

Imperial

Remediation Plan, 287 Main Street Selkirk, Manitoba

Prepared by: AECOM Canada Ltd. 99 Commerce Drive Winnipeg MB R3P 0YT Prepared for: Imperial 505 Quarry Park Blvd SE Calgary, AB T2C 5N1

Date: July 2020 Project #: 60549588

Distribution List

# Hard Copies	PDF Required	Association / Company Name		
	✓	Manitoba Conservation and Climate		
	✓	Imperial		

AECOM Canada Ltd. 99 Commerce Drive Winnipeg MB R3P 0Y7 Canada

T: 204.477.5381 F: 204.284.2040

Date July 27, 2020

Warren Rospad
Contaminated Sites Program Specialist, Environment Officer
Hazardous Waste, Petroleum, & Contaminated Sites Section
Environmental Compliance & Enforcement Branch
Manitoba Conservation and Climate
1007 Century Street
Winnipeg, MB R3H 0W4

Dear Mr. Rospad:

AECOM Project No:..... 60549588

Regarding: Remediation Plan

Imperial Site #:..... 88001943

Facility Type: Former Service Station

On behalf of Imperial, AECOM Canada Ltd. (AECOM) is pleased to submit the subject Remedial Plan (RP) to complete remedial activities at the former Esso service station located at 287 Main Street, Selkirk, Manitoba (Imperial Site #88001943).

If you have any questions or concerns, please feel free to contact Aaron Jambrosic at 403-270-4810.

Sincerely,

AECOM Canada Ltd.

Aaron Jambrosic M.Sc.
Senior Environmental Scientist

Environment

Amber Zilinsky, P.Eng. Environmental Engineer

Environment

AJ/rz

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada Ltd. ("AECOM") for the benefit of the Client ("Client") in accordance with the agreement between AECOM and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations");
- represents AECOM's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;
- may be based on information provided to AECOM which has not been independently verified;
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;
- must be read as a whole and sections thereof should not be read out of such context;
- was prepared for the specific purposes described in the Report and the Agreement; and
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time.

AECOM shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. AECOM accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

AECOM agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but AECOM makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by AECOM represent AECOM's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since AECOM has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, AECOM, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by AECOM and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by Client.

AECOM accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of AECOM to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

AECOM: 2015-04-13 © 2009-2015 AECOM Canada Ltd. All Rights Reserved.

Quality Information

Report Prepared By:

Aaron Jambrosic M.Sc.

Senior Environmental Scientist

Environment

A. D. ZILINSH Member 23786

Report Reviewed By:

Amber Zilinsky, P.Eng. Environmental Engineer

Environment

Certificate of Authorization

AECOM Canada Ltd.

No. 4671

Date: July 27, 2020

Table of Contents

Intro		
1.1	Remediation	on Plan Objective
Site	Descripti	ion and Background
2.1	Site Descri	ption
2.2	Soil Stratig	raphy
2.3	Hydrogeolo	ogy
2.4	Topograph	y and Drainage
2.5	Structures	and Utilities
2.6	Vegetation	
2.7	Land Use.	
2.8	Previous E	nvironmental Investigations
2.9	Areas of E	nvironmental Concern
2.10	Contamina	ints of Concern
qqA	licable G	uidelines and Remedial Objectives
3.1		on Guideline Selection
3.2		on Guideline Values
Pro-	Remediat	tion and Proposed Remedial Actions
4.1		Vork
4.2	•	diation Activities
7.2		iminary Health and Safety Planning
		Remedial Groundwater Monitoring and Sampling
		PCOC and Remaining Infrastructure Investigation
		Vapour Investigation
	Proposed.	
4.3		diation Activities
		iminary Health and Safety Planning
		Survey
		orted Fill Material Verification
		te Characterization and Disposal Facility Acceptance
		avation, Treatment and Disposal of Select Impacted Soil
	4.3.5	
	4.3.5	5.2 Former Service Station, Garage, and Car Wash Building Footprints
	4.3.5	Monitoring Well Decommissioning
	4.3.5	5.4 Overhead Power Lines and Underground Utilities

