg/L	31-JAN-20	03-FEB-20	R4987627
Vanadium (V)-Total	0.00158	0.00050	mg/L	31-JAN-20	03-FEB-20	R4987627
Zinc (Zn)-Total	0.0217	0.0030	mg/L	31-JAN-20	03-FEB-20	R4987627
Zirconium (Zr)-Total	0.00098	0.00020	mg/L	31-JAN-20	03-FEB-20	R4987627
Polyaromatic Hydrocarbons (PAHs) 1-Methyl Naphthalene	<0.000020	0.000020	mg/L	13-JAN-20	13-JAN-20	R4964572
			-	13-JAN-20	13-JAN-20	R4964572 R4964572
2-Methyl Naphthalene	<0.000020	0.000020	mg/L			
Acenaphthene	<0.000020	0.000020	mg/L	13-JAN-20	13-JAN-20	R4964572
Acenaphthylene	<0.000020	0.000020	mg/L	13-JAN-20	13-JAN-20	R4964572
Anthracene	<0.000010	0.000010	mg/L	13-JAN-20	13-JAN-20	R4964572
Acridine	<0.000020	0.000020	mg/L	13-JAN-20	13-JAN-20	R4964572
Benzo(a)anthracene	<0.000010	0.000010	mg/L	13-JAN-20	13-JAN-20	R4964572
Benzo(a)pyrene	<0.000050	0.0000050	mg/L	13-JAN-20	13-JAN-20	R4964572

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2403662-1 TH19-01							
Sampled By: CLIENT on 08-JAN-20 @ 13:30							
Matrix: GW							
Polyaromatic Hydrocarbons (PAHs)							
Benzo(b&j)fluoranthene	<0.000010		0.000010	mg/L	13-JAN-20	13-JAN-20	R4964572
Benzo(g,h,i)perylene	<0.000020		0.000020	mg/L	13-JAN-20	13-JAN-20	R4964572
Benzo(k)fluoranthene	<0.000010		0.000010	mg/L	13-JAN-20	13-JAN-20	R4964572
Chrysene	<0.000020		0.000020	mg/L	13-JAN-20	13-JAN-20	R4964572
Dibenzo(a,h)anthracene	<0.0000020		0.0000050	mg/L	13-JAN-20	13-JAN-20	R4964572
Fluoranthene	<0.000020		0.000020	mg/L	13-JAN-20	13-JAN-20	R4964572
Fluorene	<0.000020		0.000020	mg/L	13-JAN-20	13-JAN-20	R4964572
Indeno(1,2,3-cd)pyrene	<0.000010		0.000010	mg/L	13-JAN-20	13-JAN-20	R4964572
Naphthalene	< 0.000050		0.000050	mg/L	13-JAN-20	13-JAN-20	R4964572
Phenanthrene	<0.000050		0.000050	mg/L	13-JAN-20	13-JAN-20	R4964572
Pyrene	<0.000010		0.000010	mg/L	13-JAN-20	13-JAN-20	R4964572
Quinoline	<0.000020		0.000020	mg/L	13-JAN-20	13-JAN-20	R4964572
B(a)P Total Potency Equivalent	<0.000020		0.000030	mg/L	13-JAN-20	13-JAN-20	R4964572
Surrogate: Acenaphthene d10	89.3		60-130	%	13-JAN-20	13-JAN-20	R4964572
Surrogate: Acridine d9	100.2		60-130	%	13-JAN-20	13-JAN-20	R4964572
Surrogate: Chrysene d12	100.2		60-130	%	13-JAN-20	13-JAN-20	R4964572
Surrogate: Naphthalene d8	87.1		50-130	%	13-JAN-20	13-JAN-20	R4964572
Surrogate: Phenanthrene d10	101.9		60-130	%	13-JAN-20	13-JAN-20	R4964572
VOC plus F1 to F4	101.5		00 100	70	10 0/ 11 20	10 0/ 11 20	114004072
CCME PHC F2-F4 in Water							
F2 (C10-C16)	<0.10		0.10	mg/L	09-JAN-20	09-JAN-20	R4965831
F3 (C16-C34)	0.38		0.25	mg/L	09-JAN-20	09-JAN-20	R4965831
F4 (C34-C50)	<0.25		0.25	mg/L	09-JAN-20	09-JAN-20	R4965831
Surrogate: 2-Bromobenzotrifluoride	104.6		60-140	%	09-JAN-20	09-JAN-20	R4965831
CCME Total Hydrocarbons							
F1-BTEX	<0.10		0.10	mg/L		16-JAN-20	
F2-Naphth	<0.10		0.10	mg/L		16-JAN-20	
F3-PAH	0.38		0.25	mg/L		16-JAN-20	
Total Hydrocarbons (C6-C50)	<0.38		0.38	mg/L		16-JAN-20	
Sum of Xylene Isomer Concentrations	10.00		0.00			10 07 1 20	
Xylenes (Total)	<0.00064		0.00064	mg/L		16-JAN-20	
Total Trihalomethanes (THMs)				5			
Total THMs	<0.0013		0.0013	mg/L		16-JAN-20	
VOC plus F1 by GCMS				5			
Acetone	<0.050		0.050	mg/L		13-JAN-20	R4971648
Benzene	< 0.00050		0.00050	mg/L		13-JAN-20	R4971648
Bromobenzene	< 0.0010		0.0010	mg/L		13-JAN-20	R4971648
Bromochloromethane	< 0.0010		0.0010	mg/L		13-JAN-20	R4971648
Bromodichloromethane	< 0.00050		0.00050	mg/L		13-JAN-20	R4971648
Bromoform	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
Bromomethane	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
n-Butylbenzene	< 0.0010		0.0010	mg/L		13-JAN-20	R4971648
sec-Butylbenzene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
tert-Butylbenzene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
Carbon disulfide	<0.0050		0.0050	mg/L		13-JAN-20	R4971648
Carbon Tetrachloride	< 0.00050		0.00050	mg/L		13-JAN-20	R4971648
Chlorobenzene	<0.0010		0.00000	mg/L		13-JAN-20	R4971648
Chloroethane	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
Chloroform	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
Chloromethane	<0.0050		0.00050	mg/L		13-JAN-20	R4971648
2-Chlorotoluene	<0.000		0.0000	mg/L		13-JAN-20	R4971648
	NU.UZU				1		1117311040

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
_2403662-1 TH19-01							
Sampled By: CLIENT on 08-JAN-20 @ 13:30							
Matrix: GW							
VOC plus F1 by GCMS Dibromochloromethane	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
1,2-Dibromo-3-chloropropane	<0.00030		0.00030	mg/L		13-JAN-20	R4971648
1,2-Dibromoethane	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
Dibromomethane	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
1,2-Dichlorobenzene	<0.0010		0.00050	mg/L		13-JAN-20	R4971648
1,3-Dichlorobenzene	<0.00030		0.00030	mg/L		13-JAN-20	R4971648
1,4-Dichlorobenzene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
Dichlorodifluoromethane	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
1,1-dichloroethane	<0.0010		0.00050	mg/L		13-JAN-20	R4971648
1,2-Dichloroethane	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
1.1-dichloroethene	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
cis-1,2-Dichloroethene	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
trans-1,2-Dichloroethene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
Dichloromethane	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
1,2-Dichloropropane	<0.0050		0.0050	mg/L		13-JAN-20	R4971648
1,3-Dichloropropane	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
2,2-Dichloropropane	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
1,1-Dichloropropene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
cis-1,3-Dichloropropene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
trans-1,3-Dichloropropene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
Ethylbenzene	<0.0010		0.00050	-		13-JAN-20	R4971648
F1	<0.00050			mg/L		13-JAN-20 13-JAN-20	R4971648
Hexachlorobutadiene	<0.10		0.10 0.0010	mg/L mg/L		13-JAN-20	R4971648
Hexane	<0.0010		0.0010	mg/L		13-JAN-20 13-JAN-20	R4971648
2-Hexanone (Methyl butyl ketone)	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
Isopropylbenzene	<0.020		0.020	mg/L		13-JAN-20	R4971648
4-Isopropyltoluene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
MEK	<0.0010		0.0010	mg/L		13-JAN-20 13-JAN-20	R4971648
MIBK	<0.020		0.020	-		13-JAN-20	R4971648
MTBE	<0.020		0.020	mg/L		13-JAN-20 13-JAN-20	R4971648
Styrene	<0.00050			mg/L		13-JAN-20	R4971648
1,1,1,2-Tetrachloroethane			0.0010	mg/L		13-JAN-20 13-JAN-20	R4971648
1,1,2,2-Tetrachloroethane	<0.00050 <0.00050		0.00050	mg/L mg/L		13-JAN-20	R4971648
Tetrachloroethene			0.00050	0		13-JAN-20 13-JAN-20	
Toluene	<0.00050 <0.00050		0.00050 0.00050	mg/L mg/L		13-JAN-20 13-JAN-20	R4971648 R4971648
1,2,3-Trichlorobenzene	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
1,2,4-Trichlorobenzene			0.0010			13-JAN-20 13-JAN-20	
1,1,1-Trichloroethane	<0.0010			mg/L mg/l		13-JAN-20 13-JAN-20	R4971648
1,1,2-Trichloroethane	<0.00050		0.00050 0.00050	mg/L		13-JAN-20 13-JAN-20	R4971648
Trichloroethene	<0.00050			mg/L mg/l		13-JAN-20 13-JAN-20	R4971648
Trichlorofluoromethane	<0.00050		0.00050	mg/L		13-JAN-20 13-JAN-20	R4971648
	<0.0010		0.0010	mg/L			R4971648
1,2,3-Trichloropropane 1,2,4-Trimethylbenzene	<0.0010		0.0010	mg/L		13-JAN-20 13-JAN-20	R4971648
1,3,5-Trimethylbenzene	<0.0010		0.0010	mg/L			R4971648
Vinyl Chloride	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
M+P-Xylenes	<0.00040		0.00040	mg/L		13-JAN-20	R4971648
o-Xylene	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
Surrogate: 4-Bromofluorobenzene (SS)	85.8		70-130	%		13-JAN-20	R4971648
Surrogate: 1,4-Difluorobenzene (SS)	102.4		70-130	%		13-JAN-20	R4971648
Surrogate: 3,4-Dichlorotoluene (SS)	79.5		70-130	%		13-JAN-20	R4971648

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2403662-2 WELL SHOP (TAP SOP ON BOTTLES)							
Sampled By: CLIENT on 08-JAN-20 @ 14:30							
Matrix: GW							
Miscellaneous Parameters							
Extractable Organic Halides (EOX)	See Attached					15-JAN-20	R4972120
			0.0000050		44 14 10 00		
Mercury (Hg)-Total	<0.000050		0.0000050	mg/L	14-JAN-20	14-JAN-20	R4969808
Total Metals in Water by CRC ICPMS Aluminum (Al)-Total	0.0000		0.0000	~~~~/l	21 14 1 20		D 4007007
Antimony (Sb)-Total	< 0.0030		0.0030	mg/L	31-JAN-20	03-FEB-20	R4987627
	< 0.00010		0.00010	mg/L	31-JAN-20	03-FEB-20	R4987627
Arsenic (As)-Total	0.00017		0.00010	mg/L	31-JAN-20	03-FEB-20	R4987627
Barium (Ba)-Total	0.0181		0.00010	mg/L	31-JAN-20	03-FEB-20	R4987627
Beryllium (Be)-Total	<0.00010		0.00010	mg/L	31-JAN-20	03-FEB-20	R4987627
Bismuth (Bi)-Total	<0.000050		0.000050	mg/L	31-JAN-20	03-FEB-20	R4987627
Boron (B)-Total	0.094		0.010	mg/L	31-JAN-20	03-FEB-20	R4987627
Cadmium (Cd)-Total	0.0000117		0.0000050	mg/L	31-JAN-20	03-FEB-20	R4987627
Calcium (Ca)-Total	42.9		0.050	mg/L	31-JAN-20	03-FEB-20	R4987627
Cesium (Cs)-Total	<0.000010		0.000010	mg/L	31-JAN-20	03-FEB-20	R4987627
Chromium (Cr)-Total	<0.00010		0.00010	mg/L	31-JAN-20	03-FEB-20	R4987627
Cobalt (Co)-Total	0.00047		0.00010	mg/L	31-JAN-20	03-FEB-20	R4987627
Copper (Cu)-Total	0.0169		0.00050	mg/L	31-JAN-20	03-FEB-20	R4987627
Iron (Fe)-Total	2.26		0.010	mg/L	31-JAN-20	03-FEB-20	R4987627
Lead (Pb)-Total	0.00279		0.000050	mg/L	31-JAN-20	03-FEB-20	R4987627
Lithium (Li)-Total	0.0364		0.0010	mg/L	31-JAN-20	03-FEB-20	R4987627
Magnesium (Mg)-Total	46.0		0.0050	mg/L	31-JAN-20	03-FEB-20	R4987627
Manganese (Mn)-Total	0.0552		0.00010	mg/L	31-JAN-20	03-FEB-20	R4987627
Molybdenum (Mo)-Total	0.000607		0.000050	mg/L	31-JAN-20	03-FEB-20	R4987627
Nickel (Ni)-Total	0.00103		0.00050	mg/L	31-JAN-20	03-FEB-20	R4987627
Potassium (K)-Total	3.70		0.050	mg/L	31-JAN-20	03-FEB-20	R4987627
Phosphorus (P)-Total	<0.030		0.030	mg/L	31-JAN-20	03-FEB-20	R4987627
Rubidium (Rb)-Total	0.00138		0.00020	mg/L	31-JAN-20	03-FEB-20	R4987627
Selenium (Se)-Total	<0.000050		0.000050	mg/L	31-JAN-20	03-FEB-20	R4987627
Silicon (Si)-Total	3.89		0.10	mg/L	31-JAN-20	03-FEB-20	R4987627
Silver (Ag)-Total	<0.000010		0.000010	mg/L	31-JAN-20	03-FEB-20	R4987627
Sodium (Na)-Total	25.7		0.050	mg/L	31-JAN-20	03-FEB-20	R4987627
Strontium (Sr)-Total	0.211		0.00020	mg/L	31-JAN-20	03-FEB-20	R4987627
Sulfur (S)-Total	23.6		0.50	mg/L	31-JAN-20	03-FEB-20	R4987627
Tellurium (Te)-Total	<0.00020		0.00020	mg/L	31-JAN-20	03-FEB-20	R4987627
Thallium (TI)-Total	<0.000010		0.000010	mg/L	31-JAN-20	03-FEB-20	R4987627
Thorium (Th)-Total	<0.00010		0.00010	mg/L	31-JAN-20	03-FEB-20	R4987627
Tin (Sn)-Total	<0.00010		0.00010	mg/L	31-JAN-20	03-FEB-20	R4987627
Titanium (Ti)-Total	<0.00030		0.00030	mg/L	31-JAN-20	03-FEB-20	R4987627
Tungsten (W)-Total	<0.00010		0.00010	mg/L	31-JAN-20	03-FEB-20	R4987627
Uranium (U)-Total	0.00103		0.000010	mg/L	31-JAN-20	03-FEB-20	R4987627
Vanadium (V)-Total	< 0.00050		0.00050	mg/L	31-JAN-20	03-FEB-20	R4987627
Zinc (Zn)-Total	0.211		0.00000	mg/L	31-JAN-20	03-FEB-20	R4987627
Zirconium (Zr)-Total	0.00042		0.00020	mg/L	31-JAN-20	03-FEB-20	R4987627
Polyaromatic Hydrocarbons (PAHs)	0.00042		0.00020	g/ L			11-301021
1-Methyl Naphthalene	<0.000020		0.000020	mg/L	13-JAN-20	13-JAN-20	R4964572
2-Methyl Naphthalene	<0.000020		0.000020	mg/L	13-JAN-20	13-JAN-20	R4904572 R4964572
Acenaphthene	<0.000020		0.000020	mg/L	13-JAN-20	13-JAN-20	R4964572 R4964572
Acenaphthene	<0.000020		0.000020		13-JAN-20 13-JAN-20	13-JAN-20 13-JAN-20	R4964572 R4964572
Acenaphinyiene				mg/L	13-JAN-20 13-JAN-20	13-JAN-20 13-JAN-20	
	<0.000010		0.000010	mg/L			R4964572
Acridine	<0.000020		0.000020	mg/L	13-JAN-20	13-JAN-20	R4964572
Benzo(a)anthracene	<0.000010		0.000010	mg/L	13-JAN-20	13-JAN-20	R4964572
Benzo(a)pyrene	<0.000050		0.0000050	mg/L	13-JAN-20	13-JAN-20	R4964572

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2403662-2 WELL SHOP (TAP SOP ON BOTT	LES)						
Sampled By: CLIENT on 08-JAN-20 @ 14:30	,						
Matrix: GW							
Polyaromatic Hydrocarbons (PAHs)							
Benzo(b&j)fluoranthene	<0.000010		0.000010	mg/L	13-JAN-20	13-JAN-20	R4964572
Benzo(g,h,i)perylene	<0.000020		0.000020	mg/L	13-JAN-20	13-JAN-20	R4964572
Benzo(k)fluoranthene	<0.000020		0.000020	mg/L	13-JAN-20	13-JAN-20	R4964572
Chrysene	<0.000020		0.000020	mg/L	13-JAN-20	13-JAN-20	R4964572
Dibenzo(a,h)anthracene	<0.000020		0.0000020	mg/L	13-JAN-20	13-JAN-20	R4964572
Fluoranthene	<0.000020		0.000020	mg/L	13-JAN-20	13-JAN-20	R4964572
Fluorene	<0.000020		0.000020	mg/L	13-JAN-20	13-JAN-20	R4964572
Indeno(1,2,3-cd)pyrene	<0.000020		0.000020	mg/L	13-JAN-20	13-JAN-20	R4964572
Naphthalene	<0.000050		0.000050	mg/L	13-JAN-20	13-JAN-20	R4964572
Phenanthrene	<0.000050		0.000050	mg/L	13-JAN-20	13-JAN-20	R4964572
Pyrene	<0.000010		0.000010	mg/L	13-JAN-20	13-JAN-20	R4964572
Quinoline	<0.000010		0.000010	mg/L	13-JAN-20	13-JAN-20	R4964572 R4964572
B(a)P Total Potency Equivalent	<0.000020		0.000020	mg/L	13-JAN-20 13-JAN-20	13-JAN-20 13-JAN-20	R4964572 R4964572
Surrogate: Acenaphthene d10	<0.000030 95.6		60-130	mg/∟ %	13-JAN-20	13-JAN-20 13-JAN-20	R4964572 R4964572
Surrogate: Acridine d9	93.8		60-130	%	13-JAN-20 13-JAN-20	13-JAN-20 13-JAN-20	R4964572 R4964572
Surrogate: Chrysene d12	93.8		60-130 60-130	%	13-JAN-20 13-JAN-20	13-JAN-20 13-JAN-20	R4964572 R4964572
Surrogate: Naphthalene d8	92.9			%	13-JAN-20	13-JAN-20	R4964572
Surrogate: Phenanthrene d10	102.1		50-130	%	13-JAN-20	13-JAN-20 13-JAN-20	
-	102.1		60-130	70	13-JAIN-20	13-JAIN-20	R4964572
Dioxins and Furans HR 1613B 2,3,7,8-TCDD	-0.46	[U]	0.46	ng/l	21-JAN-20	23-JAN-20	P4076040
1,2,3,7,8-PeCDD	<0.46 <0.26	[U]	0.46	pg/L	21-JAN-20 21-JAN-20	23-JAN-20 23-JAN-20	R4976949
1,2,3,4,7,8-HxCDD		[U]	0.26	pg/L			R4976949 R4976949
	< 0.34		0.34	pg/L	21-JAN-20	23-JAN-20	
1,2,3,6,7,8-HxCDD	< 0.34	[U] [U]	0.34	pg/L	21-JAN-20	23-JAN-20	R4976949
1,2,3,7,8,9-HxCDD	< 0.34	[U] M,J,R	0.34	pg/L	21-JAN-20	23-JAN-20	R4976949
1,2,3,4,6,7,8-HpCDD	0.73		0.40	pg/L	21-JAN-20	23-JAN-20	R4976949
	3.11	M,J,B	0.49	pg/L	21-JAN-20	23-JAN-20	R4976949
2,3,7,8-TCDF	<0.32	[U]	0.32	pg/L	21-JAN-20	23-JAN-20	R4976949
1,2,3,7,8-PeCDF	0.34	M,J	0.20	pg/L	21-JAN-20	23-JAN-20	R4976949
2,3,4,7,8-PeCDF	<0.18	[U]	0.18	pg/L	21-JAN-20	23-JAN-20	R4976949
1,2,3,4,7,8-HxCDF	<0.19	[U]	0.19	pg/L	21-JAN-20	23-JAN-20	R4976949
1,2,3,6,7,8-HxCDF	<0.20	[U]	0.20	pg/L	21-JAN-20	23-JAN-20	R4976949
2,3,4,6,7,8-HxCDF	<0.19	[U]	0.19	pg/L	21-JAN-20	23-JAN-20	R4976949
1,2,3,7,8,9-HxCDF	0.56	M,J,B	0.24	pg/L	21-JAN-20	23-JAN-20	R4976949
1,2,3,4,6,7,8-HpCDF	<0.26	[U]	0.26	pg/L	21-JAN-20	23-JAN-20	R4976949
1,2,3,4,7,8,9-HpCDF	<0.31	M,U	0.31	pg/L	21-JAN-20	23-JAN-20	R4976949
OCDF	1.19	M,J	0.52	pg/L	21-JAN-20	23-JAN-20	R4976949
Total-TCDD	<0.46	[U]	0.46	pg/L	21-JAN-20	23-JAN-20	R4976949
Total TCDD # Homologues	0				21-JAN-20	23-JAN-20	R4976949
Total-PeCDD	<0.26	[U]	0.26	pg/L	21-JAN-20	23-JAN-20	R4976949
Total PeCDD # Homologues	0				21-JAN-20	23-JAN-20	R4976949
Total-HxCDD	<0.34	[U]	0.34	pg/L	21-JAN-20	23-JAN-20	R4976949
Total HxCDD # Homologues	0				21-JAN-20	23-JAN-20	R4976949
Total-HpCDD	<0.40	[U]	0.40	pg/L	21-JAN-20	23-JAN-20	R4976949
Total HpCDD # Homologues	0				21-JAN-20	23-JAN-20	R4976949
Total-TCDF	<0.32	[U]	0.32	pg/L	21-JAN-20	23-JAN-20	R4976949
Total TCDF # Homologues	0				21-JAN-20	23-JAN-20	R4976949
Total-PeCDF	0.34		0.20	pg/L	21-JAN-20	23-JAN-20	R4976949
Total PeCDF # Homologues	1				21-JAN-20	23-JAN-20	R4976949
Total-HxCDF	0.56		0.24	pg/L	21-JAN-20	23-JAN-20	R4976949
Total HxCDF # Homologues	1				21-JAN-20	23-JAN-20	R4976949
Total-HpCDF	<0.31	[U]	0.31	pg/L	21-JAN-20	23-JAN-20	R4976949

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2403662-2 WELL SHOP (TAP SOP ON BOTTLES)							
Sampled By: CLIENT on 08-JAN-20 @ 14:30							
Matrix: GW							
Dioxins and Furans HR 1613B							
Total HpCDF # Homologues	0				21-JAN-20	23-JAN-20	R4976949
Surrogate: 13C12-2,3,7,8-TCDD	84.0		20-175	%	21-JAN-20	23-JAN-20	R4976949
Surrogate: 13C12-1,2,3,7,8-PeCDD	86.0		21-227	%	21-JAN-20	23-JAN-20	R4976949
Surrogate: 13C12-1,2,3,4,7,8-HxCDD	88.0		21-193	%	21-JAN-20	23-JAN-20	R4976949
Surrogate: 13C12-1,2,3,6,7,8-HxCDD	85.0		25-163	%	21-JAN-20	23-JAN-20	R4976949
Surrogate: 13C12-1,2,3,4,6,7,8-HpCDD	82.0		23-166	%	21-JAN-20	23-JAN-20	R4976949
Surrogate: 13C12-OCDD	49.0		13-138	%	21-JAN-20	23-JAN-20	R4976949
Surrogate: 13C12-2,3,7,8-TCDF	84.0		22-152	%	21-JAN-20	23-JAN-20	R4976949
Surrogate: 13C12-1,2,3,7,8-PeCDF	87.0		24-185	%	21-JAN-20	23-JAN-20	R4976949
Surrogate: 13C12-2,3,4,7,8-PeCDF	82.0		21-178	%	21-JAN-20	23-JAN-20	R4976949
Surrogate: 13C12-1,2,3,4,7,8-HxCDF	84.0		26-152	%	21-JAN-20	23-JAN-20	R4976949
Surrogate: 13C12-1,2,3,6,7,8-HxCDF	81.0		21-159	%	21-JAN-20	23-JAN-20	R4976949
Surrogate: 13C12-2,3,4,6,7,8-HxCDF	86.0		17-205	%	21-JAN-20	23-JAN-20	R4976949
Surrogate: 13C12-1,2,3,7,8,9-HxCDF	78.0		28-136	%	21-JAN-20	23-JAN-20	R4976949
Surrogate: 13C12-1,2,3,4,6,7,8-HpCDF	73.0		21-158	%	21-JAN-20	23-JAN-20	R4976949
Surrogate: 13C12-1,2,3,4,7,8,9-HpCDF	82.0		20-186	%	21-JAN-20 21-JAN-20	23-JAN-20 23-JAN-20	R4976949
Surrogate: 37Cl4-2,3,7,8-TCDD (Cleanup) Lower Bound PCDD/F TEQ (WHO 2005)	96.0 0.0675		31-191	%	21-JAN-20 21-JAN-20	23-JAN-20 23-JAN-20	R4976949 R4976949
Mid Point PCDD/F TEQ (WHO 2005)	0.561			pg/L pg/L	21-JAN-20 21-JAN-20	23-JAN-20 23-JAN-20	R4976949 R4976949
Upper Bound PCDD/F TEQ (WHO 2005)	1.05			pg/L	21-JAN-20 21-JAN-20	23-JAN-20 23-JAN-20	R4976949
VOC plus F1 to F4	1.05			pg/∟	21-5411-20	23-3711-20	14970949
CCME PHC F2-F4 in Water							
F2 (C10-C16)	<0.10		0.10	mg/L	09-JAN-20	09-JAN-20	R4965831
F3 (C16-C34)	<0.25		0.25	mg/L	09-JAN-20	09-JAN-20	R4965831
F4 (C34-C50)	<0.25		0.25	mg/L	09-JAN-20	09-JAN-20	R4965831
Surrogate: 2-Bromobenzotrifluoride	105.1		60-140	%	09-JAN-20	09-JAN-20	R4965831
CCME Total Hydrocarbons							
F1-BTEX	<0.10		0.10	mg/L		16-JAN-20	
F2-Naphth	<0.10		0.10	mg/L		16-JAN-20	
F3-PAH	<0.25		0.25	mg/L		16-JAN-20	
Total Hydrocarbons (C6-C50)	<0.38		0.38	mg/L		16-JAN-20	
Sum of Xylene Isomer Concentrations	0.00004		0.00004			40 1411 00	
Xylenes (Total)	<0.00064		0.00064	mg/L		16-JAN-20	
Total Trihalomethanes (THMs) Total THMs	<0.0013		0.0013	mg/L		16-JAN-20	
VOC plus F1 by GCMS	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		0.0013	ing/L		10-0711-20	
Acetone	<0.050		0.050	mg/L		13-JAN-20	R4971648
Benzene	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
Bromobenzene	< 0.0010		0.0010	mg/L		13-JAN-20	R4971648
Bromochloromethane	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
Bromodichloromethane	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
Bromoform	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
Bromomethane	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
n-Butylbenzene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
sec-Butylbenzene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
tert-Butylbenzene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
Carbon disulfide	<0.0050		0.0050	mg/L		13-JAN-20	R4971648
Carbon Tetrachloride	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
Chlorobenzene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
Chloroethane	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
Chloroform	< 0.00050		0.00050	mg/L		13-JAN-20	R4971648
Chloromethane	<0.0050		0.0050	mg/L		13-JAN-20	R4971648

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2403662-2 WELL SHOP (TAP SOP ON BOTTLES)							
Sampled By: CLIENT on 08-JAN-20 @ 14:30							
Matrix: GW							
VOC plus F1 by GCMS 2-Chlorotoluene	<0.020		0.020	mg/L		13-JAN-20	R4971648
4-Chlorotoluene	<0.020		0.020	mg/L		13-JAN-20	R4971648
Dibromochloromethane	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
1,2-Dibromo-3-chloropropane	<0.0000		0.00030	mg/L		13-JAN-20	R4971648
1.2-Dibromoethane	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
Dibromomethane	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
1,2-Dichlorobenzene	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
1,3-Dichlorobenzene	<0.00030		0.00030	mg/L		13-JAN-20	R4971648
1,4-Dichlorobenzene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
Dichlorodifluoromethane	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
1,1-dichloroethane	<0.0010		0.00050	mg/L		13-JAN-20	R4971648
1,2-Dichloroethane				-		13-JAN-20	
1,1-dichloroethene	<0.00050		0.00050	mg/L mg/L		13-JAN-20 13-JAN-20	R4971648
cis-1,2-Dichloroethene	<0.00050 <0.0010		0.00050 0.0010	-		13-JAN-20 13-JAN-20	R4971648
trans-1,2-Dichloroethene				mg/L		13-JAN-20 13-JAN-20	R4971648 R4971648
Dichloromethane	<0.0010		0.0010	mg/L			
1,2-Dichloropropane	<0.0050 <0.0010		0.0050	mg/L		13-JAN-20 13-JAN-20	R4971648 R4971648
			0.0010	mg/L			
1,3-Dichloropropane	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
2,2-Dichloropropane	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
1,1-Dichloropropene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
cis-1,3-Dichloropropene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
trans-1,3-Dichloropropene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
Ethylbenzene	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
F1	<0.10		0.10	mg/L		13-JAN-20	R4971648
Hexachlorobutadiene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
Hexane	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
2-Hexanone (Methyl butyl ketone)	<0.020		0.020	mg/L		13-JAN-20	R4971648
Isopropylbenzene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
4-Isopropyltoluene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
MEK	<0.020		0.020	mg/L		13-JAN-20	R4971648
MIBK	<0.020		0.020	mg/L		13-JAN-20	R4971648
MTBE	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
Styrene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
1,1,1,2-Tetrachloroethane	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
1,1,2,2-Tetrachloroethane	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
Tetrachloroethene	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
Toluene	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
1,2,3-Trichlorobenzene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
1,2,4-Trichlorobenzene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
1,1,1-Trichloroethane	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
1,1,2-Trichloroethane	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
Trichloroethene	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
Trichlorofluoromethane	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
1,2,3-Trichloropropane	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
1,2,4-Trimethylbenzene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
1,3,5-Trimethylbenzene	<0.0010		0.0010	mg/L		13-JAN-20	R4971648
Vinyl Chloride	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
M+P-Xylenes	<0.00040		0.00040	mg/L		13-JAN-20	R4971648
o-Xylene	<0.00050		0.00050	mg/L		13-JAN-20	R4971648
Surrogate: 4-Bromofluorobenzene (SS)	86.6		70-130	%		13-JAN-20	R4971648
Surrogate: 1,4-Difluorobenzene (SS)	103.3		70-130	%		13-JAN-20	R4971648

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2403662-2 WELL SHOP (TAP SOP ON BOTTLES) Sampled By: CLIENT on 08-JAN-20 @ 14:30 Matrix: GW VOC plus F1 by GCMS Surrogate: 3,4-Dichlorotoluene (SS)	77.5		70-130	%		13-JAN-20	R4971648

Reference Information

Sample Parameter Qualifier Key:

Qualifier	Description
A	Method Blank exceeds ALS DQO. Refer to narrative comments for further information.
M,J	A peak has been manually integrated, and the analyte was detected below the calibrated range but above the EDL.
M,J,B	A peak has been manually integrated. Target analyte was detected below the calibrated range but above the EDL. Compound was detected in the method blank at >10% of the sample concentration.
M,J,R	A peak has been manually integrated, the analyte was detected below the calibrated range but above the EDL, and the ion abundance ratio(s) did not meet the acceptance criteria. Value is an estimated maximum.
M,U	A peak has been manually integrated, and the analyte was not detected above the EDL.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
[U]	The analyte was not detected above the EDL.

ALS Test Code	Matrix	Test Description	Method Reference**
DX-1613B-HRMS-BU	Water	Dioxins and Furans HR 1613B	USEPA 1613B
			. The liquid portion is extracted by liquid/liquid extraction using educed in volume and analyzed by isotope-dilution GC/HRMS
EOX-MP	Misc.	Extractable Organic Halides (EOX)	SEE SUBLET LAB REPORT
The material is extracted	with ethyl ac	etate then the extract is analyzed on the	TOX (Total Organic Halides) instrument.
-1-F4-CALC-WP	Water	CCME Total Hydrocarbons	CCME CWS-PHC, Pub #1310, Dec 2001-L
Analytical methods used	for analysis o	of CCME Petroleum Hydrocarbons have	been validated and comply with the Reference Method for the CWS PHC
the gravimetric heavy hy	drocarbons ca and F1 were	annot be added to the C6 to C50 hydroc	to results must be used in any application of the CWS PHC guidelines and arbons. a where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes ha
represents a result where	e the sum of E		e result where Naphthalene has been subtracted from F2. F3-PAH enzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, subtracted from F3.
 All extraction and anal Instrument performant 	ysis holding ti ce showing re	ng quality control criteria have been met imes were met. sponse factors for C6 and C10 within 30 n 15% throughout the calibration range.	
 All extraction and anal Instrument performant Instrument performant 	ysis holding ti ce showing C ce showing th	10, C16 and C34 response factors within	n 10% of their average. e average of the C10, C16 and C34 response factors.
	Water	CCME PHC F2-F4 in Water	EPA 3511
		determined by liquid-liquid micro-scale s with flame ionization detection (GC-FID	olvent extraction using a reciprocal shaker extraction apparatus prior to) analysis.
HG-T-CVAA-WP	Water	Mercury Total	EPA 1631E (mod)
Nater samples undergo	a cold-oxidati	on using bromine monochloride prior to	reduction with stannous chloride, and analyzed by CVAAS.
MET-T-CCMS-WP	Water	Total Metals in Water by CRC ICPM	S EPA 200.2/6020B (mod.)
Water samples are diges	sted with nitric	and hydrochloric acids, and analyzed b	by CRC ICPMS.
Method Limitation (re: Su	ulfur): Sulfide	and volatile sulfur species may not be re	ecovered by this method.
PAH,PANH-WP	Water	Polyaromatic Hydrocarbons (PAHs)	EPA 3511/8270D (mod)
		a hexane micro-extraction technique, wit (j)fluoranthene is reported as part of the	th analysis by GC/MS. Because the two isomers cannot be readily

THM-SUM-CALC-WP Water Total Trihalomethanes (THMs)

Total Trihalomethanes (THMs) represents the sum of bromodichloromethane, bromoform, chlorodibromomethane and chloroform. For the purpose of calculation, results less than the detection limit (DL) are treated as zero.

CALCULATION

Reference Information

Test Method References:

	Test Description	Method Reference**					
Water	VOC plus F1 by GCMS	EPA 8260C / EPA 5021A					
analyzed u	using a headspace autosampler interfaced to a	a dual column gas chromatograph with MS and Flame Ionization					
Water	Sum of Xylene Isomer Concentrations	CALCULATED RESULT					
	analyzed	analyzed using a headspace autosampler interfaced to a					

Total xylenes represents the sum of o-xylene and m&p-xylene.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
BU	ALS ENVIRONMENTAL - BURLINGTON, ONTARIO, CANADA
MP	ALS ENVIRONMENTAL - MIDDLETOWN, PENNSYLVANIA, USA
WP	ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L2403662

Report Date: 08-MAY-20

Page 1 of 14

Test	Motrix	Deference	Decult	0
Contact:	KEVIN BEECHINOR			
	Winnipeg MB R3Y 1G4			
	440 Dovercourt Drive			
Client:	Wood Environment & Infra	astructure Soluti	ons (Winnipe	eg)

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
DX-1613B-HRMS-BU	Water							
Batch R4976949								
WG3256723-2 LCS			100.0		0/			
2,3,7,8-TCDD			108.0		%		67-158	23-JAN-20
1,2,3,7,8-PeCDD			104.0		%		70-142	23-JAN-20
1,2,3,4,7,8-HxCDD			100.0		%		70-164	23-JAN-20
1,2,3,6,7,8-HxCDD			98.0		%		76-134	23-JAN-20
1,2,3,7,8,9-HxCDD			99.0		%		64-162	23-JAN-20
1,2,3,4,6,7,8-HpCDD			102.0		%		70-140	23-JAN-20
OCDD			95.0		%		78-144	23-JAN-20
2,3,7,8-TCDF			97.0		%		75-158	23-JAN-20
1,2,3,7,8-PeCDF			101.0		%		80-134	23-JAN-20
2,3,4,7,8-PeCDF			97.0		%		68-160	23-JAN-20
1,2,3,4,7,8-HxCDF			97.0		%		72-134	23-JAN-20
1,2,3,6,7,8-HxCDF			101.0		%		84-130	23-JAN-20
2,3,4,6,7,8-HxCDF			99.0		%		70-156	23-JAN-20
1,2,3,7,8,9-HxCDF			104.0		%		78-130	23-JAN-20
1,2,3,4,6,7,8-HpCDF			108.0		%		82-122	23-JAN-20
1,2,3,4,7,8,9-HpCDF			89.0		%		78-138	23-JAN-20
OCDF			112.0		%		63-170	23-JAN-20
WG3256723-1 MB								
2,3,7,8-TCDD			<0.37	[U]	pg/L		0.37	23-JAN-20
1,2,3,7,8-PeCDD			<0.25	[U]	pg/L		0.25	23-JAN-20
1,2,3,4,7,8-HxCDD			<0.31	[U]	pg/L		0.31	23-JAN-20
1,2,3,6,7,8-HxCDD			<0.32	[U]	pg/L		0.32	23-JAN-20
1,2,3,7,8,9-HxCDD			0.41	M,J	pg/L		0.31	23-JAN-20
1,2,3,4,6,7,8-HpCDD			0.92	M,J,R	pg/L		0.48	23-JAN-20
OCDD			3.65	M,J	pg/L		0.69	23-JAN-20
2,3,7,8-TCDF			<0.34	[U]	pg/L		0.34	23-JAN-20
1,2,3,7,8-PeCDF			0.45	M,J,R	pg/L		0.25	23-JAN-20
2,3,4,7,8-PeCDF			0.32	M,J	pg/L		0.23	23-JAN-20
1,2,3,4,7,8-HxCDF			<0.27	[U]	pg/L		0.27	23-JAN-20
1,2,3,6,7,8-HxCDF			<0.28	[U]	pg/L		0.28	23-JAN-20
2,3,4,6,7,8-HxCDF			<0.30	[U]	pg/L		0.3	23-JAN-20
1,2,3,7,8,9-HxCDF			0.53	M,J	pg/L		0.38	23-JAN-20
1,2,3,4,6,7,8-HpCDF			<0.35	[U]	pg/L		0.35	23-JAN-20
1,2,3,4,7,8,9-HpCDF			<0.41	[U]	pg/L		0.41	23-JAN-20

est DX-1613B-HRMS-BU Batch R4976949 WG3256723-1 MB OCDF Total-TCDD Total-PeCDD Total-HxCDD Total-HxCDD Total-HpCDD Total-TCDF Total-PeCDF Total-HxCDF	Matrix Referenc	0.95 <0.37 <0.25	Qualifier M,J,R [U]	Units pg/L	RPD	Limit	Analyzed
Batch R4976949 WG3256723-1 MB OCDF MB Total-TCDD - Total-PeCDD - Total-HxCDD - Total-HpCDD - Total-TCDF - Total-PeCDF -	Water	<0.37 <0.25		pg/L			
WG3256723-1 MB OCDF Total-TCDD Total-PeCDD Total-HxCDD Total-HpCDD Total-HpCDD Total-TCDF Total-PeCDF		<0.37 <0.25		pg/L			
OCDF Total-TCDD Total-PeCDD Total-HxCDD Total-HpCDD Total-TCDF Total-PeCDF		<0.37 <0.25		pg/L		0.70	
Total-TCDD Total-PeCDD Total-HxCDD Total-HpCDD Total-TCDF Total-PeCDF		<0.37 <0.25		pg/L			
Total-PeCDD Total-HxCDD Total-HpCDD Total-TCDF Total-PeCDF		<0.25	[U]			0.73	23-JAN-20
Total-HxCDD Total-HpCDD Total-TCDF Total-PeCDF				pg/L		0.37	23-JAN-20
Total-HpCDD Total-TCDF Total-PeCDF			[U]	pg/L		0.25	23-JAN-20
Total-TCDF Total-PeCDF		0.41	A	pg/L		0.32	23-JAN-20
Total-PeCDF		<0.48	[U]	pg/L		0.48	23-JAN-20
		<0.34	[U]	pg/L		0.34	23-JAN-20
Total-HxCDF		0.32	A	pg/L		0.25	23-JAN-20
		0.53	А	pg/L		0.38	23-JAN-20
Total-HpCDF		<0.41	[U]	pg/L		0.41	23-JAN-20
Surrogate: 13C12-2,3,7,8	-TCDD	88.0		%		20-175	23-JAN-20
Surrogate: 13C12-1,2,3,7	7,8-PeCDD	80.0		%		21-227	23-JAN-20
Surrogate: 13C12-1,2,3,4	,7,8-HxCDD	84.0		%		21-193	23-JAN-20
Surrogate: 13C12-1,2,3,6	5,7,8-HxCDD	84.0		%		25-163	23-JAN-20
Surrogate: 13C12-1,2,3,4	,6,7,8-HpCDD	74.0		%		23-166	23-JAN-20
Surrogate: 13C12-OCDD		41.0		%		13-138	23-JAN-20
Surrogate: 13C12-2,3,7,8	-TCDF	86.0		%		22-152	23-JAN-20
Surrogate: 13C12-1,2,3,7	,8-PeCDF	83.0		%		24-185	23-JAN-20
Surrogate: 13C12-2,3,4,7	,8-PeCDF	77.0		%		21-178	23-JAN-20
Surrogate: 13C12-1,2,3,4	,7,8-HxCDF	82.0		%		26-152	23-JAN-20
Surrogate: 13C12-1,2,3,6	,7,8-HxCDF	83.0		%		21-159	23-JAN-20
Surrogate: 13C12-2,3,4,6	,7,8-HxCDF	81.0		%		17-205	23-JAN-20
Surrogate: 13C12-1,2,3,7	7,8,9-HxCDF	76.0		%		28-136	23-JAN-20
Surrogate: 13C12-1,2,3,4	,6,7,8-HpCDF	67.0		%		21-158	23-JAN-20
Surrogate: 13C12-1,2,3,4	,7,8,9-HpCDF	77.0		%		20-186	23-JAN-20
Surrogate: 37Cl4-2,3,7,8-	TCDD (Cleanup)	97.0		%		31-191	23-JAN-20
COMMENTS: Blank h	as low levels of select targ	ets that are withir	n the reference m	ethod control limit	s		
2-F4-FID-WP	Water						
Batch R4965831							
WG3254398-2 LCS							
F2 (C10-C16)		98.4		%		70-130	08-JAN-20
F3 (C16-C34)		95.9		%		70-130	08-JAN-20
F4 (C34-C50)		102.7		%		70-130	08-JAN-20
WG3254398-1 MB F2 (C10-C16)		<0.10		mg/L		0.1	08-JAN-20