		4.3.6	4.3.5.5 4.3.5.6 4.3.5.7 4.3.5.8 4.3.5.9 4.3.5.10 4.3.5.11 Site Rest	Excavation Stability Soil Excavation and Management Excavation Liner Excavation Water Confirmatory Soil Sampling Stockpile Soil Sampling Dust, Noise, and Air Quality Management Coration	17 17 17 18 18
	4.4			ion Activities	
	•••	4.4.1	Post-Ren	nedial Groundwater Well Installation, Monitoring &	
5.	Sc	hedule			20
6.	Sı	ımmary			20
7.	Re	eference	es		21
Appe	enc	dix D: S	oil Vap	our Assessment	24
List	of	Tables	(in Te	xt)	
		Applicability	of Recepto	s of Concern by Area of Environmental Concern ors and Exposure Pathways, CCME Tier II Assessment for	or
Table 3	3-2:	Applicability	of Recepto	ors and Exposure Pathways, CWS Tier 1 Assessment for	PHC
Table 3	3-3:			ctives for Primary COCs	
Table 3	3-4:	Groundwate	r Remediat	tion Objectives for Primary COCs	12
Table 5	5-1:	Preliminary	Remedial S	Schedule	20
List	of	Tables	(Attac	hment)	
Table 1	-1.	Historical	Soil Analy	tical Results for Petroleum Hydrocarbons, Lead Scaveng	ers and Lead
Table 2		and Lead		ter Analytical Results for Petroleum Hydrocarbons, Lead	Scavengers
Table 3				Analytical Results for Petroleum Hydrocarbons	
Table 3				Analytical Results for Glycols	
Table 3				Analytical Results for Metals	. \
Table 3 Table 3				Analytical Results for Volatile Organic Compounds (VOCs Analytical Results for Semi-Volatile Organic Compounds (•
Table 3				Analytical Results for Polychlorinated Biphenyls (PCBs)	(3VOCs)
Table 3				Results - Petroleum Hydrocarbons	
Table 4			•	Results - Volatile Organic Compounds (VOCs)	
Table 4			-	Results - Polycyclic Aromatic Hydrocarbons (PAHs)	
Table 4			-	Results - Glycols	
Table 4			•	Results - Polychlorinated Biphenyls (PCBs)	
Table 4	-6.		-	Results - Metals	

List of Figures

Figure 1. Site Location Map Figure 2. Site Plan

Figure 3. Site Plan with Utilities

Figure 4. Historical Soil Analytical Results for Petroleum Hydrocarbons, Lead Scavengers and Lead Figure 5. Historical Groundwater Analytical Results for Petroleum Hydrocarbons, Lead Scavengers

and Lead

Figure 6 2018 Pre-Remediation Groundwater Analytical Results for Petroleum Hydrocarbons

Figure 7 2018 Pre-Remediation Soil Analytical Results for Petroleum Hydrocarbons

Figure 8. Soil Vapour Well Installation Locations

Figure 9. Proposed Excavation Limits

Appendices

Appendix A. Borehole and Test Pit Logs Appendix B. 2013 Site Survey Plan Appendix C Well Record Summary Appendix D. Soil Vapour Assessment

Introduction 1.

AECOM Canada Ltd. (AECOM) was retained by Imperial to develop a remediation plan (RP), for a former Esso service station located at 287 Main Street, Selkirk, Manitoba (Imperial Site #88001943); hereinafter referred to as "the Site". The purpose of this RP is to describe activities to be undertaken to complete a soil remediation at the Site.

Remediation Plan Objective 1.1

The objective of the proposed remediation plan is to remove the impacted soils identified at the Site that exceed the remedial objectives through excavation. Benzene, toluene, ethylbenzene and xylenes (BTEX) and petroleum hydrocarbon (PHC) fraction F1 and F2 impacted soil will be stockpiled and treated onsite with an Allu Bucket to promote degradation with treated soil meeting remedial criteria reused onsite and treated soil still exceeding remedial criteria disposed of at an offsite disposal location. The excavation will be backfilled with imported fill and/or segregated material from the Site that meets the remedial objectives.

Site Description and Background 2.

The following subsections are summarized based on the historical investigations completed at the Site, as listed in Section 2.8.

Site Description 2.1

The Site occupies an area of approximately 0.30 hectares, and is located on the northwest side of Main Street between Rosser Avenue and Pacific Avenue in Selkirk, Manitoba. The legal land description for the Site is:

Lots 22 and 23 Plan 22 WLTO (L DIV), in RL 45 Parish of St Clements. And, firstly: The N ½ of Lot 69 and all of Lots 70, 71, 72, and 73 Plan 9328 WLTO (L Div), Exc out of all of said Lots public land Plan 100518 WLTO in RL 46 Parish of St. Clements. Secondly, All that portion of Lot 69 PLAN 9328 WLTO (L Div) taken for public land plan 5570 WLTO (closed) which lies to the east of a line drawn east of parallel with perp distant 20 feet from the western limit of said Lot 69 Exc out of secondly all mines and minerals in RL 46 Parish of St. Clements. Thirdly, Lots 20, and 21 Plan 22 WLTO (L Div) in RL 45 of said Parish.

The Site is currently owned by Imperial (Imperial Oil Limited) and is the location of a former Esso service station. The location of the Site is indicated on Figure 1 and a Site plan is provided as Figure 2 (without utilities) and Figure 3 (with utilities).

The Site was operated as a service station and retail fuel outlet from 1967 to 1995 and as a retail fuel outlet with a car wash from 1995 to 2004. The Site configuration between 1967 and 1989 included a service station building (repair garage) with a 2,270 L waste oil underground storage tank (UST); a tank nest with five 22,730 L steel gasoline underground storage tanks (USTs); two pump islands, associated product piping and dispensing equipment; and a storage garage. In 1989, the waste oil UST was removed, along with the gasoline tank nest with five USTs which were subsequently replaced with four 27,275 L fibreglass gasoline USTs in approximately the same location. In 1995, the repair garage was removed and a kiosk and carwash were installed. In 2004, Site operations were ceased and all Site facilities were decommissioned and removed, including four fiberglass USTs, two pump islands, a kiosk, car wash, propane aboveground storage tank (AST), and a garbage enclosure. Since 2004, there have been no facilities located on the Site.

Currently the Site is vacant with a fence located on the northwest side. The Site can be accessed via roadway approaches from Main Street or Rosser Avenue, however concrete safety barriers are currently blocking these entrances.

2.2 Soil Stratigraphy

Based on the results of previous environmental investigations that have been undertaken at the Site, the soil stratigraphy generally consists of a surface layer of sand, gravel, silt or clay fill, encountered to depths of approximately 1.5 m below ground surface (bgs), underlain by highly plastic clay (with silt and sand lenses) to depths between 3.4 m to 5.3 mbgs, followed by glacial till to the maximum depth of investigation, 7.6 mbgs.

2.3 Hydrogeology

Based on previous environmental investigations completed between 1988 and 2016, shallow groundwater was encountered between 2.4 mbgs and 4.3 mbgs, with an indeterminant flow direction that was generally inferred towards the south/southeast.

A 2003 investigation conducted hydraulic conductivity tests on monitoring wells MW-32, MW-33, MW-34, MW-35, MW-36, MW37, and MW-38 (all screened from 1.6 mbgs to 4.6 mbgs in silt/clay), and reported horizontal hydraulic conductivity values ranging from 1.46 x 10⁻⁸ m/s to 5.11 x 10⁻⁸ m/s.

Based on groundwater gauging elevation from 2015 and 2016 the hydraulic gradient ranged from 0.003 m/m to 0.026 m/m with an average 0.017 m/m.

Based on the highest measured hydraulic conductivity (5.11 x 10^{-8} m/s) and hydraulic gradient (0.026 m/m) and default effective porosity for fine soil of 0.47 (CCME, 2006) the seepage velocity was calculated at 0.1 m/year.

2.4 Topography and Drainage

The Site topography is relatively flat, with surface water drainage generally through surface infiltration. The ground surface of the Site is generally covered by vegetation, gravel, and asphalt.

The nearest surface water body is the Red River located approximately 475 m to the east of the Site. Regional drainage is generally east towards the Red River.

Based on the horizontal shallow groundwater flow velocity, it would take groundwater approximately 4,750 years to reach the river.

2.5 Structures and Utilities

During the assessment and decommissioning of the four 22,730 L fibreglass USTs in 2004, all facilities at the Site associated with the former service station, retail fuel outlet, and car wash were reported to be decommissioned and removed, with the exception of a sewer line on the southern portion of the Site as shown on **Figure 3**. Based on the legal survey and the most recent Site plans available, there a Manitoba

Hydro box on a concrete pad is located in the southwestern portion of the Site. Some Site plans created by previous consultants since 2013 indicate the presence of a waste oil UST, located on the southeast side of the former car wash. Previous tank information included in the Phase I ESA and the 2004 Site decommissioning do not indicate the presence of this UST.

A total of 30 groundwater monitoring wells were known to have been installed at or around the Site, with 14 monitoring wells onsite and three monitoring wells offsite (along Main Street) reported to be still in service. All other previous monitoring wells were reported to be destroyed.

2.6 Vegetation

Visible vegetation within the boundary of the Site is generally limited to grasses, shrubs and trees.

2.7 Land Use

The Site is zoned as Central Commercial (C3), which is intended for properties located along major collector or arterial streets and is used for single or multi-tenant sites for multifunctional uses such as retail business, multi-family residential, recreational, social, cultural and administrative uses. The properties to the southeast and southwest are also zoned C3. The properties northwest of the Site are zoned as Residential General (R) which includes single family dwellings. The properties northeast of the Site are zoned as central commercial (C2), which includes the central business area and provides for multifunctional uses such as retail business, multi-family residential, recreational, social and administrative uses (City of Selkirk Zoning By- law 4968, June 23, 2020).

Based on communications from Imperial, the Site is intended for commercial land use in the future.

2.8 Previous Environmental Investigations

Previous environmental investigations at the Site are summarized in the following reports provided by Imperial:

- Re: Red River Esso, (60256A), Selkirk, Manitoba. Prepared by O'Connor Associates Environmental Inc. on January 3, 1989. (O'Connor Associates Environmental Inc., 1989a)
- Re: Red River Esso, Service Station No. 60256A, Selkirk, Manitoba. Prepared by O'Connor Associates Environmental Inc. on March 20, 1989. (O'Connor Associates Environmental Inc., 1989b)
- Re: Red River Esso, Service Station No. 60256A, Selkirk, Manitoba. Prepared by O'Connor Associates Environmental Inc. on July 31, 1989. (O'Connor Associates Environmental Inc., 1989c)
- Phase II Environmental Assessment, Red River Esso Service Station, Site #860265, 287 Main Street, Selkirk, Manitoba. Prepared by Aqua Terre Solutions Inc. on October 15, 2003. (Aqua Terre Solutions Inc., 2003)
- Environmental Assessment Program, Former IOL Automotive Retail Station, 287 Main Street, Selkirk, Manitoba, 860265/88001943. Prepared by AMEC Earth & Environmental on October 22, 2004. (AMEC Earth & Environmental, 2004)
- Phase II Environmental Site Assessment, City of Selkirk Property Adjacent to the Former IOL Automotive Retail Station, 287 Main Street, Selkirk, Manitoba, 860265/88001943. Prepared by AMEC Earth & Environmental on February 9, 2005. (AMEC Earth & Environmental, 2005)