		Workorder: L2403662		52	Report Date: 08-MAY-20		Page 3 of 14		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
F2-F4-FID-WP	Water								
Batch R4965831									
WG3254398-1 MB F3 (C16-C34)			<0.25		mg/L		0.25	08-JAN-20	
F4 (C34-C50)			<0.25		mg/L		0.25	08-JAN-20	
Surrogate: 2-Bromober	nzotrifluoride		104.6		%		60-140	08-JAN-20	
IG-T-CVAA-WP	Water								
Batch R4969808 WG3258095-2 LCS	i		06.0		97		00.400		
Mercury (Hg)-Total			96.0		%		80-120	14-JAN-20	
WG3258095-1 MB Mercury (Hg)-Total			<0.00000	050	mg/L		0.000005	14-JAN-20	
IET-T-CCMS-WP	Water								
Batch R4987627	,								
WG3267161-2 LCS Aluminum (Al)-Total			111.7		%		80-120	03-FEB-20	
Antimony (Sb)-Total			109.0		%		80-120	03-FEB-20	
Arsenic (As)-Total			109.9		%		80-120	03-FEB-20	
Barium (Ba)-Total			109.8		%		80-120	03-FEB-20	
Beryllium (Be)-Total			102.4		%		80-120	03-FEB-20	
Bismuth (Bi)-Total			107.7		%		80-120	03-FEB-20	
Boron (B)-Total			112.5		%		80-120	03-FEB-20	
Cadmium (Cd)-Total			108.3		%		80-120	03-FEB-20	
Calcium (Ca)-Total			105.8		%		80-120	03-FEB-20	
Cesium (Cs)-Total			107.9		%		80-120	03-FEB-20	
Chromium (Cr)-Total			110.4		%		80-120	03-FEB-20	
Cobalt (Co)-Total			109.2		%		80-120	03-FEB-20	
Copper (Cu)-Total			109.0		%		80-120	03-FEB-20	
Iron (Fe)-Total			98.1		%		80-120	03-FEB-20	
Lead (Pb)-Total			105.4		%		80-120	03-FEB-20	
Lithium (Li)-Total			104.6		%		80-120	03-FEB-20	
Magnesium (Mg)-Total			118.1		%		80-120	03-FEB-20	
Manganese (Mn)-Total			110.0		%		80-120	03-FEB-20	
Molybdenum (Mo)-Tota	d		106.4		%		80-120	03-FEB-20	
Nickel (Ni)-Total			107.2		%		80-120	03-FEB-20	
Potassium (K)-Total			100.9		%		80-120	03-FEB-20	
Phosphorus (P)-Total			110.8		%		80-120	03-FEB-20	
Rubidium (Rb)-Total			110.8		%		80-120	03-FEB-20	

	Motrice	Deferrerer	Desult	Qualifier	l In to	000	Limit	Analized
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WP	Water							
Batch R49876								
WG3267161-2 LC Selenium (Se)-Total			106.8		%		80-120	03-FEB-20
Silicon (Si)-Total			104.5		%		80-120	03-FEB-20 03-FEB-20
Silver (Ag)-Total			104.8		%		80-120	03-FEB-20
Sodium (Na)-Total			110.6		%		80-120	03-FEB-20
Strontium (Sr)-Total			110.0		%		80-120	03-FEB-20
Sulfur (S)-Total			97.8		%		80-120	03-FEB-20
Tellurium (Te)-Total			99.1		%		80-120	03-FEB-20
Thallium (TI)-Total			102.7		%		80-120	03-FEB-20
Thorium (Th)-Total			103.9		%		80-120	03-FEB-20 03-FEB-20
Tin (Sn)-Total			106.3		%		80-120	03-FEB-20
Titanium (Ti)-Total			106.8		%		80-120	03-FEB-20
Tungsten (W)-Total			104.4		%		80-120	03-FEB-20
Uranium (U)-Total			110.4		%		80-120	03-FEB-20
Vanadium (V)-Total			109.5		%		80-120	03-FEB-20
Zinc (Zn)-Total			109.2		%		80-120	03-FEB-20
Zirconium (Zr)-Total			103.0		%		80-120	03-FEB-20
WG3267161-1 MB							00 120	0012020
Aluminum (Al)-Total			<0.0030		mg/L		0.003	03-FEB-20
Antimony (Sb)-Total			<0.00010)	mg/L		0.0001	03-FEB-20
Arsenic (As)-Total			<0.00010)	mg/L		0.0001	03-FEB-20
Barium (Ba)-Total			<0.00010)	mg/L		0.0001	03-FEB-20
Beryllium (Be)-Total			<0.00010)	mg/L		0.0001	03-FEB-20
Bismuth (Bi)-Total			<0.00005	50	mg/L		0.00005	03-FEB-20
Boron (B)-Total			<0.010		mg/L		0.01	03-FEB-20
Cadmium (Cd)-Total			<0.00000)5C	mg/L		0.000005	03-FEB-20
Calcium (Ca)-Total			<0.050		mg/L		0.05	03-FEB-20
Cesium (Cs)-Total			<0.00001	0	mg/L		0.00001	03-FEB-20
Chromium (Cr)-Total	I		<0.00010)	mg/L		0.0001	03-FEB-20
Cobalt (Co)-Total			<0.00010)	mg/L		0.0001	03-FEB-20
Copper (Cu)-Total			<0.00050)	mg/L		0.0005	03-FEB-20
Iron (Fe)-Total			<0.010		mg/L		0.01	03-FEB-20
Lead (Pb)-Total			<0.00005	50	mg/L		0.00005	03-FEB-20
Lithium (Li)-Total			<0.0010		mg/L		0.001	03-FEB-20
Magnesium (Mg)-Tot	tal		<0.0050		mg/L		0.005	03-FEB-20

		Workorder	: L240366	2	Report Date: 0	8-MAY-20	Page 5 of 14		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-T-CCMS-WP	Water								
Batch R498762	7								
WG3267161-1 MB									
Manganese (Mn)-Tota			<0.00010		mg/L		0.0001	03-FEB-20	
Molybdenum (Mo)-Tot	al		<0.00005		mg/L		0.00005	03-FEB-20	
Nickel (Ni)-Total			<0.00050		mg/L		0.0005	03-FEB-20	
Potassium (K)-Total			<0.050		mg/L		0.05	03-FEB-20	
Phosphorus (P)-Total			<0.030		mg/L		0.03	03-FEB-20	
Rubidium (Rb)-Total			<0.00020		mg/L		0.0002	03-FEB-20	
Selenium (Se)-Total			<0.00005	0	mg/L		0.00005	03-FEB-20	
Silicon (Si)-Total			<0.10		mg/L		0.1	03-FEB-20	
Silver (Ag)-Total			<0.00001	0	mg/L		0.00001	03-FEB-20	
Sodium (Na)-Total			<0.050		mg/L		0.05	03-FEB-20	
Strontium (Sr)-Total			<0.00020		mg/L		0.0002	03-FEB-20	
Sulfur (S)-Total			<0.50		mg/L		0.5	03-FEB-20	
Tellurium (Te)-Total			<0.00020		mg/L		0.0002	03-FEB-20	
Thallium (TI)-Total			<0.00001	0	mg/L		0.00001	03-FEB-20	
Thorium (Th)-Total			<0.00010		mg/L		0.0001	03-FEB-20	
Tin (Sn)-Total			<0.00010		mg/L		0.0001	03-FEB-20	
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	03-FEB-20	
Tungsten (W)-Total			<0.00010		mg/L		0.0001	03-FEB-20	
Uranium (U)-Total			<0.00001	0	mg/L		0.00001	03-FEB-20	
Vanadium (V)-Total			<0.00050		mg/L		0.0005	03-FEB-20	
Zinc (Zn)-Total			<0.0030		mg/L		0.003	03-FEB-20	
Zirconium (Zr)-Total			<0.00020		mg/L		0.0002	03-FEB-20	
PAH,PANH-WP	Water								
Batch R496457	2								
WG3256843-2 LCS									
1-Methyl Naphthalene			120.6		%		60-130	13-JAN-20	
2-Methyl Naphthalene			119.5		%		60-130	13-JAN-20	
Acenaphthene			116.2		%		60-130	13-JAN-20	
Acenaphthylene			113.8		%		60-130	13-JAN-20	
Anthracene			90.8		%		60-130	13-JAN-20	
Acridine			103.1		%		60-130	13-JAN-20	
Benzo(a)anthracene			92.3		%		60-130	13-JAN-20	
Benzo(a)pyrene			104.5		%		60-130	13-JAN-20	
Benzo(b&j)fluoranthen	е		106.1		%		60-130	13-JAN-20	

				• ····				
est N	Aatrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH,PANH-WP	Water							
Batch R4964572								
WG3256843-2 LCS Benzo(g,h,i)perylene			120.7		%		60-130	13-JAN-20
Benzo(k)fluoranthene			118.0		%		60-130	13-JAN-20
Chrysene			92.1		%		60-130	13-JAN-20
Dibenzo(a,h)anthracene			118.2		%		60-130	13-JAN-20
Fluoranthene			117.6		%		60-130	13-JAN-20
Fluorene			110.0		%		60-130	13-JAN-20
Indeno(1,2,3-cd)pyrene			97.1		%		60-130	13-JAN-20
Naphthalene			120.0		%		50-130	13-JAN-20
Phenanthrene			109.7		%		60-130	13-JAN-20
Pyrene			120.9		%		60-130	13-JAN-20
Quinoline			119.0		%		60-130	13-JAN-20
WG3256843-1 MB								10 0/ 11 20
1-Methyl Naphthalene			<0.00002	20	mg/L		0.00002	13-JAN-20
2-Methyl Naphthalene			<0.00002	20	mg/L		0.00002	13-JAN-20
Acenaphthene			<0.00002	20	mg/L		0.00002	13-JAN-20
Acenaphthylene			<0.00002	20	mg/L		0.00002	13-JAN-20
Anthracene			<0.00001	0	mg/L		0.00001	13-JAN-20
Acridine			<0.00002	20	mg/L		0.00002	13-JAN-20
Benzo(a)anthracene			<0.00001	0	mg/L		0.00001	13-JAN-20
Benzo(a)pyrene			<0.00000)5C	mg/L		0.000005	13-JAN-20
Benzo(b&j)fluoranthene			<0.00001	0	mg/L		0.00001	13-JAN-20
Benzo(g,h,i)perylene			<0.00002	20	mg/L		0.00002	13-JAN-20
Benzo(k)fluoranthene			<0.00001	0	mg/L		0.00001	13-JAN-20
Chrysene			<0.00002	20	mg/L		0.00002	13-JAN-20
Dibenzo(a,h)anthracene			<0.00000)5C	mg/L		0.000005	13-JAN-20
Fluoranthene			<0.00002	20	mg/L		0.00002	13-JAN-20
Fluorene			<0.00002	20	mg/L		0.00002	13-JAN-20
Indeno(1,2,3-cd)pyrene			< 0.00001	0	mg/L		0.00001	13-JAN-20
Naphthalene			<0.00005	50	mg/L		0.00005	13-JAN-20
Phenanthrene			<0.00005	50	mg/L		0.00005	13-JAN-20
Pyrene			<0.00001	0	mg/L		0.00001	13-JAN-20
Quinoline			<0.00002	20	mg/L		0.00002	13-JAN-20
Surrogate: Acenaphthene	d10		99.1		%		60-130	13-JAN-20
Surrogate: Acridine d9			91.9		%		60-130	13-JAN-20

		Workorder:	L2403662	2 Re	eport Date: 0)8-MAY-20	Page 7 of 14	
lest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH,PANH-WP	Water							
Batch R496457	72							
WG3256843-1 MB								
Surrogate: Chrysene d12			111.2		%		60-130	13-JAN-20
Surrogate: Naphthalene d8			97.4		%		50-130	13-JAN-20
Surrogate: Phenanthr	ene d10		99.8		%		60-130	13-JAN-20
VOC+F1-HSMS-WP	Water							
Batch R497164	18							
WG3257141-4 DUF Acetone)	L2403662-2 <0.050	<0.050	RPD-NA	mg/L	N/A	30	13-JAN-20
Benzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	13-JAN-20
Bromobenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
Bromochloromethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
Bromodichloromethane		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	13-JAN-20
Bromoform		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
Bromomethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	50	13-JAN-20
n-Butylbenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
sec-Butylbenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
tert-Butylbenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
Carbon disulfide		<0.0050	<0.0050	RPD-NA	mg/L	N/A	30	13-JAN-20
Carbon Tetrachloride		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	13-JAN-20
Chlorobenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
Chloroethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	50	13-JAN-20
Chloroform		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	13-JAN-20
Chloromethane		<0.0050	<0.0050	RPD-NA	mg/L	N/A	50	13-JAN-20
2-Chlorotoluene		<0.020	<0.020	RPD-NA	mg/L	N/A	30	13-JAN-20
4-Chlorotoluene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
Dibromochloromethar	ne	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	13-JAN-20
1,2-Dibromo-3-chloro	propane	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
1,2-Dibromoethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
Dibromomethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
1,2-Dichlorobenzene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	13-JAN-20
1,3-Dichlorobenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
1,4-Dichlorobenzene		<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
Dichlorodifluoromethane		<0.0010	<0.0010	RPD-NA	mg/L	N/A	50	13-JAN-20
1,1-dichloroethane		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	13-JAN-20
1,2-Dichloroethane		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	13-JAN-20

	Workorder:	L2403662	2 Re	eport Date: (08-MAY-20	Р	age 8 of 1
est Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
/OC+F1-HSMS-WP Water							
Batch R4971648							
WG3257141-4 DUP	L2403662-2						
1,1-dichloroethene	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	13-JAN-20
cis-1,2-Dichloroethene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
trans-1,2-Dichloroethene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
Dichloromethane	<0.0050	<0.0050	RPD-NA	mg/L	N/A	30	13-JAN-20
1,2-Dichloropropane	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
1,3-Dichloropropane	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
2,2-Dichloropropane	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
1,1-Dichloropropene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
cis-1,3-Dichloropropene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
trans-1,3-Dichloropropene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
Ethylbenzene	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	13-JAN-20
F1	<0.10	<0.10	RPD-NA	mg/L	N/A	30	13-JAN-20
Hexachlorobutadiene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
Hexane	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
2-Hexanone (Methyl butyl ketone)	<0.020	<0.020	RPD-NA	mg/L	N/A	30	13-JAN-20
Isopropylbenzene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
4-Isopropyltoluene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
MEK	<0.020	<0.020	RPD-NA	mg/L	N/A	30	13-JAN-20
МІВК	<0.020	<0.020	RPD-NA	mg/L	N/A	30	13-JAN-20
МТВЕ	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	13-JAN-20
Styrene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
1,1,1,2-Tetrachloroethane	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	13-JAN-20
1,1,2,2-Tetrachloroethane	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	13-JAN-20
Tetrachloroethene	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	13-JAN-20
Toluene	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	13-JAN-20
1,2,3-Trichlorobenzene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
1,2,4-Trichlorobenzene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
1,1,1-Trichloroethane	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	13-JAN-20
1,1,2-Trichloroethane	<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	13-JAN-20
Trichloroethene	<0.00050	< 0.00050	RPD-NA	mg/L	N/A	30	13-JAN-20
Trichlorofluoromethane	<0.0010	<0.0010	RPD-NA	mg/L	N/A	50	13-JAN-20
1,2,3-Trichloropropane	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30	13-JAN-20
1,2,4-Trimethylbenzene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30 30	13-JAN-20
1,3,5-Trimethylbenzene	<0.0010	<0.0010	RPD-NA	mg/L	N/A	30 30	13-JAN-20

		Workorder:	L2403662	Re	port Date: (8-MAY-20	Pa	ige 9 of
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC+F1-HSMS-WP	Water							
Batch R4971648								
WG3257141-4 DUP Vinyl Chloride		L2403662-2 <0.00050	<0.00050	RPD-NA	mg/L	N/A	50	13-JAN-20
M+P-Xylenes		<0.00040	<0.00040	RPD-NA	mg/L	N/A	30	13-JAN-20
o-Xylene		<0.00050	<0.00050	RPD-NA	mg/L	N/A	30	13-JAN-20
WG3257141-2 LCS Acetone			86.7		%		70-130	13-JAN-20
Benzene			85.7		%		70-130	13-JAN-20
Bromobenzene			86.4		%		70-130	13-JAN-20
Bromochloromethane			78.0		%		70-130	13-JAN-20
Bromodichloromethane			77.6		%		70-130	13-JAN-20
Bromoform			79.3		%		70-130	13-JAN-20
Bromomethane			99.9		%		60-140	13-JAN-20
n-Butylbenzene			111.1		%		70-130	13-JAN-20
sec-Butylbenzene			113.8		%		70-130	13-JAN-20
tert-Butylbenzene			118.7		%		70-130	13-JAN-20
Carbon disulfide			110.6		%		70-130	13-JAN-20
Carbon Tetrachloride			99.1		%		70-130	13-JAN-20
Chlorobenzene			87.0		%		70-130	13-JAN-20
Chloroethane			93.3		%		60-140	13-JAN-20
Chloroform			84.1		%		70-130	13-JAN-20
Chloromethane			124.7		%		60-140	13-JAN-20
2-Chlorotoluene			110.5		%		70-130	13-JAN-20
4-Chlorotoluene			104.4		%		70-130	13-JAN-20
Dibromochloromethane			77.2		%		70-130	13-JAN-20
1,2-Dibromo-3-chloroprop	ane		72.3		%		70-130	13-JAN-20
1,2-Dibromoethane			71.2		%		70-130	13-JAN-20
Dibromomethane			75.1		%		70-130	13-JAN-20
1,2-Dichlorobenzene			84.5		%		70-130	13-JAN-20
1,3-Dichlorobenzene			92.3		%		70-130	13-JAN-20
1,4-Dichlorobenzene			95.7		%		70-130	13-JAN-20
Dichlorodifluoromethane			127.9		%		60-140	13-JAN-20
1,1-dichloroethane			85.7		%		70-130	13-JAN-20
1,2-Dichloroethane			72.9		%		70-130	13-JAN-20
1,1-dichloroethene			100.3		%		70-130	13-JAN-20
cis-1,2-Dichloroethene			84.6		%		70-130	13-JAN-20

		Workorder	: L240366	62	Report Date: 0	8-MAY-20	Pa	age 10 of 1
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC+F1-HSMS-WP	Water							
Batch R4971648								
WG3257141-2 LCS			05.0		0/			
trans-1,2-Dichloroethene)		95.3		%		70-130	13-JAN-20
Dichloromethane			81.6		%		70-130	13-JAN-20
1,2-Dichloropropane			73.4		%		70-130	13-JAN-20
1,3-Dichloropropane			72.5		%		70-130	13-JAN-20
2,2-Dichloropropane			91.8		%		70-130	13-JAN-20
1,1-Dichloropropene			100.2		%		70-130	13-JAN-20
cis-1,3-Dichloropropene			85.0		%		70-130	13-JAN-20
trans-1,3-Dichloroproper	ne		86.0		%		70-130	13-JAN-20
Ethylbenzene			97.4		%		70-130	13-JAN-20
Hexachlorobutadiene			99.1		%		70-130	13-JAN-20
Hexane			88.6		%		70-130	13-JAN-20
2-Hexanone (Methyl buty	/l ketone)		72.2		%		70-130	13-JAN-20
Isopropylbenzene			108.1		%		70-130	13-JAN-20
4-Isopropyltoluene			121.8		%		70-130	13-JAN-20
MEK			73.6		%		70-130	13-JAN-20
MIBK			73.3		%		70-130	13-JAN-20
MTBE			87.2		%		70-130	13-JAN-20
Styrene			89.2		%		70-130	13-JAN-20
1,1,1,2-Tetrachloroethan	e		80.0		%		70-130	13-JAN-20
1,1,2,2-Tetrachloroethan	e		82.0		%		70-130	13-JAN-20
Tetrachloroethene			99.7		%		70-130	13-JAN-20
Toluene			91.8		%		70-130	13-JAN-20
1,2,3-Trichlorobenzene			79.6		%		70-130	13-JAN-20
1,2,4-Trichlorobenzene			78.3		%		70-130	13-JAN-20
1,1,1-Trichloroethane			98.3		%		70-130	13-JAN-20
1,1,2-Trichloroethane			73.6		%		70-130	13-JAN-20
Trichloroethene			93.5		%		70-130	13-JAN-20
Trichlorofluoromethane			127.1		%		60-140	13-JAN-20
1,2,3-Trichloropropane			73.3		%		70-130	13-JAN-20
1,2,4-Trimethylbenzene			104.5		%		70-130	13-JAN-20
1,3,5-Trimethylbenzene			107.4		%		70-130	13-JAN-20
Vinyl Chloride			120.6		%		60-140	13-JAN-20
M+P-Xylenes			105.5		%		70-130	13-JAN-20
o-Xylene			92.8		%		70-130	13-JAN-20

		Workorder:	L2403662	2	Report Date: 08	-MAY-20	Pa	ge 11 of
fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC+F1-HSMS-WP	Water							
Batch R4971648								
WG3257141-3 LCS			400.0		0/			
F1			108.0		%		70-130	13-JAN-20
WG3257141-1 MB Acetone			<0.050		mg/L		0.05	13-JAN-20
Benzene			<0.00050		mg/L		0.0005	13-JAN-20
Bromobenzene			<0.0010		mg/L		0.001	13-JAN-20
Bromochloromethane			<0.0010		mg/L		0.001	13-JAN-20
Bromodichloromethane			<0.00050		mg/L		0.0005	13-JAN-20
Bromoform			<0.0010		mg/L		0.001	13-JAN-20
Bromomethane			<0.0010		mg/L		0.001	13-JAN-20
n-Butylbenzene			<0.0010		mg/L		0.001	13-JAN-20
sec-Butylbenzene			<0.0010		mg/L		0.001	13-JAN-20
tert-Butylbenzene			<0.0010		mg/L		0.001	13-JAN-20
Carbon disulfide			<0.0050		mg/L		0.005	13-JAN-20
Carbon Tetrachloride			<0.00050		mg/L		0.0005	13-JAN-20
Chlorobenzene			<0.0010		mg/L		0.001	13-JAN-20
Chloroethane			<0.0010		mg/L		0.001	13-JAN-20
Chloroform			<0.00050		mg/L		0.0005	13-JAN-20
Chloromethane			<0.0050		mg/L		0.005	13-JAN-20
2-Chlorotoluene			<0.020		mg/L		0.02	13-JAN-20
4-Chlorotoluene			<0.0010		mg/L		0.001	13-JAN-20
Dibromochloromethane			<0.00050		mg/L		0.0005	13-JAN-20
1,2-Dibromo-3-chloropro	pane		<0.0010		mg/L		0.001	13-JAN-20
1,2-Dibromoethane			<0.0010		mg/L		0.001	13-JAN-20
Dibromomethane			<0.0010		mg/L		0.001	13-JAN-20
1,2-Dichlorobenzene			<0.00050		mg/L		0.0005	13-JAN-20
1,3-Dichlorobenzene			<0.0010		mg/L		0.001	13-JAN-20
1,4-Dichlorobenzene			<0.0010		mg/L		0.001	13-JAN-20
Dichlorodifluoromethane			<0.0010		mg/L		0.001	13-JAN-20
1,1-dichloroethane			<0.00050		mg/L		0.0005	13-JAN-20
1,2-Dichloroethane			<0.00050		mg/L		0.0005	13-JAN-20
1,1-dichloroethene			<0.00050		mg/L		0.0005	13-JAN-20
cis-1,2-Dichloroethene			<0.0010		mg/L		0.001	13-JAN-20
trans-1,2-Dichloroethene	•		<0.0010		mg/L		0.001	13-JAN-20
Dichloromethane			<0.0050		mg/L		0.005	13-JAN-20

		Workorder:	L2403662	2	Report Date: 08	3-MAY-20	Pa	age 12 of 1
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
/OC+F1-HSMS-WP	Water							
Batch R4971648								
WG3257141-1 MB			0.0040					
1,2-Dichloropropane			<0.0010		mg/L		0.001	13-JAN-20
1,3-Dichloropropane			<0.0010		mg/L		0.001	13-JAN-20
2,2-Dichloropropane			<0.0010		mg/L		0.001	13-JAN-20
1,1-Dichloropropene			<0.0010		mg/L		0.001	13-JAN-20
cis-1,3-Dichloropropene			<0.0010		mg/L		0.001	13-JAN-20
trans-1,3-Dichloroproper	ne		<0.0010		mg/L		0.001	13-JAN-20
Ethylbenzene			<0.00050		mg/L		0.0005	13-JAN-20
F1			<0.10		mg/L		0.1	13-JAN-20
Hexachlorobutadiene			<0.0010		mg/L		0.001	13-JAN-20
Hexane			<0.0010		mg/L		0.001	13-JAN-20
2-Hexanone (Methyl buty	yl ketone)		<0.020		mg/L		0.02	13-JAN-20
Isopropylbenzene			<0.0010		mg/L		0.001	13-JAN-20
4-Isopropyltoluene			<0.0010		mg/L		0.001	13-JAN-20
MEK			<0.020		mg/L		0.02	13-JAN-20
MIBK			<0.020		mg/L		0.02	13-JAN-20
MTBE			<0.00050		mg/L		0.0005	13-JAN-20
Styrene			<0.0010		mg/L		0.001	13-JAN-20
1,1,1,2-Tetrachloroethan	e		<0.00050		mg/L		0.0005	13-JAN-20
1,1,2,2-Tetrachloroethan	e		<0.00050		mg/L		0.0005	13-JAN-20
Tetrachloroethene			<0.00050		mg/L		0.0005	13-JAN-20
Toluene			<0.00050		mg/L		0.0005	13-JAN-20
1,2,3-Trichlorobenzene			<0.0010		mg/L		0.001	13-JAN-20
1,2,4-Trichlorobenzene			<0.0010		mg/L		0.001	13-JAN-20
1,1,1-Trichloroethane			<0.00050		mg/L		0.0005	13-JAN-20
1,1,2-Trichloroethane			<0.00050		mg/L		0.0005	13-JAN-20
Trichloroethene			<0.00050		mg/L		0.0005	13-JAN-20
Trichlorofluoromethane			<0.0010		mg/L		0.000	13-JAN-20
1,2,3-Trichloropropane			<0.0010		mg/L		0.001	13-JAN-20
1,2,4-Trimethylbenzene			<0.0010		mg/L		0.001	13-JAN-20
1,3,5-Trimethylbenzene			<0.0010		mg/L		0.001	13-JAN-20
Vinyl Chloride			<0.00050		mg/L		0.001	
M+P-Xylenes			<0.00030		mg/L		0.0005	13-JAN-20 13-JAN-20
o-Xylene			<0.00040		mg/L			
Surrogate: 4-Bromofluor			<0.00050 88.9		mg/L		0.0005	13-JAN-20

		Workorder	: L240366	52	Report Date: 0	8-MAY-20	Pa	ge 13 of 14
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC+F1-HSMS-WP	Water							
Batch R497164 WG3257141-1 MB Surrogate: 1,4-Difluor			101.7		%		70-130	13-JAN-20
Surrogate: 3,4-Dichlo	rotoluene (SS)		75.4		%		70-130	13-JAN-20

Quality Control Report Workorder: L2403662 Report Date: 08-MAY-20

Workorder: L2403662

Report Date: 08-MAY-20

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
А	Method Blank exceeds ALS DQO. Refer to narrative comments for further information.
M,J	A peak has been manually integrated, and the analyte was detected below the calibrated range but above the EDL.
M,J,R	A peak has been manually integrated, the analyte was detected below the calibrated range but above the EDL, and the ion abundance ratio(s) did not meet the acceptance criteria. Value is an estimated maximum.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.
[U]	The analyte was not detected above the EDL.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

January 17, 2020

Ms. Judy Dalmaijer ALS Environmental-Winnipeg MB Unit 12–1329 Niakwa Road East Winnipeg, MB, R2J 3T4

Certificate of Analysis

Project Name:	тох	Workorder:	3079979	
Purchase Order:	L2403662	Workorder ID:	L2403662	

Dear Ms. Dalmaijer:

Enclosed are the analytical results for samples received by the laboratory on Friday, January 10, 2020.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact Ms. Sarah S Leung (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Environmental.

ALS Spring City: 10 Riverside Drive, Spring City, PA 19475 610-948-4903

CC: Ms. Bea Ryback , Mr. Craig Riddell

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Ms. Sarah S Leung Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3079979 L2403662

Lab ID	Sample ID	Matrix	Date Collected	Date Received	Collected By
3079979001	L2403662-1	Water	1/8/2020 00:00	1/10/2020 10:19	Collected by Client
3079979002	L2403662-2	Water	1/8/2020 00:00	1/10/2020 10:19	Collected by Client

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3079979 L2403662

Notes

- -- Samples collected by ALS personnel are done so in accordance with the procedures set forth in the ALS Field Sampling Plan (20 Field Services Sampling Plan).
- -- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- -- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- -- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- -- The Chain of Custody document is included as part of this report.
- -- All Library Search analytes should be regarded as tentative identifications based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.
- -- Parameters identified as "analyze immediately" require analysis within 15 minutes of collection. Any "analyze immediately" parameters not listed under the header "Field Parameters" are preformed in the laboratory and are therefore analyzed out of hold time.
- -- Method references listed on this report beginning with the prefix "S" followed by a method number (such as S2310B-97)
- refer to methods from "Standard Methods for the Examination of Water and Wastewater".
- -- For microbiological analyses, the "Prepared" value is the date/time into the incubator and the "Analyzed" value is the date/time out the incubator.
- -- An Analysis-Prep Method Cross Reference Table is included after Analytical Results & Qualifiers section in this report.

Standard Acronyms/Flags

- J Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte
- U Indicates that the analyte was Not Detected (ND)
- N Indicates presumptive evidence of the presence of a compound
- MDL Method Detection Limit
- PQL Practical Quantitation Limit
- RDL Reporting Detection Limit
- ND Not Detected indicates that the analyte was Not Detected at the RDL
- Cntr Analysis was performed using this container
- RegLmt Regulatory Limit
- LCS Laboratory Control Sample
- MS Matrix Spike
- MSD Matrix Spike Duplicate
- DUP Sample Duplicate
- %Rec Percent Recovery
- RPD Relative Percent Difference
- LOD DoD Limit of Detection
- LOQ DoD Limit of Quantitation
- DL DoD Detection Limit
- I Indicates reported value is greater than or equal to the Method Detection Limit (MDL) but less than the Report Detection Limit (RDL)
- (S) Surrogate Compound
- NC Not Calculated
- * Result outside of QC limits

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3079979 L2403662 Date Collected: 1/8/2020 00:00 Matrix: Water Lab ID: 3079979001 Date Received: 1/10/2020 10:19 Sample ID: L2403662-1 Parameters Results Flag Units RDL Method Prepared By Analyzed By Cntr WET CHEMISTRY Halogen, Total Organic ND Y,Y 20.0 SW846 9020B 1/15/20 12:56 PAG ug/L Α (TOX)

Ms. Sarah S Leung Project Coordinator

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3079979 L2403662 Date Collected: 1/8/2020 00:00 Matrix: Water Lab ID: 3079979002 Date Received: 1/10/2020 10:19 Sample ID: L2403662-2 Parameters Results Flag Units RDL Method Prepared By Analyzed By Cntr WET CHEMISTRY Halogen, Total Organic ND Y,Y 20.0 SW846 9020B 1/15/20 14:15 PAG ug/L Α (TOX)

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3079979 L2403662

PARAMETER QUALIFIERS

Lab ID	#	Sample ID	Analytical Method	Analyte
3079979001	Y	L2403662-1	SW846 9020B	Halogen, Total Organic (TOX)
The laboratory ana	lysis wa	is from as unpreserved o	r improperly preserved sample.	
3079979002	Y	L2403662-2	SW846 9020B	Halogen, Total Organic (TOX)
The laboratory ana	lysis wa	is from as unpreserved o	r improperly preserved sample.	

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYSIS - PREP METHOD CROSS REFERENCE TABLE

Workorder: 3079979 L2403662

Lab ID	Sample ID	Analysis Method	Prep Method
3079979001	L2403662-1	SW846 9020B	
3079979002	L2403662-2	SW846 9020B	

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA

QC Batch: WETC/23 QC Batch Method: SW846 9 Associated Lab Samples: 30	020B	79979002	Analysis Method:			SW846 9020B			
METHOD BLANK: 3073590									
Parameter	Blank Result	Units	Reporting Limit						
Halogen, Total Organic (TOX)	ND	ug/L	10.0						
LABORATORY CONTROL SAM	IPLE: 3073591	I							
Parameter	LCS % Rec	Units	Spike Conc.	LCS Result	% Rec Limit				
Halogen, Total Organic (TOX)	103	ug/L	100	103	80 - 120				
LABORATORY CONTROL SAM	/IPLE: 3073592	2							
	LCS %		Spike	LCS	% Rec				
Parameter	Rec	Units	Conc.	Result	Limit				
Halogen, Total Organic (TOX)	102	ug/L	100	102	80 - 120				
MATRIX SPIKE SAMPLE: 3073	8884 ORIGIN	IAL: 3079	765001						
****NOTE - The Original Result					the purpose	e of calculating Ma	atrix Spike		
percent recoveries. This result	original	arde and c	annot be usec Spike	l as such. MS	MS %	% Rec			
Parameter	Result	Units	Conc.	Result	Rec	Limit			
Halogen, Total Organic (TOX)	0	ug/L	200	212.04	106	80 - 120			
METHOD BLANK: 3073594									
	Blank		Reporting Limit						
Parameter	Result	Units							

ALS Environmental Laboratory Locations Across North America

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 3079979 L2403662

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
3079979001	L2403662-1			SW846 9020B	WETC/233170
3079979002	L2403662-2			SW846 9020B	WETC/233170

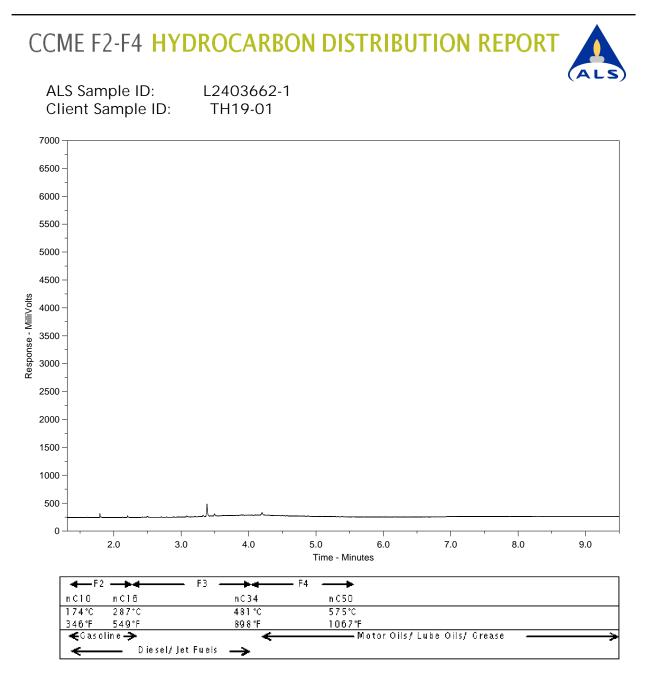
ALS Environmental Laboratory Locations Across North America

3079979 L2403662

Subcontract Request Form

Subcontract To:

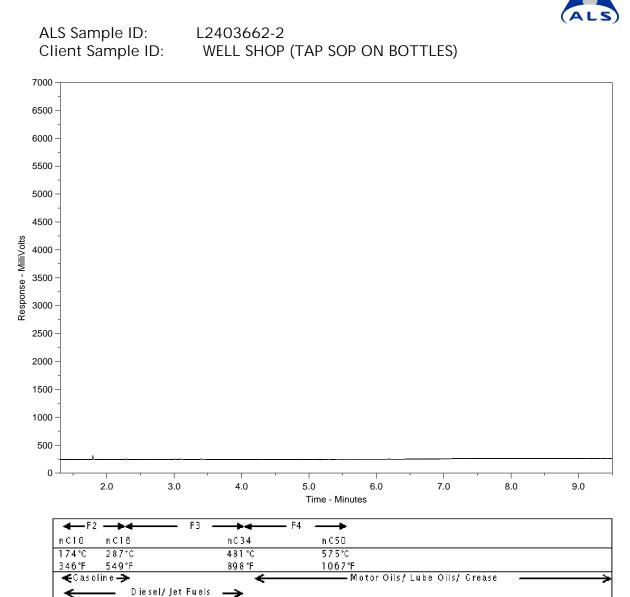
ALS ENVIRONMENTAL - MIDDLETOWN, PENNSYLVANIA, USA


34 DOGWOOD LANE MIDDLETOWN, PENNSYLVANIA 17057

NOTES: Please reference on final report and invoice: PO# L ALS requires QC data to be provided with your final res	<u>2403662</u> sults.	s." #
Please see enclosed 2 sample(s) in 2 Container	(s)	х. ¹ .
SAMPLE NUMBER ANALYTICAL REQUIRED	DATE SAMPLED DUE DATE	Priority Flag
L2403662-1 TH19-01 Extractable Organic Halides (EOX) (EOX-MP	1/8/2020 14) 1/31/2020	2 x A 250m
L2403662-2 WELL SHOP (TAP SOP ON BOTTLES) Extractable Organic Halides (EOX) (EOX-MP	1/8/2020 14) 1/31/2020	2 × A2SOM
Subcontract Info Contact: Judy Dalmaijer (204) 255-97 Analysis and reporting info contact: Judy Dalmaijer 12-1329 NIAKWA ROAD E WINNIPEG,MB R2J3T4	49	cus 1110/20
Phone: (204) 255-9749 Please email confirmation of receipt to: Judy.Dalmai	Email: Judy.Dalmaijer@ jer@alsglobal.com	alsglobal.com
Shipped By: Date Shipped		SAN9
Received By:	the last	9
Temperature: Sample Integrity Issues:		11°

· ...

301 Fulling Mill Road Middletown, PA 17057 Condition of P: (717) 944-5541 F: (717) 944-1430	Sample Receipt Form
Client: Work Order #: 3079979	: Date:
1. Were airbills / tracking numbers present and recorded? Tracking number: 12 662 F45 66	NONE YES NO
2. Are Custody Seals on shipping containers intact?	NONE YES NO
3. Are Custody Seals on sample containers intact?	NONE YES NO
4. Is there a COC (Chain-of-Custody) present?	
5. Are the COC and bottle labels complete, legible and in agreement?	YES (NO)
5a. Does the COC contain sample locations?	YES NO
5b. Does the COC contain date and time of sample collection for all samples?	VILO YES NO
5c. Does the COC contain sample collectors name?	YES X-NO-
5d. Does the COC note the type(s) of preservation for all bottles?	
Se. Does the COC note the number of bottles submitted for each sample?	VE3 VE3 NO
5f. Does the COC note the type of sample, composite or grab?	100 YES NO
5g. Does the COC note the matrix of the sample(s)?	YES (NO)
6. Are all aqueous samples requiring preservation preserved correctly?	
7. Were all samples placed in the proper containers for the requested analyses, with sufficient vo	
8. Are all samples within holding times for the requested analyses?	
9. Were all sample containers received intact and headspace free when required? (not broken, le	
10. Did we receive trip blanks (applies only for methods EPA 504, EPA 524.2 and 1631E (LL Hg)?	
11. Were the samples received on ice?	
12. Were sample temperatures measured at 0.0-6.0°C	
13. Are the samples DW matrix ? If YES, fill out Reportable Drinking Water questions below	
13a. Are the samples required for SDWA compliance reporting?	11 • 1
13b. Did the client provide a SDWA PWS ID#?	
- 13c. Are all aqueous unpreserved SDWA samples pH 5-9?	
13d. Did the client provide the SDWA sample location ID/Description?	1 1
13e. Did the client provide the SDWA sample type (D, E, R, C, P, S)?	N/A YES NO
Cooler #:	
Temperature (°C): <u>5</u>	
Thermometer ID: 318	<u> </u>
Radiological (µCi):	
COMMENTS (Required for all NO responses above and any sample	e non-conformance):
Bottley recid unp, will need suffuric a	david
i i i i i i i i i i i i i i i i i i i	un all.
	Rev. 4/29/2019


The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at <u>www.alsglobal.com</u>.