- Re: Remedial Excavation Estimate Report, Former Red River Service Station, 287 Main Street, Selkirk, Manitoba, Location No. 8600265/88001943. Prepared by O'Connor Associates Environmental Inc. on April 9, 2007. (O'Connor Associates Environmental Inc., 2007)
- Field Data Report, Former ESSO Retail, 287 Main Street, Selkirk, MB, 88001943 / 860265.
 Prepared by O'Connor Associates Environmental Inc. on May 13, 2010. (O'Connor Associates Environmental Inc., 2010)
- Phase I Environmental Site Assessment, Former Service Station, 287 Main Street, Selkirk, Manitoba, 8001943. Prepared by O'Connor Associates Environmental Inc. on January 19, 2012. (O'Connor Associates Environmental Inc., 2012)
- Groundwater Monitoring and Sampling Report, 287 Main Street, Selkirk, Manitoba, Location No.: 88001943. Prepared by O'Connor Associates Environmental Inc. on February 21, 2013. (O'Connor Associates Environmental Inc., 2013)
- Phase II Environmental Site Assessment, Former Esso Service Station, Car Wash and Retail Fuel Facility, 287 Main Street, Selkirk, Manitoba, 8001943. Prepared by Parsons on December 13, 2013. (Parsons, 2013)
- Remedial Action Plan, Former Retail Fuel Facility and Carwash, 287 Main Street, Selkirk, Manitoba, 8001943. Prepared by Kleinfelder Canada Inc. on April 21, 2015. (Kleinfelder Canada Inc., 2015)
- Remediation Plan, Former Service Station, Car Wash and Retail Fuel Facility, 287 Main Street, Selkirk, Manitoba, 8001943. Prepared by Parsons on September 22, 2016. (Parsons, 2016a)
- Groundwater Monitoring and Sampling Data Package, 287 Main Street, Selkirk, Manitoba.
 Prepared by Parsons on December 19, 2016. (Parsons, 2016b)

A summary of the historical soil analytical results for petroleum hydrocarbons (PHCs), lead scavengers, and lead is presented on **Figure 4** and a summary of the historical groundwater analytical results for PHCs, lead scavengers, and lead is presented on **Figure 5**.

Historical borehole and test pit logs from previous environmental investigation reports are provided in **Appendix A**. A copy of the most recent legal property survey (Surveyor's Staking Certificate Showing Certain Features) conducted at the Site in 2013 is provided in **Appendix B**.

2.9 Areas of Environmental Concern

Based on the previous environmental investigations, areas of environmental concern (AECs) include the following:

- Former service station and waste oil UST.
- Former fuel USTs, associated pump islands, and proximate plumes of PHC impacted soil and groundwater.
- Former car wash.

2.10 Contaminants of Concern

Based past use of the Site as a retail fuel outlet, service station, and car wash, potential contaminants of concern (PCOCs) at the Site include those associated with lead and unleaded gasoline, middle distillate fuels (diesel), engine oils, engine coolants, used oil, degreasing solvents, and transformer oil. Fuel oxygenates were excluded from the PCOCs for the Site based on communication from Imperial indicating that these were not used in fuels within Manitoba. The PCOCs based on past use of the Site are summarized in **Table 2-1** below.

Table 2-1: Potential Contaminants of Concern by Area of Environmental Concern

Area of Environmental	Associated Material or Potential Contaminants of Conce		
Concern	Product		
Former Service Station & Waste Oil UST	Leaded motor gasoline	Benzene, toluene, ethylbenzene xylenes (BTEX), n-hexane, PHC F1-F3, 2-ring polycyclic aromatic hydrocarbons (PAHs), 1,2-dibromoethane (1,2-DBA), 1,2-dichloroethane (1,2-DCA), lead	
	Unleaded motor gasoline	BTEX, n-hexane, PHC F1-F3, 2-ring PAHs	
	Engine oils	PHC F2-F4, PAHs, barium, zinc	
	Engine coolants	Ethylene glycol, 1,2-propylene glycol	
	Used oil	BTEX, n-hexane, PHC F1-F4, PAHs, volatile organic compounds (VOCs), arsenic, barium, chromium, copper, lead, tin, zinc, PCBs, ethylene glycol, 1,2-propylene glycol	
	Degreasing solvents	PHC F1, 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2-trichloroethane (1,1,2-TCA), 1,1-dichloroethane (1,1-DCA), tetrachloroethene (perchloroethylene, PCE), trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), trans-1,2-dichloroethene (trans-1,2-DCE), 1,1-dichloroethene (1,1-DCE), chloroethene (vinyl chloride, VC)	
	Transformer oil	PHC F2-F4, polychlorinated biphenyls (PCBs)	
Gasoline USTs	Leaded motor gasoline	BTEX, n-hexane, PHC F1-F3, 2-ring PAHs, 1,2-DBA, 1,2-DCA, lead	
	Unleaded motor gasoline	BTEX, n-hexane, PHC F1-F3, 2-ring PAHs	
Diesel UST	Middle distillate fuels	BTEX, PHC F1-F3, 2-ring and 3-ring PAHs	
Former Car Wash	Leaded motor gasoline	BTEX, n-hexane, PHC F1-F3, 2-ring PAHs, 1,2-DBA, 1,2-DCA, lead	
	Unleaded motor gasoline	BTEX, PHC F1-F3, 2-ring PAHs	
	Used oil	BTEX, n-hexane, PHC F1-F4, PAHs, VOCs, arsenic, barium, chromium, copper, lead, tin, zinc, PCBs, ethylene glycol, 1,2-propylene glycol	
	Engine Coolants	Ethylene glycol, 1,2-propylene glycol	

Previous environmental investigations completed by AECOM and others have included soil and groundwater sampling for parameters related to PHCs, lead scavengers, PAHs, and select metals in the known AECs. A previous investigation completed by Parsons Canada Ltd. in 2013 assessed select VOCs, PAHs, metals and glycols in soil in the vicinity of the former service station building footprint, adjacent fuel oil UST, and car wash, and reported concentrations of these parameters below reportable detection limits and/or applied guideline values. In 2018 AECOM completed a PCOC investigation to address data gaps associated with assessment of VOCs (including n-hexane and those associated with degreasing solvents), tin, glycols, and PCBs at the Site. Details of the 2018 PCOC investigation are presented with the pre-remedial activities in Section 4.2.2 and 4.2.3 of this document.

Based on environmental investigations completed at the Site, the contaminants of concern (COCs) identified at the Site are PHC parameters (benzene and PHC fractions F1, F2, and F3) associated with historical Site activities involving the storage and handling of diesel and gasoline fuel.

Applicable Guidelines and Remedial Objectives

3.1 Remediation Guideline Selection

The Province of Manitoba currently references documents from the Canadian Council of Ministers of the Environment (CCME) and Ontario Ministry of the Environment and Climate Change (Ontario MOECC) as Primary and Secondary standards, respectively. Where these documents do not include applicable guidelines, the Province of Manitoba references documents from Alberta Environment and Parks (AEP) as a tertiary standard.

Primary standards:

- CCME Canadian Environmental Quality Guidelines (CEQG), (most recent online version).
- CCME Canada-Wide Standards (CWS) for Petroleum Hydrocarbons (PHC) in Soil, January 2008(a).
- Health Canada, Guidelines for Canadian Drinking Water Quality Summary Table, 2019.

Secondary standard:

• Ontario Ministry of the Environment (MOE) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, 2011.

Tertiary standard:

 AEP Alberta Environment and Parks Tier 1 and Tier 2 Soil and Groundwater Remediation Guidelines 2019.

The CCME CEQG and CWS use a risk-based approach allowing limited modification of the generic EQGs in light of prescribed site-specific factors affecting contaminant mobility and receptor characterization. In other words, in cases where soil and/or groundwater concentrations exceed the generic guidelines, an analysis of risk factors specific to the site in question is acceptable in order to allow for a realistic assessment of the actual risks at the site. Using this approach, EQGs are selected based on a step-through procedure eliminating the exposure pathways that do not apply to receptors in the vicinity of the

Site and finally selecting the appropriate and most conservative guideline remaining after the elimination procedure. The guidelines are protective of both human and environmental receptors.

This approach was undertaken for the Site in order to provide a more realistic assessment of human and environmental risks at the Site. The applicable site-specific factors at the Site and the supporting rationale are summarized in **Table 3-1** and **Table 3-2**.

Table 3-1: Applicability of Receptors and Exposure Pathways, CCME Tier II Assessment for BTEX

Potential Exposure Pathway	Applicability (Yes/No)	Rationale
Human Health Exposure Path	<u> </u>	
Soil Ingestion	Yes	The Site ground surface cover consists predominantly of gravel areas with some vegetation and asphalt. Asphalt previously in place at the Site may be removed during remediation.
Soil Dermal Contact	Yes	The Site ground surface cover consists predominantly of gravel areas with some vegetation and asphalt. Asphalt previously in place at the Site may be removed during remediation.
Soil Inhalation	Yes	The Site ground surface cover consists predominantly of gravel areas with some vegetation and asphalt overlaying fine grained soils. Asphalt previously in place at the Site may be removed during remediation.
Inhalation of Indoor Air (Basement)	Yes	Buildings on adjacent properties are residential with potential basements, inhalation of indoor air into basements must be considered within 30 m of residential properties.
Inhalation of Indoor Air (Slabon-Grade)	Yes	Potential for future building development at the Site. Buildings on adjacent properties are residential.
Off-Site Migration	Yes	The Site ground surface cover consists predominantly of gravel areas with some vegetation and asphalt. Asphalt previously in place at the Site may be removed during remediation. Potential for migration via wind/water from the Site to adjacent residential properties.
Groundwater (Drinking Water)	No	According to the City of Selkirk there is a by-law in place that prevents installation and use of private water wells with the City limits. Site conditions that insure isolation between the shallow impacted soil/groundwater and the deeper groundwater carbonate aquifer with a 5 m thickness of massive unfractured saturated fine-grained material with a bulk hydraulic conductivity of less than 10-6 m/s.