CCME F2-F4 HYDROCARBON DISTRIBUTION REPORT

The CCME F2-F4 Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products and four n-alkane hydrocarbon marker compounds. Retention times may vary between samples, but general patterns and distributions will remain similar.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the scale at left.

Note: This chromatogram was produced using GC conditions that are specific to ALS Canada CCME F2-F4 method. Refer to the ALS Canada CCME F2-F4 Hydrocarbon Library for a collection of chromatograms from common reference samples (fuels, oils, etc.). The HDR library can be found at <u>www.alsglobal.com</u>.

	Environmental	Canada Tol	ody (COC) / quest Form Free: 1 800 66	58 9878		2403662-C				 	Ì	. •±	P	'age 'f	in of i			الم ه may ap	1	291 <u>1</u>
Report To	Contact and company name below will appe	ar on the final report	Select Report Fo					Baa	ular (R		Carrow		-	pm - busin				s may ap	piyr	~
Company: Contact:	Kevin Beeching		· ·	QC) Report with Rep		EDD (DIGITAL)	â	-		_	Standa								مشاها مد اب	
Phone:	Kevin Beeching			ults to Criteria on Report -		5 NC	RTY B Day	1 .	[P4-20 [P3-25								בי בח		•	40 <u>(</u>
	Company address below will appear on the fina	l report	Select Distributio	c-h			PRIC (Bushes	1 -	[P2-50]	s ۳ (۱	ame Day .aborato	, weekei ry opęnii	ng fees	atutory may ap	noliday (piy)]	(E2 -2009 m [.] 1 101	жти. <u>*ы:-О</u>	广
Street:	440 Dovercour	-	Email 1 or Fax	Kevin b	eechino	r @ wood	1.1	Deer	nd Time R	equired	for all E6	P TATs:					yy hh:mr	m m-l-	18. NO 1	t i
City/Province:	INDA, MB		Email 2	ela ceril	1.@ww	delc con	For tes	ts that car	not be pe	rformed a	ccording t	o the service	level selec	ted, you will	be contact	3d.		A S COL Y	stration. <u>Anna</u>	1
Postal Code:	0.10.		Email 3 📊	bo. hub	erdoan	(2 was	1210	101	n					s Reque		1992) 2012 - 1992				1
Invoice To	Same as Report To	, NO	0	Invoice Dis	stribution				L	ndicate Fi	iltered (F)	, Preserved	(P) or Filte	red and Pre	served (F/	P) below	· -		7	1.1
	Copy of Invoice with Report	NO	Select Invoice D	istribution: E	MAIL 📋 MAIL	FAX	18	5	a								.218	2 - 1 (<i>a t</i>	-	Instructions)
Company:	· · · · · · · · · · · · · · · · · · ·		Email 1 or Fax	• • • • •		-	E E	7	2			म		· · ·			98 Y 21	ः ि	5 "	- E
Contact:			Email 2				CONTAIN	URAN	Halid	-10	3				· ???	· · · · · · · · · · · · · · · · · · ·	2.2	ૢૼૢૺ	ן: ב	linst
	Project Information		(oil and Gas Require	d Fields (client u	ise)	14	2	<u>ا ا</u> تک	212	ē	I							z	ह
ALS Account # / (Quote #:	~~~~	AFE/Cost Center:	• • •	PO#		17	5		<u> </u>	-							17	5	Spectal
Job #: VV	(18979		Major/Minor Code:		Routing Code:		18	14	24	21	ز									8
PO/AFE:			Requisitioner:				ιш	4	0	чfg	Pj	 							2	, ĝ
LSD:			Location:	-			ō	4	百	≤[٣	7	5							4	ង្គី
ALS Lab Work	k Order # (lab use only):		ALS Contact:		Sampler:		NUMBER	Z Z			ĨĬ	3							AMP	SUSPECTED HAZARD (see
ALS Sample # (lab use only)	Sample Identification (This description will a			Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	NN	Diax	Х Ш С	NG	E d	Ş							4 N	SUSPE
	TH19-01			08 Jan 20	13:20	GW	T	X	X	$\overline{\mathbf{x}}$	JX	X								
		Ŧ		09 :Tan 20		Gw		X	$\dot{\mathbf{X}}$	\overline{X}	$\langle \mathbf{X} \rangle$	X					·			
							<u> </u>			_		<u> </u>		┝╌╺┿		<u> </u>	┝┝-		$ \rightarrow$	
· · · · ·				<u> </u>	ļ						_			+		'	\vdash			
					_															
								- 1									1			
		· · · · · · · · · · · · · · · · · · ·		1																
		·····			<u> </u>				_		+					+		-	-+	
2	· _ ·			<u> </u>	}		-	\vdash				┝┈┼╴		┼─┿		+'	<u>├</u> -	-+		
				-			<u> </u>	┟╼╍╼╇				+	_	+	-+		\vdash	+		<u> </u>
						_											$ \square \square$			
					<u> </u>															
	· · · · · · · · · · · · · · · · · · ·																			
		Special Instructions / S	Specify Criteria to	add on report by clici	king on the drop-c	lown list below		<u></u>			SAMPI	E COND	TION AS	RECEN	/ED (lat	use on	iy)			
	Water (DW) Samples ¹ (client use)		(ele	ctronic COC only)			Froze	en '				SIF Obs	ervation	s Y	'es		М	10		
	from a Regulated DW System? S NO	* labelled	as Ta	p-Shop		itainers			ted [es 🗖	Custody	r seal inta	act	Yes		N	10		ןנ
	man consumption/ use?	-> TH19-01 -	· limited	sample s	ize for	Diokans					EMPERA	TURES °C		1	EIN/		R TEMPER	ATURES °C	<u> </u>	+
	s	+ Furans	*	1			\vdash	2								1			i	
	SHIPMENT RELEASE (client use)			INITIAL SHIPMEN	T RECEPTION "	ah una anti-i	110	<u>-</u>				FINAL	HIDIAC	I NT RECE	OTION		onha		<u> </u>	
Released by:	Date:	Time:	Received by:		Date:		Time:		Receive	dyby:			Dat		FIUN	140 050	(iny)	Time:		
A. Ceri	AGE FOR ALS LOCATIONS AND SAMPLING INF	2020 3:20	M	LtL_			132		Receive	~^									JUNE 20	918 FRONT

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

. م

...

1 A 1 - - -

999 Redonda Street, Rural Municipality of Springfield

Limitations

WX18979 | May 2020

LIMITATIONS

- 1. The work performed in the preparation of this report and the conclusions presented are subject to the following:
 - (a) The Standard Terms and Conditions which form a part of our Professional Services Contract;
 - (b) The Scope of Services;
 - (c) Time and Budgetary limitations as described in our Contract; and
 - (d) The Limitations stated herein.
- 2. No other warranties or representations, either expressed or implied, are made as to the professional services provided under the terms of our Contract, or the conclusions presented.
- 3. The conclusions presented in this report were based, in part, on visual observations of the Site and attendant structures. Our conclusions cannot and are not extended to include those portions of the Site or structures, which are not reasonably available, in Wood's opinion, for direct observation.
- 4. The environmental conditions at the Site were assessed, within the limitations set out above, having due regard for applicable environmental regulations as of the date of the inspection. A review of compliance by past owners or occupants of the Site with any applicable local, provincial or federal by-laws, orders-in-council, legislative enactments and regulations was not performed.
- 5. The Site history research included obtaining information from third parties and employees or agents of the owner. No attempt has been made to verify the accuracy of any information provided, unless specifically noted in our report.
- 6. Where testing was performed, it was carried out in accordance with the terms of our contract providing for testing. Other substances, or different quantities of substances testing for, may be present on Site and may be revealed by different or other testing not provided for in our contract.
- 7. Because of the limitations referred to above, different environmental conditions from those stated in our report may exist. Should such different conditions be encountered, Wood must be notified in order that it may determine if modifications to the conclusions in the report are necessary.
- 8. The utilization of Wood's services during the implementation of any remedial measures will allow Wood to observe compliance with the conclusions and recommendations contained in the report. Wood's involvement will also allow for changes to be made as necessary to suit field conditions as they are encountered.
- 9. This report is for the sole use of the party to whom it is addressed unless expressly stated otherwise in the report or contract. Any use which any third party makes of the report, in whole or the part, or any reliance thereon or decisions made based on any information or conclusions in the report is the sole responsibility of such third party. Wood accepts no responsibility whatsoever for damages or loss of any nature or kind suffered by any such third party as a result of actions taken or not taken or decisions made in reliance on the report or anything set out therein.
- 10. This report is not to be given over to any third party for any purpose whatsoever without the written permission of Wood.

Wood Environment & Infrastructure Solutions, a Division of Wood Canada Limited

Attachment 6 Corporate ERP

TERVITA CORE EMERGENCY RESPONSE PLAN

Tervita 24-Hour Emergency Number:	1-800-327-7455
OGC 24-Hour Incident Reporting Line / Emergency Management BC (EMBC):	1-800-663-3456
AER 24-Hour Emergency Response Line:	1-800-222-6514
SaskER 24-Hour Emergency Response Line:	1-844-764-3637

Date: March 7, 2019

CORE EMERGENCY RESPONSE PLAN

I have received a copy of the Tervita Core Emergency Response Plan. I understand that it is my responsibility to become familiar with the guidelines and procedures outlined in this plan.

Name (Please Print)	
Company/Organization	
Position	
Date	
Signature	
Plan No.	

Mail this completed form to:

Mailing Address: Tervita Corporation 1600, 140 - 10 Avenue S.E. Calgary, AB T2G 0R1 M: 403-233-7565 F: 403-261-5612

Attention: Health and Safety Department

CORE EMERGENCY RESPONSE PLAN

I have received a copy of the Tervita Core Emergency Response Plan. In reviewing the plan I have noticed the following revisions would be beneficial.

Name/Position/Date

Details of requested Revisions

Mail this completed form to:

Mailing Address:

Tervita Corporation 1600, 140 - 10 Avenue S.E. Calgary, AB T2G 0R1 M: 403-233-7565 F: 403-261-5612

Attention: Health and Safety Department

Table of Contents

Administration

Tervita Emergency Response Program Coordinator					
Contact Name	Email Address				
Paul Finnemore	403-301-4623	pfinnemore@tervita.com			

Acknowledgement and Receipt Form

Table of Contents

Revision Record

Distribution List

Core Sections

Section 1.0	Introduction
Section 2.0	Responder Safety
Section 3.0	Incident Command System (ICS) Organizational Chart
Section 4.0	Response Team Duties
Section 5.0	Ignition
Section 6.0	Incident-Specific Response Actions
Section 7.0	Corporate Telephone Directory
Section 8.0	Forms
Section 9.0	Safety Equipment
Appendix 1	Incident Command System (ICS) Overview
Appendix 2	Communications
Appendix 3	Glossary and Acronyms

Provincial and/or Regulatory Sections

Alberta

British Columbia

Saskatchewan

Site-Specific Supplemental Sections

See Distribution List

Revision Record

To ensure this copy of the plan remains current, record any revisions you receive on the following record form.

Date	Annual Update (Y/N)	Revision # / Update	Details
03-09-2016	-	-	Section 7.0 Incident Support Team (IST) Contact List - Supply Unit
04-05-2016	-	-	Section 7.0 Incident Support Team (IST) Contact List - Logistics Section
04-28-2016		-	Section 6.7 and 6.8 - Firefighting Responsibilities clarified (large fires)
05-31-2016	-	-	Section 7.0 Incident Support Team (IST) Contact List - Command Staff, Planning, Logistics Sections
07-27-2016	-	-	Section 7.0 Incident Support Team (IST) Contact List - Logistics, Finance/Administration Sections
08-31-2016	-	-	Section 7.0 Alternate Emergency Operations Centre (EOC) - updated location address
June 2017	Y	Rev. 1	Update to Section 1.1 - Corporate Health, Safety and Environmental Policy Updates to Section 6.0 - Incident-Specific Response Actions Updates to Section 7.0 – Corporate Telephone Directory Alberta Section – AER First Call Communication Form
August 9, 2018	Y	Rev. 2	Update to Section 1.1 - Corporate Health, Safety and Environmental Policy Updates to Section 7.0 – Corporate Telephone Directory
August 24, 2018	Ν	Rev. 3	Update Distribution List Update Tervita 24 hr Number throughout document Update Appendix 2 – Communications Plan
September 18, 2018	Ν	Rev. 4	Updates to Section 7.0 – Corporate Telephone Directory Update revision date in footer throughout the entire document.
March 7, 2019	Y	Rev. 5	Annual Update: Added Response Goals in Section 1.4 Added Recall of Evacuees in Section 4.9 Updates to Section 6.2 - 24-Hr Emergency Number Personnel Response Actions Updates to Section 7.0 – Corporate Telephone Directory, Emergency Calldown Protocol, Incident Support Team (IST) Updates to Provincial/Regulatory Government Sections Updated revision date in footer throughout the entire document.

Date	Annual Update (Y/N)	Revision # / Update	Details
July 26, 2019	Ν	Rev. 6	Revision 6: Updated Section 7.5 Incident Support Team contacts for IST Liaison Officer, Alternate Operations Section Head, Logistics Section Head, and Supply Unit Leader.

Distribution List

Plan No.	Attention	Location	Site-Specific Supplemental Section (s)			
Governme	ent					
G-1	BC Oil & Gas Commission	Fort St. John, BC	Yes, Distributed in separate binder(s)			
Tervita In	ternal					
C-1	Emergency Operations Centre (EOC)	Calgary, AB	Yes, Distributed in separate binder(s)			
C-2	Emergency Operations Centre (EOC)	Calgary, AB	Yes, Distributed in separate binder(s)			
F-1	Incident Command Post (ICP)	Fort St. John, BC	Yes, Distributed in separate binder(s)			
F-2	Incident Command Post (ICP)	Fort St. John, BC	Yes, Distributed in separate binder(s)			
ERP Provi	der					
B-1	Behr Integrated Solutions Inc.	Calgary, AB	Yes, Distributed in separate binder(s)			

The Tervita Corporate ERP is also located electronically within the Tervita HSE Management System (HSE MS) and is available to all Tervita Responders.

CORE EMERGENCY RESPONSE PLAN SECTION 1.0 - INTRODUCTION CONTENTS

1.1	Corporate Health, Safety and Environmental Policy	1
1.2	Corporate Emergency Response Policy	2
1.3	Scope of This Emergency Response Plan	2
1.4	Key Elements of An Emergency Response	3
1.5	Initial On-Site Actions – 7 Steps	5
1.6	Response Processes	6
1.7	Incident Facilities	8
1.8	Detection of an Incident	9
1.9	Investigation of Public Complaints And Inquiries1	0
1.10	Spill Cooperative Response Plans1	0
1.11	Emergency Preparedness Standards (Updates, Training And Exercises)1	0
1.12	Facility Modifications1	1

This emergency response plan can be utilized by Tervita and all of its affiliated companies.

1.0 INTRODUCTION

1.1 CORPORATE HEALTH, SAFETY AND ENVIRONMENTAL POLICY

OUR HEALTH, SAFETY AND ENVIRONMENTAL POLICY

Tervita is committed to delivering the highest standards of health, safety and environmental performance. We believe that Safety Matters in All that we do and that no one should suffer harm at work. This policy statement defines our commitments to our employees, clients, partners and shareholders.

We will deliver our operations and services in ways to:

- Protect the health and safety of all people impacted by our work;
- Prevent incidents and injuries so that everyone can return home unharmed;
- · Prevent pollution and minimize our impact on the environment; and
- Responsibly manage all aspects of our business to fulfill compliance obligations.

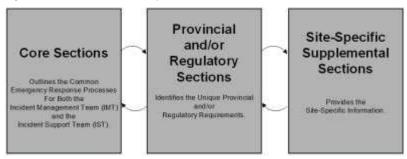
We will achieve this through:

- Leaders at all levels placing health, safety and environment at the top of their agenda;
- · Clear objectives set to measure our performance and support continuous improvement;
- Tervita management and supervisory levels providing appropriate resources, support and training to ensure safe work and accomplish health, safety and environmental objectives;
- Tervita employees being responsible for identifying hazards, determining risk, and being involved in the risk control process;
- Personnel having the authority and responsibility to refuse and stop work without repercussion when an unsafe situation is identified;
- Transparent investigations and open communications on health, safety and the environment to increase awareness;
- Operational audits to support compliance with legislation and our policy, standards, objectives and targets;
- · Direction of those who work with us to meet our standards; and
- Tervita employees being responsible for adhering to our Health, Safety and Environment Management System.

JOHN COOPER

1.2 CORPORATE EMERGENCY RESPONSE POLICY

Tervita Corporation's (Tervita's) Emergency Response Policy is to initiate immediate emergency response thus minimizing public and environmental exposure and protecting Tervita employees, contract personnel, subsidiaries and assets. In addition, emergency response is intended to limit financial loss and maintain community relations in the event of an incident affecting field operations, district offices and/or our head office. In support of this policy, the following guidelines are identified:


- Personnel and public safety are the primary concerns.
- Notification of an event to key personnel and/or relevant third parties is mandatory.
- Containment of the event is critical to limit injury and damages.
- Reactive responsibilities will be assigned prior to the event occurring, wherever possible.
- External communications will be channeled through the appropriate Tervita spokesperson.
- It is the responsibility of all employees to report any errors or omissions in this emergency response plan to the HSE Department. Effective response is dependent upon all aspects of this emergency response plan being current.
- All personnel under contract operating in Tervita or subsidiary field locations are to be aware of this emergency response plan and understand their responsibilities.

1.3 SCOPE OF THIS EMERGENCY RESPONSE PLAN

This emergency response plan:

- Outlines the common processes to be followed when managing an incident involving properties operated and/or owned by Tervita.
- Identifies the unique provincial and/or regulatory requirements depending upon the location of the incident (the Provincial/Regulatory Sections).
- May have site-specific information for area operations.

Together the Core Sections, a Provincial/Regulatory Section, and a Site-Specific Supplemental Section enable Tervita to carry out an effective response. Specialized emergency response plans, developed by organizations for specific functions can support a response. These plans are called "Emergency Response Assistance Plans (ERAPs)" and may be contained in separate documents.

1.4 KEY ELEMENTS OF AN EMERGENCY RESPONSE

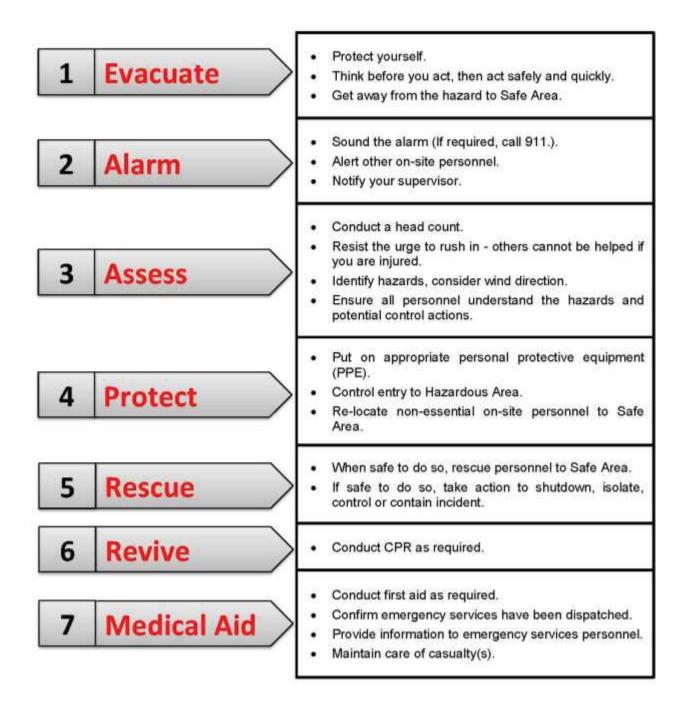
Response Goals

Response Goals should be used to determine priorities in responding to an incident. They are as follows:

- 1. Safety and health of all responders and the public
- 2. Save lives
- 3. Reduce suffering
- 4. Protect public health
- 5. Protect critical infrastructure
- 6. Protect property
- 7. Protect the environment
- 8. Reduce economic and social losses.

The following key elements of an emergency response need to be addressed in a timely manner:

- The safety of Tervita employees, responders and contractors is addressed.
- An effective, internationally recognised, emergency command structure [the Incident Command System (ICS)] is established.
- Public protection is maintained through notification (with voluntary evacuation), evacuation, Shelter-In-Place, and/or ignition.
- Government agencies and local authorities are notified in a timely manner. As required, liaison with these government agencies and local authorities will occur throughout the life of the incident.
- Control and containment efforts are initiated.
- The combined resources (manpower and equipment) of Tervita, mutual aid partners, the government and other external services are effectively utilized.
- Environmental impacts (including air/water/soil quality) are monitored.
- Effective communication is maintained with all responders (Tervita and non-Tervita).
- Factual information is provided to the media, the public, Tervita personnel not involved in the response and other stakeholders in a timely manner.
- Records and evidence are preserved.
- This emergency response plan divides the "boots-on-the-ground" tactical operations into two distinct response areas (on-site response and off-site response).


- On-site response focuses on response activities in the immediate vicinity of the incident and is focused on on-site responder safety and control and containment of the hazard.
- Off-site response focuses on response activities in a planning, response zone or beyond and is focused on off-site responder safety, public protection and environmental protection.

To accomplish these goals, Tervita responders must be familiar with this emergency response plan and have an understanding of how response activities will be carried out. Tervita management endorses the following:

- Implementation of reasonable precautions and appropriate mitigative safeguards to minimize the hazard from incidents.
- Adequate emergency response training for Tervita responders.
- Maintenance of this emergency response plan.

1.5 INITIAL ON-SITE ACTIONS – 7 STEPS

Initial On-Site Actions - 7 Steps

1.6 RESPONSE PROCESSES

The following two diagrams depict a typical Tervita response process. The first response process guides the Tervita Incident Management Team (IMT) and the second response process guides the Tervita Incident Support Team (IST).

Incident Management Team (IMT) **Response Process** Prepare Strategies Prioritize Set Objectives (The How) (The What) Critical Issues and Tactics (The Who) Incident Prepare Incident Management Team Action Plan (IAP) Classify Incident (Incident Typing) (Based on (IMT)**Operational Periods**) **Response Process Execute Incident** Perform Evaluate Response Action Plan (IAP) [Modify Incident **Complexity Analysis** [Regular Updates Between [Mobilize Incident Action Plan (IAP) Incident Management Team as Required] Management Team (IMT)] (IMT) and Incident Support Team (IST)] **Clarify Problem** (Assess Hazards/Risks) Complete the form: "Prompting Questions in Assessing an Incident" Managing an Incident by Objectives Initial Response GET BIG FAST! (Incident Investigation or Declared Incident) The following forms help compile an effective written Incident Action Plan (IAP) for the first Operational Period: Notification (Initiate the Initial On-site Incident Objectives form (ICS Form 202) Actions - 7 Steps) Incident Briefing form (ICS Form 201) Incident Action Plan Safety and Risk . Analysis Form (ICS Form 215A) Incident

Primary Objectives: Responder Safety/Public Protection/Control and Containment

Incident Support Team (IST) Response Process

Mobilize Incident Support Team (IST)	Evaluate Potential Impact to Company	Prioritize Critical Company Issues
Receive ICS Forms 202, 201 and 215A [From Incident Management Team (IMT)]	Incident Support Team (IST) Response Process	Regular Updates Between Incident Management Team (IMT) and Incident Support Team (IST)
Confirm Incident Classification (Incident Typing)	Evaluate Response	Advise and Support Incident Management Team (IMT)
Determine Advice and Support Requirements [From Incident Management Team (IMT)] Clarify Problem (Assess Hazards/Risks) Review the form: "Prompting Questions in Assessing an Incident" [From Incident Management Team (IMT)] Notification [From Incident Management Team (IMT)]	by Ob GET BI The following forms help co	or the first Operational Period: rm (ICS Form 202) (ICS Form 201) afety and Risk

Primary Objectives: Responder Safety/Public Protection/Control and Containment

1.7 INCIDENT FACILITIES

1. **Incident Command Post (ICP)**: The location at which the primary command functions are executed. Tervita's Incident Commander establishes the Incident Command Post (ICP) at a suitable, safe location outside the Emergency Planning Zone (EPZ).

The Incident Command Post (ICP) must have the appropriate equipment, including good communication equipment to manage the incident. **Refer to the appropriate Site-Specific Supplemental Section for the location(s) of the potential pre-assigned Incident Command Post (ICP).**

During a Unified Command response, Tervita may offer its Incident Command Post (ICP) as the location for Unified Command.

 On-site Command Post (OSCP): On-site responder safety and control and containment activities are directed from a specialized facility called the On-site Command Post (OSCP). Pre-assigned On-site Command Posts (OSCPs) have not been determined.

The On-site Command Post (OSCP) may be established at a suitable, safe location inside the Emergency Planning Zone (EPZ) and could be as simple as a vehicle equipped with a cellular telephone.

3. **Remote Command Post (RCP):** Tervita may establish a specialized facility called the Remote Command Post (RCP), outside the Emergency Planning Zone (EPZ), to assist with supervising public protection measures or environmental protection activities.

If established, the Remote Command Post (RCP) is established at a suitable, safe location in the vicinity of the incident. Refer to the appropriate Site-Specific Supplemental Section for the location(s) of the potential pre-assigned Remote Command Post (RCP).

Emergency Operations Centre (EOC): A designated facility established by Tervita to support incident command. The Incident Director leads Tervita's Incident Support Team (IST) from this Emergency Operations Centre (EOC). As required, Tervita's Incident Support Team (IST) provides advice and support to Tervita's Incident Management Team (IMT). As required, Tervita's Incident Support Team (IST) notifies and/or obtains advice and support from Tervita Senior Management.

Refer to Section 7.0 for the location(s) of the pre-assigned Tervita Emergency Operations Centres (EOC).

4. **Regional Emergency Operations Centre (REOC):** A specialized operations centre established in a suitable location, outside the Emergency Planning Zone (EPZ), to manage the larger aspects of the incident and manned jointly by government and industry staff.

5. <u>Reception Centre</u>: Tervita Reception Centre personnel establish a specialized facility called the Reception Centre outside the Emergency Planning Zone (EPZ) at a suitable, safe location in the vicinity of the incident.

Tervita Reception Centre personnel address the concerns and immediate needs of the evacuated public. Arrangements for alternative accommodation, reimbursement of daily expenses and temporary care of evacuated property are managed through the Reception Centre. Evacuees will **not** be housed at the Reception Centre. **Refer to the appropriate Site-Specific Supplemental Section for the location(s) of the pre-assigned Reception Centre.**

6. **Staging Area:** As required, Tervita will establish a Staging Area. The Staging Area is a control point for regulating the flow of available resources (equipment and manpower) to and from the incident site and the planning and response zones.

If established, the Staging Area will be located at a suitable, safe location, outside the Emergency Planning Zone (EPZ), but within the vicinity of the incident. **Pre-assigned Staging Areas have not been determined**. In some cases, the Staging Area may be co-located with other incident facilities.

- 7. <u>Muster Area</u>: A safe location set up at an incident where on-site personnel can meet for a head count and be given further instructions and/or assigned responsibilities.
- 8. <u>Municipal Emergency Operations Centre (MEOC)</u>: Activated by the local authority, the Municipal Emergency Operations Centre (MEOC) supports the local authority's emergency response.
- Provincial Operations Centre (POC): The provincial government may establish this centre if the incident is likely to significantly impact the public. The Provincial Operations Centre (POC) may be activated to support the activities of the Regional Emergency Operations Centre (REOC) and/or the local authority's Municipal Emergency Operations Centre (MEOC).

The Provincial Operations Centre (POC) has the capability of accessing provincial, federal and other resources (manpower and equipment) to support the emergency response. The Provincial Operations Centre (POC) may also keep elected officials informed.

1.8 DETECTION OF AN INCIDENT

Tervita personnel may initially become aware of an incident from a wide range of detection methods and sources.

Detection methods may include:

- Supervisory Control and Data Acquisition (SCADA) systems
- Pressure detection systems
- Flow monitors
- Air monitors
- Visual observation
- Audible observation

• Odour

The following sources may also advise Tervita about an incident:

- Tervita field operators
- Contract personnel
- Other industrial operators
- Government agencies
- Public
- Media

1.9 INVESTIGATION OF PUBLIC COMPLAINTS AND INQUIRIES

Sources outside of Tervita may see or hear a problem before a company representative does. Any reports, concerns or complaints raised by sources outside of Tervita must be promptly investigated.

Unless conditions indicate otherwise, an odour complaint **is not** declared an emergency until the incident has been investigated and verified. However, it is essential that Tervita respond thoroughly and professionally.

A follow-up call **must** be made to inform the caller about the results of any investigation.

1.10 SPILL COOPERATIVE RESPONSE PLANS

Tervita is exempt from the requirement to develop its own spill response plan, purchase spill cleanup equipment and conduct an annual exercise if it is an active member in good standing of an oil spill cooperative.

1.11 EMERGENCY PREPAREDNESS STANDARDS

(UPDATES, TRAINING AND EXERCISES)

Tervita's HSE Department ensures this plan is maintained. Information in this plan is to be verified and updated as required by regulation. The names and telephone numbers in this plan must be kept current for the plan to be effective.

Emergency Response Plan Review Meetings and Response Exercises: Emergency preparedness will be reviewed regularly with Tervita personnel and contract operators. As a minimum, Emergency Response Plan Review Meetings will be conducted as required by regulation.

Response exercises help company responders practice and measure how knowledgeable they are in emergency response. Refer to the Provincial/Regulatory Section for the procedure, for response exercise and advance notification of exercises requirements.

Response exercises may only involve internal personnel or may involve mutual aid partners and government agencies. These exercises allow responders to practice their roles and identify opportunities to improve emergency preparedness. As a minimum, response exercises will be conducted as required by regulation. Exercises may include any of the following types:

- Actual Emergency: When adequately evaluated and documented, the response to an actual emergency can serve as effective training.
- **Orientation Exercise:** Used to introduce participants to, or refresh them on emergency response plans, roles and responsibilities, and processes and is conducted through the use of lectures, discussions, presentations, or talking through the various scenarios and their required actions.
- **Drills:** Test a single emergency response function and often involve actual field response. Their effectiveness lies in focusing on a single or relatively limited part of the response system in order to evaluate and improve it.
- **Table-top Exercise:** These exercises are conducted in a classroom setting in a stress-free environment. Participants discuss the responses to various prepared scenarios. Does not involve the deployment or actual use of resources (manpower and equipment).
- **Functional Exercise:** Is a simulation of an incident that includes a description of the situation, a timed sequence of messages, and communication between players and a simulation group. Participants practice coordinated, effective response in a time-pressured, realistic yet simulated emergency.
- **Communication Exercise:** During a communication exercise, responders play their roles from assigned locations using the communication equipment that would usually be deployed in a real incident.
- **Full-scale (Major) Exercise:** These exercises validate the major aspects of the company's emergency preparedness program and involve all levels of the organization and government agencies. As a minimum, full-scale exercises will be conducted as required by regulation and involves the deployment or actual use of resources (manpower and equipment).

NOTE: Tervita will document all Emergency Response Plan Review Meetings and response exercises.

1.12 FACILITY MODIFICATIONS

Before any major modification is brought on-stream, relevant data about the modified facility must be added to the appropriate Site-Specific Supplemental Section. If required by regulation, Tervita **will** submit the modified site-specific information to the regulator for approval, prior to bringing the facility on-stream.

An Emergency Response Plan Review Meeting for Tervita personnel and contract operators will be held before major facility modifications are commissioned by the company. As required by regulation, government agencies will be invited to attend the Emergency Response Plan Review Meeting.

CORE EMERGENCY RESPONSE PLAN SECTION 2.0 - RESPONDER SAFETY CONTENTS

2.1	Site Hazards1
2.2	On-site Work Areas2
2.3	Rest Periods 4
2.4	Critical Incident Stress Debriefing (CISD)

This emergency response plan can be utilized by Tervita and all of its affiliated companies.

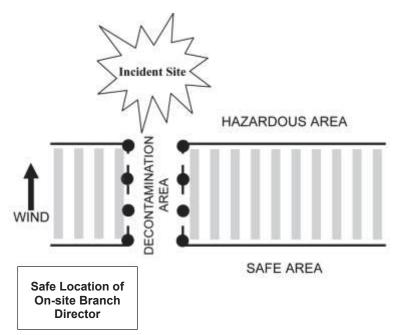
2.0 RESPONDER SAFETY

2.1 SITE HAZARDS

Response personnel must stay out of the Hazardous Area until the hazards are identified and assessed. All responders must evaluate potential site hazards including ignition sources or vapours gathering in low-lying areas such as ditches, trenches and forested areas. The nature of a hazard will influence the responses. Therefore, the following characteristics about the hazard must be considered:

- The quantity and type of product involved.
- The potential for the situation to escalate.
- The location of the incident, the time of day and the weather conditions.
- Actual and perceived hazard to responders, the public and the environment.
- The number of responders and their training.
- The availability of response equipment.
- The availability of external support (e.g. ambulances, police, fire fighters, mutual aid).

Responders must approach an incident site that may have gases or explosive vapours from an upwind or crosswind direction. They should inspect the site from a distance (using binoculars if possible) if hazards have not been assessed. When on-site, responders must take the following precautions:


- Identify safe escape routes away from Hazardous Area.
- Continue to assess the related hazards (e.g. toxic vapours, fire or explosion hazards).
- Protect themselves and others before initiating control and containment operations.
- Remember, personal protective equipment (PPE) only reduces; but does not eliminate the risk from harmful substances.
- Do not allow anyone, including first responders such as police, fire fighters or ambulance attendants to enter the Hazardous Area unless they are escorted, properly trained, equipped with personal protective equipment (PPE) and it has been approved by the Incident Commander.
- Avoid extinguishing an ignited hydrocarbon release if the supply cannot be stopped.
- Only attempt fire control on small fires. Extensive fires or uncontrolled facility fires must be dealt with by external firefighting professionals. Responders must not attempt to battle a fire without adequate firefighting equipment, training and backup personnel.

- Advise fire authorities when a Tervita facility is threatened by an external fire. Fire authorities should also be made aware of dangerous products or flammable hazards at the facility, such as pressurized LPG vessels, chemical and fuel storage.
- Consider an outside expert when necessary. Well control, for example, is a speciality requiring specific experience, equipment and procedures.

2.2 ON-SITE WORK AREAS

Tervita should separate the incident site into three distinct areas to clearly identify the high-risk areas and to reduce the hazards to the on-site responders. These three areas are defined as the "Safe Area", the "Hazardous Area" and the "Decontamination Area".

THESE THREE ON-SITE WORK AREAS MUST NOT BE CONFUSED WITH A PLANNING OR RESPONSE ZONE. ON-SITE WORK AREAS ARE PERTINENT TO ON-SITE RESPONDERS ONLY.

Safe Area

The Safe Area is an area verified by Tervita to be safe for responders. The On-site Command Post (OSCP) is located in the Safe Area. The Safe Area must be continually monitored and evaluated to confirm its safety to responders. If there is any concern about the area's safety to responders, Tervita will relocate the On-site Command Post (OSCP) to an area proven to be safe.

Hazardous Area

Extreme caution and planning must be undertaken when entering the Hazardous Area. Access to and from the Hazardous Area will be controlled. Only personnel with appropriate personal protective equipment (PPE), training, accreditation, an understanding of the specific response and control procedures, and approved by the Incident Commander will be allowed into the Hazardous Area. An example of this strategy is confined space entry and rescue. Prior to entry into the Hazardous Area, all personnel should fully understand the objectives and strategies to be employed, the method of on-site responder communication and the rescue plan.

The following guidelines help Tervita determine the Hazardous Area. An area is considered hazardous if any of the following conditions exist:

- Combustible gas reading of 10% LEL or greater.
- H₂S gas readings at or above 10 ppm.
- SO₂ readings of 5 ppm or greater for 15 minutes.
- Oxygen content of less than 19.5% or greater than 22%.
- Presence of toxic concentrations of organic and inorganic vapours/gases and liquids. [Consult Safety Data Sheets (SDS) for toxicity data.]
- An area Tervita deems to be hazardous, such as the area surrounding a fire or spill.

Tervita will consider the following on-site conditions when determining the size of the Hazardous Area:

- The location of access routes, power lines, pipelines, fire and other explosion hazards.
- Areas where vapours are likely to accumulate such as downwind areas, low areas, confined spaces.
- Scene stability (e.g. steep slopes, overhanging banks, unstable soil, thin ice).
- Weather conditions.
- Properties and evacuation data for the product involved.
- SDS sheets. (May not be included in this emergency response plan.)

Decontamination Area

Personnel responding to hazardous substance emergencies may become contaminated in several ways:

- Contacting vapours, gases, mists or particulate in the air.
- Being splashed by materials while sampling or opening a container.
- Walking through puddles of liquids or on contaminated soil.
- Using contaminated instruments or equipment.

Decontamination is the complete or partial removal or neutralization of the harmful contamination chemicals. Some equipment will not withstand a proper decontamination process and therefore must be destroyed. Tervita must determine whether response clothing, instruments and equipment should be decontaminated or destroyed.

The Decontamination Area is usually set up in response to a hazardous material spill and when decontamination of personnel and equipment is required. The Decontamination Area buffers the Hazardous Area and the Safe Area. Decontamination Areas should be set up in areas that are not affected by the onsite hazard. Any contaminated personnel and equipment leaving the Hazardous Area must be decontaminated in the Decontamination Area before continuing to the Safe Area.

Equipment, solutions and procedures required for decontamination depend on the type and degree of contamination. All hazardous waste must be disposed of according to applicable waste management regulations.

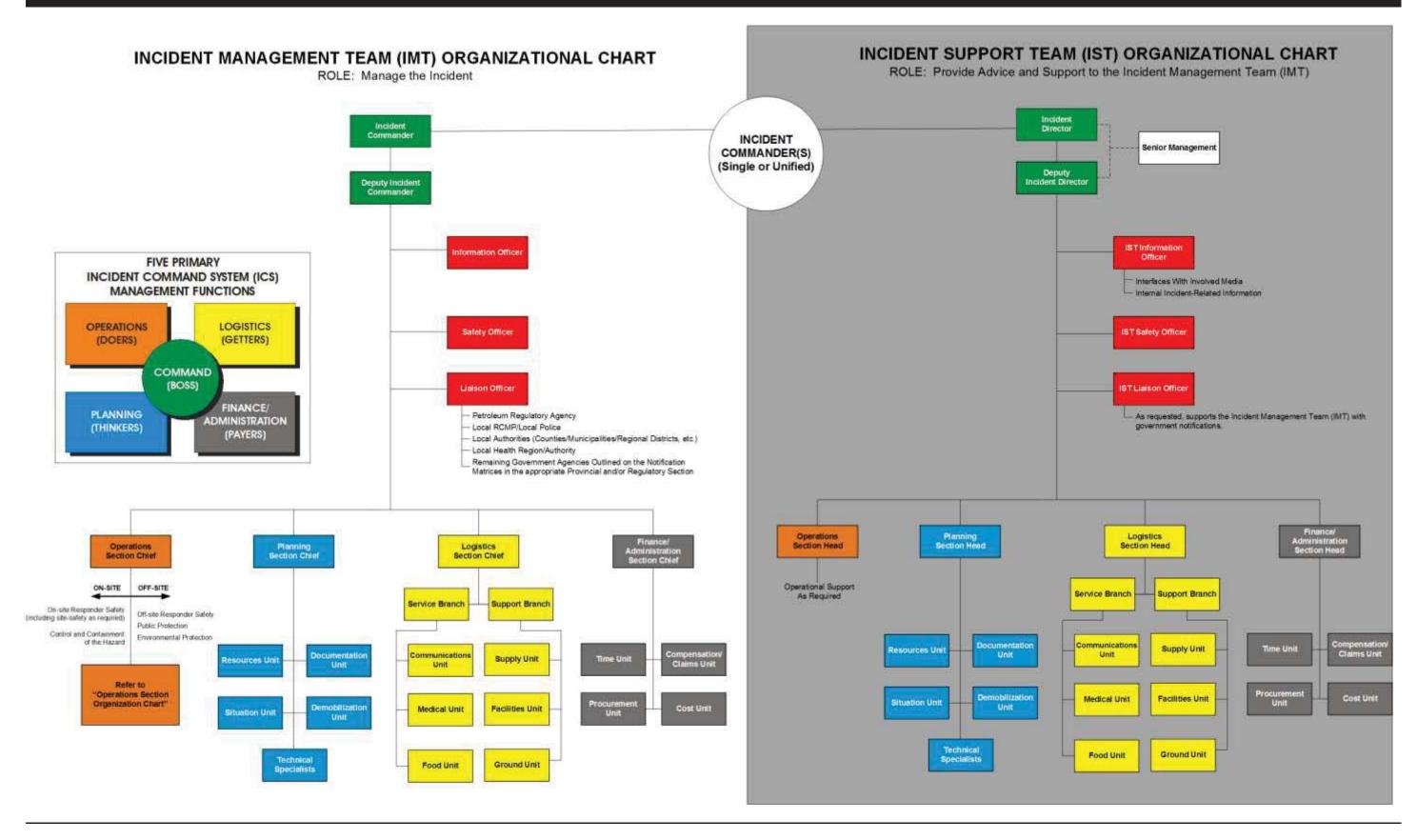
2.3 REST PERIODS

Responders are under a great deal of stress. Fifteen-minute rest periods should be scheduled every two hours for all responders. If possible, they should be provided with a sheltered place to sit or lie down, nutritious food and potable water or juices.

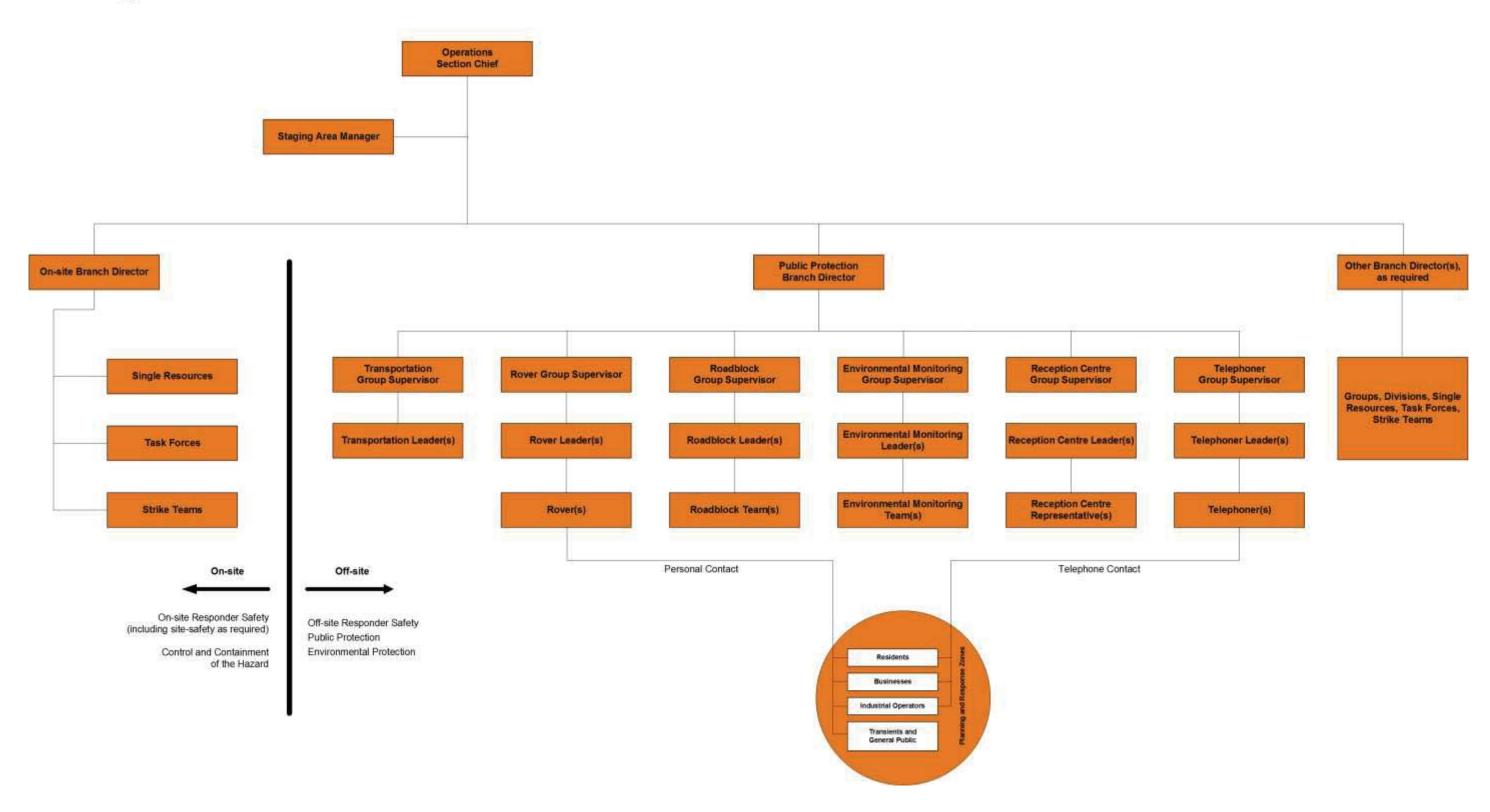
2.4 CRITICAL INCIDENT STRESS DEBRIEFING (CISD)

If necessary, Tervita will dispatch trained personnel to meet with the responders, preferably within 24 to 48 hours to provide support and reassurance to those affected by an incident.

CORE EMERGENCY RESPONSE PLAN


SECTION 3.0 - INCIDENT COMMAND SYSTEM (ICS) ORGANIZATIONAL CHART

CONTENTS


3.1 Incident Command System (ICS) Organizational Chart......1

This emergency response plan can be utilized by Tervita and all of its affiliated companies.

3.1 INCIDENT COMMAND SYSTEM (ICS) ORGANIZATIONAL CHART

Operations Section Organization Chart

CORE EMERGENCY RESPONSE PLAN SECTION 4.0 – RESPONSE TEAM DUTIES

CONTENTS

4.1	On-duty Incident Director	1
	TERVITA INCIDENT MANAGEMENT TEAM (IMT)	
4.2	Incident Commander	2
4.3	Deputy Incident Commander	6
4.4	Information Officer	8
4.5	Safety Officer	10
4.6	Liaison Officer	12
4.7	Operations Section Chief	14
	4.8 On-site Branch Director	17
	4.9 Public Protection Branch Director	20
	Transportation Group	
	Rover Group	
	Roadblock Group	25
	Environmental Monitoring Group	
	Reception Centre Group	27
	Telephoner Group	
	4.10 Other Branch Director(s), As Required	
	4.11 Staging Area Manager	
4.12	Planning Section Chief and Planning Section	
4.13	Logistics Section Chief and Logistics Section	
4.14	Finance/Administration Section Chief and Finance/Administration Section	ection 38
	TERVITA INCIDENT SUPPORT TEAM (IST)	
4.15	Incident Director	40
4.16	Deputy Incident Director	43
4.17	IST Information Officer	45
4.18	IST Safety Officer	47
4.19	IST Liaison Officer	49
4.20	Operations Section Head and IST Operations Section	50
4.21	Planning Section Head and IST Planning Section	52
4.22	Logistics Section Head and IST Logistics Section	54

This emergency response plan can be utilized by Tervita and all of its affiliated companies.

4.0 RESPONSE TEAM DUTIES

4.1 ON-DUTY INCIDENT DIRECTOR

Role:	The Tervita On-duty Incident Director acts as the Tervita Calgary focal point for incident investigation, alert or emergency notification both inside and outside working hours for a defined and scheduled period of time.
Located at:	The Tervita On-duty Incident Director is required to remain within a 60-minute driving radius of Calgary and will respond to the Emergency Operations Centre (EOC) if required.

Assigned by: Tervita Senior Management

Advises and Supports: Incident Commander during an incident investigation, Alert, Minor Incident, or Level One, Two or Three Emergency

Responsibilities

Incident Investigation, Alerts, Minor Incidents, Level One, Two or Three Emergency

- □ Obtain the caller's name, company *name* (if appropriate) and a call-back telephone number in case telephone connection is lost.
- □ If the caller is a member of the public, instruct the caller to Shelter-In-Place.
- □ Record all available details about the incident. Chronologically document all action, decisions, contacts and requests on an **Activity Log (ICS Form 214)**.
- □ Once the call has ended, confirm validity of the call by dialling the call-back telephone number and verifying the conversation with the caller.
- As dictated by the location and/or type of incident, contact the appropriate Tervita Incident Commander and confirm the severity of the incident (Incident Investigation, Alert, Minor Incident, Level One, Two or Three Emergency).
- Determine if you are the appropriate person to remain as a Tervita Incident Director. If yes, refer to the Response Team Duties for the Incident Director. If no, mobilize the appropriate Tervita Incident Director.
- □ As requested by the Tervita Incident Director:
 - □ Mobilize other Tervita Incident Support Team (IST) members.
 - **D** Begin to set up the Tervita Emergency Operations Centre (EOC).

NOTE: The Deputy Incident Director is available to assist you with these duties.

□ Once activated, forward all data related to the incident to the Incident Director.

Postincident Duties

C Resume the role of the Tervita **On-Duty** Incident Director.

4.2 INCIDENT COMMANDER

Primary Objectives	 Responder safety Public protection Control and containment 	ent of the hazard	Suggested Primary ICS Positions (Other positions mobilized as required.)
Role		Management Team (IMT) to fety, public protection and of the hazard.	
Located at	Incident Command Post	(ICP)	
	Deputy Incident Commander	Assists Incident Commander.	INCIDENT INCIDENT COMMANDER DIRECTOR
	Information Officer	Assists with the interfacing with involved media.	DEPUTY DEPUTY INCIDENT INCIDENT
of	Safety Officer	Maximizes responder safety.	
vities	Liaison Officer	<i>Interfaces with government agencies.</i>	SAFETY OFFICER
s Activ	Operations Section Chief	Manages tactical operations - "Doers".	
Supervises Activities of	Planning Section Chief	Compiles action plan/documents response - "Thinkers and Documenters".	OPERATIONS SECTION CHIEF CHIEF
	Logistics Section Chief	Procures resources (manpower and equipment) - "Getters".	ON-SITE PUBLIC OTHER PROTECTION BRANCH
	Finance/Administration Section Chief	Ensures cost accounting - "Payers".	BRANCH DIRECTOR DIRECTOR DIRECTOR BRANCH DIRECTOR AS REQUIRED
Obtains Advice and Support from	Incident Support Team (I	IST)	
Public Protection Measures			d/or Shelter-In-Place starts closest to the incident nd then in the remainder of the Emergency Planning
Information Exchange (Informal Communication) Open to responders to freely			exchange information.
	rs, Directives, Resource d Status Changes munication)	Must follow the hierarchy directed.	of command (chain of command) unless otherwise

Incident Investigation, Alerts and Minor Incidents

- Dispatch trained and accredited personnel (preferably in pairs the "buddy system") with personal protective equipment (PPE) to investigate. Personal protective equipment (PPE) only reduces; but does not eliminate the risk from harmful substances.
- □ In conjunction with the personnel dispatched to the incident site, assess the situation.
- Utilizing the appropriate Provincial and/or Regulatory Section, classify the incident. Oversee the response to a non-emergency. If an emergency is declared, proceed with responsibilities for a Level One, Two or Three Emergency.
- □ Chronologically document all action, decisions, contacts and requests on an Activity Log (ICS Form 214).

Level One, Two or Three Emergency

- □ Assign a name to the incident. Keep the name "general" and do not use the company name or any other identifying features.
- Chronologically document all action, decisions, contacts and requests on an Activity Log (ICS Form 214).
- Refer to the <u>Initial On-site Actions 7 Steps</u> diagram and the <u>Incident</u> <u>Management Team (IMT) Response Process (Response P)</u> diagram in Section 1.0.
- **□** Refer to the **Prompting Questions in Assessing an Incident** form.
- Dependent upon the type of emergency, refer to Section 6.0, Incident-Specific Response Actions.
- Resist the urge to do all tasks. Delegate responsibilities. Appoint others to carry out Incident Management Team (IMT) response functions. Get Big Fast! Proactively mobilize the following:
 - Deputy Incident Commander
 - □ Information Officer
 - □ Safety Officer

- Operations Section Chief
- Planning Section Chief
- Logistics Section Chief

□ Liaison Officer

- □ Finance/Administration Section Chief
- Refer to the appropriate Provincial and/or Regulatory Section. Each province and/or regulator has specific and unique reporting and other response requirements. Ensure a member of the Incident Management Team (IMT) reviews the appropriate Provincial and/or Regulatory Section in detail.
- □ Refer to the Site-Specific Supplemental Section. Site-Specific Supplemental Sections may not exist for wells, pipelines or facilities that do not require a regulatory-approved emergency response plan.

Complexity Analysis Factors

- Evaluate how many members of the public could be inside the planning zone and the response zones. Account for residents, businesses, First Nations persons, trappers, guide/outfitters, grazing lessees, transients, waterways, rail lines, etc.
- NOTE: Ensure the appropriate public protection measures for the planning zone and the response zones are carried out for the specific level of emergency. Refer to the appropriate Provincial and/or Regulatory Section.
- Determine if there are roads and how many lead into the planning zone and the response zones.
- Determine if there is potential for environmental damage.
- Evaluate which government agencies have jurisdiction inside the planning and response zones.
- Assess weather conditions. Determine if they could impact emergency response efforts.
- Utilizing the appropriate Provincial and/or Regulatory method, assign a level of emergency to the incident.

- **D** Ensure the On-Duty Incident Director is aware of the incident.
- □ Activate the Incident Command Post (ICP) and confirm that there is adequate communication between all incident facilities.
- □ As prepared by the Planning Section Chief, approve the **Incident Objectives** form **(ICS Form 202)**. This will establish incident objectives!
- Ensure the Planning Section Chief completes an Incident Briefing form (ICS Form 201). <u>This will establish incident strategies and tactics and track assigned resources (manpower and equipment)!</u>
- Ensure the Safety Officer completes an Incident Action Plan Safety and Risk Analysis Form (ICS Form 215A). This will identify the hazards to responders!
- □ Approve the implementation of the overall Incident Action Plan (IAP).
- □ Assess whether cellular telephones should be used. They are not secure.
- **□** Ensure the following is prepared:
 - □ An on-site responder safety action plan.
 - □ A planning zone and a response zones' responder safety action plan.
 - A planning zone and a response zones' public protection measure action plan.
 - An emergency control and containment action plan.
 - □ An environmental monitoring strategy. If the emergency involves hydrogen sulphide (H₂S), high vapour pressure (HVP), or as required ensure an appropriate air monitoring strategy is employed.
- **D** Ensure Tervita is prepared to receive public inquiries.
- □ Ensure the public outside any planning or response zone, who may perceive themselves to be at risk, are informed about the emergency.
- Refer all media inquiries and public inquiries to the Information Officer. Approve all Tervita media releases.
- Ensure all responders understand the nature and extent of the emergency, are aware of any hazards, and are carrying out their assigned duties.
- Confirm with the Planning Section Chief (if established) that adequate incident documentation is being compiled.
- □ Schedule and conduct frequent Incident Management Team (IMT) briefings. The Planning Section Chief should facilitate these briefings.
- □ Set the time length for the Operational Period.
- Approve the need for additional Incident Management Team (IMT) personnel.
- Ensure the Incident Director (if established), reviews the Incident Action Plan (IAP).
- □ As required, consider the need to establish Unified Command.

- Review Tervita's ignition guidelines (Refer to Section 5.0, Ignition for ignition equipment and procedures and the appropriate Provincial and/or Regulatory for specific ignition criteria). The decision-making authority to ignite must be assigned to an on-site Tervita representative.
- □ If any ignition criteria are met (Section 5.0), ensure Tervita ignites the release.

- In conjunction with the appropriate authorities, stand down the emergency. Refer to the appropriate Provincial and/or Regulatory Section for downgrade or stand-down emergency criteria.
- □ Ensure all responders are notified.
- **□** Ensure all notified public and media are informed.
- □ Initiate and coordinate postincident duties.
- □ Approve the overall Postincident Action Plan.
- □ The incident site is not to be disturbed until all necessary site investigations have been completed by government or company representatives.
- □ If required, request that the Incident Director procure personnel to conduct Critical Incident Stress Debriefing (CISD).
- Coordinate and carry out a Postincident Debrief with Incident Management Team (IMT) personnel.

4.3 DEPUTY INCIDENT COMMANDER

Primary Objectives	 Responder safety Public protection Control and containm 	ent of the hazard	Suggested Primary ICS Positions (Other positions mobilized as required.)
	As required, assists t	he Incident Commander to afety, public protection and	
Roles	Fills one or more Cor these are assigned.	mmand Staff functions until	
	Helps to set up the Incid	lent Command Post (ICP).	
	As required, communica or Deputy Incident Direc	tes with the Incident Director ctor.	DEPUTY DEPUTY INCIDENT INCIDENT COMMANDER DIRECTOR
Located at	Incident Command Post	(ICP)	
ies	Information Officer	Assists with the interfacing with involved media.	INFORMATION OFFICER
ctiviti	Safety Officer	Maximizes responder safety.	
the A	Liaison Officer	Interfaces with government agencies.	OFFICER
ising	Operations Section Chief	<i>Manages tactical operations</i> - "Doers".	LIAISON
May Assist in Supervising the Activities of	Planning Section Chief	<i>Compiles action plan/documents response - "Thinkers and Documenters".</i>	Petroleum Regulatory Agency Local RCMP/Local Police
y Assist	Logistics Section Chief	<i>Procures resources (manpower and equipment)</i> - "Getters".	Local Authorities (Counties/ Municipalities/Regional Districts, etc.)
May	Finance/Administration Section Chief	Ensures cost accounting - "Payers".	Local Health Region/Authority Remaining Government Agencies Ordination the Multification Multification in the
Obtains Advice and Support from	Incident Support Team ((IST)	 Outlined on the Notification Matrices in the appropriate Provincial and/or Regulatory Section
Public Protection Measures			d/or Shelter-In-Place starts closest to the incident nd then in the remainder of the Emergency
Information Ex (Informal Com	xchange	Open to responders to freely	exchange information.
	s, Directives, Resource Status Changes nunication)	Must follow the hierarchy of directed.	f command (chain of command) unless otherwise

Incident Investigation, Alerts and Minor Incidents

□ No assigned duties during an Incident Investigation, Alert or Minor Incident.

Level One, Two or Three Emergency

- □ Receive a briefing from your supervisor.
- Chronologically document all actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- □ As required, assist the Incident Commander.

- □ As required, dependent upon the type of emergency, refer to Section 6.0, Incident-Specific Response Actions.
- □ As required, fill one or more Command Staff functions until these are assigned.
- □ As required, help to set up the Incident Command Post (ICP).
- □ As required, communicate with the Incident Director or Deputy Incident Director.
- D Participate in Incident Management Team (IMT) briefings.

- **D** Participate in the Postincident Debrief held by your supervisor.
- **□** Forward all data related to the incident to the Planning Section Chief.

4.4 INFORMATION OFFICER

Primary Objectives	 Responder safety Public protection Control and containmen 	t of the hazard	Suggested Primary ICS Positions (Other positions mobilized as required.)	
Roles	Assists with the interfacing Works with the IST Infor incident-related informatio	mation Officer to provide internal		
Located at	Incident Command Post (I	CP)	INFORMATION	
Reports to/ Assigned by	Incident Commander		OFFICER	
Public Protection Measures			Iter-In-Place starts closest to the incident n the remainder of the Emergency Planning	
Information E (Informal Cor	Exchange mmunication)	Open to responders to freely exchange information.		
	rs, Directives, Resource I Status Changes munication)	Must follow the hierarchy of comm directed.	nand (chain of command) unless otherwise	

Incident Investigation, Alerts and Minor Incidents

□ No assigned duties during an Incident Investigation, Alert or Minor Incident.

Level One, Two or Three Emergency

- □ Receive a briefing from your supervisor.
- Chronologically document all actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- Refer to Section 6.0, Media and Appendix 2 Communications Plan for further details about media interaction.
- □ As required, mobilize assistants.
- **□** Ensure the Incident Commander approves all media releases.
- □ The IST Information Officer will prepare and coordinate media releases. Assist with the interfacing with involved media.
- If approached or contacted by the media, a Tervita employee or responder may give a Brief Factual Media Statement. Refer to Section 6.0 for an example Brief Factual Media Statement.
- Ensure the public outside any planning and response zone, who may perceive themselves to be at risk, are informed about the emergency.
- G Work with the IST Information Officer to provide internal incident-related information.
- D Participate in Incident Management Team (IMT) briefings.

- □ If required, continue media, internal and mass public interaction.
- **D** Participate in the Postincident Debrief held by your supervisor.
- **□** Forward all data related to the incident to the Planning Section Chief.

4.5 SAFETY OFFICER

Primary Objectives	 Responder safety Public protection Control and containmen 	t of the hazard	Suggested Primary ICS Positions (Other positions mobilized as required.)	
		ends measures for maximizing tes an Incident Action Plan Safety S Form 215A).		
Roles	Incident Objectives form	efing form (ICS Form 201), the (ICS Form 202), and the overall for responder safety implications.	SAFETY	
	Discontinues any operatio safety of responders.	n which threatens the health and		
Located at	Incident Command Post (10	CP)		
Reports to/ Assigned by	Incident Commander		OPERATIONS PLANNING SECTION SECTION CHIEF CHIEF	
Public Protection Measures			Iter-In-Place starts closest to the incident in the remainder of the Emergency Planning	
Information E (Informal Cor		Open to responders to freely exchange information.		
	rs, Directives, Resource Status Changes munication)	Must follow the hierarchy of comm directed.	nand (chain of command) unless otherwise	

Incident Investigation, Alerts and Minor Incidents

□ No assigned duties during an Incident Investigation, Alert or Minor Incident.

Level One, Two or Three Emergency

- **D** Receive a briefing from your supervisor.
- Chronologically document all actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- Develop and recommend measures for maximizing responder safety. (Refer to Section 2.0, Responder Safety.)
- □ As required, mobilize assistants.
- **D** Review the Incident Action Plan (IAP) for responder safety implications.

- Utilizing the Resources Summary portion of the Incident Briefing form (ICS Form 201), complete an Incident Action Plan Safety and Risk Analysis Form (ICS Form 215A).
- Confirm all responders are trained, accredited and have the appropriate personal protective equipment (PPE) before they are dispatched to any incident facility or a planning zone and a response zone. Personal protective equipment (PPE) only reduces; but does not eliminate the risk from harmful substances.
- Ensure all Incident Management Team (IMT) responders follow the appropriate safe-work procedures.
- Order the discontinuation of any operation which threatens the health and safety of responders.
- Obtain a head count of all responders dispatched to any incident facility or a planning zone and a response zone.
- □ Assess requirements for additional on-site safety, planning zone and response zones responder safety personnel/equipment.
- Ensure any incident casualties receive first aid and ongoing care. If any serious injuries have occurred, ensure that the incident scene remains undisturbed if possible, until there is a thorough investigation.
- D Participate in Incident Management Team (IMT) briefings.

- **D** Review the Postincident Action Plan for responder safety implications.
- □ Monitor postincident operations for responder safety implications.
- **D** Participate in the Postincident Debrief held by your supervisor.
- **D** Forward all data related to the incident to the Planning Section Chief.

4.6 LIAISON OFFICER

Primary Objectives	 Responder safety Public protection Control and containmen 	t of the hazard	Suggested Primary ICS Positions (Other positions mobilized as required.)			
Role	Interfaces with governme response.	ent agencies involved in the				
Located at	Incident Command Post (I	CP)	LIAISON OFFICER			
Reports to/ Assigned by	Incident Commander		Local RCMP/Local Police Local Authorities (Counties Municipalities/Regional Districts, etc.) Local Health Region/Authority Remaining Government Agencies Outlined on the Notification Matrices in the appropriate Provincial and/or Regulatory Section			
Public Protection Measures			or Shelter-In-Place starts closest to the incident then in the remainder of the Emergency Planning			
Information Exchange (Informal Communication)		Open to responders to freely exchange information.				
	rs, Directives, Resource I Status Changes munication)	Must follow the hierarchy of directed.	command (chain of command) unless otherwise			

Incident Investigation, Alerts and Minor Incidents

□ No assigned duties during an Incident Investigation, Alert or Minor Incident.

Level One, Two or Three Emergency

- **□** Receive a briefing from your supervisor.
- □ Chronologically document all actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- Each province and/or regulator has specific and unique reporting and other response requirements. Ensure the appropriate Provincial and/or Regulatory Section is reviewed in detail.
- □ As required, mobilize assistants.
- □ For the area covered by any planning zone and the response zone, notify the government agencies outlined on the appropriate Provincial and/or Regulatory Section Notification Matrix.
- Complete the appropriate Provincial and/or Regulatory Section emergency reporting form.
- During any level of emergency, agency representatives may request to attend the Incident Command Post (ICP).

- **C** Coordinate the flow of information to and from the government agencies.
- □ Coordinate the use of expertise and resources (manpower and equipment) available through government agencies.
- Assess the need for a Fire Hazard Order/Closure Order or Local State of Emergency to close the area inside a planning and response zone. Contact the appropriate government agency to request this.
- □ Assess the need for a Notice to Airmen (NOTAM) for closure of air space above the incident site. Contact NAV CANADA to request this.
- **D** Participate in Incident Management Team (IMT) briefings.

- □ Notify all government agencies contacted by Tervita.
- □ For any required postincident report requirements, refer to the appropriate Provincial and/or Regulatory Section.
- Review other regulations (industry, safety, environmental, etc.) to see if and when other postincident reports need to be submitted.
- □ Participate in the Postincident Debrief held by your supervisor.
- **□** Forward all data related to the incident to the Planning Section Chief.

4.7 OPERATIONS SECTION CHIEF

Primary Objectives	 Responder safe Public protection Control and control and contro	5	Suggested Primary ICS Positions (Other positions mobilized as required.)		
Roles	maximize on-site and containment Supervises tactic activities (respon	al activities at the incident site to e responder safety and control of the hazard. al planning and response zones der safety and public protection kimize public protection.			
Located at	Incident Commar	d Post (ICP)			
	On-site Branch Director	On-site responder safety and control and containment of the hazard.	OPERATIONS SECTION		
Supervises Activities of	Public Protection Branch Director	Planning and response zones, responder safety and public protection measures to maximize public protection.			
	Other Branch Director(s), as required	Examples could be Recovery Branch Director, Wildlife Branch Director, etc.			
	Staging Area Manager	Oversees the movement of available resources (manpower and equipment) at the Staging Area.	ON-SITE BRANCH DIRECTOR DIRECTOR PROTECTION BRANCH DIRECTOR DIRECTOR DIRECTOR DIRECTOR DIRECTOR		
Reports to/ Assigned by	Incident Commar	der			
Public Protection Measures			and/or Shelter-In-Place starts closest to the incident in and then in the remainder of the Emergency Planning		
Information E	Exchange mmunication)	Open to responders to freely excl	nange information.		
Flow of Orders, Directives, Resource Requests and Status Changes (Formal Communication)		Must follow the hierarchy of command (chain of command) unless otherwise directed.			
			personnel and their required equipment (e.g. On-site		
for a particu Control Task		A Task Force is a combination of for a particular tactical need, w	<u>different</u> types and kinds of single resources assembled vith common communications and a leader (e.g. Well can be pre-determined or assembled at an incident from of control guidelines apply.		
Strike Teams		A Strike Team is a combination assembled for a particular tactica Fire Fighting Task Force). Strik	on of the <u>same</u> types and kinds of single resources I need, with common communications and a leader (e.g. the teams can be pre-determined or assembled at an bources. Span of control guidelines apply.		

Incident Investigation, Alerts and Minor Incidents

□ No assigned duties during an Incident Investigation, Alert or Minor Incident.

Level One, Two or Three Emergency

- **□** Receive a briefing from your supervisor.
- □ Chronologically document all actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- Dependent upon the type of emergency, refer to Section 6.0, Incident-Specific Response Actions.
- □ As required, mobilize a deputy.
- Ensure a Complexity Analysis is performed for any planning zone or response zone:

Complexity Analysis Factors

Evaluate how many members of the public could be inside the planning zone and the response zones. Account for residents, businesses, First Nations persons, trappers, guide/outfitters, grazing lessees, transients, waterways, rail lines, etc.

NOTE: Ensure the appropriate public protection measures for the planning zone and the response zones are carried out for the specific level of emergency. Refer to the appropriate Provincial and/or Regulatory Section.

- Determine if there are roads and how many lead into the planning zone and the response zones.
- **D** Determine if there is potential for environmental damage.
- Evaluate which government agencies have jurisdiction inside the planning and response zones.

Assess weather conditions. Determine if they could impact emergency response efforts.

- □ In order to maintain an effective span of control (no more than seven responders reporting to one supervisor), proactively mobilize the following:
 - Public Protection Branch Director
 On-site Branch Director
 - Other Branch Director(s), as required
- **D** Supervise the On-site Branch Director to:
 - **D** Prepare an on-site responder safety action plan.
 - **D** Prepare an emergency control and containment action plan.
- **D** Supervise the Public Protection Branch Director to:
 - **D** Prepare a planning zone and a response zones' responder safety action plan.
 - Prepare a planning zone and a response zones' public protection measure action plan. Ensure the appropriate Provincial and/or Regulatory Section public protection measures for the planning zone and the response zones are carried out.
- □ Supervise the other Branch Director(s) to:
 - □ Prepare a responder safety action plan.
 - **D** Prepare the required action plan (recovery, wildlife, etc.).

- □ If required, dispatch and supervise a Staging Area Manager.
- □ Implement the tactical portion of the overall Incident Action Plan (IAP).
- D Participate in Incident Management Team (IMT) briefings.
- **G** Schedule and conduct frequent Operations Section briefings.
- □ As required, obtain medical response personnel. Ensure they are aware of any potential hazards.
- Evaluate the need for additional on-site, planning zone and response zones response team personnel.
- In conjunction with the On-site Branch Director, Review Tervita's ignition guidelines (Refer to Section 5.0, Ignition for ignition equipment and procedures and the appropriate Provincial and/or Regulatory for specific ignition criteria). The decision-making authority to ignite must be assigned to an on-site Tervita representative.
- □ If any ignition criteria are met, ensure Tervita ignites the release. Ignition does not negate the need for continuing with evacuation as there could be residual pockets of H₂S or SO₂ in the area.

- **I** Implement the tactical portion of the Postincident Action Plan.
- **Coordinate and carry out an Operations Section Postincident Debrief.**
- □ Participate in the Postincident Debrief held by your supervisor.
- Gather all data related to the response from those you supervise and forward to the Planning Section Chief.

4.8 ON-SITE BRANCH DIRECTOR

Primary Objectives	 Responder safety Public protection Control and conta 	ainment of the hazard	Suggested Primary ICS Positions (Other positions mobilized as required.)			
Role		es at the site of the incident to responder safety and control and hazard.	OPERATIONS SECTION CHIEF			
Located at	On-site Command P	ost (OSCP) (incident site)	BRANCH DIRECTOR SINGLE RESOURCES			
Supervises Activities of	On-site responders	and on-site contract services	TASK FORCES STRIKE TEAMS			
Reports to/ Assigned by	Operations Section	Chief	ON-SITE OFF-SITE			
Public Protection Measures			Shelter-In-Place starts closest to the incident ten in the remainder of the Emergency Planning			
Information E (Informal Cor		Open to responders to freely exchange	e information.			
Flow of Orders, Directives, Resource Requests and Status Changes (Formal Communication)		Must follow the hierarchy of command (chain of command) unless otherwise directed.				
Single Resou	rces	Single Resources include both personnel and their required equipment (e.g. On-site Safety)				
Task Forces		A Task Force is a combination of <u>different</u> types and kinds of single resources assembled for a particular tactical need, with common communications and a leader (e.g. Well Control Task Force). Task forces can be pre-determined or assembled at an incident from available single resources. Span of control guidelines apply.				
Strike Teams		A Strike Team is a combination of the <u>same</u> types and kinds of single resources assembled for a particular tactical need, with common communications and a leader (e.g. Fire Fighting Task Force). Strike teams can be pre-determined or assembled at an incident from available single resources. Span of control guidelines apply.				

Incident Investigation, Alerts and Minor Incidents

- □ If on-site; follow the Initial On-site Actions 7 Steps.
- □ If sent to incident site to investigate:
 - Proceed with caution. If required, wait for backup personnel the "buddy system".
 - □ Approach from an upwind or crosswind direction.
 - □ Assume there is danger! Resist the urge to rush in, inspect the site from a distance.
 - □ As required, check for any escaping gas/hydrocarbon.

- Confirm that you and all on-site responders are appropriately trained, accredited and have personal protective equipment (PPE). Personal protective equipment (PPE) only reduces; but does not eliminate the risk from harmful substances.
- **C** Carry out a site assessment that includes the following activities:
 - □ Identify hazardous materials.
 - **D** Evaluate the risk to responders.
 - Evaluate the risk to the public.
 - **D** Evaluate the risk to the environment.
 - Determine the potential for the incident to escalate.
 - □ Identify safety concerns. Do not enter a suspected HVP/NGL/LPG or H₂S environment alone, without proper training or without proper safety equipment, including SCBA and personal electronic H₂S/SO₂ gas detectors.
- Chronologically document all actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- **C** Confirm the alert, minor incident or level of emergency with your supervisor.
- □ As required, request additional on-site resources (manpower and equipment).

Level One, Two or Three Emergency

- **□** Receive a briefing from your supervisor.
- Define the on-site work areas. Refer to Section 2.0, On-site Work Areas.
- **D** Refer to Section 6.0, Incident-Specific Response Actions.
- Establish an On-site Command Post (OSCP) in the Safe Area near the incident. If communication fails between any incident facility, you have the authority to make decisions on Tervita's behalf. This includes ignition decisions.
- Ensure all on-site personnel have appropriate training, accreditation and personal protective equipment (PPE). Personal protective equipment (PPE) only reduces; but does not eliminate the risk from harmful substances.
- Clear nonessential personnel from the incident site.
- **□** Ensure all on-site personnel follow the appropriate safe-work procedures.
- □ Assess the need for on-site safety supervision.
- □ With your supervisor develop and/or review the on-site responder safety and control and containment action plan.
- **G** Supervise on-site control and containment activities.
- □ With the assistance of your supervisor, procure the necessary on-site safety supervision, medical response and additional on-site equipment and personnel. Ensure they are aware of any potential hazards.
- □ Participate in Operations Section briefings.

- **D** Review ignition guidelines. Refer to:
 - **G** Section 5.0, Ignition for ignition equipment and procedures.
 - □ The appropriate Provincial and/or Regulatory for specific ignition criteria.
- **Commence ignition if any of the ignition criteria are met.**

- **□** Ensure all on-site personnel are promptly notified.
- □ The incident site is not to be disturbed until all necessary site investigations have been completed by government or company representatives.
- □ Initiate and coordinate on-site postincident duties.
- **I** Ensure on-site all responders do not work alone on cleanup operations.
- Ensure on-site all responders are decontaminated before they leave the incident site.
- **D** Participate in the Postincident Debrief held by your supervisor.
- **G** Gather all on-site response data and forward to your supervisor.

4.9 PUBLIC PROTECTION BRANCH DIRECTOR

Primary Objectives	 Responder safety Public protection Control and containation hazard 		Suggested Primary ICS Positions (Other positions mobilized as required.)						
Role	Supervises plannir zone (except for t responder safety protection measur public protection.	he incident site), and public	GPERATIONS SECTION CHEEF						
Located at	Incident Command Remote Command F established)	```		77 			PUBLIC PROTECTION BRANCH DIRECTOR		
	Transportation Grou Transportation Leac			TRANSPORTATION GROUP SUPERVISOR	ROVER GROUP SUPERVSOR	ROADBLOCK GROUP SUPERVISOR	ENVIRONMENTAL MONITORING GROUP	RECEPTION CENTRE GROUP SUPERVISOR	AUTOMATED TELEPHONE NOTIFICATION SYSTEM TELEPHONERS GROUP
of	Rover Group Superv Leader(s) or Rover(TRANSPORTATION LEADER(S)	ROVER LEADER(S)	ROADBLOCK LEADER(S)	ENVIRONMENTAL MONITORING LEADER(S)	RECEPTION CENTRE LEADER(S)	AUTOMATED TELEPHONE NOTIFICATION STSTEM TELEPHONDES LEADERS)
ctivities	Roadblock Group Su Roadblock Leader(s Team(s)				ROVER(S)	ROADBLOCK TEAN(S)	ENVIRONMENTAL MONITORING TEAM(S)	RECEPTION CENTRE REPRESENTATIVE(R)	AUTOWATED TELEPHONE MOTIFICATION SYSTEM TELEPHONER(S)
Supervises Activities of	Environmental Moni Supervisor, Environ Leader(s) or Environ Monitoring Team(s)	mental Monitoring		0#-872	PERSONAL CONTACT		RESIDENTS	a a a a a a a a a a a a a a a a a a a	TELEPHONE
Sul	Reception Centre G Reception Centre Le Reception Centre Re	ader(s) or		Off-alte Resp Public Protec Environmenta	tion	L.,	BUSNESSES	RESPONSE FOME TON 20NE (ND ACTION 20NE (ND ACTION 20NE (ND	
		Felephoner Group Supervisor, Felephoner Leader(s) or Felephoner(s)					INDUSTRIAL OPERATORS	ANNANG AND RESPONSE WITHAL ISSLATION ZOWE PROTECTIVE ACTION ZO ENERGEWEY FLAMMOUG	
Reports to/ Assigned by	Operations Section	Chief				L L	GENERAL PUBLIC INSIDE EPZ	10000)
Public Protection Measures	Notification (with vo site, expanding out Zone (EPZ).	,							
Information (Informal Co	Exchange mmunication)	Open to responder	rs to fre	eely excha	nge infor	mation.			
Flow of Orders, Directives, Resource Requests and Status Changes (Formal Communication)		erarchy	of comma	and (chai	n of com	mand) un	less other	wise directed.	
Public Protection Group Tables (Tables located later in this Section.)Public Protection Group Tables have been created to assis protection measures inside the planning and response zones a appropriate public protection measures for the planning an carried out for the specific level of emergency. Refer to the and/or Regulatory section.			and beyon nd respon	nd. Ensure the nse zones are					

Incident Investigation, Alerts and Minor Incidents

□ No assigned duties during an Incident Investigation, Alert or Minor Incident.

Level One, Two or Three Emergency

The "complexity" of public protection measures depends on the type of emergency: e.g. H_2S or HVP, the size of; and the amount of public activity inside; the planning zone and the response zones.

□ Receive a briefing from your supervisor.

- Chronologically document all actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- □ Refer to appropriate Provincial and/or Regulatory section for specific public protection measure requirements.
- **D** Ensure a Complexity Analysis is performed for any planning zone or response zone:

Ensure a complexity Analysis is performed for any planning zone of response zone.
 Complexity Analysis Factors
Evaluate how many members of the public could be inside the planning zone and the response zones. Account for residents, businesses, First Nations persons, trappers, guide/outfitters, grazing lessees, transients, waterways, rail lines, etc.
Determine if there are roads and how many lead into the planning zone and the response zones.
Starting at "12-noon" number each planning zone and response zone Roadblock Location with a separate numbering system, each starting with the number "1".
Divide the planning zone and the response zones into manageable Rover Areas.
Starting with the letter "A", labeling each Rover Area with a letter. The response zone closest to the incident site should be labeled Rover Area "A".
Assess weather conditions. Determine if they could impact emergency response efforts.
Work with your supervisor to:
Prepare a planning zone and a response zones' responder safety action plan.
Prepare a planning zone and a response zones' public protection measure action plan.
In order to maintain an effective span of control (no more than seven responders reporting to one supervisor), proactively mobilize the following:
 Transportation Group Supervisor or Transportation Leader(s) Environmental Monitoring Group Supervisor or Environmental Monitoring Leader(s)
 Rover Group Supervisor or Rover Leader(s) Reception Centre Group Supervisor or Reception Centre Leader(s)
 Roadblock Group Supervisor or Roadblock Leader(s) Telephoner Group Supervisor or Telephoner Group Leader(s)
Ensure the required public transportation vehicles (Evacuation Buses) have been mobilized.
Ensure the required number of Rover(s) have been mobilized.
Ensure the required number of Roadblock Team(s) have been mobilized.
Develop an environmental monitoring strategy. If the emergency involves H_2S or HVP, ensure an appropriate air monitoring strategy is employed.

Air Quality Monitoring

Air quality monitoring is used for tracking and recording the presence and concentrations of H_2S during a sour gas release and SO_2 following the ignition of the release or the presence and lower explosive limit (LEL) levels of HVP product following a release.

- Air quality monitoring equipment is used to:
- track the plume,
- determine if ignition concentration criteria are met,
- determine whether evacuation and/or Shelter-In-Place concentration criteria have been met,

Air Quality Monitoring
 assist in determining when the emergency status can be downgraded, determine Roadblock locations, and determine concentrations in areas being evacuated to ensure that evacuation is safe.
 The type of air monitoring units and the number of monitors required are based on site-specific information, including: access and egress points, population density and proximity to urban density developments, and local conditions.
For an Emergency Planning Zone (EPZ) that includes a portion of an urban density development or urban centre, there must be a minimum of two mobile air quality monitors:one to monitor the boundary of the urban density development or urban centre andthe other to track the plume.
For an emergency involving H_2S , air quality monitoring must occur downwind, with priority being directed to the nearest unevacuated residence or area where people may be present.
For an emergency involving HVP, air quality monitoring may occur downwind or upwind depending on how the plume is tracking, with priority being directed to the nearest unevacuated residence or areas where people may be present. Visual monitoring may also be used for HVP emergencies.
Tervita will be prepared to provide the above details on the intended use and procedures surrounding the activation of air quality monitoring equipment, such as stationary and mobile air quality monitoring units and personal handheld monitors during its response.
Tervita will provide monitored information to the petroleum regulatory agency; the local authority; the local health region/authority; the provincial environment authority and on request to the public on a regular basis throughout an emergency.
As required, ensure a Reception Centre is activated to receive evacuees.
Ensure Telephoner activities are activated.
T Ensure the public outside any planning or response zone, who may perceive themselves

- Ensure the public outside any planning or response zone, who may perceive themselves to be at risk, are informed about the emergency.
- □ Participate in Operations Section briefings.
- **G** Schedule and conduct frequent Public Protection Group briefings.

Public Protection Branch Tables

It is Tervita's responsibility to initiate public protection measures inside a specific planning and response zone for any incident involving H_2S or HVP product when there is potential for the release to impact members of the public. This could also include SO_2 if the H_2S release was ignited.

The following tables have been created to assist with various public protections measures inside a specific planning and response zone.