Potential Exposure Pathway	Applicability (Yes/No)	Rationale
Produce, Meat and Milk	No	No agricultural land use in vicinity of the Site. Site land use is commercial, limiting potential for garden exposure.
Environmental Health Exposu	ure Pathways	
Soil Contact	Yes	The Site ground surface cover consists predominantly of gravel areas with some vegetation and asphalt. Asphalt previously in place at the Site may be removed during remediation.
Soil and Food Ingestion	Yes	The Site ground surface cover consists predominantly of gravel areas with some vegetation and asphalt. Asphalt previously in place at the Site may be removed during remediation.
Nutrient and Energy Cycling	Yes	The Site ground surface cover consists predominantly of gravel areas with some vegetation and asphalt. Asphalt previously in place at the Site may be removed during remediation.
Off-Site Migration	Yes	The Site ground surface cover consists predominantly of gravel areas with some vegetation and asphalt. Asphalt previously in place at the Site may be removed during remediation. Potential for migration via wind/water from the Site to adjacent residential properties.
Groundwater (Livestock)	No	No agricultural land use in vicinity of the Site.
Groundwater (Aquatic Life)	No	 The nearest surface water body is the Red River located approximately 475 m east of the Site. However, the aquatic life pathway is not considered to be applicable because based on the following: The average hydraulic conductivity of upper overburden soils at the Site, in which the soil and groundwater impacts are present, is sufficiently low (in the range of 10-8 m/s) to limit contaminant migration. Based on the calculated shallow groundwater horizontal flow velocity it would take approximately 4,750 years to reach the river.

Table 3-2: Applicability of Receptors and Exposure Pathways, CWS Tier 1 Assessment for PHC fractions F1-F4

Potential Exposure Pathway	Applicability (Yes/No)	Rationale
Direct Contact (Ingestion & Dermal Contact)	Yes	The Site ground surface cover consists predominantly of gravel areas with some vegetation and asphalt. Asphalt may be removed during remediation.
Vapour Inhalation (Indoor)	Yes	Potential for future building development at the Site. Buildings on adjacent properties are residential.
Protection of Potable Groundwater	No	According to the City of Selkirk there is a by-law in place that prevents installation and use of private water wells with the City limits. Site conditions that insure isolation between the shallow impacted soil/groundwater and the deeper groundwater carbonate aquifer with a 5 m thickness of massive unfractured saturated fine-grained material with a bulk hydraulic conductivity of less than 10 ⁻⁶ m/s.
Protection of Groundwater for Aquatic Life	No	 The nearest surface water body is the Red River which is located approximately 475 m east of the Site. However, the aquatic life pathway is not considered to be applicable because based on the following: The average hydraulic conductivity of upper overburden soils at the Site, in which the soil and groundwater impacts are present, is sufficiently low (in the range of 10-8 m/s) to limit contaminant migration. Based on the calculated shallow groundwater horizontal flow velocity it would take approximately 4,750 years to reach the river.
Nutrient Cycling	Yes	The Site ground surface cover consists predominantly of gravel areas with some vegetation and asphalt. Asphalt previously in place at the Site may be removed during remediation.
Eco Soil Contact	Yes	The Site ground surface cover consists predominantly of gravel areas with some vegetation and asphalt. Asphalt previously in place at the Site may be removed during remediation.
Off-Site Migration	Yes	The Site ground surface cover consists predominantly of gravel areas with some vegetation and asphalt. Asphalt previously in place at the Site may be removed during remediation. Potential for migration via wind/water from the Site to adjacent residential properties.
Management Limit	Yes	Applicable at all soil depths and not adjustable.

Environmental quality guidelines for commercial land use were selected based on zoning and communications from Imperial indicating that the Site is intended for continued commercial use in the future.

According to the City of Selkirk there is a by-law in place that prevents installation and use of private water wells with the City limits. Drinking water is supplied to the area via a municipal distribution system fed by four wells located 380 m to 460 m north, northeast, and east from the Site and drawing groundwater from the carbonate bedrock aquifer. The well records indicate the well installations encountered bedrock at a minimum of 26 mbgs and were installed with a solid casing to depths of a minimum of 26 mbgs.

Based on available well records from a search of the Manitoba Conservation and Climate (formerly Manitoba Conservation and Water Stewardship) water well records data base (2012) and information included in environmental investigations previously completed by others, 24 water wells (17 domestic, 2 municipal, 3 test wells, 1 air conditioning well and 1 recharge well) are reportedly potentially within a 500 m radius of the Site. The wells were drilled between 1963 and 2006 and are completed in bedrock formation at depths ranging between 7.9 mbgs and 84.4 mgbs. A summary of the wells identified as potentially within 500 m of the Site is presented in **Appendix C**. The nearest wells identified were located approximately 70 m (verified with homeowner that this well does not exist or is not in use) and 125 m from the Site (screened in the conductive bedrock interval at 27.1 – 28.3 mbgs and 28.5 – 61.8 mbgs, respectfully, below 26 meters of fine-grained material).

The low permeability overburden thickness is estimated to be approximately 20 m thick in the Site area. The average hydraulic conductivity of upper overburden soils at the Site, in which the soil and groundwater impacts are present, is sufficiently low (in the range of 10⁻⁸ m/s) to limit use as a domestic use aquifer.

The potable groundwater pathway is not considered applicable to the Site based on condition at the Site that ensure isolation between the shallow impacted soil/groundwater and the deeper groundwater carbonate aquifer with a 5 m thickness of massive unfractured saturated fine-grained material with bulk hydraulic conductivity of less than 10⁻⁶ m/s

The nearest surface water body is the Red River which is located approximately 475 m east of the Site. However, the average hydraulic conductivity of upper overburden soils at the Site, in which the soil and groundwater impacts are present, is sufficiently low (in the range of 10⁻⁸ m/s) to limit contaminant migration, based on the calculated shallow groundwater horizontal flow velocity it would take approximately 4,750 years to reach the river. The aquatic life pathway is not considered to be applicable

According to the CWS Technical Supplement Document (2008c), the soil contact exposure pathway may be eliminated for depths below 3 m with the provincial regulator to dictate how to address soils between 1.5 m and 3 mbgs. According to Manitoba Conservation and Climate (formerly Sustainable Development), surface soil is defined as soil at or above 1.5 mbgs with subsurface soil defined as soil below 1.5 mbgs, meaning the ecological soil contact exposure pathway may be eliminated below a depth of 1.5 m provided there are other applicable exposure pathways. Therefore, where appropriate, the ecological soil contact pathway has been removed from consideration for soil at depths greater than 1.5 mbgs (BTEX and PHC fraction F1-F4 parameters).

CCME developed SQGs for benzene based on incremental cancer risk for human health with human health SGQs having 10⁻⁵ and 10⁻⁶ incremental cancer risks. The 10⁻⁵ incremental cancer risk values were selected as part of this remedial program, as per Manitoba Conservation and Climate Guideline *Manitoba Criteria for BTEX in Investigation Results* (Manitoba Sustainable Development, 2016).

Further assessment of the vapour inhalation pathways was completed as part of a pre-remediation soil vapour investigation. The applicable site-specific receptors, exposure pathways, and associated

remediation guideline values and remedial approach/design were evaluated based on the results of the soil vapour investigation. Details of the vapour inhalation pathways analysis and suggested revisions to the remedial approach/design are provided in Section 4.2.4 and **Appendix D** for approval by Manitoba Conservation and Climate as part of a this Remediation Plan.

In summary, the current applied guidelines are based on the primary, secondary, and tertiary standards listed above, for Commercial land use and fine-grained soil, with potable groundwater and aquatic life exposure pathways excluded, and ecological direct contact excluded below 1.5 m for BTEX and PHC fractions F1–F4, and indoor air vapour removed for a select area of the Site.

3.2 Remediation Guideline Values

The following table summarizes the applied soil quality guideline (SQG) values used as soil remediation objectives for the Site.

Table 3-3: Soil	Remediation	Objectives t	for Primary	COCs
-----------------	-------------	--------------	-------------	------

Parameter	Surface Soil (≤1.5 mbgs) SQG (mg/kg)	Subsoil (>1.5 mbgs) SQG (mg/kg)
Benzene	2.8 ^{a,d,e, i}	2.9 ^{a,d, i}
Toluene	330 ^{a,f}	660 ^{a,f}
Ethylbenzene	430 ^{a,f}	860 ^{a,f}
Xylenes	230 ^{a,f}	460 ^{a,f}
PHC fraction F1	320 ^{b,g}	800 ^{b,h}
PHC fraction F2	260 ^{b,g}	1,000 ^{b,h}
PHC fraction F3	2,500 ^{b,g}	5,000 ^{b,h}
PHC fraction F4	6,600 ^{b,g}	10,000 ^{b,h}
1,2-Dibromoethane	0.05 ^c	0.05 °
1,2-Dichloroethane	50 ^a	50 a
Lead	260 a	260 a

Notes

Table 3-4 summarizes the applicable groundwater quality guideline (GWQG) values used as groundwater remediation objectives for the Site:

^a Canadian Council of Ministers of the Environment (CCME) Soil Quality Guidelines (2014) - Commercial Land Use, Fine Grained Soils.

b CCME, Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil (2008) - Commercial Land Use, Fine Grained Soils.

Ontario Ministry of the Environment (MOE) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (2011) - Table 3: Full Depth Generic Site Condition Standards Non-Potable Ground Water Condition, Fine Textured Soil, Commercial Land Use.

^d Inhalation of indoor air (basement).

e Inhalation of indoor air (slab on grade).

f Soil contact - Environmental Health.

g Eco Soil Contact.

h Management Limit

Guideline values of 110 mg/kg (surface soil) and 620 mg/kg (subsoil) utilized in select area of the Site, based on indoor air vapour modeling.

0.025

Parameter	GWQG (mg/L) ^a
Benzene	0.43
Toluene	18
Ethylbenzene	2.3
Xylenes	4.2
PHC fraction F1	0.75
PHC fraction F2	0.15
PHC fraction F3	0.5
PHC fraction F4	0.5
1,2-Dibromoethane	0.00083
1,2-Dichloroethane	0.012

Table 3-4: Groundwater Remediation Objectives for Primary COCs

Notes:

Note these general guideline tables do not take into account site specific soil vapour assessment presented in Section 4.2.4 and **Appendix D** as the guideline modification only apply to the sub-section of the Site where the vapour investigation was performed.