Table Name
Transportation Group (Shelter-In-Place, Evacuation and Notification).
Rover Group (Shelter-In-Place, Evacuation and Notification).
Roadblock Group (Shelter-In-Place, Evacuation and Notification).
Environmental Monitoring Group (Shelter-In-Place, Evacuation and Notification).
Reception Centre Group (Shelter-In-Place, Evacuation and Notification).
Telephoner Group (Shelter-In-Place, Evacuation and Notification).

Cor	Transportation Group Confirm all responders are trained, accredited and have the appropriate personal protective equipment (PPE) (including communication equipment) before the are dispatched.					
	elter-In-Place (Transportation oup)					
			acuation (Transportation Group)			
	vehicles (Evacuation Buses) on standby will be assessed or the required public transportation vehicles (Evacuation Buses) will be mobilized to the edge of the Emergency Planning Zone (EPZ).		The need to place public transportation vehicles (Evacuation Buses) on standby will be assessed or the required public transportation vehicles (Evacuation	No	The need to place public transportation yehicles (Evacuation Buses) on standby	
			Buses) will be mobilized to the edge of the Emergency Planning Zone (EPZ). If required, a Rover will be mobilized to		will be assessed or the required public transportation vehicles (Evacuation Buses) have been mobilized to the edge of the Emergency Planning Zone (EPZ).	
			accompany each Evacuation Bus.		If required, a Rover will be mobilized to accompany each Evacuation Bus.	

Rover Group Confirm all responders are trained, accredited and have the appropriate personal protective equipment (PPE) (including communication equipment) before they				
Confirm all responders are trained, accredited and	nave the appropriate personal protective equipment (PF are dispatched.	 E) (including communication equipment) before they 		
Shelter-In-Place (Rover Group)				
The required number of Rovers will be mobilized to the specific planning and response zone. Each Rover	Evacuation (Rover Group)			
will be assigned a specific Rover Area. If safe to do so, each Rover will be dispatched to their assigned Rover Area or if unsafe placed on standby at a safe location.	The required number of Rovers will be mobilized to the specific planning and response zone. As required, each Rover will be assigned a Rover Area. Rovers will be dispatched to their assigned Rover Area.	 Notification (Rover Group) The required number of Rovers will be mobilized to the specific planning and response zone. As required, each Rover will be assigned a Rover Area. Rovers will 		
Each Rover will find their assigned Rover Area and establish communication with their supervisor.	Each Rover will find their assigned Rover Area and establish communication with their supervisor.	 be dispatched to their assigned Rover Area. Each Rover will find their assigned Rover Area, and 		
If safe to do so, each Rover will take regular air quality readings and record results on an Environmental Monitoring Record.	Each Rover will advise any member of the public inside their Rover Area to evacuate and give them a Public Evacuation Notice.	 Each Rover will advise any member of the public inside their Rover Area to voluntarily evacuate and 		
 NOTES: For an emergency involving H₂S, air quality monitoring must occur downwind, with priority being directed to the nearest unevacuated residence or areas where people may be present. For an emergency involving HVP, air quality monitoring may occur downwind or upwind depending on how the plume is tracking, with priority being directed to the nearest unevacuated residence or areas where people may be present. Visual monitoring may also be used for HVP emergencies. The need to mobilize a helicopter and Helicopter Rover will be assessed. If required, a Rover will be mobilized to accompany each Evacuation Bus. 	inside their Rover Area to evacuate and give them a	 give them a Public Information Notice. As required, each Rover provides voluntary evacuation assistance. Each Rover will maintain a record of public contact on a Public Notification Record. Each Rover will post a Public Information Notice on all doors of each residence and business, on each outbuilding and the windshield of each unattended vehicle. Each Rover will maintain security at voluntarily evacuated residences/businesses and other property inside their Rover Area. Each Rover will take regular air quality readings and record results on an Environmental Monitoring Record. NOTES: For an emergency involving H₂S, air quality monitoring must occur downwind, with priority being directed to the nearest unevacuated residence or areas where people may be present. 		
	 quality monitoring may occur downwind or upwind depending on how the plume is tracking, with priority being directed to the nearest unevacuated residence or areas where people may be present. Visual monitoring may also be used for HVP emergencies. The need to mobilize a helicopter and Helicopter Rover 	For an emergency involving HVP, air quality monitoring may occur downwind or upwind depending on how the plume is tracking, with priority being directed to the nearest unevacuated residence or areas where people may be present. Visual monitoring may also be used for HVP emergencies.		
	 If required, a Rover will be mobilized to accompany each Evacuation Bus. 	The need to place on standby or mobilize a helicopter and Helicopter Rover will be assessed.		
		□ If required, a Rover will be mobilized to accompany each Evacuation Bus.		

		Roadblock Group		
		the appropriate personal protective equipment (PPE) (including communic r a Roadblock Kit if one is not nearby. They will arrange to have the Roadb		
Shel	ter-In-Place (Roadblock Group)		_	
	The required number of Roadblock Teams will be mobilized to the specific planning and response zone.	Evacuation (Roadblock Group)	<u> </u>	
	A Roadblock Location will be assigned to each Roadblock Team.	 The required number of Roadblock Teams will be mobilized to the specific planning and response zone. 	Not	Evaluate the greatest potential Roadblock
□ NOT		 A Roadblock Location will be assigned to each Roadblock Team. Each Roadblock Team will find their assigned Roadblock Location and establish communication with their supervisor. 		requirements for the specific planning and response zones. The required number of Roadblock Teams will be mobilized to the Staging Area.
	outside their assigned planning and response zone Roadblock Location. Roadblocks should be placed in locations that are clearly visible to oncoming traffic. They must be positioned to enable traffic to turn around safely and quickly. Intersections are usually good locations for Roadblocks.	NOTE: Each Roadblock Team will be established outside their assigned planning and response zone Roadblock Location. Roadblocks should be placed in locations that are clearly visible to oncoming traffic. They must be positioned to enable traffic to turn around safely and quickly. Intersections		A Roadblock Location will be assigned to each Roadblock Team. Each Roadblock Team will be placed standby.
	Each Roadblock Team will advise the public not to enter their respective planning and response zone.	are usually good locations for Roadblocks. Each Roadblock Team will advise the public not to enter		
	Each Roadblock Team will document public contact, including public exiting a planning and response zone, on a Roadblock Checkpoint Record .	 their respective planning and response zone. Each Roadblock Team will document public contact, including public exiting a planning and response zone, on a 		
	Each Roadblock Team will document on a Roadblock Checkpoint Record authorized personnel entering their planning and response zone.	 Roadblock Checkpoint Record. Each Roadblock Team will document on a Roadblock Checkpoint Record authorized personnel entering their 		
NOT	E: If unauthorized members of the public enter a planning and response zone, the Roadblock Team will document vehicle description and licence number and communicate the situation to their supervisor.	planning and response zone. NOTE: If unauthorized members of the public enter a planning and response zone, the Roadblock Team will document vehicle description and licence number and communicate the situation to their		
	Each Roadblock Team will take regular air quality readings and record results on an Environmental Monitoring Record .	 supervisor. Each Roadblock Team will take regular air quality readings and record results on an Environmental Monitoring Record. 		
NOT	ES: For an emergency involving H ₂ S, air quality monitoring must occur downwind, with priority being directed to the nearest unevacuated residence or areas where people may be present.	NOTES: For an emergency involving H ₂ S, air quality monitoring must occur downwind, with priority being directed to the nearest unevacuated residence or areas where people may be present.		
	For an emergency involving HVP, air quality monitoring may occur downwind or upwind depending on how the plume is tracking, with priority being directed to the nearest unevacuated residence or areas where people may be present. Visual monitoring may also be used for HVP emergencies.	For an emergency involving HVP, air quality monitoring may occur downwind or upwind depending on how the plume is tracking, with priority being directed to the nearest unevacuated residence or areas where people may be present. Visual monitoring may also be used for HVP emergencies.		

Cor	Environmental Monitoring Group Confirm all responders are trained, accredited and have the appropriate personal protective equipment (PPE) (including communication equipment) before they are dispatched.				
	elter-In-Place (Environmental nitoring Group)				
	If the emergency involves H ₂ S or HVP, an appropriate air monitoring strategy will be employed. Refer to the Air Quality Table listed under the duties for the Public Protection Branch Director. The required number of Environmental Monitoring Teams will be mobilized to the specific planning and response zone. TES: For an emergency involving H₂S, air quality monitoring must occur downwind, with priority being directed to the nearest unevacuated residence or areas	 Evacuation (Environmental Monitoring Group) If the emergency involves H₂S or HVP, an appropriate air monitoring strategy will be employed. Refer to the Air Quality Table listed under the duties for the Public Protection Branch Director. The required number of Environmental Monitoring Teams will be mobilized to the appropriate planning and response zone. NOTES: For an emergency involving H₂S, air quality monitoring must occur downwind with priority being 	 Notification (Environmental Monitoring Group) If the emergency involves H₂S or HVP, an appropriate air monitoring strategy will be employed. Refer to the Air Quality Table listed under the duties for the Public Protection Branch Director. The required number of Environmental Monitoring Teams will be mobilized to the appropriate planning and response zone. 		
	where people may be present. For an emergency involving HVP, air quality monitoring may occur downwind or upwind depending on how the plume is tracking, with priority being directed to the nearest unevacuated residence or areas where people may be present. Visual monitoring may also be used for HVP emergencies.	downwind, with priority being directed to the nearest unevacuated residence or areas where people may be present. For an emergency involving HVP, air quality monitoring may occur downwind or upwind depending on how the plume is tracking, with priority being directed to the nearest unevacuated residence or areas where people may be present. Visual monitoring may	NOTES: For an emergency involving H ₂ S, air quality monitoring must occur downwind, with priority being directed to the nearest unevacuated residence or areas where people may be present. For an emergency involving HVP, air quality monitoring may occur downwind or upwind depending on how the plume is tracking, with priority being directed to the nearest unevacuated residence or		
	Monitoring Team will be dispatched to the appropriate planning and response zone. If safe to do so, each Environmental Monitoring Team will take regular air quality readings and record results on an Environmental Monitoring Record .	 also be used for HVP emergencies. An Environmental Monitoring Team will be dispatched to the appropriate planning and response zone. Each Environmental Monitoring Team will take regular air quality readings and record results on an Environmental Monitoring Record. 	 areas where people may be present. Visual monitoring may also be used for HVP emergencies. An Environmental Monitoring Team will be dispatched to the appropriate planning and response zone. Each Environmental Monitoring Team will take regular air quality readings and record results on an Environmental Monitoring Record. 		

	Telephoner Group					
(Confirm all responders are trained, accredited and ha	ave the appropriate personal protective equipment (PPE) (dispatched.	including communication equipment) before they are			
Shelt	ter-In-Place (Telephoner Group)					
	If NOT using an automated telephone notification system to assist in the response: The required number of Telephoners will be mobilized.	Evacuation (Telephoner Group) If NOT using an automated <u>telephone notification system</u>	Notification (Telephoner Group)			
	 Each Telephoner will call their assigned contacts and recite the SHELTER-IN-PLACE MESSAGE. If there are school children residing inside a specific planning and response zone the Telephoners will contact schools (if school is in session) and school bus authorities. If there are industrial operators, grazing lessees or trappers inside a specific planning and response zone, the Telephoners will contact these industrial operators, grazing lessees or trappers and recite the EVACUATION MESSAGE. 	 to assist in the response: The required number of Telephoners will be mobilized. Each Telephoner will call their assigned contacts and recite the EVACUATION MESSAGE. If there are school children residing inside a specific planning and response zone the Telephoners will contact schools (if school is in session) and School Bus authorities. If there are industrial operators, grazing lessees or trappers will contact these industrial operators, grazing lessees or trappers will contact these industrial operators, grazing lessees or the telephoners will contact these industrial operators, grazing lessees or the telephoners will contact these industrial operators, grazing lessees or the telephoners will contact these industrial operators, grazing lessees or the telephoners will contact these industrial operators, grazing lessees or the telephoners will contact these industrial operators, grazing lessees or the telephoners will contact these industrial operators, grazing lessees or the telephoners will contact these industrial operators, grazing lessees or telephoners will contact these industrial operators, grazing lessees or telephoners will contact these industrial operators, grazing lessees or telephoners will contact these industrial operators, grazing lessees or telephoners will contact these industrial operators, grazing lessees or telephoners will contact these industrial operators, grazing lessees or telephoners will contact the set of telephoners will contact tel	 If NOT using an automated <u>telephone notification system</u> to assist in the response: The required number of Telephoners will be mobilized. Each Telephoner will call their assigned contacts and recite the NOTIFICATION MESSAGE. If there are school children inside a specific planning and response zone no contact is required at this time. If there are industrial operators, grazing lessees or trappers will contact these industrial operators, grazing lessees or trappers will contact these industrial operators, grazing lessees or trappers will contact these industrial operators, grazing lessees or the telephoners will contact these industrial operators, grazing lessees or trappers will contact these industrial operators, grazing lessees or trappers will contact these industrial operators, grazing lessees or trappers will contact these industrial operators, grazing lessees or trappers will contact these industrial operators, grazing lessees or trappers will contact these industrial operators, grazing lessees or trappers will contact these industrial operators, grazing lessees or trappers will contact these industrial operators, grazing lessees or trappers will contact these industrial operators, grazing lessees or trappers will contact these industrial operators, grazing lessees or trappers will contact these industrial operators, grazing lessees or trappers will contact these industrial operators, grazing lessees or trappers will contact these industrial operators, grazing lessees or trappers the telephoners will contact these industrial operators, grazing lessees or trappers telephoners will contact these industrial operators, grazing lessees or telephoners will contact the telephoners will contact telephoners will contact telephoners will contact telephon			
	 If using an automated telephone notification system to assist in the response: The automated telephone notification system personnel will be contacted. Confirm they are prepared to launch the SHELTER-IN-PLACE MESSAGE to the desired contacts. The required number of Telephoners will also be mobilized. Telephoners will back up the automated telephone notification system and be prepared to answer questions from the public. The automated telephone notification system personnel will be instructed to send the SHELTER-IN-PLACE MESSAGE to the desired contacts. If there are school children residing inside a specific planning and response zone], the Telephoners will contact schools (if school is in session) and school bus authorities. (This contact is <u>not</u> made by the automated telephone notification system.) If there are industrial operators, grazing lessees or trappers inside a specific planning and response zone, Telephoners will contact these industrial operators, grazing lessees or trappers and recite the EVACUATION MESSAGE. (This contact is <u>not</u> made by the automated telephone notification system.) 	 Will contact these industrial operators, grazing lessees of trappers and recite the EVACUATION MESSAGE. If using an automated telephone notification system to assist in the response: The automated telephone notification system personnel will be contacted. Confirm they are prepared to launch the EVACUATION MESSAGE to the desired contacts. The automated telephone notification system personnel will be given the name of the Reception Centre (if required). The automated telephone notification system personnel will be instructed to insert the name of the Reception Centre into the EVACUATION MESSAGE. If a Reception Centre is not required, the automated telephone notification system personnel will be instructed to remove the two sentences referring to the Reception Centre from the EVACUATION MESSAGE. The required number of Telephoners will also be mobilized. Telephoners will back up the automated telephone notification system personnel will send the EVACUATION MESSAGE. The automated telephone notification system personnel will send the EVACUATION MESSAGE. If here are school children residing inside a specific planning and response zone, the Telephoners will be instructed to contact schools (if school is in session) and School Bus authorities. (This contact is not made by the automated telephone notification system.) If there are industrial operators, grazing lessees or trappers inside a specific planning and response zone, the Telephoners zone, the Telephoners will contact these industrial operators, grazing lessees or trappers inside a specific planning and response zone, the Telephoners zone, the Telephoners will contact these industrial operators, grazing lessees or trappers inside a specific planning and response zone, the Telephoners zone, the Telephoners will contact these industrial operators, grazing lessees or trappers inside a specific planning and response zone, the Telephoners will contact these industrial operators, grazing le	 Will contact these industrial operators, grazing lesses of trappers and recite the NOTIFICATION MESSAGE. If using an automated telephone notification system to assist in the response: The automated telephone notification system personnel will be contacted. Confirm they are prepared to launch the NOTIFICATION MESSAGE to the desired contacts. The automated telephone notification system personnel will be given the name of the Reception Centre (if required). The automated telephone notification system personnel will be instructed to insert the name of the Reception Centre into the NOTIFICATION MESSAGE. If a Reception Centre is not required, the automated telephone notification system personnel will be instructed to remove the two sentences referring to the Reception Centre from the NOTIFICATION MESSAGE. The required number of Telephoners will be mobilized. Telephoners will back up the automated telephone notification system personnel will be instructed to send the NOTIFICATION MESSAGE. The automated telephone notification system personnel will be instructed to remove the two sentences referring to the Reception Centre from the NOTIFICATION MESSAGE. The required number of Telephoners will be mobilized. Telephoners will back up the automated telephone notification system personnel will be instructed to send the NOTIFICATION MESSAGE. The automated telephone notification system personnel will be instructed to send the NOTIFICATION MESSAGE to the desired contacts. If there are industrial operators, grazing lessees or trappers inside a specific planning and response zone no contact is required at this time. If there are industrial operators, grazing lessees or trappers and recite the NOTIFICATION MESSAGE. (This contact is <u>not</u> made by the automated telephone notification system.) 			

- Review the postincident public protection measure responder safety action plan with your supervisor.
- □ Recall of Evacuees:
 - □ Ensure members of the public who have been affected by the emergency are contacted at the contact numbers provided at the time of evacuation.
 - Structures inside the Emergency Planning Zone (EPZ) will be monitored for any readings of hazardous substance, such as H₂S, prior to letting evacuees back in the area.
 - Roadblocks will be maintained until all residents and occupied industrial operator facilities have returned. Roadblock positions may be appropriately modified as people return to the area.
 - □ Assistance will be provided to people who need help to return.
 - □ All Public Evacuation Notices will be recovered.
 - □ The Reception Centre, if established, will be kept open until all of the evacuated public has been advised of the stand-down
 - □ Any commitments made to any public or agencies will be followed up
 - **D** Public expense claims will be collected and processed.
- **D** Participate in the Postincident Debrief held by your supervisor.
- Gather public protection response data and forward to your supervisor.

4.10 OTHER BRANCH DIRECTOR(S), AS REQUIRED

Primary Objectives	 Responder safety Public protection Control and conta 	inment of the hazard	Suggested Primary ICS Positions (Other positions mobilized as required.)	
Role		specific operational tactics not covered anch Director or the Public Protection		
Located at	Incident Command I (RCP) (if established	Post (ICP) or Remote Command Post I)		
of	Recovery Group Sup	pervisor or Recovery Leader(s)	OPERATIONS	
Supervises Activities of	Wildlife Group Supe	visor or Wildlife Leader(s)	CHIEF	
Ac	Other Group Superv	isor(s) or Leader(s), as required	OTHER	
Reports to/ Assigned by	Operations Section (Chief	BRANCH DIRECTOR(S), AS REQUIRED	
Public Notification (with voluntary evacuation), Evacuation and/or SI site, expanding outward first in a downwind direction and the Zone (EPZ).				
Information Exchange (Informal Communication)		Open to responders to freely exchange information.		
Flow of Orders, Directives, Resource Requests and Status Changes (Formal Communication)		Must follow the hierarchy of command (ch	ain of command) unless otherwise directed.	

Incident Investigation, Alerts and Minor Incidents

□ No assigned duties during an Incident Investigation, Alert or Minor Incident.

Level One, Two or Three Emergency

- **□** Receive a briefing from your supervisor.
- Chronologically document all actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- Ensure a Complexity Analysis is performed for operational tactics not covered by the On-site Branch Director or the Public Protection Branch Director such as the environment, wildlife, etc.:

Complexity Analysis Factors

- **D** Determine if there is potential for environmental damage.
- **D** Determine if there is potential for impact to local wildlife.
- Determine if there are impacts to other features not covered by the On-site Branch Director or the Public Protection Branch Director.
- □ Assess weather conditions. Determine if they could impact emergency response efforts.

- □ Work with your supervisor to:
 - □ Prepare a responder safety action plan.
 - □ Prepare the required action plan (recovery, wildlife, etc.).
- In order to maintain an effective span of control (no more than seven responders reporting to one supervisor), proactively mobilize the required Supervisor(s) or Leader(s).
- □ Participate in Operations Section briefings.
- **G** Schedule and conduct frequent other Operational Group briefings.

- Review the postincident responder safety action plan for other Operational Groups with your supervisor.
- **D** Participate in the Postincident Debrief held by your supervisor.
- **G** Gather other Operational Group response data and forward to your supervisor.

4.11 STAGING AREA MANAGER

Primary Objectives	 Responder safety Public protection Control and containm 	ent of the hazard	00	Suggested Primary ICS Positions (Other positions mobilized as required.)	
Roles	Area are trained, acc appropriate personal pro before. Oversees the movemen	mobilized to the Staging corredited and have the rotective equipment (PPE) ent of available resources oment) to and from the			
Located at	Staging Area		MANAG	ER	10 g.
Supervises Activities of	Available resources (mai at the Staging Area.	npower and equipment)	ON-SITE	PUBLIC	OTHER
Reports to/ Assigned by	Operations Section Chief	F	BRANCH DIRECTOR	BRANCH DIRECTOR	DIRECTOR(S), AS REQUIRED
Public Notification (with voluntary evacuation), E Protection site, expanding outward first in a downwir Measures Zone (EPZ).					
Information Exchange (Informal Communication)		Open to responders to fre	eely exchange inform	mation.	
	rs, Directives, Resource I Status Changes munication)	Must follow the hierarch directed.	ny of command (cl	hain of command)	unless otherwise

Incident Investigation, Alerts and Minor Incidents

□ No assigned duties during an Incident Investigation, Alert or Minor Incident.

- □ Receive a briefing from your supervisor.
- Chronologically document all actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- Establish a Staging Area, outside any planning or response zone, near the incident site.
- **D** The following criteria are helpful for choosing a suitable Staging Area location.
 - □ Is the area located outside any □ Is the area level and stable? planning or response zone?
 - □ Has approval been received from the landowner to use the site?
 - □ Is the area easy to find?
 - □ Is the size of the area adequate not only for equipment, but worker safety?
- □ Are the access roads suitable for travel in adverse weather?
- Are there any entry problems such as narrow approaches, gates, overhead power lines, buried pipelines, etc.?
- □ Is communication reception adequate?
- □ As required, erect directional signs to the Staging Area.

- □ As required, flag the perimeter of the Staging Area.
- □ Advise your supervisor about the "directions to" the Staging Area.
- □ As required, obtain an office trailer, lighting, portable toilets, etc. for the Staging Area.
- Ensure all responders mobilized to the Staging Area are trained, accredited and have the appropriate personal protective equipment (PPE).
- Oversees the movement of available resources (manpower and equipment) to and from the Staging Area.
- □ Participate in Operations Section briefings.

- □ Notify all responders at the Staging Area.
- **D** Participate in the Postincident Debrief held by your supervisor.
- **D** Forward all Staging Area data to your supervisor.

4.12 PLANNING SECTION CHIEF AND PLANNING SECTION

Primary Objectives	 Responder safety Public protection Control and containmen 	t of the hazard	Suggested Primary ICS Positions (Other positions mobilized as required.)	
Roles	Compiles the Incident O Incident Briefing form (IC Action Plan (IAP). Ensures incident informat and disseminated.	INCIDENT COMMANDER SAFETY OFFICER		
Located at	Incident Command Post (10	CP)	OPERATIONS PLANNING	
	Resources Unit		SECTION CHIEF SECTION CHIEF	
ses s of	Situation Unit		Resources Unit Documentation	
itties	Documentation Unit	Unit		
Supervises Activities of	Demobilization Unit		Situation Unit Demobilization	
	Technical Specialists			
Reports to/ Assigned by	Incident Commander		Technical Specialists	
Public Protection Measures		v evacuation), Evacuation and/or Shelter- st in a downwind direction and then in the		
Information E (Informal Cor	5	Open to responders to freely exchange i	information.	
	rs, Directives, Resource Status Changes munication)	Must follow the hierarchy of command directed.	(chain of command) unless otherwis	

Incident Investigation, Alerts and Minor Incidents

□ No assigned duties during an Incident Investigation, Alert or Minor Incident.

- **□** Receive a briefing from your supervisor.
- Chronologically document all actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- **Complete the following:**
 - □ Incident Objectives form (ICS Form 202) □ Issues Board Have it approved by the Incident Commander.
 - □ Incident Briefing form (ICS Form 201). □ Status Board
- Compile the overall Incident Action Plan (IAP). Ensure the Incident Action Plan (IAP) is reviewed by the Safety Officer (if established) and approved by the Incident Commander. Distribute the Incident Action Plan (IAP) to the Incident Management Team (IMT).
- □ As required, mobilize a deputy.
- Post and maintain charts, plot plans, surveys, maps and sketches as they are developed.

- Ensure incident information is documented, current, accurate and disseminated to the Incident Management Team (IMT).
- ☐ As required, develop a group email to ensure responders are informed in a timely fashion. Group emails will not be relied upon as the primary communications method.
- □ As required, mobilize technical specialists (engineering, plume dispersion, environmental, well control, metal fatigue, etc.).
- Ensure Incident Management Team (IMT) members are documenting their actions, decisions, contacts and requests on:
 - Activity Log (ICS Form 214) all responders
 Environmental Record - Environmental Monitoring Teams, Rovers and Roadblock Teams
 - Public Notification Record -Rovers and Telephoners
 - Roadblock Checkpoint Record -Roadblock Teams
- Evacuee Registration Record and School Children
 Registration Record - Reception Centre Group Leader, Reception Centre Managers and Reception Centre Representatives
- □ As required, proactively mobilize a:
 - □ **Resources Unit** responsible for all check-in activity and for documenting the status and location of all resources (manpower and equipment).
 - Situation Unit develops maps, collects and processes information about the current situation, prepares situation displays and situation summaries and projections. The Situation Unit may mobilize the following single resources: Display Processor, Field Observer or Weather Observer.
 - Documentation Unit maintains incident-related documentation and provides duplication services.
 - Demobilization Unit assists in ensuring the orderly, safe and costeffective demobilization of no longer required response resources (manpower and equipment).

NOTE: Specific response team duties for the above mentioned units are not included in this emergency response plan other than those listed above.

D Utilizing a Briefing Form facilitate Incident Management Team (IMT) briefings.

Postincident Duties

- Compile the overall Postincident Action Plan (IAP).
- **D** Ensure **Demobilization Checkout** forms (**ICS Form 221**) are utilized.
- **D** Participate in the Postincident Debrief held by your supervisor.

Gather all data related to the incident.

4.13 LOGISTICS SECTION CHIEF AND LOGISTICS SECTION

Primary Objectives	 Responder safety Public protection Control and containment 	Suggested Prima (Other position requir	s mobilized as	
Roles	Assists with procuring reso Ensures responders are tr personal protective equipm	INCIDENT COMMANDER		
Located at	Incident Command Post (IC	CP)	LOGIS	
	Communications Unit			
of	Medical Unit	BRANCH	BUPPORT BRANCH	
rvise ties	Food Unit			
Supervises Activities of	Supply Unit	Communications	Supply Unit	
A S	Facilities Unit	Medical Unit	Pacilities Unit	
	Ground Unit			
Reports to/ Assigned by	Incident Commander		Food Unit	Ground Unit
Public Protection Measures	Notification (with voluntary site, expanding outward fir Zone (EPZ).			
Information E (Informal Cor	0	Open to responders to freely exchange information.		
	s, Directives, Resource Status Changes munication)	Must follow the hierarchy of command (cha directed.	in of command) ι	inless otherwise

Incident Investigation, Alerts and Minor Incidents

□ No assigned duties during an Incident Investigation, Alert or Minor Incident.

- **□** Receive a briefing from your supervisor.
- □ Chronologically document all actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- □ As required, procure the following:
 - Information technology requirements (communications equipment, computer systems, etc.).
 - □ Medical aid for responders.
 - □ Incident Facilities support (setting up, security, clerical, etc.).
 - Supplies, services and equipment [contractors, Western Canadian Spill Services (WCSS) equipment, catering for the responders, etc.].
 - Personnel [Tervita, mutual aid, Western Canadian Spill Services (WCSS), etc.].
 - Ground transportation for responders.

- □ As required, mobilize a deputy.
- Prior to mobilizing a responder, confirm they are trained, accredited and have the appropriate personal protective equipment (PPE). Personal protective equipment (PPE) only reduces; but does not eliminate the risk from harmful substances.
- □ As required and as available, mobilize an Area Office Receptionist. Ensure this Receptionist has a copy of the **Incident Briefing** form **(ICS Form 201)** and that she/he knows where to direct incident-related calls.
- □ As required, proactively mobilize a Service Branch:
 - **Communications Unit** responsible for distributing and maintaining incident communication equipment and computer systems.
 - Medical Unit develops a medical plan, first aid and medical treatment for responders. May also develop a medical transportation plan (ground/air) and also any medical reports for responders.
 - **Food Unit** responsible to supply food and potable water for responders.
- □ As required, proactively mobilize a Support Branch:
 - □ **Supply Unit** orders personnel, equipment and supplies. The Supply Unit may mobilize the following single resources: Ordering, Receiving, and/or Distribution Manager.
 - □ **Facilities Unit** sets up and maintains any incident-related facilities. The Facilities Unit may mobilize the following single resource: Security Manager.
 - **Ground Unit** provides transportation and fuel for the responders.

NOTE: Specific response team duties for the above mentioned units are not included in this emergency response plan other than those listed above.

D Participate in Incident Management Team (IMT) briefings.

- □ Notify the Area Office Receptionist (if established).
- **D** Participate in the Postincident Debrief held by your supervisor.
- **D** Forward all data related to the incident to the Planning Section Chief.

4.14 FINANCE/ADMINISTRATION SECTION CHIEF AND FINANCE/ADMINISTRATION SECTION

Primary Objectives	 Responder safety Public protection Control and containmen 	Suggested Primary ICS Positions (Other positions mobilized as required.)	
Roles	Provides time tracking, p claims and cost accounting		
Located at	Incident Command Post (I	CP)	
ب ب	Time Unit		
vises ies o	Procurement Unit		FINANCE/ ADMINISTRATION SECTION CHIEF
Supervises Activities of	Compensation/Claims Unit	- Time Unit	
	Cost Unit	- Procurement Unit	
Reports to/ Assigned by	Incident Commander		Claims Unit Cost Unit
Public Protection Measures		v evacuation), Evacuation and/or Shelter-Inst in a downwind direction and then in the	
Information Exchange (Informal Communication)		Open to responders to freely exchange information.	
	rs, Directives, Resource I Status Changes munication)	Must follow the hierarchy of command directed.	(chain of command) unless otherwise

Incident Investigation, Alerts and Minor Incidents

□ No assigned duties during an Incident Investigation, Alert or Minor Incident.

- **□** Receive a briefing from your supervisor.
- □ Chronologically document all actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- Record active responder time. Inform your supervisor about any excess hours worked.
- □ In cooperation with the Logistics Section Chief, ensure all financial matters pertaining to vendor contracts are addressed.
- □ As required, mobilize a deputy.
- □ Supervise compensation/claim brought forward as a result of the incident.
- □ Provide incident cost analysis.
- □ As required, proactively mobilize a:
 - **Time Unit** ensures active responder time is recorded.
 - □ **Procurement Unit** administers equipment rental and supply contracts. Responsible for equipment time recording.

- Compensation/Claims Unit oversees responder/worker compensation documentation (injury/illness) is correctly completed and handles the investigation of damage claims.
- Cost Unit responsible for collecting incident-related cost information and providing cost estimates.

NOTE: Specific response team duties for the above mentioned units are not included in this emergency response plan other than those listed above.

D Participate in Incident Management Team (IMT) briefings.

- □ Notify previous contacts.
- □ Participate in the Postincident Debrief held by your supervisor.
- **□** Forward all data related to the incident to the Planning Section Chief.

4.15 INCIDENT DIRECTOR

Primary Objectives	 Responder safety Public protection Control and containment 	of the hazard	Suggested Primary ICS Positions (Other positions mobilized as required.)
Role	Directs the Incident Support advice and support to the In (IMT).	ort Team (IST) to provide ncident Management Team	
Located at	Emergency Operations Cent	re (EOC)	
	Deputy Incident Director	Assists Incident Director	
	IST Information Officer	Interfaces with involved media.	
	IST Safety Officer	Advice and support for maximizing responder safety.	
ies of	IST Liaison Officer	Advice and support for interfacing with government agencies.	INCIDENT COMMANDER DIRECTOR
s Activit	Operations Section Head	Advice and support for managing tactical operations - "Doers".	Senior Management
Supervises Activities of	Planning Section Head	Advice and support for compiling action plan/documents response - "Thinkers and Documenters".	DEPUTY INCIDENT COMMANDER DIRECTOR
	Logistics Section Head	Advice and support for procuring resources - "Getters".	
	Finance/Administration Section Head	Advice and support for ensuring cost accounting - "Payers".	
Obtains Advice and Support from	Senior Management		
Public Protection Measures		/or Shelter-In-Place starts closest to the incident d then in the remainder of the Emergency Planning	
Information (Informal Co	Exchange mmunication)	Open to responders to	o freely exchange information.
	rs, Directives, Resource Reque hanges (Formal Communicatio		archy of command (chain of command) unless

Responsibilities

Incident Investigation, Alerts and Minor Incidents

□ No assigned duties during an Incident Investigation, Alert or Minor Incident.

- □ Chronologically document all action, decisions, contacts and requests on an Activity Log (ICS Form 214).
- Refer to the <u>Initial On-site Actions 7 Steps</u> diagram and <u>Incident Support</u> <u>Team (IST) Response Process (Response P)</u> diagram in Section 1.0. As required, have other Incident Support Team (IST) members refer to these diagrams.

- **□** From the Incident Commander, receive and review the following:
 - **Incident Objectives** form **(ICS Form 202)**.
 - □ Incident Briefing form (ICS Form 201).
 - □ Incident Action Plan Safety and Risk Analysis Form (ICS Form 215A).
 - Completed appropriate Provincial and/or Regulatory Section emergency reporting form.

NOTE: The Incident Management Team (IMT) may ask the Incident Support Team (IST) to assist them in completing some of these forms.

- Resist the urge to do all tasks. Delegate responsibilities. Appoint others to carry out Incident Support Team (IST) response functions. Get Big Fast!
- □ In order to maintain an effective span of control (no more than seven responders reporting to one supervisor), proactively mobilize the following:
 - Deputy Incident Director
 Operations Section Head
 - IST Information OfficerPlanning Section Head
 - IST Safety Officer

Logistics Section Head

□ IST Liaison Officer

- □ Finance/Administration Section Head
- □ Activate the Emergency Operations Centre (EOC) and confirm there is an adequate communication link to the Incident Command Post (ICP).
- □ Advise and support the Incident Management Team (IMT) regarding the:
 - □ On-site responder safety action plan.
 - □ Planning zone and the response zones responder safety action plan.
 - Planning zone and the response zones public protection measure action plan.
 - □ Air monitoring strategy.
 - □ Control and containment action plan.
 - □ Overall Incident Action Plan (IAP).
 - □ Ignition (Refer to Section 5.0, Ignition for ignition equipment and procedures and the appropriate Provincial and/or Regulatory for specific ignition criteria).
 - **Unified Command**.
- □ Schedule and conduct frequent Incident Support Team (IST) briefings.

NOTE: The Planning Section Head should facilitate these briefings.

Ensure Senior Management is kept informed about the response. As required, obtain advice and support from Senior Management.

- □ Refer to the appropriate provincial and/or regulatory tab for procedures to downgrade or stand-down a level of emergency.
- **□** Ensure all Incident Support Team (IST) members are notified.
- Coordinate Incident Support Team (IST) postincident duties.
- □ With the Incident Commander, review the overall Postincident Action Plan.
- □ If required, procure personnel to conduct Critical Incident Stress Debriefing (CISD).
- Coordinate and carry out a Postincident Debrief with Incident Support Team (IST) personnel.
- **□** Forward all data related to the response to the Planning Section Head.

4.16 DEPUTY INCIDENT DIRECTOR

Primary Objectives	 Responder safety Public protection Control and containment of the hazard 		Suggested Primary ICS Positions (Other positions mobilized as required.)
	Assists the Incident Director in advising and supporting the Incident Management Team (IMT).		
	Fills one or more IST Command Staff functions until these functions are assigned.		
Roles	Helps to set up the Emergency Operations Centre (EOC).		
		nunicates with the Incident y Incident Commander.	
Located at	Emergency Operation	s Centre (EOC)	
	IST Information Officer	Interfaces with involved media.	
ties of	IST Safety Officer	Advice and support for maximizing responder safety.	INCIDENT COMMANDER INCIDENT - ;
e Activi	IST Liaison Officer	Advice and support for interfacing with government agencies.	Senior Management
ising th	Operations Section Head	Advice and support for managing tactical operations - "Doers".	DEPUTY INCIDENT COMMANDER
May Assist in Supervising the Activities of	Planning Section Head	Advice and support for compiling action plan/documents response - "Thinkers and Documenters".	
y Assist	Logistics Section Head	Advice and support for procuring resources - "Getters".	
May	Finance/Administrati on Section Head	Advice and support for ensuring cost accounting - "Payers".	
Obtains Advice and Support from	Senior Management		
Public Protection Measures	Notification (with voluntary evacuation), Evacuation and/or Shelter-In-Place starts closest to the incident site, expanding outward first in a downwind direction and then in the remainder of the Emergency Planning Zone (EPZ).		
Information E (Informal Co	Exchange mmunication)	Open to responders to freely	y exchange information.
Flow of Orders, Directives, Resource Requests and Status Changes (Formal Communication) Must follow the hierarchy of directed.		wust follow the hierarchy o	of command (chain of command) unless otherwise

RESPONSIBILITIES

Incident Investigation, Alerts and Minor Incidents

□ No assigned duties during an Incident Investigation, Alert or Minor Incident.

Level One, Two or Three Emergency

□ Receive a briefing from your supervisor.

- □ Chronologically document all actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- □ As required, assists the Incident Director in advising and supporting the Incident Management Team (IMT).
- **Fill one or more IST Command Staff functions until these functions are assigned.**
- □ Help to set up the Emergency Operations Centre (EOC).
- □ As required, communicate with the Incident Commander or Deputy Incident Commander.
- □ Participate in Incident Support Team (IST) briefings.

- □ Participate in the Postincident Debrief held by your supervisor.
- **□** Forward all data related to the response to the Planning Section Head.

4.17 IST INFORMATION OFFICER

Primary Objectives	 Responder safety Public protection Control and containment of the hazard 		Suggested Primary ICS Positions (Other positions mobilized as required.)
	Interfaces with media involved in the emergency, prepares media releases and provides general public statements.		
Roles	Advises and supports th Information Officer.	INCIDENT DIRECTOR	
Roles	Provides internal incident-r		
Completes the media, mass public an information portions of the overall Comm		ass public and internal incident-related overall Communications Plan.	IST
Located at	Emergency Operations Centre (EOC)		INFORMATION OFFICER
Reports to/ Assigned by	Incident Director		Parentier Instantion registering along methods
Public Protection Measures	Notification (with voluntary evacuation), Evacuation and/or Shelter-In-Place starts closest to the incident site, expanding outward first in a downwind direction and then in the remainder of the Emergency Planning Zone (EPZ).		
Information Exchange (Informal Communication)		Open to responders to freely exchange information.	
Flow of Orders, Directives, Resource Requests and Status Changes (Formal Communication)		Must follow the hierarchy of command (chain of command) unless otherwise directed.	

Responsibilities

Incident Investigation, Alerts and Minor Incidents

□ No assigned duties during an Incident Investigation, Alert or Minor Incident.

Level One, Two or Three Emergency

- **□** Receive a briefing from your supervisor.
- Chronologically document all actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- Refer to Section 6.0, Media and Appendix 2 Communications Plan for further details about media interaction.
- □ Advise and support the Incident Management Team (IMT) Information Officer regarding:
 - □ Media and public statements.
 - □ Internal incident-related information.
- **D** Prepare media releases and handle inquiries from the media.

NOTES: The Incident Commander must approve all media releases.

Tervita will coordinate media releases with the petroleum regulatory agency prior to release to ensure consistency and accuracy of information. Information can be communicated

through written news releases, news conferences and any other effective means Tervita chooses to use.

If approached or contacted by the media, a Tervita employee or responder may give a Brief Factual Media Statement. Refer to Section 6.0 for an example Brief Factual Media Statement.

- G Work with the Information Officer to provide internal incident-related information.
- □ The following information must be disseminated to the public immediately and during an incident:

Information Disseminated to the Public at the Onset of and During an Incident				
To those evacuated or sheltered - At the Onset	To those evacuated or sheltered - During			
 Type and status of incident. Location and proximity of the incident to people in the vicinity. Public protection measures to follow, evacuation instructions, and any other emergency response measures to consider. Actions being taken to respond to the situation, including anticipated time period. Contacts for additional information. 	 Description of the products involved and their short-term and long-term effects. Effects the incident may have on people in the vicinity. Areas impacted by the incident. Actions the affected public should take if they experience adverse effects. 			
To the General Public - During				

- Type and status of the incident.
- Location of the incident.
- Areas impacted by the incident.
- Description of the products involved.
- Contacts for additional information.
- Actions being taken to respond to the situation, including anticipated time period.
- D Participate in Incident Support Team (IST) briefings.

- □ If required, continue to advise and support the Incident Management Team (IMT) Information Officer regarding:
 - □ Media and public statements.
 - □ Internal incident-related information.
- D Participate in the Postincident Debrief held by your supervisor.
- **□** Forward all data related to the response to the Planning Section Head.

4.18 IST SAFETY OFFICER

Primary Objectives	 Responder safety Public protection Control and containment of the hazard 		Suggested Primary ICS Positions (Other positions mobilized as required.)
Roles	Advises and supports the Incident Management Team (IMT) Safety Officer regarding developing and recommending measures for ensuring responder safety. May provide advice and support to the Incident Management Team (IMT) Safety Officer to review the Incident Objectives form (ICS Form 202), the Incident Briefing form (ICS Form 201), the Incident Action Plan Safety and Risk Analysis Form (ICS Form 215A) and the overall Incident Action Plan (IAP) for responder safety implications.		INCIDENT DIRECTOR IST SAFETY OFFICER
	Discontinues any operation which threatens the health and safety of responders.		OPERATIONS PLANNING
Located at	Emergency Operations Centre (EOC)		SECTION SECTION HEAD
Reports to/ Assigned by	Incident Director		
Public Protection Measures	Notification (with voluntary evacuation), Evacuation and/or Shelter-In-Place starts closest to the incident site, expanding outward first in a downwind direction and then in the remainder of the Emergency Planning Zone (EPZ).		
Information Exchange (Informal Communication) Open to responders to freely exch		Open to responders to freely exchan	ge information.
Flow of Orders, Directives, Resource Requests and Status Changes (Formal Communication) Must follow the hierarchy of command (chair directed.		and (chain of command) unless otherwise	

RESPONSIBILITIES

Incident Investigation, Alerts and Minor Incidents

□ No assigned duties during an Incident Investigation, Alert or Minor Incident.

- **□** Receive a briefing from your supervisor.
- Chronologically document all actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- □ Advise and support the Safety Officer regarding:
 - Developing and recommending measures for ensuring responder safety.
 - □ The review of the Incident Objectives form (ICS Form 202), the Incident Briefing form (ICS Form 201), the Incident Action Plan Safety and Risk Analysis Form (ICS Form 215A) and the overall Incident Action Plan (IAP) for responder safety implications.
- **D** Discontinue any operation which threatens the health and safety of responders.
- Obtain a head count of all responders dispatched to the Emergency Operations Centre (EOC).

- □ Ensure all responders follow the appropriate safe-work procedures. Refer to Tervita's Health and Safety Manual.
- □ Provide Drug and Alcohol Policy Guidance.
- D Participate in Incident Support Team (IST) briefings.

- □ As required, continue to advise and support the Safety Officer.
- **D** Participate in the Postincident Debrief held by your supervisor.
- **□** Forward all data related to the response to the Planning Section Head.

4.19 IST LIAISON OFFICER

Primary Objectives	 Responder safety Public protection Control and containment of the hazard 		Suggested Primary ICS Positions (Other positions mobilized as required.)	
Roles	(IMT) Liaison Officer government agencies inv Advises and supports			
Located at	Emergency Operations Centre (EOC)		IST LIAISON OFFICER	
Reports to/ Assigned by	Incident Director		As requested, supports the Incident Management Team (IMIT) with government notifications.	
Public Protection Measures	Notification (with voluntary evacuation), Evacuation and/or Shelter-In-Place starts closest to the incident site, expanding outward first in a downwind direction and then in the remainder of the Emergency Planning Zone (EPZ).			
Information Exchange (Informal Communication) Open to responders to freely ex		hange information.		
Flow of Orders, Directives, Resource Requests and Status Changes (Formal Communication) Must follow the hierar directed.		5	ommand (chain of command) unless otherwise	

Responsibilities

Incident Investigation, Alerts and Minor Incidents

□ No assigned duties during an Incident Investigation, Alert or Minor Incident.

Level One, Two or Three Emergency

- □ Receive a briefing from your supervisor.
- Chronologically document all actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- □ Advise and support the Liaison Officer regarding the notification of involved government agencies.
- **D** Participate in Incident Support Team (IST) briefings.

- □ As required, continue to advise and support the Liaison Officer.
- **D** Participate in the Postincident Debrief held by your supervisor.
- **D** Forward all data related to the response to the Planning Section Head.

4.20 OPERATIONS SECTION HEAD AND IST OPERATIONS SECTION

Primary Objectives	 Responder safety Public protection Control and containment of the hazard 		Suggested Primary ICS Positions (Other positions mobilized as required.)
Operations Section incident to maximi and containment of		ts the Incident Management Team (IMT) Chief regarding activities at the site of the ze on-site responder safety and control the hazard.	
Roles	Advises and supports the Incident Management Team (IMT) Operations Section Chief regarding planning zone and response zone responder safety and public protection measures to maximize Public protection.		
Located at	Emergency Operations Centre (EOC)		OPERATIONS SECTION HEAD
Reports to/ Assigned by	Incident Director		Gerational Support as Required
Public Protection Measures	Notification (with voluntary evacuation), Evacuation and/or Shelter-In-Place starts closest to the incident site, expanding outward first in a downwind direction and then in the remainder of the Emergency Plannir Zone (EPZ).		
Information Exchange (Informal Communication)		Open to responders to freely exchange information.	
Flow of Orders, Directives, Resource Requests and Status Changes (Formal Communication)		Must follow the hierarchy of command (chain of command) unless otherwise directed.	
Single Resources		Single Resources include both personnel and their required equipment (e.g. On-site Safety)	
Task Forces		A Task Force is a combination of <u>different</u> types and kinds of single resources assembled for a particular tactical need, with common communications and a leader (e.g. Well Control Task Force). Task forces can be pre-determined or assembled at an incident from available single resources. Span of control guidelines apply.	
Strike Teams		A Strike Team is a combination of the <u>same</u> types and kinds of single resources assembled for a particular tactical need, with common communications and a leader (e.g. Fire Fighting Task Force). Strike teams can be pre-determined or assembled at an incident from available single resources. Span of control guidelines apply.	

Responsibilities

Incident Investigation, Alerts and Minor Incidents

□ No assigned duties during an Incident Investigation, Alert or Minor Incident.

- **□** Receive a briefing from your supervisor.
- Chronologically document all actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- **d** Advise and support the Operations Section Chief regarding:
 - □ Activities at the site of the incident to maximize on-site responder safety and control and containment.
 - □ Planning zone and response zone responder safety and public protection

measures to maximize public protection.

- □ Ignition (Refer to Section 5.0, Ignition for ignition equipment and procedures and the appropriate Provincial and/or Regulatory for specific ignition criteria).
- □ As required, mobilize a deputy.
- □ Participate in Incident Support Team (IST) briefings.

- □ As required, continue to advise and support the Operations Section Chief regarding:
 - □ Activities at the site of the incident to maximize on-site responder safety.
 - Planning zone and response zone responder safety and public protection measures to maximize public protection.
- **D** Participate in the Postincident Debrief held by your supervisor.
- **I** Forward all data related to the response to the Planning Section Head.

4.21 PLANNING SECTION HEAD AND IST PLANNING SECTION

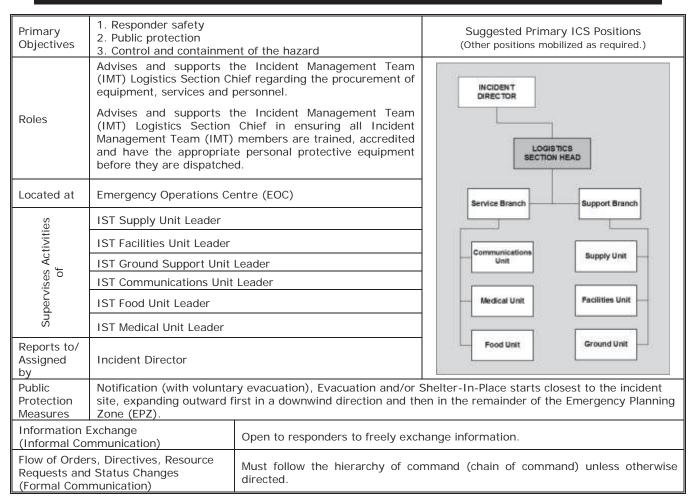
Primary Objectives	 Responder safety Public protection Control and containm 	ent of the hazard	Suggested Primary ICS Positions (Other positions mobilized as required.)
		he Incident Management Team Chief regarding compiling the Plan (IAP)".	INCIDENT
Roles	(IMT) Planning Section	he Incident Management Team on Chief regarding technical ical specialists required for the	DIRECTOR IST SAFE TY OFFICER
		nation is documented, current, ated to the Incident Support	OPERATIONS SECTION HEAD
Located at	Emergency Operations Centre (EOC)		Documentation
<u>ب</u> ب	IST Resources Unit Leader		Resources Unit Unit
Supervises Activities of	IST Situation Unit Leader		
vitie	IST Documentation Unit	Leader	Situation Unit Demobilization Unit
Sup Acti	IST Demobilization Unit Leader		
	IST Technical Specialists		Technical
Reports to/ Assigned by	Incident Director		Specialists
Public Protection Measures	Notification (with voluntary evacuation), Evacuation and/or Shelter-In-Place starts closest to the incident site, expanding outward first in a downwind direction and then in the remainder of the Emergency Planning Zone (EPZ).		
Information Exchange (Informal Communication) Open to responders to freely		Open to responders to freely ex	change information.
Requests and	Flow of Orders, Directives, Resource Requests and Status Changes (Formal Communication) Must follow the hierarchy of command (chain of command) unless		command (chain of command) unless otherwise

RESPONSIBILITIES

Incident Investigation, Alerts and Minor Incidents

□ No assigned duties during an Incident Investigation, Alert or Minor Incident.

- **D** Receive a briefing from your supervisor.
- Chronologically document all actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- Ensure incident information is documented, current, accurate and disseminated to the Incident Support Team (IST). Utilize the:
 - □ Incident Objectives form (ICS Form 202).
 - **Incident Briefing** form (ICS Form 201).
 - **Incident Action Plan Safety and Risk Analysis Form (ICS Form 215A).**
 - □ Issues Board
 - □ Status Board


- Advise and support the Planning Section Chief regarding:
 - □ The compiling of the overall Incident Action Plan (IAP).
 - NOTE: Key components of the Incident Action Plan (IAP) are the on-site responder safety action plan, the planning zone and response zones responder safety action plan, the planning zone and response zones public protection measure action plan and the control and containment action plan.
 - □ Technical assistance and/or technical specialists (engineering, plume dispersion, environmental, well control, metal fatigue, etc.) required for the response.
 - **I** Identifying future incident support requirements for Tervita.
- □ As required, mobilize a deputy.
- Post and maintain charts, plot plans, surveys, maps and sketches as they are developed.
- Ensure all Incident Support Team (IST) members are documenting their actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- □ As required, develop a group email to ensure responders are informed in a timely fashion. Tervita's group emails will not be relied upon as the primary communications method.
- □ As required, proactively mobilize an:
 - □ **IST Resources Unit Leader** to provide advice and support for check-in activity and for maintaining the status on all resources (manpower and equipment) assigned to the incident.
 - □ **IST Situation Unit Leader** to provide advice and support for collecting and processing information about the current situation, preparing situation displays and situation summaries and developing maps and projections. The IST Situation Unit Leader may provide **advice** and **support** for mobilizing the following single resources: Display Processor, Field Observer or Weather Observer.
 - □ **IST Documentation Unit Leader** to provide advice and support in preparing the overall Incident Action Plan (IAP), maintaining all incident-related documentation and providing duplication services.
 - □ **IST Demobilization Unit Leader** to provide advice and support in ensuring the orderly, safe and cost-effective demobilization of no longer required response resources.

NOTE: Specific response team duties for the above mentioned Incident Support Team (IST) Unit Leaders are not included in this emergency response plan other than those listed immediately above.

Utilizing a Briefing Form facilitate Incident Support Team (IST) briefings.

- □ As required, continue to advise and support the Incident Management Team (IMT) Planning Section Chief regarding compiling the overall Postincident Action Plan.
- **D** Participate in the Postincident Debrief held by your supervisor.
- **G** Gather all Incident Support Team (IST) data related to the response.

4.22 LOGISTICS SECTION HEAD AND IST LOGISTICS SECTION

RESPONSIBILITIES

Incident Investigation, Alerts and Minor Incidents

□ No assigned duties during an Incident Investigation, Alert or Minor Incident.

- **D** Receive a briefing from your supervisor.
- □ Chronologically document all actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- □ Advise and support the Logistics Section Chief:
 - **D** Regarding the procurement of equipment, services and personnel.
 - In ensuring all responder are trained, accredited and have the appropriate personal protective equipment (PPE) before they are dispatched. Personal protective equipment (PPE) only reduces; but does not eliminate the risk from harmful substances.
- □ As required, support the Incident Management Team (IMT) or the Incident Support Team (IST) by procuring the following:

- □ Information technology requirements [communications equipment, computer systems, group emails, etc.].
- Emergency Operations Centre (EOC) support (facilities, security, clerical, etc.).
- Supplies, services and equipment [contractors, Western Canadian Spill Services (WCSS) equipment, catering services for the responders, etc.].
- Dersonnel [Tervita, mutual aid, Western Canadian Spill Services (WCSS)].
- **T**ransportation.
- □ As required, mobilize a deputy.
- □ As required, mobilize a Calgary Office Receptionist. Ensure this Receptionist has a copy of the **Incident Briefing** form **(ICS Form 201)** and that she/he knows where to direct incident-related calls.
- □ As required, proactively mobilize an:
 - □ **IST Supply Unit Leader** to provide advice and support in ordering personnel, equipment and supplies. The IST Supply Unit Leader may provide **advice** and **support** for mobilizing the following single resources: Ordering Manager or Receiving and Distribution Manager.
 - □ **IST Facilities Unit Leader** to provide advice and support in setting up and maintaining any incident-related facilities. The IST Facilities Unit Leader may provide **advice** and **support** for mobilizing the following single resource: Security Manager.
 - □ **IST Ground Support Unit Leader** to provide advice and support for transportation and fuel for the response.
 - □ **IST Communications Unit Leader** to provide advice and support for distributing and maintaining all response communication equipment and computer systems.
 - □ **IST Food Unit Leader** to provide advice and support for supplying food and potable water for incident-related facilities.
 - □ IST Medical Unit Leader to provide advice and support in developing a medical plan for incident-related first aid and medical treatment. May also provide advice and support in developing a medical transportation plan (ground/air) and also any medical reports.
 - NOTE: Specific response team duties for the above mentioned Incident Support Team (IST) Unit Leaders are not included in this emergency response plan other than those listed immediately above.
- D Participate in Incident Support Team (IST) briefings.

- □ Notify the Calgary Office Receptionist (if established).
- **D** Participate in the Postincident Debrief held by your supervisor.
- **□** Forward all data related to the response to the Planning Section Head.

4.23 FINANCE/ADMINISTRATION SECTION HEAD AND IST FINANCE/ADMINISTRATION SECTION

Primary Objectives	 Responder safety Public protection Control and containmen 	t of the hazard	Suggested Primary ICS Positions (Other positions mobilized as required.)	
Role	Advises and supports the Incident Management Team (IMT) Finance/Administration Section Chief with time tracking, procurement procedures, compensation, claims and cost accounting.		INCIDENT DIRECTOR	
Located at	Emergency Operations Centre (EOC)			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	IST Time Unit Leader		FINANCE/ ADMINISTRATION SECTION HEAD	
vises les c	IST Procurement Unit Leader			
Supervises Activities of	IST Compensation/Claims Unit Leader			
0.4	IST Cost Unit Leader		- Compensation/ Claims Unit	
Reports to/ Assigned by	Incident Director		Cost Unit	
Public Protection Measures	Notification (with voluntary evacuation), Evacuation and/or Shelter-In-Place starts closest to the incident site, expanding outward first in a downwind direction and then in the remainder of the Emergency Planning Zone (EPZ).			
Information Exchange (Informal Communication)		Open to responders to freely exchange information.		
Flow of Orders, Directives, Resource Requests and Status Changes (Formal Communication)		Must follow the hierarchy of command (chain of command) unless otherwise directed.		

# **RESPONSIBILITIES**

### **Incident Investigation, Alerts and Minor Incidents**

□ No assigned duties during an Incident Investigation, Alert or Minor Incident.

- **□** Receive a briefing from your supervisor.
- Chronologically document all actions, decisions, contacts and requests on an Activity Log (ICS Form 214).
- □ Advise and support the Finance/Administration Section Chief with:
  - **Time tracking**.
  - □ Procurement procedures.
  - □ Compensation and claims.
  - **C**ost accounting.
- □ As required, mobilize a deputy.
- □ As required, proactively mobilize an:

- □ **IST Time Unit Leader** to provide advice and support for ensuring response personnel time is recorded.
- □ **IST Procurement Unit Leader** to provide advice and support for equipment rental and supply contracts. Provides advice and support for equipment time recording.
- IST Compensation/Claims Unit Leader to provide advice and support for overseeing responder/worker compensation documentation (injury/illness) is correctly completed and the handling of investigation of damage claims.
- □ **IST Cost Unit Leader** to provide advice and support for collecting incident-related cost information and providing cost estimates.
- NOTE: Specific response team duties for the above mentioned Incident Support Team (IST) Unit Leaders are not included in this emergency response plan other than those listed immediately above.
- **D** Participate in Incident Support Team (IST) meetings.

- **D** Participate in the Postincident Debrief held your supervisor.
- **□** Forward all data related to the response to the Planning Section Head.



# CORE EMERGENCY RESPONSE PLAN SECTION 5.0 - IGNITION CONTENTS

5.1	Ignition Equipment	1
5.2	Ignition Procedures	1

# This emergency response plan can be utilized by Tervita and all of its affiliated companies.

# **5.0 IGNITION**

# **5.1 IGNITION EQUIPMENT**

#### **Ignition Equipment**

An ignition team requires the following equipment:

- Flare guns with flares.
- Rescue harness (d-ring in front or safety belt with d-ring in the back or similar) with ~30 metres (100 feet) retrieval ropes.
- Flame-resistant coveralls.
- Ear protection.
- Hard hats (with face shields, if available, for protection against flashbacks).
- Self-contained breathing apparatus (SCBA).
- Flame-resistant balaclava, hard hat liners or flame-resistant regular hard hat liners for use with self-contained breathing apparatus (SCBA).
- Lower explosive limit (LEL) gas detector.
- H₂S gas detector (for sour gas ignition).
- Vehicle with communication to their supervisor.

#### **5.2 IGNITION PROCEDURES**

#### Ignition Procedures

Ignition of a sour gas or HVP release is a hazardous procedure and should be conducted with caution by trained personnel following safe-work procedures. Never attempt the procedure with fewer than two people, so that there is one person for rescue backup.

#### Flare Gun Ignition Procedures:

- 1. The On-site Branch Director ensures that on-site personnel have retreated to the Safe Area.
- 2. The Ignition Team reviews the flare gun manufacturer's loading instructions and specifications for the flare gun and wears their personal protective equipment (PPE).
- 3. If available, two backup personnel are positioned at a safe distance upwind from the release. They stand by to rescue the ignition person(s) if necessary.

- 4. The Ignition Team, equipped with the flare gun and flares and monitoring with a LEL and H₂S gas detector (if appropriate), approaches to within 100 metres of the suspected outside edge of the plume.
- 5. The Ignition Team positions themselves at a location that:
  - Allows for safe retreat.
  - Is upwind or crosswind from the release.
  - Is free of explosive mixtures.
  - Is no closer than necessary (The flare should be aimed to just reach the outside edge of the plume.)

#### NOTE: A 12-gauge pistol flare has an approximate altitude of 80 metres and a 4-caliber pistol flare has an approximate altitude of 120 metres.

- 6. Choosing the firing position, either standing or prone, that is most comfortable and suitable for the circumstances, one Ignition Team person loads, aims and fires the flare gun.
- 7. After the gun is fired, uncovered skin should not be exposed toward the flare.
- 8. If the plume does not ignite, the Ignition Team moves a few metres closer to the suspected edge of the plume. Do not move any closer to the plume than the launcher's range, probably about 60 metres. Repeat Steps 5, 6, 7 and 8.

#### Self-Contained Flame-Thrower Unit Ignition Procedures:

When required by regulation or when deemed necessary by the company, there will be two well ignition systems at a wellsite. The primary ignition system is a selfcontained flame-thrower unit with an independent fuel source. This system incorporates a remote-control panel with a time-delayed triggering device that allows for complete evacuation of the wellsite before the well is ignited. The secondary ignition system is a flare gun.

The On-site Branch Director follows the procedure below to ignite the well:

- 1. Ensure wellsite personnel have retreated to a Safe Area.
- 2. Form an Ignition Team.
- 3. Ensure the Ignition Team wears personal protective equipment (PPE). Ensure the personnel also wear harnesses equipped with lanyards (retrieval ropes).
- 4. Position two backup personnel at a safe distance from the release. These personnel stand by to rescue the ignition personnel if necessary.
- 5. Once the wellsite is evacuated, the Ignition Team activate the primary ignition system by inserting the key into the control panel key switch and turning the key clockwise.
  - At this point, a siren and strobe light will be activated at the control panel.

- Ignition personnel egress from the area.
- Three minutes after the key has been turned on, the siren will silence and a pilot light will be lit at the unit.

#### **NOTE:** Strobe light stays on to indicate the system is active.

- Two minutes after the pilot light has been lit, the first discharge of gel will be released through the burning pilot. The duration of this discharge is ~five seconds.
- The discharge will result in an 80 to 90 foot stream of burning gel being directed into the derrick, where it will splatter and fall. This will ensure ignition even if the gas release is in a horizontal direction. The residual burn time of the gel is approximately three to four minutes.
- Every three minutes after the initial discharge, another discharge will occur, until the system is emptied or manually shut off.
- Approximate number of discharges is twenty. If the well extinguishes itself, ignition will automatically re-occur for a considerable length of time.

#### **NOTES:** Ignition can be aborted at any time by turning off the key.

The stream of ignited gel is under high pressure to minimize the effect of high winds.

If the self-contained flame-thrower unit fails, the ignition personnel proceed with flare gun ignition procedures.



# CORE EMERGENCY RESPONSE PLAN SECTION 6.0 - INCIDENT-SPECIFIC RESPONSE ACTIONS CONTENTS

6.1	Incident-Specific Response Actions - Common To All Responses 1
6.2	Tervita's 24-Hour Emergency Number Personnel2
6.3	Media and Brief Factual Media Statement2
6.4	Liquid Hydrocarbon Spill Response (Oil/Chemical/Produced Water/Etc.)3
6.5	Out of Control Well
6.6	Fires or Explosions
6.7	Encroaching Grassland or Bush Fires7
6.8	Hydrocarbon Fire Control
6.9	Gas Releases11
6.10	High Vapour Pressure (HVP) Release
6.11	Natural Gas Liquids (NGLs) 12
6.12	Product Transportation Incident (Except For LPGs)
6.13	Serious Injuries or Fatalities 13
6.14	Search and Rescue 14
6.15	Helicopter Landing Procedures14
6.16	Notification of Next of Kin

# This emergency response plan can be utilized by Tervita and all of its affiliated companies.

# **6.0 INCIDENT-SPECIFIC RESPONSE ACTIONS**

# 6.1 INCIDENT-SPECIFIC RESPONSE ACTIONS - COMMON TO ALL RESPONSES

#### **Daily Emergency Preparedness Actions:**

- □ Identify who you would contact in the event of an emergency (the potential Incident Commander).
- □ Identify egress routes and muster locations.
  - Ensure there is a head count obtained for all site personnel (refer to facility sign-in and Pre-Shift Safety meeting sheet).
- □ Identify where relevant safety equipment is located [personal protective equipment (PPE), fire extinguishers, first aid kits, etc.].
- **I** Understand how to initiate site evacuation in the event of an alarm or incident.

#### **Common Response Actions:**

- **I** Follow the Initial On-site Actions 7 Steps. Refer to Section 1.0.
- □ Contact your immediate supervisor.
- As required, call Tervita's 24-hour Emergency Number: **1-800-327-7455**.
- □ As required, call fire, local RCMP/local police or ambulance: **911**.
- **D** Protect the public.
- As required, call for backup. As required, responders will be dispatched in pairs to investigate – the "buddy system".
- □ As required, call for internal or external support resources (manpower and equipment). Attempt to use a Tervita preferred vendor.
- Ensure all personnel dispatched to the incident site are trained, accredited and have personal protective equipment (PPE).
- Document your response actions.
- □ Initiate your emergency response plan and determine who the Incident Commander is.
- □ As required, refer to the "Brief Factual Media Statement for any Tervita Responder"; located in this section.
- **I** Initiate the appropriate Incident Specific Response Action.

#### NOTE: Remember your "Primary Objectives": Responder Safety/Public Protection/Control and Containment.

### 6.2 TERVITA'S 24-HOUR EMERGENCY NUMBER PERSONNEL

#### **Response Actions:**

- Document the caller's name, telephone number and business unit (if the caller is an employee to Tervita)
- □ Location (province/state, address, ZIP/Postal Code, LSD).
- □ Ask "What is the closest major town or centre?"
- □ Ask "What is the nature of your emergency?" and "Have emergency services been notified?"
- □ Instruct the caller to **Shelter-In-Place**.
- □ Reassure the caller that a regional incident commander will be activated to respond to the situation.
- Document all the information the caller provided and send an E-Notice to the primary contact and appropriate distribution list.
- Using CO-HSE-SUP-0909 24-HR Emergency Notification Procedure, initiate a calldown until a contact is reached (direct contact must be made, messages cannot be left). Communicate issue and original caller contact information.

#### 6.3 MEDIA AND BRIEF FACTUAL MEDIA STATEMENT

Appendix 2 contains Tervita's Communications Plan which outlines how the company will communicate with stakeholders.

#### Brief Factual Media Statement for any Tervita Responder:

#### NOTE: Tervita's IST Information Officer is the Tervita responder responsible for official Tervita media releases. Any Tervita employee or responder may provide the following statement to the media:

"We are currently dealing with the situation at hand to ensure the safety of people, the environment and property. A statement will be released by the company once the facts have been determined. If you would like to leave your contact information, a company representative will provide you with information as it becomes available. If you require further information please contact our Information Officer at: **1-866-537-1207**."

#### 6.4 LIQUID HYDROCARBON SPILL RESPONSE (Oil/Chemical/Produced Water/etc.)

#### **Response Actions:**

# **NOTE:** Remember your "Primary Objectives": Responder Safety/Public Protection/Control and Containment.

- □ Refer to "Incident-Specific Response Actions Common To All Responses".
- Understand the type of product and its immediate hazards (flammable/toxic vapours, fire/explosive hazards, etc.) before initiating cleanup operations.
- □ Approach the site from an upwind or crosswind direction.
- □ Identify safe escape routes away from the Hazardous Area.
- □ Observe surrounding area for possible ignition sources; eliminate if possible.
- □ If possible, and safe to do so, isolate or shut in the leak.
- □ If possible, prevent fluids from entering a waterway or other sensitive areas.
- □ As required, mobilize area oil spill cooperative equipment.
- □ Keep unauthorized personnel away.

The following sections provide basic hydrocarbon spill response guidelines. For greater details, refer to a Western Canadian Spill Services Ltd. (WCSS) Oil Spill Contingency Manual

(<u>http://wcss.ab.ca/ContingencyManualWeb1_2015_Oct_09.pdf</u>), applicable Safety Data Sheets (SDS), the Alaska Clean Seas Technical Manual

(http://alaskacleanseas.org/wp-

<u>content/uploads/2010/12/ACS_Tech_Manual_Rev9_Vol1-TACTICS.pdf</u>) or a similar manual.

#### Site Layout

Before the arrival of recovery equipment at the spill control point, inspect the site and decide how the containment and recovery operation is to be staged. The following issues must be addressed:

•	Potential danger to responders	Yes 🗌	No 🗌
•	Potential danger to the public	Yes 🗌	No 🗌
•	Presence of toxics or flammables	Yes 🗌	No 🗌
•	Staging Area for containment and recovery equipment	Yes 🗌	No 🗌
•	Work required on private property	Yes 🗌	No 🗌
•	Work required on public property	Yes 🗌	No 🗌
•	Permission for site access	Yes 🗌	No 🗌
•	Vehicle access to location	Yes 🗌	No 🗌
•	Need for storage tanks or earthen pits	Yes 🗌	No 🗌
•	Special site grading requirements to allow equipment access	Yes 🗌	No 🗌

N	TE. If site grading, bush clearing, etc. is required	then the m	en and
•	Tree and bush clearing requirements	Yes 🗌	No 🗌
•	Site safety requirements when deploying the booms and skimmers	Yes 🗌	No 🗌
•	Boat launch requirements	Yes 🗌	No 🗌

NOTE: If site grading, bush clearing, etc. is required, then the men and equipment for this work should be contacted immediately.

No 🗍

Yes 🗌

• Situating the On-site Command Post (OSCP)

#### **Recovery Techniques**

There are two basic means of stopping the flow of petroleum products floating on water: a boom or a dam. If the stream/river is relatively large, booms are used. A dam may be constructed across the channel of a small stream with a low flow.

If the stream/river is to be boomed, the appropriate equipment should be obtained from the area oil spill cooperative. Decisions must incorporate the following considerations:

- Width of stream/river which must be boomed. Where possible, the entire stream/river width should be boomed.
- Allowable boom angle based on stream current and length of boom required.
- Anchoring methods for the booms.
- Methods to lay out and deploy a boom.

If a dam is to be constructed across a small stream or channel, some allowance must be made for the flow of water past the dam.

#### **Containment and Storage of Product**

When commercial barriers are not suitable or available, particularly in remote areas, barriers may be improvised. Improvising depends on the materials at hand and the situation in which the spill has occurred. In each case, the experience and innovative ability of the personnel at the spill site is needed for the successful containment of the spill.

Tank trucks, storage tanks or an earthen pit may be used to store recovered petroleum products. An earthen pit should only be constructed when tank trucks or storage tanks cannot be used. Earth-moving equipment will be required to construct a pit. Plastic lining should be used.

#### **Disposal and Remedial Operations**

Disposal of the product and site restoration actions will be determined with consultation between Tervita operations personnel, provincial environmental protection agency or other environmental regulators and any external professional environmental consultants contracted by Tervita.

#### Specific Response Details for Containment and Recovery of Uncontrolled Fluid Releases in or Near a Flowing Waterbody

Following an uncontrolled release and once safe working conditions have been established, the initial steps of the spill response process are the containment and recovery of the spilled product.

#### **NOTE:** Remember your "Primary Objectives": Responder Safety/Public Protection/Control and Containment.

In the case of a fluid release near a flowing waterbody, rapid containment of the spilled product is essential to prevent its entry into the watercourse and subsequent downstream migration. Like any surface water related project, spill response activities including containment, recovery and a sampling plan should be presented to and approved by the provincial and federal regulators.

Effective containment techniques vary depending on the nature of the product released and the site conditions, but usually involve the construction of berms, trenches and/or bellholes along the pathway between the contaminant source and the waterbody. Recovery of the spilled product with vacuum trucks is usually initiated at the same time to prevent overflowing of the containment structures and further soil contamination through infiltration. In smaller streams, inverted weirs can also be constructed. These structures allow the water to flow through, while capturing any free product floating on surface.

Depending on the nature of the product spilled, additional containment can be deployed along the watercourse to prevent or minimize the downstream migration of the product. For hydrocarbons, depending on their volatility, a combination of containment booms, sheen booms and adsorbent pads can be used. Containment booms trap free product floating on the water surface, while sheen booms and adsorbent pads soak up lighter end hydrocarbons. Free product trapped upstream of a containment boom can be skimmed and pumped off for disposal.

Fine particulates, released as a result of a drilling mud spill or simply from activities around a spill site, can be detrimental to aquatic life and containments such as silt fences and silt curtains are commonly used to prevent contamination of a watercourse from sediment-laden water. Silt fences, along with straw bales, are typically deployed along the banks or across drainage paths. Silt curtains are deployed across a watercourse.

Products that are readily soluble in water such as methanol, produced water, corrosion inhibitor and to a lesser extent light hydrocarbons such as gasoline and condensate cannot be effectively contained once they enter a watercourse. Then, the focus of the response is on impact delineation through the implementation of a surface water sampling program.

## 6.5 OUT OF CONTROL WELL

#### **Response Actions:**

#### NOTE: Remember your "Primary Objectives": Responder Safety/Public Protection/Control and Containment.

- □ Refer to "Incident-Specific Response Actions Common To All Responses".
- Understand the type of product and its immediate hazards, e.g. flammable/toxic vapours, fire hazards, etc. Approach the site from an upwind or crosswind direction.
- **D** Don't approach the site without appropriate backup.
- **D** Ensure an appropriate air monitoring strategy is employed.

- □ Assess the nature of the problem. Prepare appropriate responses to bring well under control.
- □ Keep unauthorized personnel away.
- □ Consider a well control expert if necessary.

### 6.6 FIRES OR EXPLOSIONS

There are three main classes of common fires (A, B, and C) and two specialty classes (D and K).

# NOTE: Other than small incipient fires (size of a small garbage can), the Tervita philosophy to fight fire will primarily be defensive.

<b>R</b>	Class A fires involve common combustibles such as wood, paper, cloth, rubber, trash and plastics. They are common in typical commercial and home settings, but can occur anywhere these types of materials are found.
<b>В</b>	Class B fires involve flammable liquids' gases, solvents, oil, gasoline, paint, lacquers, tars and other synthetic or oil-based products. Class B fires often spread rapidly and, unless properly secured, can reflash after the flames are extinguished.
💦 С	Class C fires involve energized electrical equipment, such as wiring, controls, motors, data processing panels or appliances. They can be caused by a spark, power surge or short circuit and typically occur in locations that are difficult to reach and see.
D D	Class D fires involve combustible metals such as magnesium and sodium. Combustible metal fires are unique industrial hazards which require special dry powder agents.
🂹 К	Class K fires involve combustible cooking media such as oils and grease commonly found in commercial kitchens. The new cooking media formulations used in commercial food preparation require a special wet chemical extinguishing agent that is specifically suited for extinguishing and suppressing these extremely hot fires that have the ability to reflash.

#### **General Response Actions:**

# **NOTE:** Remember your "Primary Objectives": Responder Safety/Public Protection/Control and Containment.

- □ Refer to "Incident-Specific Response Actions Common To All Responses".
- □ Understand the type of product and its immediate hazards.
- □ Approach the site from an upwind or crosswind direction.
- □ Identify safe escape routes away from the Hazardous Area.
- Do not extinguish burning leaks if the leak or supply to the leak cannot be stopped.
- Only attempt to control small fires. Procure adequate backup and extinguishing agents before an attempt is made to battle a large fire. Do not attempt to battle a large fire under any circumstances firefighting shall remain the sole response action/responsibility of the responding fire department.

- Professional oilfield fire fighters should deal with extensive fires or uncontrolled facility fires.
- □ If safe to do so, initiate actions to prevent the spread of the fire, remove flammable materials, protect surrounding property, etc.
- □ Keep unauthorized personnel away.

#### 6.7 ENCROACHING GRASSLAND OR BUSH FIRES

#### **Response Actions:**

#### NOTE: Remember your "Primary Objectives": Responder Safety/Public Protection/Control and Containment.

- □ Refer to "Incident-Specific Response Actions Common To All Responses".
- Understand the type of product that could be threatened and its immediate hazards.
- **I** Establish a safe escape route if workers are still able to work at the site.
- □ Advise fire authorities if company property is threatened by an external fire.
- □ Advise first responders about potential flammable/toxic vapours, fire hazards etc.
- Determine and if necessary initiate emergency shutdown/depressurization for any facilities threatened by fire.
- **I** Establish a fire watch to monitor the progress of a fire.
- Do not attempt to battle a large fire under any circumstances firefighting shall remain the sole response action/responsibility of the responding fire department.
- **D** Evacuate the facility before the fire reaches it.
- **D** Establish and maintain contact with regional authorities; evac as instructed.

#### 6.8 HYDROCARBON FIRE CONTROL

#### NOTE: Remember your "Primary Objectives": Responder Safety/Public Protection/Control and Containment.

The effectiveness of the following guidelines depends on the judgment exercised by all personnel-think before acting. To extinguish hydrocarbon fires and prevent further explosions, it is necessary to do at least one of the following:

- **1. Remove fuel** by isolating the section of equipment on fire and pumping out or depressurizing the flammable material.
- **2. Remove oxygen** by the use of steam, chemicals, foam, dry powder or CO₂ extinguishers. If the fire is small, the flames can be smothered with a fire blanket, new tarpaulin or sand.
- **3.** Cool fuel so that it no longer produces vapors using water where possible (as a fog) to extinguish fires or as a coolant for equipment, tanks, support

columns, etc. or use to provide a protective shield while the fire is being extinguished by foam, chemicals or power extinguishers.

Gas, natural gas liquid (NGL) and liquefied petroleum gas (LPG) fires must be controlled by closing valves at source and/or cooling lines and vessels with water until the fire burns out. They should not be extinguished while fuel is available because of the danger of spreading a combustible mixture over a large area with the possibility of accidental re-ignition.

#### Hydrocarbon Fire Control NOT Involving NGL/Propane Tanks/Pressurized Vessels Response Actions:

#### NOTE: Remember your "Primary Objectives": Responder Safety/Public Protection/Control and Containment.

- □ Refer to "Incident-Specific Response Actions Common To All Responses".
- □ Understand the type of product and its immediate hazards.
- **I** Establish a safe escape route if workers are still able to work at the site.
- □ Shut in all known fuel sources. Do not extinguish a leaking gas flame unless the leak can be stopped.
- **I** Shut off high voltage power supplies to equipment in fire-affected area.
- **I** Shut off fuel to heaters near to or downwind of the fire.
- Observe surrounding area for other possible re-ignition sources and if safe to do so take appropriate steps to eliminate these hazards.
- Dissipate static electrical charges on bodies of all personnel in area. Grounding may be accomplished by holding onto a metal structure for ten seconds with bare hands.
- Do not use water jet. For a small fire, use dry chemical, CO2, water spray or foam. Beware of electrical hazards. Do not attempt to battle a large fire under any circumstances firefighting shall remain the sole response action/responsibility of the responding fire department.
- □ Move containing vessels from the fire area if this can be done without risk.
- Cool containing vessels with flooding quantities of water until long after fire is out.

#### Hydrocarbon Fire Control Involving NGL/Propane Tanks/Pressurized Vessels Response Actions:

# **NOTE:** Remember your "Primary Objectives": Responder Safety/Public Protection/Control and Containment.

- □ Refer to "Incident-Specific Response Actions Common To All Responses".
- □ Understand the type of product and its immediate hazards.
- **I** Establish a safe escape route if workers are still able to work at the site.
- Do not extinguish burning leaks if the leak or supply to the leak cannot be stopped.
- □ For a fire, fire control must occur from a maximum distance or use hose holders or monitor nozzles.

- Do not direct water at source of leak or venting safety devices as icing may occur.
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.
- □ For a leak or spill consider evacuation for at least 800 metres downwind.
- □ For a fire consider evacuation for at least 1600 metres in all directions.
- □ Always stay away from tank ends.
- □ Keep unauthorized personnel away.

#### **Boiling Liquid Expanding Vapour Explosion (BLEVE)**

A boiling liquid expanding vapour explosion (BLEVE) occurs when sealed containers of liquefied gases and propane tanks are accidentally exposed to and enveloped by fire. Vapours from liquefied gas are initially heavier than air and spread along ground. Those vapours may travel to a source of ignition and flash back. Vapour is generated and internal pressure rapidly rises. At the same time the container wall temperature rises in the unfilled area; wall strength deteriorates and eventually, even though a pressure relief valve may be operating, the stress applied by the increased pressure exceeds the reduced strength of the wall.

The container eventually ruptures and super-heated liquid is released, expands and vaporizes in seconds, resulting in catastrophic damage from the spread of ignited vapours. The ruptured vessel or tank could propel dangerous shrapnel significant distances. It is therefore important that vessels or tanks are kept cool and the external fires extinguished quickly with water sprays or natural fluoroprotein based foams at low or medium expansion where other hydrocarbon liquid are involved.

Propane is naturally a gas with a boiling point of -42°C (-44°F). One gallon of liquid propane will expand to 270 gallons of propane gas. Thus, whenever leaks occur for liquid propane, large amounts of propane gas would be produced in a very short time. Since the vapour density of propane is heavier than air, the vapours will sink to the ground and follow the contours of the land. This means propane vapour will not dissipate readily. There is a tendency to form a dense vapour cloud at atmospheric conditions. A spill inside an enclosed area would result in the gas finding the lowest area to settle before dissipating slowly over time to fill the remaining space. Propane is most dangerous inside enclosed spaces due to the fact it can explode with an ignition source and it is classified as a simple asphyxiant. The oxygen level in a confined space must be more than 18% or 180,000 ppm to provide sufficient oxygen for a human to remain conscious without creating oxygen deficient symptoms.

#### **BLEVE Response Actions:**

- NOTE: Remember your "Primary Objectives": Responder Safety/Public Protection/Control and Containment.
- □ Refer to "Incident-Specific Response Actions Common To All Responses".
- □ Observe surrounding area for other possible ignition sources and take appropriate steps to eliminate these hazards. Monitor the area.
- Be aware when a BLEVE occurs; sections of the tank can fly in any direction. Just avoiding the ends of the tank should not be considered a safe operating procedure.
- □ Keep unauthorized personnel away.
- Responders must be equipped with breathing apparatus and LEL monitors. If required, wear positive pressure self-contained breathing apparatus.
- Do not approach a liquefied petroleum gas (LPG) vapour cloud with a vehicle.
- Understand the type of product and its immediate hazards, e.g. flammable/toxic vapours, fire hazards, etc.
- Be aware that most liquefied petroleum gas (LPG) fumes are heavier than air and that vapours can gather in low-lying areas.
- Approach the site from an upwind or crosswind direction. Don't approach the site without appropriate backup. Stay out of low areas.
- **I** Establish a safe escape route if workers are still able to work at the site.
- Do not extinguish burning leaks if the leak or supply to the leak cannot be stopped.
- □ All equipment used when handling the product must be grounded.
- □ If possible and safe to do so, isolate or shut in the leak.
- Do not walk through spilled material.

Fire fighters should do the following:

- □ Fire control must occur from a maximum distance or use hose holders or monitor nozzles. For massive fires, if this is impossible, leave the area and let the fire burn.
- Cool containers by flooding them with large amounts of water after the fire is out.
- Do not direct water at the source of the leak or at safety devices (icing may occur).
- Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank.

## 6.9 GAS RELEASES

#### **Response Actions:**

- NOTE: Remember your "Primary Objectives": Responder Safety/Public Protection/Control and Containment.
- □ Refer to "Incident-Specific Response Actions Common To All Responses".
- Understand the type of product and its immediate hazards, e.g. flammable/toxic vapours, fire hazards, etc.
- □ Approach the site from an upwind or crosswind direction.
- NOTE: If the hazard does not meet certain regulatory criteria, a Site-Specific Supplemental Section may not exist. Therefore, a preassigned response zone, Emergency Planning Base Area Map and/or Telephone Directory may not be available. Assign a minimum 100 metre response zone and initiate public protection measures to a safe distance based on monitored readings.
- **I** If the emergency involves  $H_2S$ :
  - **□** Responders will be dispatched in pairs.
  - $\square$  Responders must be equipped with breathing apparatus and H_2S, SO_2 and LEL monitors.
  - **I** Ensure an appropriate air monitoring strategy is employed.
  - Monitor the area. Sour gas may accumulate in river valleys, coulees or other low-lying areas.
  - Monitor local weather conditions. Weather conditions such as temperature inversions, fog and wind may affect plume dispersions.
  - □ Refer to appropriate Provincial and/or Regulatory Section for any H₂S and SO₂ effects tables.
- □ If the emergency involves sweet gas:
  - □ Approach the site from an upwind or crosswind direction.
  - **D** Ensure an appropriate air monitoring strategy is employed.
  - □ Monitor the area for LEL.
  - Monitor local weather conditions. Weather conditions such as temperature inversions, fog and wind may affect plume dispersions.

□ Keep unauthorized personnel away.

## 6.10 HIGH VAPOUR PRESSURE (HVP) RELEASE

#### **Response Actions:**

#### NOTE: Remember your "Primary Objectives": Responder Safety/Public Protection/Control and Containment.

- **D** Refer to "Incident-Specific Response Actions Common To All Responses".
- **D** Don't approach the site without appropriate backup.

- Understand the type of product and its immediate hazards, e.g. flammable/toxic vapours, fire hazards, etc. Extremely low temperatures exist when the liquid expands to the gaseous state. These temperatures can cause severe freezing to persons in proximity.
- □ Approach the site from an upwind or crosswind direction. A serious health hazard may exist due to the lack of oxygen surrounding a leak.
- Responders must be equipped with breathing apparatus and LEL monitors. The danger from fire/explosion exists when an escaping vapour mixes with air to within the upper explosive limit.
- **D** Ensure an appropriate air monitoring strategy is employed.
- Monitor the area. Vapour may accumulate in river valleys, coulees or other lowlying areas.
- Monitor local weather conditions. Weather conditions such as temperature inversions, fog and wind will affect plume dispersions.
- Observe surrounding area for other possible ignition sources and take appropriate steps to eliminate these hazards: electrical switches, hot water heaters/house, furnaces, stones or rocks being moved violently against other hard objects by the escaping gas, etc.
- □ Keep unauthorized personnel away.

### 6.11 NATURAL GAS LIQUIDS (NGLs)

#### **Response Actions:**

#### NOTE: Remember your "Primary Objectives": Responder Safety/Public Protection/Control and Containment.

- **D** Refer to "Incident-Specific Response Actions Common To All Responses".
- **D** Don't approach the site without appropriate backup.
- **D** Do not approach a natural gas liquid (NGL) vapour cloud with a vehicle.
- Understand the type of product and its immediate hazards, e.g. flammable/toxic vapours, fire hazards, etc. Be aware that vapour plumes from any release are highly flammable.
- □ Approach the site from an upwind or crosswind direction.
- **D** Responders must be equipped with breathing apparatus and LEL monitors.
- Monitor the area. Be aware that most natural gas liquid (NGL) fumes are heavier than air and that vapours can gather in low-lying areas.
- □ Observe surrounding area for other possible ignition sources and take appropriate steps to eliminate these hazards.
- □ Keep unauthorized personnel away.

### 6.12 PRODUCT TRANSPORTATION INCIDENT (EXCEPT FOR LPGs)

Priority of a product transportation incident is to protect the driver and the public and prevent the product from impacting the environment. If a transportation incident involves liquefied petroleum gas (LPG) see BLEVE above.

#### **Response Actions:**

#### NOTE: Remember your "Primary Objectives": Responder Safety/Public Protection/Control and Containment.

- □ Refer to "Incident-Specific Response Actions Common To All Responses".
- On public roadways, Tervita will work with local fire, local RCMP/local police and ambulance personnel to respond to the incident.
- **Call 911**.
- **G** Secure incident site from on-coming traffic. Keep unauthorized personnel away.
- □ If safe to do so, provide medical aid to the driver and passengers involved in the incident.
- □ If possible, interview the driver and review the manifest for products, volumes and carrier company name.
- □ If available, review SDS or the Transport Canada, 2012 Emergency Response Guidebook (ERG 2012) which guides responders in quickly identifying the generic hazards of the material(s) involved in the incident and includes general information to protect responders and the public.
- □ If safe to do so, assess the container integrity and secure the leak.
- □ If safe to do so, contain and clean up spilled product.

#### **6.13 SERIOUS INJURIES OR FATALITIES**

#### **Response Actions:**

# **NOTE:** Remember your "Primary Objectives": Responder Safety/Public Protection/Control and Containment.

- □ Refer to "Incident-Specific Response Actions Common To All Responses".
- When an injury or fatality occurs, it is not necessary to declare an alert, minor incident or level of emergency if the situation is an isolated incident such as a vehicle incident and does not have the potential to escalate.
- □ Avoid excitement and panic.
- □ As required, notify the provincial OH&S.
- **D** Ensure any fatalities are examined by a medical doctor.
- □ If a victim has not been declared legally dead, treat as if the person is alive.
- Do not resume operations until the appropriate investigations have been completed and approval has been granted by the required government agencies.

Immediate notification shall be made by the Incident Commander to the Incident Director to ensure Tervita's Crisis Communications Plan is activated. All media inquiries shall be addressed by the Tervita Information Officer under Tervita's Crisis Communications Plan.

# 6.14 SEARCH AND RESCUE

#### **Response Actions:**

#### **NOTE:** Remember your "Primary Objectives": Responder Safety/Public Protection/Control and Containment.

- □ Refer to "Incident-Specific Response Actions Common To All Responses".
- Each rescue situation requires unique procedures. One must rely on one's own intelligence and ingenuity as well as calmness to make the most of the situation. Still, there are a few basic principles that should be followed regardless of the situation
- If an employee has failed to routinely "report in" (usually later than one hour), notify the immediate supervisor.
- The search and rescue team should ensure their own safety is not threatened and that they carry out their activities in such a manner that one member of the team is in visual contact with the rescuers and keeps your immediate supervisor informed at all times.
- □ If safe to do so, dispatch a search and rescue team.
- □ The search and rescue team should be prepared to discover a possible victim.
- □ Upon discovery, initiate rescue and administer first aid as required.
- □ If possible and safe for the victim, initiate evacuation and transportation as required.
- If possible and safe for the victim, transport the victim to hospital and leave in a doctor's care.
- □ Maintain contact with search and rescue team.
- Make yourself available to the doctor to provide as much information about the incident as possible, e.g., type of chemicals involved, nature of incident, victim's name.

## 6.15 HELICOPTER LANDING PROCEDURES

#### <u>Overview</u>

These Helicopter Landing Procedures provide the typical steps to be carried out when mobilizing a helicopter for either medical or Rover support. As required, they can also be used for other situations.

#### Helicopter Air Ambulance Service

Situations including serious injuries may require the mobilization of a Helicopter Air Ambulance Service. The steps to mobilize a helicopter air ambulance are outlined below. A flowchart outlining the primary Helicopter Air Ambulance Service steps is located following these steps.

#### Step 1:

Based on the location you want the helicopter to land, provide the helicopter landing area coordinates (latitude and longitude). Your emergency response plan Site-Specific Supplemental Section may contain the latitude and longitude for area facilities. A compass application on a smart telephone may also be able to provide you with latitude and longitude.

#### Step 2:

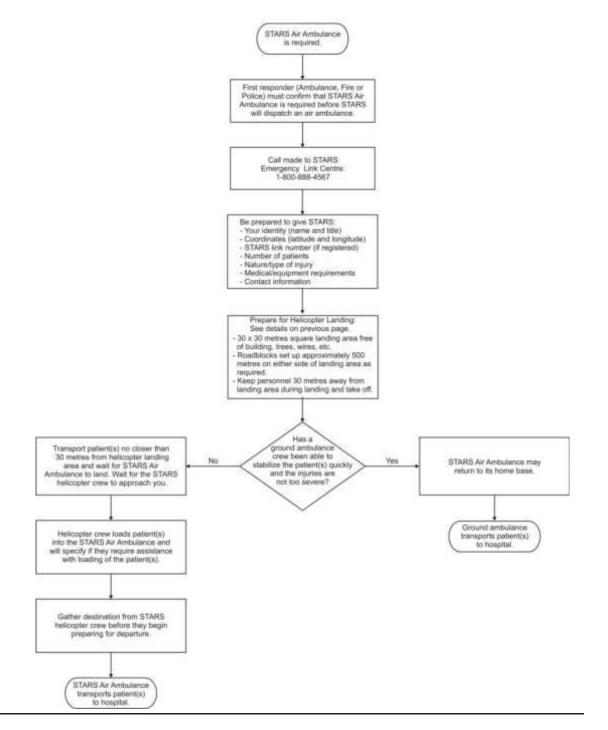
In preparation for helicopter landing:

- □ The landing area must be free of buildings, trees, wires and other obstructions.
- □ The landing area should be at least 30 x 30 metres square with streamers (if available) at each of the four corners. If desired, set out flares to delineate the landing area.
- □ As required, set up roadblocks approximately 500 metres either side of the landing area.
- □ If available, erect a wind sock 5 metres off the ground about 50 metres from the centre of the landing area.
- □ If safe to do so and available, park emergency vehicles under wires that cross a roadway. Leave vehicle warning lights on.
- □ Avoid shining bright lights toward landing area.
- Keep back 30 metres back from landing area during helicopter landing and takeoff.
- Don't approach helicopter. The helicopter crew will approach you.
- **DO NOT** back emergency vehicles up to helicopter.
- □ No smoking or ignition sources are allowed in the area of the helicopter.

Loading of patient:

- □ Wait for helicopter crew to approach you.
- □ The helicopter crew will load patient(s) and specify if they require assistance with loading of the patient(s).
- Gather destination from helicopter crew before they begin to prepare for helicopter take-off.

#### Step 3:


The Shock Trauma Air Rescue Society (STARS) is a non-government organization that provides emergency air ambulance service throughout portions of Alberta, British Columbia and Saskatchewan. STARS helicopters are dispatched from one Emergency Link Centre (helicopters are located in various locations). To make a response more efficient your location may have been pre-registered with STARS and have been issued a "STARS link number". Refer to the Site-Specific Supplemental Section for any "STARS link number".

STARS can only be activated by first responder personnel (ambulance, fire or police). Based on the circumstances, STARS may be immediately dispatched. If a ground ambulance crew were to stabilize a patient quickly and injuries not too severe, then STARS Air Ambulance may return to its home base.

The STARS Emergency Link Centre used to provide a service where they would connect you to the closest ground and/or air ambulance service. They **NO** longer provide this service.

Helicopter Air Ambulance Service Flowchart:

#### STARS Air Ambulance Service Flowchart



#### Helicopter Rover Support

When mobilizing a helicopter to support an emergency response (Rover support) follow the procedures outlined below:

- **I** The landing area must be clear of buildings, trees, wires and other obstructions.
- Select a suitable landing area for a helicopter. The landing area should be as convenient to the Incident Command Post (ICP) or Remote Command Post (RCP), if activated, as is safe.
- □ A local air strip is a good spot for a helicopter landing area.
- □ The landing area should be at least 30 x 30 metres square with streamers (if available) at each of the four corners. If desired, set out flares to delineate the landing area.
- □ As required, set up roadblocks approximately 500 metres either side of the landing area.
- □ If available, erect a wind sock 5 metres off the ground about 50 metres from the centre of the landing area.
- □ Avoid shining bright lights toward landing area.
- □ Keep back 30 metres from landing area during helicopter landing and take-off.
- □ No smoking or ignition sources are allowed in the area of the helicopter.
- □ A Tervita representative (Rover) will accompany the helicopter to act as local area knowledge.
- Approach the helicopter only when instructed to by the pilot. Always approach a helicopter from the front, staying within the 10 and 2 o'clock position. Keep your hands down and head low.
- **The Helicopter Rover must have contact with his/her immediate supervisor.**

#### Incident Command System (ICS) Helicopter Terminology

**Helibase**: The main location for parking, fueling, maintenance, and loading of helicopters operating in support of an incident.

**Helispot**: Any designated location where a helicopter can safely take off and land. Some helispots may be used for loading of supplies, equipment, or personnel.

#### 6.16 NOTIFICATION OF NEXT OF KIN

#### **Response Actions:**

- Tervita's Incident Director is responsible for ensuring the notification of next of kin is completed promptly. However, a death must first be confirmed by a medical doctor.
- Next of kin must be notified when an employee or contractor is missing, seriously injured or dies while working for Tervita.
  - □ All notifications of next of kin to be addressed through Tervita's Corporate Communications Plan.



# **CORE EMERGENCY RESPONSE PLAN**

# SECTION 7.0 - CORPORATE TELEPHONE DIRECTORY

# CONTENTS

7.1	Tervita Corporation1
7.2	Tervita Corporation - Emergency Operations Centres (EOCs)1
7.3	Tervita Corporation - Emergency Calldown Protocol2
7.4	Third Party Media Support2
7.5	Tervita Corporation – Incident Support Team (IST)

# This emergency response plan can be utilized by Tervita and all of its affiliated companies.

# 7.0 CORPORATE TELEPHONE DIRECTORY

# 7.1 TERVITA CORPORATION

24-hour Emergency Number

Calgary Office

Calgary Office (Fax)

: 1-800-327-7455

: 1-855-837-8482

: 403-261-5612

Mailing and Courier Address:

Tervita Corporation 1600, 140 - 10 Avenue S.E. Calgary, AB T2G 0R1

# 7.2 TERVITA CORPORATION - EMERGENCY OPERATIONS CENTRES (EOCs)

#### Primary Emergency Operations Centre (EOC)

Calgary Office Calgary Office (Fax) : 1-855-837-8482

: 403-261-5612

Mailing and Courier Address:

Tervita Corporation 1600, 140 - 10 Avenue S.E. Calgary, AB T2G 0R1

#### Alternate Emergency Operations Centre (EOC)

Telephone Number

: 403-444-6940

Address:

BEHR Integrated Solutions Inc. 750, 600 - 6 Avenue S.W. Calgary, AB T2P 0S5

# 7.3 TERVITA CORPORATION - EMERGENCY CALLDOWN PROTOCOL

To initiate the Tervita emergency calldown protocol, the Tervita Head Office Receptionist or Tervita's 24-hour emergency number personnel will:

- Document the caller's name, telephone number and business unit (if the caller is an employee to Tervita)
- □ Location (province/state, address, ZIP/Postal Code, LSD).
- □ Ask "What is the closest major town or centre?"
- □ Ask "What is the nature of your emergency?" and "Have emergency services been notified?"
- □ Instruct the caller to **Shelter-In-Place.**
- Reassure the caller that a regional incident commander will be activated to respond to the situation.
- Document all the information the caller provided and send an E-Notice to the primary contact and appropriate distribution list.
- Using CO-HSE-SUP-0909 24-HR Emergency Notification Procedure, initiate a calldown until a contact is reached (direct contact must be made, messages cannot be left). Communicate issue and original caller contact information.

#### 7.4 THIRD PARTY MEDIA SUPPORT

Questions may be directed through the Tervita's communications team at 1-866-537-1207. Alternatively, Tervita may contact BEHR Integrated Solutions Inc. at 403-444-6940 for advice on media support.

# 7.5 TERVITA CORPORATION – INCIDENT SUPPORT TEAM (IST)

Response Team Title	Name	Те	lephone Numbe	ers
(Tervita Title)	Name	Office	Cellular	Home

INCIDENT SUPPORT TEAM (IST) DIRECTORSHIP					
Incident Director (VP, Energy Services)	Duane Burkard	403-231-1131	403-990-8676	-	
Deputy Incident Director (HSE VP)	Rhonda Rudnitski	403-234-4822	403-803-9943	-	

INCIDENT SUPPORT TEAM (IST) COMMAND STAFF					
IST Information Officer (Corporate Communications Manager)	Kelly Sansom	587-233-3639	587-585-6501	-	
Alternate IST Information Officer (Sr. Advisor, Communications)	Heather McCartney	403-234-4803	-	-	
IST Safety Officer (HSE Manager)	Paul Finnemore	403-301-4623	780-713-9168	-	
Alternate IST Safety Officer (HSE Advisor)	Mike Wasylyshen	403-724-7062	403-371-5763	-	
IST Liaison Officer (HSE VP)	lan Radzichowsky	403-231-8432	403-701-5876	-	
Alternate IST Liaison Officer (Environmental and Regulatory Manager)	Nelson Liu	403-231-6517	403-826-4396	-	

INCIDENT SUPPORT TEAM (IST) OPERATIONS SECTION					
<b>Operations Section Head</b> (Director, Operations)	Vince Lisch	780-875-2445	780-808-9960	-	
Alternate Operations Section Head (Director, Operations)	Troy McElgunn	587-233-3455	403-816-8285	-	

INCIDENT SUPPORT TEAM (IST) PLANNING SECTION					
Planning Section Head (Director, Engineering)	Todd Gondek	403-231-1108	403-519-1614	-	
Technical Specialists	Mobilized as required	-	-	-	
<b>Documentation Unit</b> (HSE Technical Assistant)	Steve Henry	403-301-4616	587-215-6610	-	
Documentation Unit (Management System Advisor)	Karen Kim	403-231-8806	403-669-6717	-	

Response Team Title	Nama	Telephone Numbers		
(Tervita Title)	Name	Office	Cellular	Home
INCIDENT SU	IPPORT TEAM (IST) L	OGISTICS SECT	ION	
Logistics Section Head (Manager, SCM)	Kevin Oriold	587-233-3410	587-577-9954	-
Alternate Logistics Section Head (Advisor, Contractors & Compliance)	Sheehan Mulholland	403-231-1136	403-651-0322	-
Supply Unit Leader (Manager, SCM)	Kevin Oriold	587-233-3410	587-577-9954	-
Alternate Supply Unit Leader (Advisor, Contractors & Compliance)	Sheehan Mulholland	403-231-1136	403-651-0322	-
<b>Communications Unit Leader</b> (VP Information Technology and Systems)	Kelly Sansom	587-233-3639	587-585-6501	-
Alternate Communications Unit Leader (Manager, Database Integration)	Shad Watts	403-231-1114	403-669-3113	-

INCIDENT SUPPORT TEAM (IST) FINANCE/ADMINISTRATION SECTION				
Finance/Administration Section Head (Director, Finance)	Don Kirouac	587-233-3397	403-818-6456	-

SENIOR MANAGEMENT SUPPORT IN THE AREAS OF HUMAN RESOURCES AND LEGAL					
Legal Services and Board Coordinator	Mobilized as required	-	-	-	



# CORE EMERGENCY RESPONSE PLAN SECTION 8.0 - FORMS

# CONTENTS

#### Assessing the Incident Tab

Prompting Questions in Assessing an Incident

#### Incident Command System (ICS) Forms Tab

Incident Objectives (ICS Form 202) Incident Briefing (ICS Form 201) (5 pages) Incident Action Plan Safety and Risk Analysis Form (ICS Form 215A) Activity Log (ICS Form 214) Demobilization Checkout (ICS Form 221)

#### **General Emergency Response Forms Tab**

Facilitating a Briefing Form Environmental Monitoring Record Roadblock Checkpoint Record Status Board Issues Board Expense Claim Form Bomb Threat Call Report Tervita Handoff Document

#### **Interacting with Public Forms Tab**

Public Notification Record Evacuee Registration Record Public Information Notice Public Evacuation Notice Notification Message Evacuation Message Shelter-In-Place Message Automated Telephone Notification System Messages (3 pages) School Children Registration Record

# This emergency response plan can be utilized by Tervita and all of its affiliated companies.



# **Prompting Questions in Assessing an Incident**

□ Is the safety of employees, contractors or responders compromised? As required, refer to SDS or Site-Specific Supplemental Section: http://ccinfoweb.ccohs.ca/cheminfo/search.html □ Is public protection compromised? Consider: D Proximity of the incident to a residence, public facility, surface development, community, population centre, park, campground, recreational area, etc. □ Proximity of the incident to transportation corridors (high traffic volume areas, highways, rail lines, etc.). □ What could be or are any required public protection measures. Refer to the appropriate Provincial/Regulatory Section. □ What is the prognosis for control and containment of the incident and any related losses? □ Is there potential for environmental damage? Consider: Impact on air? Is the hazard unconfined or transient (e.g. uncontrolled release of gas, liquid, hazardous or flammable materials; etc.)? □ Impact on land (private or public)? □ Impact on fish, wildlife, or habitat? **I** Release of contaminants into the surrounding water (lakes, rivers, creeks, groundwater, etc.). □ Are local resources (manpower and equipment) adequate for an effective response? □ Is the incident particularly controversial or otherwise likely to arouse public and/or media interest? □ Is the incident site remote/isolated? Does this have particular bearing on site accessibility for the resources (manpower and equipment) necessary for the response? Could the incident involve several impacted government agencies? □ What are the financial and other business risks posed by the incident? Consider both probability and severity: □ Are there any capital losses or replacement costs? □ Loss of revenue? For how long? □ Significant impact on product deliverability (contractual and customer relations issues)? □ Risk of losing investor or partner confidence? Could the incident possibly involve severe regulatory or legal infractions on the part of the corporation or its employees? □ Is corporate reputation otherwise at risk because of the incident?

# **Incident Objectives**

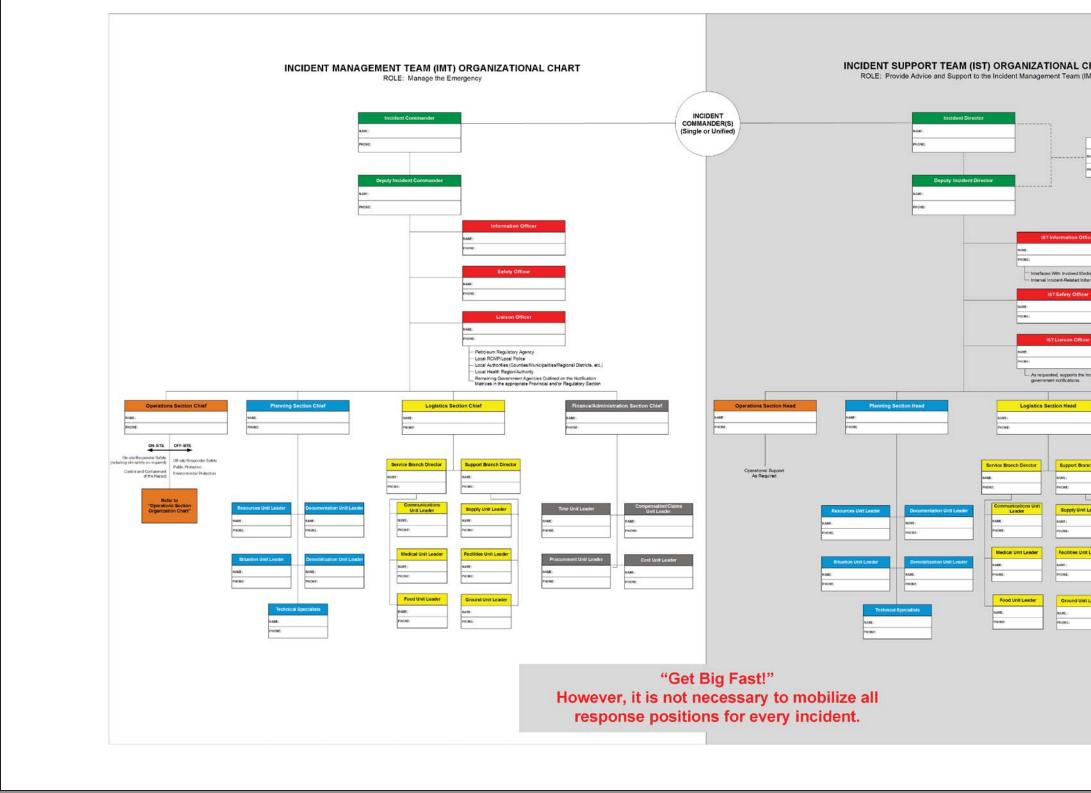


① Incident Name:				
② Date Prepared: (month, day, year)	③ Time Prepared: (24-hour clock)			
④ Operational Period: (date/time)				
© General Control Objectives for the Incident (Include Alterna	itives):			
Primary Objectives: 1. Responder Safety 2. Public Protection 3. Control and Containmen	t of the Hazard			
Other Objectives (What do we want to accomp	blish?):			
6 Strategies (How are we going to do it?):				
⑦ Tactics (Which resources we will use and how we will use	them to execute strategies?):			
Weather Forecast for Operational Period:				
◎ Attachments: (☑ if attached)				
<ul> <li>Incident Briefing form</li> <li>(ICS Form 201)</li> <li>Incident Action Pla Analysis Form (ICS Form 215A)</li> </ul>	201) Analysis Form			
Weather Forecast				
(1) Prepared By (Planning Section Chief):	Approved By (Incident Commander)			

(Incident Briefing - Page 1 of 5)



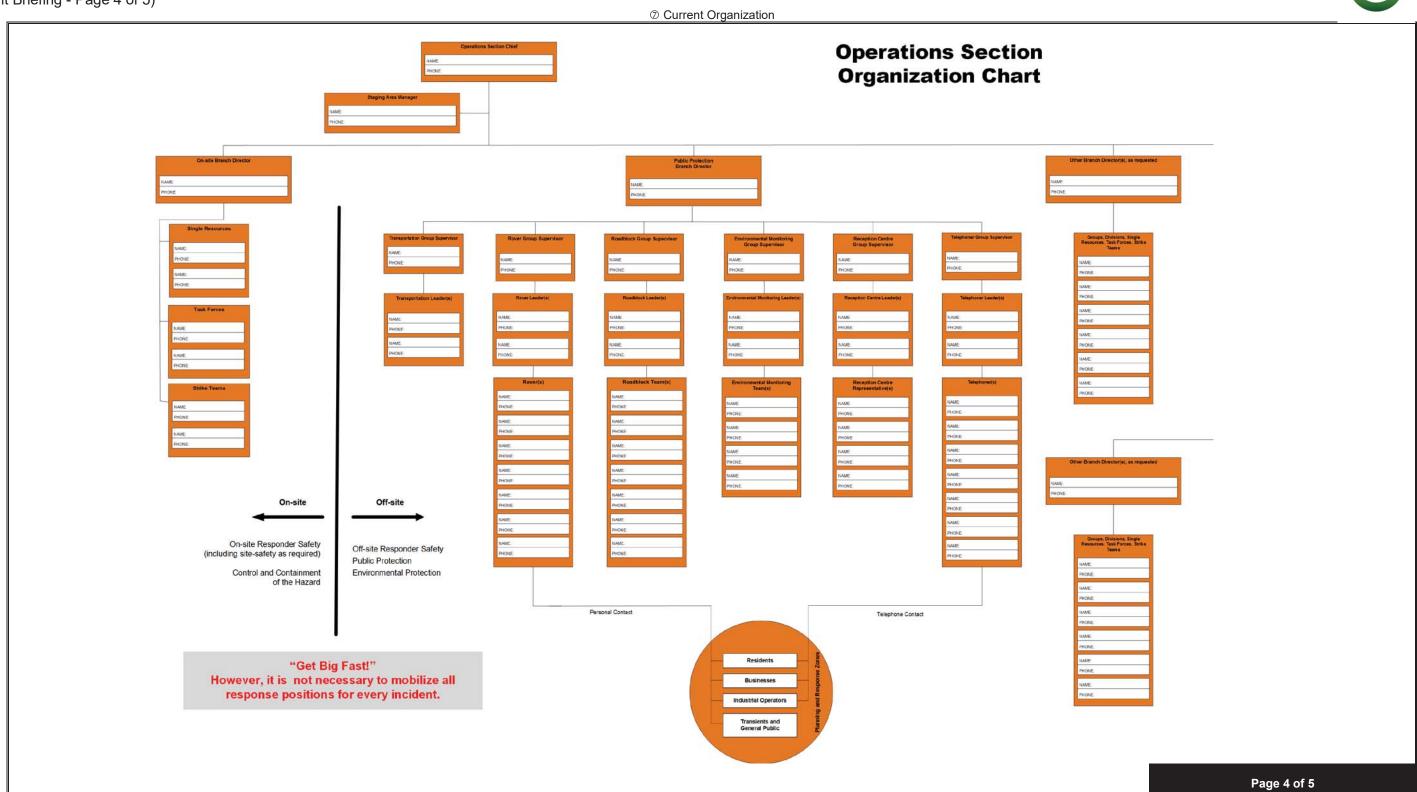
① Incident Name:		
② Date Prepared: (month, day, year)	③ Time Prepared: (24-hour clock)	
• • Map	o Sketch:	
⑤ Prepared By: (Enter name and position)		Page 1 of 5


(Incident Briefing - Page 2 of 5)



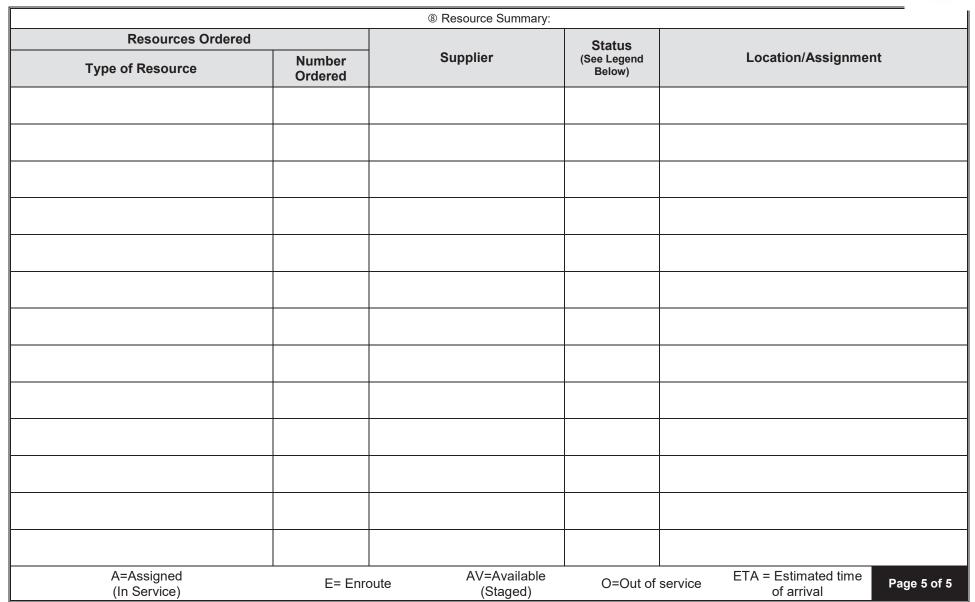
	6 Summary of Current Actions:	
Primary Objectives:	1. Responder Safety	
	2. Public Protection	
	3. Control and Containment of the Hazard	
Other Ohio stirres		
Other Objectives:		
Strategies:		
j		
Tactics:		
Advice and Support	Requirements from Emergency Operations Centre (EOC):	
	requirements from Emergency Operations Centre (ECC).	
		Page 2 of 5

(Incident Briefing - Page 3 of 5)


⑦ Current Organization






ARE: Interior: An metor An metor Component Tests (PAT) with Finance/Administration Section Head Management Tests (PAT) with Finance/Administration Section Head Management Tests (PAT) with Component Control Control Control And Control Control Control Control Control Control Control Control Management Control Control Management Control Control Control Management Control Control Control Management Control Control Control Management Control Control Management Control Control Control Control Control Management Control Control Control Control Control Management Control Contr	<i>ΑΤ</i> )			
a minion  a minion  b Director  ch Director  ch Director  frims Unit Leaser  frims CongenitationChaines Unit Leaser  frims	ume.	iogement		
Ab Director	a menton	1 (BAT) with		
			ration Section Head	
asder Time Unit Leader Compensation-Claims Unit Leader Unit Leader Unit Leader Name Acade Procurement Unit Leader Cost Unit Leader Name Acade Procurement Unit Leader Name Acade Aca				
	soder Leoder Leoder Hitse		KANK: Peole: Cost Unit Leader	
			Page 3	

(Incident Briefing - Page 4 of 5)













# Incident Action Plan Safety and Risk Analysis Form

① Incident Name:					
② Date Prepared: (month, day, year)			③ Time Prepared: (24-hour clock)		
④ Prepared By: (Enter name	e and position)				
DIVISION OR GROUP	POTENTIAL HAZARDS			MITIGATIONS	
	Type of Hazard	Type of Haza	ard	(e.g. personal protective equipment, buddy system, escape routes)	

# TERVITA

# Activity Log

1 Incident Name	:						
② Date Prepared	l: (month, day, year)			③ Time Prep	pared: (24-hour clock)		
Prepared By:	Enter name)		S ICS Position:			© Operational Period:	
<b>TIME</b> (24-hour clock)	CALL (To or From)	CONTACT		ELEPHONE NUMBER		COMMENTS	
	To:						
	To:						
	To:						
	To:						
	To:						
	To:						
	To:						
	To:						
	To:						

### **Demobilization Checkout**



① Incident Name:	
② Date Prepared: (month, day, year)/Time Prepared: (24-hour clock)	③ Demobilization Number:
④ Unit/Personnel Released:	
© Transportation Type/Number:	
⑥ Actual Release Date: (month, day, year)/Time (24-hour clock)	⑦ Manifest? ☐ Yes ☐ No Number:
(1) Unit Leader Responsible for Collecting Performance Rating: (En	nter name and position)
④ Unit/Per	rsonnel
You and your resources have been released subject to sign off from (Demobilization Unit Leader check the appropriate box.)	om the following:
Logistics Section	
Supply Unit	
Communications Unit	
☐ Facilities Unit	
Ground Support Unit Leader	
Planning Section	
Documentation Unit	
Finance Section	
Time Unit	
Other	
<ul> <li>Remarks:</li> <li>Prepared By: (Enter name and position)</li> </ul>	

# Facilitating a Briefing Form



① Incident Name:			
② Date Prepared: (month, day, year)		③ Time Prepared: (24-hour clock)	
④ Prepared By: (Enter name and position)			
<ul> <li>Ensure objectives, strategies and tactics are developed to the strategies and tactics are developed to tack and the strategies are developed to tack and tack and</li></ul>	eam duty checklist. rs to share information and expectations.	<ul> <li>Attendees must attend briefings from its begin</li> <li>Ensure no disruptions occur. (Cellular telephoriefing.)</li> <li>Announce the time of the next briefing.</li> </ul>	nning to end. ones, other responders, etc. must not interrupt a
<b>RESPONSE POSITION</b>	ACTIONS SINCE LAST BRIEFING	FUTURE ACTIONS	QUESTIONS/CONCERNS
Incident Commander/ Incident Director			
Deputy Incident Commander/ Deputy Incident Director			
Information Officer/ IST Information Officer			
Liaison Officer/ IST Liaison Officer			
Safety Officer/ IST Safety Officer			
Operations Section Chief/ Operations Section Head			
Planning Section Chief/ Planning Section Head			
Logistics Section Chief/ Logistics Section Head			
Finance/Administration Section Chief/ Finance/Administration Section Head			
Other Responder			

# Environmental Monitoring Record



Incident Nam	ne:									
Date Prepare	ed: (month, day, year)					Ti	me Prepare	ed: (24-hour c	lock)	
Prepared By	: (Enter name and position)									
TIME	LOCATION OF	H ₂ S	LEL	<b>O</b> ₂	SO ₂		TEMP	WIND CO		
(24-hour clock)	SAMPLE	(ppm)	(%)	(%)	(ppm)	OTHER	(°C)	FROM	<b>SPEED</b> (km/hr)	COMMENTS

# Roadblock Checkpoint Record



Incident Nam	e:					
Date Prepare	d: (month, day, year)			Time Prep	pared: (24-hour cloc	ж)
Prepared By:	(Enter name and position	n)		I		
VEHICLE TYPE	LICENSE PLATE NUMBER AND PROVINCE	NAME OF DRIVER	NUMBER OF PEOPLE IN VEHICLE	TIME ENTERING THE EMERGENCY PLANNING ZONE	TIME EXITING THE EMERGENCY PLANNING ZONE	COMMENTS

## **Status Board**



	Level of I	Emergency	
Level of Emergency			
	Planning and I	Response Zones	
Site-Specific Supplemental Section In Use			
Size of the Planning and Response Zone		Names of Rivers or Streams	
Number of Roadblocks		Number of School Children	
Number of Residences		Number of Industrial Operators	
Number of Businesses		Number of Trappers	
Number of Public Facilities		Number of Grazing Lessees	

	Incident Facilities
On-site Command Post (OSCP)	
Staging Area(s)	
Incident Command Post (ICP)	
Reception Centre	
Emergency Operations Centre (EOC)	

	Government Agency Notification	on	
А	gency Name	Telephone Number	Contacted
Regulatory Agency			Yes 🗌 No 🗌
Local RCMP/Local Police			Yes 🗌 No 🗌
Local Authority(ies)			Yes 🗌 No 🗌
Health Authority(ies)			Yes 🗌 No 🗌
Other Government Agencies			Yes 🗌 No 🗌
Outlined on the Appropriate Provincial and/or Regulatory - Notification Matrix			Yes 🗌 No 🗌
			Yes 🗌 No 🗌

## **ISSUES BOARD**



NOTE: Record the "issues" and their resolutions that have arisen as a result of the emergency e.g. unable to locate trappers, a resident requiring evacuation assistance, seismic crew working inside the Emergency Planning Zone.

ISSUE	time issue Identified	RESPONDER(S) ASSIGNED TO RESOLVE ISSUE	RESOLUTION	TIME ISSUE RESOLVED

# Expense Claim Form



Incident Name:	
Date Prepared: (month, day, year)	Time Prepared: (24-hour clock)
Prepared By: (Enter name and position)	
Evacuee's Signature	

Evacue	e Information
Date	
Name	
Mailing Address	
City, Province, Postal Code	
Location of Residence, Business, etc.	
Phone	
Phone While Evacuated	
Address While Evacuated	
Address While Evacuated	

Expenses (Please attach	all receipts)
Accommodation (if not prearranged)	\$
Meals (if not prearranged)	\$
Other Reasonable Daily Expenses	\$
Other	\$
Other	\$
Other	\$
TOTAL	



Date:	Prepared by (your name):
Time: □ a.m. □ p.m.	Duration of Call:

### WHEN A BOMB THREAT IS RECEIVED

Listen	Be calm and courteous	Do not interrupt the caller
Obtain as much inform	ation as possible	Initiate call trace action where possible
When caller hangs up a	attempt to retrieve caller's numbe	er by pushing <b>★69.</b>

For telephone tracing, call the local telephone company and the local RCMP/local police.

### **QUESTIONS TO ASK**

What time will the bomb explode?

Where is it?

Why did you place the bomb?

What does it look like?

Where are you calling from?

What is your name?

### EXACT WORDING OF THREAT

### IDENTIFYING CHARACTERISTICS

Sex :	Estimated Age:	Accent (English, French, Other):		
Voice (lou	ud, soft, etc.):			
Speech (f	fast, slow, etc.):			
Diction (g	ood, nasal, lisp, intoxicated, (	etc.):		
Manner (calm, emotional, vulgar, etc.):				
Backgrou	nd noises:			

### ADDITIONAL INFORMATION

Is the voice familiar (specify)?

Is the caller familiar with the area?

Is the caller familiar with Rally's operation?

### OTHER NOTIFICATIONS COMPLETED

Iocal RCMP/local police			
Time:	Time:	Time:	Time:
Time:	Time:	Time:	Time:



Used by: Any Tervita Representative

This form may also be used to transfer wells, pipelines or facilities within various Tervita departments (i.e. Tervita production area transfers to Tervita well department.)

Well, Pipeline or Facility Name: _____

Surface Location:

Regulatory Approval Number (Licence, Well Authorization, etc.):

Effective Date:_____

Tervita (or one of its affiliates) are preparing to perform work on the above referenced well, pipeline or facility. During these operations, Tervita will be accepting operational and emergency preparedness responsibilities for the above referenced well, pipeline or facility. **NOTE: Once operations are complete, Tervita will ensure the bottom portion of this** 

form is complete.

Signature of Tervita Representative

Signature of Contract Operating Company Representative

Effective Date:

Tervita (or one of its affiliates) has finished work on the above referenced well, pipeline or facility. Tervita has turned operational and emergency preparedness responsibilities for this well, pipeline or facility over to _________(company name).

(company name) will now be re-accepting operational and emergency preparedness responsibilities for the above referenced well, pipeline or facility.

Signature of Tervita Representative

Date

Date

Date

Signature of Contract Operating Company Representative

Date

## **Public Notification Record**



Incident Name:						
Date Prepared: (month, day, year)			Time Prepa	red: (24-hour clock)		
Prepared By: (Enter name and pos	sition)					
CONTACT NAME	PUBLIC PROTECTION MEASURE RECOMMENDED	NUMBER OF PEOPLE AT LOCATION		ASSISTANCE OR TRANSPORTATION	COMMENTS	
	(See Legend Below)	INSIDE	OUTSIDE	REQUIRED?		
N = Notification and Voluntary Evacuation E = Evacuation S = Shelter-In-Place						

# Evacuee Registration Record



Incident Name:								
Date Prepared: (month, day, year)					Time Prepared:	Time Prepared: (24-hour clock)		
Prepared By: (Enter name and position)					Reception Cent	Reception Centre Location:		
N (List All Na	IAME ames In Group)	MAP NO.	<b>TI</b> (24-ho	<b>ME</b> ur clock)	DESTIN	IATION	COMMENTS	
FIRST	LAST		CHECK- IN	DEPARTURE	LOCATION	PHONE NUMBER		



Public Information Notice
Date:
ROVERS: Place on unattended vehicles (Ensure the notice is placed inside a plastic bag and secured to the windshield.) and give to all public inside your Rover Area when notification has been ordered. <i>(Fill in date.)</i>
Tervita Corporation has an emergency at its nearby oil and gas facility. All efforts are being made to solve the problem. You are in no danger at this time; we are notifying you for informational purposes only.
If conditions worsen, Tervita will initiate evacuation of the area. At that time, Tervita will need to locate anyone living, working, camping or using the area.
If you have any questions, call Tervita at
Thank you



Public Evacuation Notice				
Date:				
ROVERS: Place on unattended vehicles (Ensure the notice is placed inside a plastic bag and secured to the windshield.) and give to all public inside your Rover Area when evacuation has been ordered. ( <i>Fill in date</i> .)				
Tervita Corporation has an emergency at its nearby oil and gas facility. As a safety precaution, please <b>evacuate</b> the area.				
Rover as required, check one of the two bullets below and if required fill in the blank:				
Tervita has established a Reception Centre at the, proceed to this location; or				
Tervita has not established a Reception Centre and asks you to evacuate, seek reasonable alternate accommodation of your choice and contact the number below when you have relocated.				
If you have any questions, call Tervita at				
Thank you				

# Notification Message



Ø	Notification Message						
	Hello this is (your name) of Tervita Corporation.						
	Is this the (name) residence/business at (telephone number)?						
	We are responding to a problem at (well, facility, etc.) in the area.						
	All efforts are being made to solve the problem.						
	You are in no danger at this time; we are notifying you for informational purposes only.						
	Do you understand this message? NOTE: If the contact wants to voluntarily evacuate, instruct the contact to either proceed to the Reception Centre if established or seek reasonable alternate accommodation of his/her choice if no Reception Centre is established. If the contact is seeking reasonable alternate accommodation of his/her choice, obtain a contact telephone number where Tervita can reach him/her.						
	In order to keep the telephone lines open for emergency use, do not use your telephone for non-emergency calls.						
	Again my name is and my phone number is						
	Thank you for your co-operation.						
	Immediately pass on all information regarding this call to your supervisor. Tervita's emergency number is 1-800-327-7455.						

# **Evacuation Message**



Ø	Evacuation Message						
	Hello this is (your name) of Tervita Corporation.						
	Is this the (name) residence/business at (telephone number)?						
	We are responding to a serious problem at (well, facility, etc.) in the area.						
	You are in no danger at this time, but if a release occurs, the wind will carry the gas in						
	For your safety, you must leave your location immediately and go to the Reception Centre (if established) at the (hall, office, hotel).						
	The Reception Centre is located at (give directions and address).						
	How many people are in your location right now?						
	Is there anyone outside that you cannot contact easily? ( Yes / No) If YES: Determine the location and assure the contact you will send someone to find them.						
	Do you have your own transportation? (  Yes /  No) If NO: Assure them that you will send someone to pick them up. While they are waiting, advise them to close their windows and doors and remain indoors.						
	Please:						
	<ul> <li>Leave immediately.</li> <li>If school is in session, the school buses will deliver the children to the Reception Centre (is established) when the school day is over.</li> </ul>						
	Do you understand these instructions?						
	Are you leaving immediately?						
	Just to be sure, which way are you going to travel?						
	If for some reason a problem arises and you can't leave, call me back.						
	In order to keep the telephone lines open for emergency use, do not use your telephone for non- emergency calls.						
	Again my name is and my phone number is						
	Thank you for your co-operation.						
	Immediately pass on all information regarding this call to your supervisor. Tervita's emergency number is 1-800-327-7455.						

# Shelter-In-Place Message



Ø	Shelter-In-Place Message						
	Hello this is (your name) of Tervita Corporation.						
	Is this the (name) residence/business at (telephone number)?						
	We are responding to a serious problem at (well, facility, etc.) in the area.						
	All efforts are being made to solve the problem. However, for your safety, it is extremely important that you and those with you stay indoors until the hazard no longer exists, or you are advised to evacuate.						
	To help us understand your immediate needs we need to know:						
	<ul> <li>How many people are at your location now? (adults) (children)</li> <li>Is there anyone you cannot contact to get indoors? (□ Yes/ □ No)</li> <li>IF YES: Ask the contact the location of the person(s)</li> <li>Assure the contact that we will be sending someone to find them.</li> </ul>						
	Do you have the Shelter-In-Place instructions previously given to you? ( $\Box$ Yes / $\Box$ No)						
	IF YES: Request the contact to follow the Shelter-In-Place instructions.						
	<ul> <li>IF NO: Request the contact to take the following actions immediately:</li> <li>Close and keep closed all windows and outside doors.</li> <li>Shut off air intake fans which exhaust outdoors (dryer, stove vents, bathroom fans, air condition, etc.).</li> <li>Turn off heat and hot water pilot lights.</li> <li>Extinguish fires in fireplaces.</li> <li>Gather everyone in an interior room upstairs and stay there.</li> </ul>						
	A company representative will come to your location when the hazard has been cleared.						
	Do you understand these instructions?						
	We will frequently update you about the situation.						
	In order to keep the telephone lines open for emergency use, do not use your telephone for non-emergency calls.						
	If you have any questions, call our emergency number and identify yourself as a Sheltered-In-Place resident.						
NOTE	NOTE: If the contact is very determined to evacuate when you are recommending Shelter-In- Place, calmly explain that it is more hazardous to evacuate because the indoor concentrations will be significantly lower than outdoor levels. The safest action is to remain Sheltered-In-Place until the hazard is removed.						
	Immediately pass on all information regarding this call to your supervisor. Tervita's emergency number is 1-800-327-7455.						



### **Notification Message**

This is Tervita calling with an important message.

Tervita has an emergency near your location, which does not affect your safety; REPEAT, does not affect your safety. You are in no danger at this time; Tervita is notifying you for informational purposes only. If you would like to voluntarily evacuate, please go to the Tervita Reception Centre located at the ______.

For further information, please contact Tervita's 24-hour emergency number at 1-800-327-7455. Thank you.

- **Press 1** to replay the message.
- **Press 2** to request assistance and have a Tervita representative contact you.
- **Press 3** to confirm receipt of this message.

#### Evacuation Message

This is Tervita calling with an important message.

Tervita has an emergency near your location. We are advising you to evacuate the area. Please evacuate your residence/business and proceed directly to the Tervita Reception Centre located at the ______. It is very important that you check in with the Tervita representative at the Reception Centre.

For further information, please contact Tervita's 24-hour emergency number at 1-800-327-7455. Thank you.

- **Press 1** to replay the message.
- **Press 2** to request assistance and have a Tervita representative contact you.
- **Press 3** to confirm receipt of this message.



### Shelter-In-Place Message

This is Tervita calling with an important message.

Tervita has an emergency near your location. Take shelter inside your home. **PLEASE DO NOT EVACUATE YOUR RESIDENCE/BUSINESS AT THIS TIME.** Close all doors and windows and shut off any sources of outside air. If possible, shut off or plug any air intakes or exhaust fans, e.g. stove fan, bathroom vent, clothes dryer, air conditioner. Avoid unnecessary use of your telephone so that we can contact you again. Tervita will advise you via telephone or in person when it is safe to evacuate.

For further information, please contact Tervita's 24-hour emergency number at 1-800-327-7455. Thank you.

- **Press 1** to replay the message.
- **Press 2** to request assistance and have a Tervita representative contact you.
- **Press 3** to confirm receipt of this message.

### Resident Message – All Clear

This is Tervita calling with an important message.

This is an ALL CLEAR message from Tervita. The emergency near you has been corrected. We apologize for any inconvenience that we may have caused.

For further information, please contact Tervita's 24-hour emergency number at 1-800-327-7455. Thank you.

- **Press 1** to replay the message.
- **Press 2** to request assistance and have a Tervita representative contact you.
- **Press 3** to confirm receipt of this message.



### Resident Message – Test Message

This is Tervita calling with an automatically issued message.

This is Tervita calling with a test message. This is **not** an emergency. This is only a test. In an emergency, you would be given specific instructions or information.

For further information, please contact Tervita's 24-hour emergency number at 1-800-327-7455. Thank you.

- Press 1 to replay the message.
- **Press 2** to request assistance and have a Tervita representative contact you.
- **Press 3** to confirm receipt of this message.

# School Children Registration Record

Family Name:		Family Telephon	Family Telephone Number:			
Student Arrival						
	List all students in the family arriving by school bus.					
		Signatures				
Students	Arrival Time	School Bus Driver	Reception Centre Personnel			
1.						
2.						
3.						
4.						

Parent Contact				
Parents Contacted?	Yes	🗌 No	Time:	a.m./p.m.
Contacted by:				
Estimated Pickup Time:				a.m./p.m.

Temporary Care			
Are care arrangements necessary?	Yes No		
Location of temporary care:			
Phone Number:			
Contact Person:			

Student Release			
List all students in the family being released to parents.			
	Si	Signa	itures
Students	Release Time	School Bus Driver	Reception Centre Personnel
1.			
2.			
3.			
4.			





# CORE EMERGENCY RESPONSE PLAN SECTION 9.0 - SAFETY EQUIPMENT

### CONTENTS

9.1	Emergency Response Safety Equipment	1
9.2	Roadblock Kits	1
9.3	Safety Equipment List	2

# This emergency response plan can be utilized by Tervita and all of its affiliated companies.

# 9.0 SAFETY EQUIPMENT

### **9.1** EMERGENCY RESPONSE SAFETY EQUIPMENT

The safety equipment listed on the following pages is necessary for implementing this emergency response plan and maximizing public protection. This plan is not intended to outline other safety equipment that may be necessary for unique onsite responder safety operations.

### 9.2 ROADBLOCK KITS

Each roadblock kit should contain the following items:

- Vehicle-mounted rotary beacon
- Stop paddle
- Flashlight
- Fluorescent vest
- Traffic cones
- Roadblock Checkpoint Records
- Pens/pencils
- NOTE: Each Roadblock Team member should also have a map showing the planning and response zones and their assigned roadblock location (may be sent via smart telephone); and will have direct communication capability with their supervisor (e.g. radio, cellular telephone).

Attachment 7 Fire Plan



# **Tervita Environmental Services**

# **Office Fire Safety Plan**

999 – Redonda Street Winnipeg, MB

May 2020

Version 1



# Contents

1.	Introduc	ction	. 2
2.	Audit of	f Building Resources Checklist	. 3
3.		f Human Resources	
4.	Fire Em	ergency Procedures	. 8
4.	1. Fire	Warden's / Supervisory Staff Procedure & Responsibilities	. 9
4.	2. Spe	cial Needs Persons	11
4.	3. Res	ponsibilities of the Owner / Occupant	11
5.	Fire Haz	zards	13
5.		trol of Fire Hazards	
6.	Fire Ext	inguishment, Control or Confinement	15
7.	Alternat	ive Measures for Occupant Fire Safety	16
7.	1. Fire	Drills	16
7.	2. Insp	bection and Maintenance	
	7.2.1.	General Fire Protection Systems/Equipment	18
	7.2.2.	Portable Fire Extinguishers	19
	7.2.3.	Fire Alarm	20
	7.2.4.	Smoke Alarms	22
	7.2.5.	Sprinkler Systems (Wet)	23
	7.2.6.	Emergency Lighting System	26
	7.2.7.	Emergency Power Systems	27
8.	Drawing	gs	28
9.	Rerence	Documents	31



# 1. INTRODUCTION

This Fire Safety Plan is intended to provide the information and procedures required to effectively respond to a fire related emergency. It is the responsibility of all occupants to review the Fire Safety Plan and to become familiar with the Procedures and information contained within. All Tervita Fire Wardens and Health, Safety and Environment (HSE) Manager must retain a copy of the Fire Safety Plan.

The implementation of the Fire Safety Plan helps to ensure effective utilization of life safety features in a building to protect people from fire. The required Fire Safety Plan should be designed to suit the resources of each individual building or complex of buildings. It is the responsibility of the owner to ensure that the information contained within the Fire Safety Plan is accurate and complete.

This official document is always to be kept readily available for use by staff and fire officials in the event of an emergency.

The fire safety plan approved location is:

- 1. Front Lobby of Administration Building
- 2. Lunch room of Warehouse
- 3. Copy obtained from Fire Warden's listed in document

The Fire Department will be notified regarding any subsequent changes in the reviewed Fire Safety Plan. Contact the Fire Department at (204) 444-2133



# 2. AUDIT OF BUILDING RESOURCES CHECKLIST

Occupancy Type	<u>Commercial</u>
<u>Occupant Load</u> Occupant Load: (if applicable)	<u>20</u>
<u>Access</u>	
Designated Fire Route:	🗌 No 🛛 Yes
Nearest Municipal Hydrant Location:	
Private Hydrants: No XYes (Location(s)):	Border Chemical
Lockbox: 🗌 No 🛛 Yes (Location(s)):	<u>Sandvik</u> <u>North of Gate to</u> <u>Warehouse</u>
Heating 🛛 Natural Gas 🖾 Electric	Other
<u>Main Gas</u> <u>Shut-off:</u>	SE Corner of Warehouse and also remote stand
Main Electrical Shut-off Location:	near garage Panels located in warehouse and outside on east side of warehouse
Main Domestic Water Shut-off Location:	
Fire Alarm System:Make: Model: Main Panel Location:	<u>honeywell Notifier</u> <u>NFS-320C</u> <u>NE corner of Warehouse</u>
Annunciator Panel Location: Fire Alarm Description:	NE corner of Warehouse Alarm monitored by Protelec and inspected by Vipond
Sprinkler System: No Yes Type:	🛛 Wet 🔲 Dry 🗌 Other
Connected to the Fire Alarm System:  No Location of Sprinkler Room/Shut Off Valves:	⊠ Yes
•	NE corner of Warehouse building
Standpipe System: No Yes Location of Shutoff/Isolation Valves:	

TERVITA			
Fire Department         Connection:       No       Yes (Location(s)):			
<b><u>Fire Pump:</u></b> No Yes (Location) Fire Pump Description:	(s):		
Other Extinguishing Systems:			
Type(i.e. pre-action, sprinkler, halon, inergen, dry chemical):	ea/Location Protecting		
<u>Portable Fire Extinguishers</u> : (Refer to schematic drawings) To be determined once we move in			

TERVITA		
Emergency Lighting		
□ No ⊠ Yes Location(s): <u>Above exterior man doors</u>		
Emergency Power		
□ No □ Yes □ Battery ⊠ Generator		
<u>Generator</u>		
⊠ Diesel □ Natural Gas		
Fuel Supply Location: <u>Tank behind generator</u>		
Transfer Switch Location:		
Equipment Powered by Generator: <u>Fire Suppression</u>		
Electromagnetic Locking Devices		
□ No □ Yes (manual release switch location)		
<u>Proper Signage (Example – no parking signs, fire lane signage, no storage, emergency procedures, 911 signage at manual pull stations)</u>		
No Yes		
Location(s) throughout building:		
Extra Hazardous Area:		
Is there hazardous materials on site?		
If YES, please list the material and quantity:		

An inventory list of the waste types and quantity in the transfer station is maintained electronically as products are inbound and outbound frequently. A current list can be pulled at site by staff or remotely from another Tervita office.



**Exits:** Refer to schematic drawings for location of exits. To be updated once we move in



# 3. AUDIT OF HUMAN RESOURCES

Business/Building Name:	Tervita Corporation	
Address:	1600, 140 10 th Ave. SE Calgary Alberta	
Postal Code:	T2G 0R1 Business Phone No. 1-855-837-8482	
Business Owner:	Neil MacDonald	
Address:	999 Redonda Street; Winnipeg Manitoba	
Postal Code:	R3C 3R9	
Phone Number(s):	204-832-4561	
After Hour Contacts (24 hour telephone numbers):1-800-327-7455		
Manager/Supervisor:	Darryll Champagne Phone No. 204-791-3914	
Employee/Title:	Eric Laviolette / Operations Manager Phone No. 204-981-9301	
Employee/Title:	Rick Ridley / General Superintendent Phone No. 204-995-8242	
Other:	Neil MacDonald Phone No. 204-801-1929	
Building Owner:	Xpotential Products Inc.	
Address:	PO Box 126, St Boniface Postal Station,	
Postal Code:	R2H 3B4 Phone No. 1-204-781-3224	
Eiro Alarm Manitaring Compar	w: Protolog Phone No. : 1 204 040 1417	

Fire Alarm Monitoring Company: <u>Protelec</u> Phone No.: 1-204-949-1417 Sprinkler Monitoring Company: <u>Vipond</u> Phone No.: 1- 204 783-2420



# 4. FIRE EMERGENCY PROCEDURES

# **IN CASE OF FIRE**

### Upon Discovery of Fire:

- Leave fire area immediately and close doors
- Sound Fire Alarm
- Call the Fire Department at 9-1-1
- Leave building via nearest Exit
- Await the arrival of the Fire Department at the muster point
- In the event of a small fire, floor Wardens or employees trained in the use of Fire Extinguishers may attempt to extinguish it and MUST have at least one partner

### Upon Hearing Fire Alarm:

- Supervisor/ Fire Warden retrieve Air Horn (located at To be determined once we move in) and sound the horn **3 times** to alert all workers/staff within the vicinity
- Leave building via nearest Exit
- Close doors behind you
- Walk, DO NOT RUN, to the designated Muster Area located at: <u>Main Gate at</u> <u>Redonda</u>
- ASSIST persons requiring assistance
- Once you have left the fire area, DO NOT RETURN TO IT
- Conduct a Head Count
- Await the arrival of the Fire Department at the muster point

### **CAUTION**

IF YOU ENCOUNTER SMOKE - USE AN ALTERNATE EXIT

### <u>Remain Calm</u>



# 4.1. Fire Warden's / Supervisory Staff Procedure & Responsibilities

Fire Wardens must be trained in the Fire Emergency and Fire Warden's Procedures before they are given any responsibility for fire safety, which includes becoming familiar with all other Fire Wardens and the building including: floor area, exits, fire alarms and location of fire extinguishers (refer to attached Floor Plan).

### Fire Warden's Procedure

- 1. Retrieve Air Horn (located -TBD once we move in) and sound the horn 3 times to alert all workers/staff within the vicinity
- 2. Ensure exits are unobstructed and there is no smoke in stairway, use alternate exit if needed.
- 3. Direct occupants to the nearest exits.
- 4. If safe to do so, Check all areas, as occupants are evacuating (washrooms, printer rooms, offices, conference rooms, lunch rooms etc.), to ensure no individuals have been left behind.
- 5. Assign persons as necessary for each Special Needs Persons, if applicable.
- 6. Retrieve the Sign In/Out binders (at main entrance) and take while exiting for head count.
- 7. Exit the floor and proceed to the designated **Muster Area** located in the east entrance of the property, main entrance to 999 Redonda.
- 8. Direct employees to remain calm and take a head count and compare to the Sign in/out sheet and the Visitor sign in/out sheet. Inform the Fire Department of any confirmed missing occupants and that there may be unidentified Field Technicians or Mechanics inside.
- 9. Report in writing the events that took place for immediate investigation (refer to attached Incident Statement Form).



### Fire Warden's Responsibility

### Upon Discovery of Fire

- Leave fire area immediately and close doors. Alert occupants.
- Sound Fire Alarm and follow the fire alarm evacuation procedures.
- Call 9-1-1 from a safe location.
- Exit the building via the nearest exit.
- Await the arrival of the Fire Department at the muster point. <u>Upon Hearing of a Fire Condition</u>
- Ensure that the other occupants have been notified of the emergency conditions.
- Notify the Fire Department of the emergency condition. Dial 9-1-1.
- If it is safe to do so, supervise the evacuation of all occupants, including those requiring assistance.
- Upon the arrival of the firefighters, inform the fire officer of the conditions in the building and coordinate the efforts of the Supervisory staff with those of the Fire Department.
- Provide access and vital information to the firefighters as to location of persons, master keys for this occupancy and service rooms, etc.

### **General Related Duties**

- Keep the doors in fire separations closed at all times.
- Keep access to exits and EXITS, inside and outside, clear of any obstructions at all times.
- Do not permit combustible materials to accumulate in quantities or locations that would constitute a fire hazard.
- Promptly remove all combustible waste from areas where waste is placed for disposal, if applicable.
- Keep access roadways, fire routes and fire department connections clear and accessible for fire department use.
- Maintain the fire protection equipment in good operating condition at all times.
- Participate in fire drills. Occupants' participation should be encouraged.
- Have a working knowledge of the building fire and life safety systems.
- Ensure the building fire and life safety systems are in operating condition.
- Arrange for a substitute in your absence.
- Comply with the Manitoba Fire Code.
- In the event of any shutdown of fire and life safety systems, notify the Fire Department and initiate alternative measures.



### Fire Wardens:

Administration Building			
Connie Gratton	Contact: (204) 956-9021		
Alternate – Jennifer Alex	Contact: (204) 336-5448		
Warehouse			
Cole Thorarinson	Contact: (204) 336-5449		
Alternate- to be appointed	Contact:		

# 4.2. Special Needs Persons

Special Needs Persons are those occupants who may have either cognitive or physical limitations, which may require special assistance evacuating in the event of a Fire Emergency. Examples include: handicap people, pregnant women and persons with injuries. The Fire Warden(s) in charge is(are) to appoint individuals who are capable of assisting Special Needs Persons.

# 4.3. Responsibilities of the Owner / Occupant

The building owner/occupant has numerous responsibilities related to fire safety and must ensure that the following measures are enacted:

- Established emergency procedures to be followed at the time of an emergency.
- Appointment and organization of designated supervisory staff to carry out safety duties.
- Instruction of supervisory staff and other occupants so that they are aware of their responsibilities for fire safety.
- Holding of fire drills in accordance with the Fire Code, incorporating Emergency Procedures appropriate to the building.
- Control of fire hazards in the building.
- Maintenance of building facilities provided for safety of the occupants.
- Provisions of alternate measures for safety of occupants during shut down of fire protection equipment.
- Assuring that checks, tests and inspections required by the Manitoba Fire Code are completed on schedule and that records are retained for a minimum period of two (2) years.
- Assuring that initial verification or test reports for fire protection systems are retained throughout the life of the systems.
- Post and maintain at least one (1) copy of the fire emergency procedures.
- Keep a copy of the approved Fire Safety Plan on the premises in an approved location.



- •
- Notification of the Fire Chief regarding changes in the Fire Safety Plan. Ensure that the information in the Fire Safety Plan is current. Designate and train sufficient alternates to replace supervisory staff during any • absence.





# 5. FIRE HAZARDS

# Industrial Properties

A high standard of housekeeping and building maintenance is probably the most important single factor in the prevention of fire. Listed below are some specific hazards.

- Combustible material stored in non-approved areas.
- Fire and smoke barrier door not operating properly or wedged open.
- Improper storage of flammable liquids and gases.
- Defective electrical wiring and appliances, over-fusing, and the use of extension cords as permanent wiring.
- Clothes dryer lint collector full or improperly vented.
- Careless use of smoking materials.
- Improper disposal of oily rags.
- Spark from adjacent rail line

# In general, occupants should:

- Know how to alarm occupants of building, know where exits are located.
- Call the Fire Department immediately (9-1-1) whenever you need assistance.
- Know the correct address of the building or precise geographical location of the facility.
- Notify the building/property management if special assistance is required in the event of an emergency.
- Know the fire alarm signals and the procedures established to implement safe evacuation.
- Know the supervisory staff in your building.
- Report any fire hazard to supervisory staff.
- Know stairwell designation and the crossover floors (if any).
- Maintain properties drainage plan, lawncare and snow removal upto the rail R.O.W

# 5.1. Control of Fire Hazards

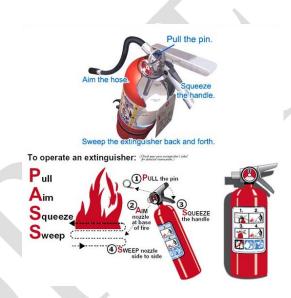
Fires can occur in the workplace for a variety of reasons. Workers need to identify flammable or combustible materials that are potential fire hazards in their work areas, and control potential ignition sources through effective housekeeping procedures. In the event of a fire situation, workers need to react effectively and, if possible, use portable fire extinguishers to attack an incipient stage fire.

# **Operational Controls**

• Adhere to housekeeping procedures to limit the risk of fires (i.e., minimize storage of combustible materials, dispose of combustible waste in metal containers that are



covered and airtight, turn off electrical equipment when not in use, etc.) as identified in CO-HSE-STN-0714 Fire and Explosion Control.


• Adhere to fire prevention strategies (i.e., adequately ventilate buildings in which flammable or combustible liquids are handled or stored, properly dispose of oily waste to avoid spontaneous combustion, etc.) as outlined in CO-HSE-SUP-0725 Fire Safety Inspection Checklist.

- Control the following workplace fire hazards:
- o Electrical fire hazards.
- o Portable heaters.
- o Office fire hazards.
- o Cutting, welding, and open flame work hazards.
- o Flammable and combustible materials.



# 6. FIRE EXTINGUISHMENT, CONTROL OR CONFINEMENT

In the event a small fire cannot be extinguished with the use of a portable fire extinguisher or the smoke presents a hazard for the operator, the door to the area should be closed to confine and contain the fire. Leave the fire area. Ensure that the Fire Alarm System has been activated and that Fire Department has been notified prior to an attempt to extinguish the fire. Only those persons who are trained and familiar with extinguisher operation may attempt to fight the fire.



# Suggested Operation of Portable Fire Extinguishers

Never re-hang extinguishers after use. Ensure they are properly recharged by a person that is qualified to service portable fire extinguishers and that a replacement extinguisher is provided.

Keep extinguishers in a visible area without obstructions around them.

**NOTE:** Prior to using a K-type extinguisher, activate the kitchen extinguishing system to avoid electrocution.

# 7. ALTERNATIVE MEASURES FOR OCCUPANT FIRE SAFETY

In the event of any shut-down of fire protection equipment systems or part thereof, in excess of 24 hours, the fire department shall be notified in writing. Occupants will be notified and instructions will be posted as to alternative provisions or actions to be taken in case of emergency. These provisions and actions must be acceptable to the Fire Marshal.

All attempts to minimize the impact of malfunctioning equipment will be initiated. Where portions of a sprinkler or fire alarm system are placed out of service, service to remaining portions must be maintained, and where necessary, the use of watchmen, bull-horns, portable radios, employed to notify concerned parties of emergencies. Assistance and direction for specific situations will be sought from Fire Department.

Procedures to be followed in the event of shutdown of any part of a fire protection system are as follows:

- 1. Notify Fire Department, dial (204) 444-2133 (DO NOT USE 911). Give your name, address and a description of the problem and when you expect it to be corrected. Fire Department is to be notified in writing of shutdowns longer than 24 hours.
- 2. Post notices at all exits and the main entrance, stating the problem and when it is expected to be corrected.
- 3. Maintain fire watch in affected area(s) as per Basic Watchman Service Conditions. Basic Watchman Service conditions can be found on RM of Springfield Fire Department website.
- 4. Notify Fire Department and the building occupants when repairs have been completed and systems are operational.
- **Note:** All shutdowns will be confined to as limited an area **and** duration as possible.

# 7.1. Fire Drills

Emergency response training (internal and external) and the execution of tabletop and mock drills is a crucial component to ensuring Tervita's effective and timely response in the event of an emergency. Frequency, type, and magnitude of training exercises shall adhere to specific requirements of jurisdictional OH&S and industry regulations.

At a minimum, Table Top exercises are to be conducted annually and documented on Tervita's CO-HSE-SUP-0914 Table Top Evaluation Form and Fire Drills

Biannually and documented on CO-HSE-SUP-0904Emergency Drill Evaluation Form.

# 7.2. Inspection and Maintenance

Inspection, testing and maintenance of fire safety equipment within the building must be completed as per equipment specifications and alarm monitoring service. Further information can be found in Tervita's CO-HSE-STN-0714 Fire and Explosion Prevention.

Check/test/inspect requirements of the Manitoba Fire Code:

- Below is a list of the portions of the Fire Code that requires checks, inspections and/or tests to be conducted of the facilities
- Safety Codes Officers may check to ensure that the necessary checks, inspections and/or tests are being done, when conducting their inspections.

Definitions for key words are as follows:

- *Check* means visual observation to ensure the device or system is in place and is not obviously damaged or obstructed
- *Test* means the operation of a device or system to ensure that it will perform in accordance with its intended operation or function

*Inspect* means physical examination to determine that the device or system will apparently perform in accordance with its intended function

It is stated in the Fire Code that records of all tests and corrective measures are required to be retained for a period of two years after they are made.

# 7.2.1. General Fire Protection Systems/Equipment

<u>General</u>	<u>Responsibility</u>
Doors in fire separations shall be <b>checked</b> as frequently as necessary to ensure that they remain closed.	
Exit signs shall be clearly visible and maintained in a clean and legible condition.	
Internally illuminated exit signs shall be kept clearly illuminated at all times, when the building is occupied.	_
Weekly	
When subject to accumulation of combustible deposits, hoods, filters and ducts shall be <b>checked</b> weekly and be cleaned when such deposits create an undue fire hazard.	
Monthly	
Doors in fire separations shall be <b>inspected</b> monthly for proper operation.	
Yearly	
Fire dampers and fire-stop flaps shall be <b>inspected</b> annually, or based on a schedule via contractor acceptable to the Fire Marshal. (fire dampers to be inspected and documented	
internally monthly as well) Every chimney, flue and flue pipe shall be <b>inspected</b> annually and cleaned as often as necessary to keep them free from accumulations of combustible deposits.	
Disconnect switches for mechanical air-conditioning and ventilating systems shall be <b>inspected</b> annually to establish that the system can be shut down.	
Spark arresters shall be cleaned annually or more frequently where accumulations of debris will adversely affect operations. Burnt-out arresters shall be repaired or replaced.	

# 7.2.2. Portable Fire Extinguishers

## <u>General</u>

Each portable extinguisher shall have a tag securely attached to it showing the maintenance or recharge date, the servicing agency and the signature of the person who performed the service.

A permanent record containing the maintenance date, the examiner's name and a description of any work or hydrostatic testing carried out shall be prepared and maintained for each portable extinguisher.

All extinguishers shall be recharged after use or as indicated by an inspection or when performing maintenance. When recharging is performed, the recommendations of the manufacturer shall be followed.

# **Monthly**

Portable extinguishers shall be inspected monthly.

# <u>Yearly</u>

Extinguishers shall be subject to maintenance not more than one year apart or when specifically indicated by an inspection.

Maintenance procedures shall include a thorough examination of the three basic elements of an extinguisher:

a) mechanical parts

- b) extinguishing agent
- c) expelling means

Every twelve months, pump tank water, and pump tank calcium chloride base antifreeze types of extinguishers shall be recharged with new chemicals or water, as applicable

# 5 Years

Every five years, pressurized water and carbon dioxide fire extinguishers shall be hydrostatically tested.

# <u>6 Years</u>

Every six years, stored pressure extinguishers that require a 12 year hydrostatic test shall be emptied and subjected to the applicable maintenance procedures.

#### **Responsibility**

# 7.2.3. Fire Alarm

# <u>General</u>

## **Responsibility**

Fire alarm and voice communication system components shall be kept unobstructed. Fire alarm shall be kept unobstructed.

Fire alarm system power supply disconnect switches shall be locked on in an approved manner.

# Daily

The following daily checks shall be conducted. If a fault is established, appropriate corrective action shall be taken.

a) **Check** the principle and remote trouble lights for trouble indication;

b) **Inspection** of the AC power-on light shall be done to ensure its normal operation.

# **Monthly**

Every month the following **tests** shall be conducted under battery back up power and if a fault is established, appropriate corrective action shall be taken:

a) one fire alarm initiating device shall be operated, on a rotating basis, and shall initiate an alarm condition

function of all signal devices shall be ensured

c) the annunciator panel shall be checked to ensure correct annunciation

d) intended function of the audible and visual trouble signals shall be ensured

e) fire alarm batteries shall be checked to ensure that:

i) terminals are clean and lubricated where necessary;

ii) terminal clamps are clean and tight;

ii) electrolyte level and specific gravity, where applicable, meet manufacturer's specifications

b)

Monthly (continued)	<u>Responsibility</u>
Voice paging capability to one zone shall be <b>tested</b> monthly on a rotational basis.	
One emergency telephone shall be <b>tested</b> monthly on a rotational basis for operation and correct indication at control unit.	
Loudspeakers shall be <b>tested</b> monthly as an all- call signal to ensure they function as intended.	_
At least one Firefighter's emergency telephone shall be <b>tested</b> monthly on a rotational basis to ensure communication with the control unit. All telephones shall be <b>tested</b> each year.	
<u>Yearly</u>	
Yearly <b>tests</b> conducted by a qualified person acceptable to Fire Prevention Branch and holding a valid permit from the Fire Prevention Branch <b>Tests</b>	
Shall be conducted and documented in conformance with CAN/ULC S536-04, "Inspection and Testing of Fire Alarm Systems".	1
Voice communications between floor areas and the central alarm control facility shall be <b>tested</b> annually, as required for fire alarm initiating and signally devices.	

# 7.2.4. Smoke Alarms

# <u>General</u>

**Responsibility** 

Ensure dwelling unit smoke alarms are maintained in operating condition.

Ensure a copy of the smoke alarm manufacturer's Maintenance instructions or approved alternative has been provided.

(smoke alarms to be inspected and documented monthly internally)

# 7.2.5. Sprinkler Systems (Wet)

# <u>General</u>

## **Responsibility**

Auxiliary drains shall be **inspected** as required to prevent freezing.

#### <u>Weekly</u>

Except for electrically supervised valves, all valves controlling water supplies to sprinklers and alarm connections shall be **checked** weekly to ensure that they are sealed or locked in the open position.

Water supply pressure and system air or water pressure shall be **checked** weekly by using gauges to ensure that the system is maintained at the required operating pressure.

### Monthly

Inspect gauges control valves & tamper switches. (sprinkler heads to be visually inspected and documented monthly internally)

# Three Month

Inspect alarm devices, hydraulic nameplate and fire department connections All transmitters and alarm devices shall be **tested** at 3 month intervals.

# Six Months

Gate-valve supervisory switches and other sprinkler system supervisory devices shall be **tested** at six month intervals.

#### <u>General</u>

#### <u>Yearly</u>

Exposed sprinkler piping hangers shall be **checked** yearly to ensure that they are kept in good repair.

Sprinkler heads shall be **checked** at least once per year to ensure that they are kept in good repair.

Sprinkler heads shall be **checked** at least once per year to ensure that they are free from damage, corrosion, grease, dust, paint, or whitewash. They shall be replaced where necessary as a result of such conditions.

On wet sprinkler systems, water-flow alarm **test** using the most hydraulically remote test connection, shall be performed annually.

Sprinkler system water pressure shall be **tested** annually or after any sprinkler system control valve has been operated, with the main drain valve fully open, to ensure that there are no obstructions or deterioration of the main water supply.

Plugs or caps on Fire Department connections shall be removed annually and the threads inspected of wear, rust or obstruction. Re-secure plugs or caps, wrench tight. If plugs or caps are missing, examine the Fire Department connection for obstructions, back flush if necessary and replace plugs or caps.

## **Responsibility**

# 7.2.6. Emergency Lighting System General

# **Responsibility**

# <u>Daily</u>

Check POWER ON lights for indication of proper operation.

# **Monthly**

Emergency lighting equipment shall be **tested** monthly to ensure that the emergency lighting will function upon failure of the primary power supply.

# <u>Yearly</u>

Emergency lighting equipment shall be **tested** annually to ensure that the units will provide emergency lighting for a duration equal to the design criteria under simulated power failure conditions.

After completion, the charging conditions for voltage and current and the recovery period will be **tested** annually to ensure that he charging system is in accordance with the manufacturer's specifications.

# 7.2.7. Emergency Power Systems General

**Responsibility** 

Emergency power systems shall be **inspected**, **tested** and maintained in conformance with CAN/CSA C282-05, "Emergency Electrical Power Supply for Buildings".

To ensure continued reliable operation, the emergency power supply equipment shall be operated and maintained in accordance with manufacturer's instructions.

At least two copies of the instruction manual shall be maintained.

### <u>Weekly</u>

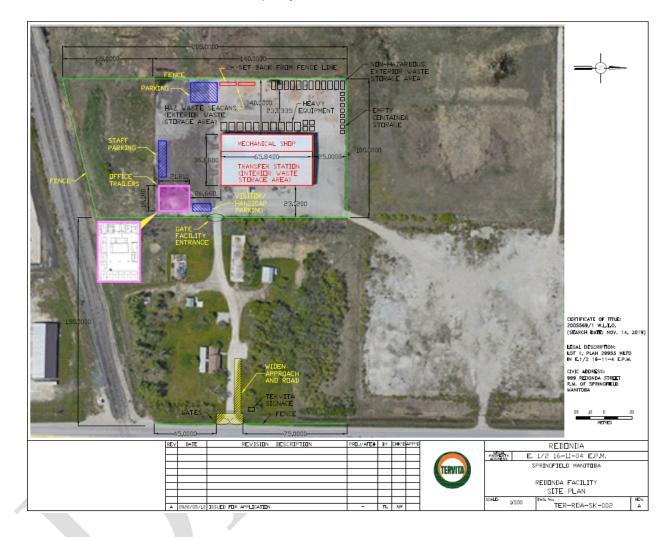
Inspect test & maintain as per CAN/CSA C282-05, "Emergency Electrical Power Supply for Buildings". Maintain Records.

### Monthly

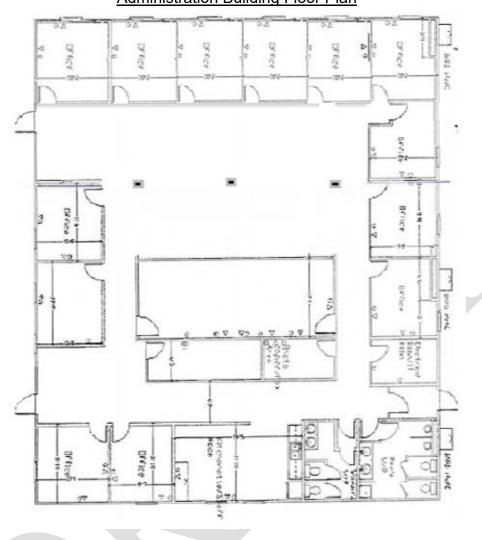
Inspect test & maintain as per CAN/CSA C282-05, "Emergency Electrical Power Supply for Buildings". Maintain Records.

# Semi-Annually (Every 6 month)

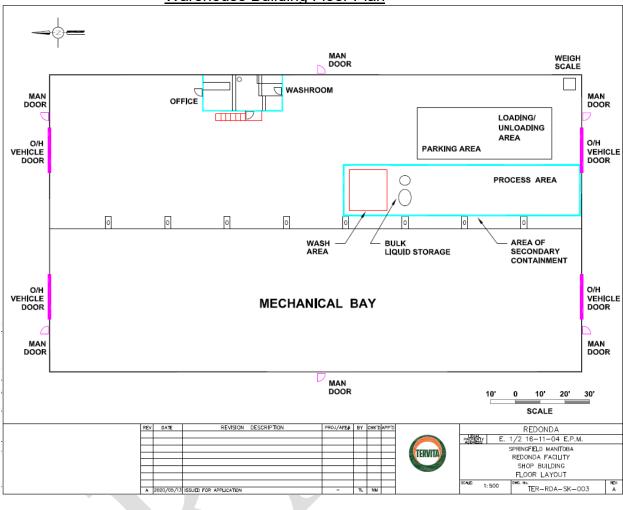
Inspect test & maintain as per CAN/CSA C282-05, "Emergency Electrical Power Supply for Buildings". Maintain Records.


# **Annually**

Inspect test & maintain as per CAN/CSA C282-05, "Emergency Electrical Power Supply for Buildings". Maintain Records.


#### Every 5 years

Inspect test & maintain as per CAN/CSA C282-05, "Emergency Electrical Power Supply for Buildings". Maintain Records.


# 8. DRAWINGS



Property Site Plan



Administration Building Floor Plan



# Warehouse Building Floor Plan

# 9. RERENCE DOCUMENTS

CO-HSE-SUP-0900 Corporate ERP CO-HSE-SUP-0901 Site Specific ERP

CO-HSE-SUP-0904 Emergency Drill Evaluation Form

CO-HSE-SUP-0914 Table Top Evaluation Form

CO-HSE-SUP-0764 Worksite Emergency Readiness Assurance Checklist

CO-HSE-STN-0714 Fire and Explosion Prevention

CO-HSE-SUP-0725 Fire Safety Inspection Checklist

CO-HSE-SUP-0926 Emergency Evacuation JSA

CO-HSE-SUP-0927 Emergency Evacuation Template JSA

CO-HSE-SUP-1005 Incident Statement