4. Pre-Remediation and Proposed Remedial Actions

4.1 Scope of Work

AECOM completed the following scope of work prior to initiation of the remedial excavation to better design the soil remediation at the Site:

- Pre-Remediation Activities:
 - Preliminary health and safety planning;
 - o Pre-remediation groundwater monitoring and sampling;
 - Soil PCOC and remaining infrastructure investigation; and
 - Soil vapour investigation.

Lead (Dissolved)

AECOM proposes the following scope of work to conduct soil remediation at the Site:

- Site Remediation:
 - o Finalization of health and safety plan;
 - Site survey:
 - o Imported fill material verification;
 - Waste characterization and landfill acceptance;
 - Re-route/protect utilities/install shoring as required;
 - Turn soil within former building footprints;
 - On-site treatment of select impacted soils;
 - Excavation and disposal of select impacted soil; and

^a Ontario Ministry of the Environment (MOE) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (MOE, 2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, Fine Textured Soil, Commercial Land Use.

- Site restoration.
- Post-Remediation Activities:
 - Post-remediation groundwater well installation, monitoring, and sampling.

The following sections provide a detailed summary of the remedial actions proposed for the Site.

4.2 Pre-Remediation Activities

4.2.1 Preliminary Health and Safety Planning

A Site-Specific Health and Safety Plan (SSHASP) was prepared to address safety, health, and security considerations for the tasks completed as part of the pre-remediation activities. The SSHASP was provided to Imperial under separate cover.

4.2.2 Pre-Remedial Groundwater Monitoring and Sampling

Groundwater monitoring and sampling conducted previously in 2010, 2012, 2015, and 2016, indicated groundwater impacts related to benzene and PHC fractions F1-F2, however these past programs had not assessed all of the applicable PCOCs in the groundwater. On October 10 and 12, 2018, a pre-remedial groundwater monitoring and sampling event was completed at all existing onsite groundwater monitoring wells to confirm current groundwater conditions and concentrations of COCs and PCOCs. Results of the 2018 event identified concentrations of PHC fraction F2 above remedial criteria in three groundwater monitoring well locations (04-1, MW35, and 04-8). PHC fraction F3, was which had not been previously analyzed, was also reported at a concentration above remedial criteria in groundwater monitoring well 04-7.

Analytical results from the 2018 monitoring and sampling event are summarized in **Table 3-1 though Table 3-6**. Groundwater monitoring well locations and sample results for the identified COCs are illustrated on **Figure 6**.

4.2.3 Soil PCOC and Remaining Infrastructure Investigation

On November 11 through 13, 2018, eight boreholes were advanced to a depth of up to 6.75 mbgs, and representative soil samples were collected from each of the AECs to investigate unassessed PCOCs and determine potential presence of remaining infrastructure. The collected soil samples were field screened for volatile organic vapours. Based on the field screening and observations, select soil samples were submitted for laboratory analysis of PCOCs associated with the AEC as outlined in **Table 2-1**: Potential Contaminants of Concern by Area of Environmental Concern. The 2018 laboratory analytical results were reviewed in combination with previous environmental investigation data to determine the need for additional COCs, additional investigation, and/or revision to the remedial approach/design. Results of the 2018 investigation identified benzene above remedial criteria in three boreholes (BH4, BH5, and BH6) and a concentration of PHC fraction F1 above remedial criteria in one borehole (BH6), all within the former Fuel UST Area. No other PCOCs or COCs, or remaining infrastructure were identified during the 2018 investigation.

Analytical results from the 2018 investigation are summarized in **Table 4-1** through **Table 4-6**. Borehole locations and sample results for identified COCs are illustrated on **Figure 7**.

4.2.4 Soil Vapour Investigation

Between November 2018 and February 2019, a soil vapour investigation was completed at the Site to assess the vapour inhalation exposure pathway. The soil vapour investigation included:

- Installation of four soil vapour probes;
- Two rounds of soil vapour sampling;
- Model indoor air concentrations using CCME dilution factors based on the Johnson and Ettinger (1991) model to assess potential risks posed by the indoor infiltration of volatile contaminants emanating from soil and/or groundwater; and
- Evaluation of potential modification to the remedial approach based on application of the soil vapour screening criteria.

On November 22, 2018, four soil vapour probes (VW18-1, VW18-2, VW18-3 and VW18-4) were installed for collection of representative soil vapour samples from areas exhibiting soil impacts. The assessment area was located southeast of the former tank farm (between the tank farm and Main Street) where identified soil impacts were driven by the vapour intrusion pathway for benzene (based on soil concentrations in locations BH4, BH5 and TP-17), and within the former tank farm (based on soil concentrations observed in BH6). The soil vapour monitoring probes were installed at 1.6-1.85 mbgs, above the water table and in the area of worst-case impacts. Two rounds of soil vapour sampling were completed, in November 2018 and February 2019.

The measured soil vapour concentrations were used to calculate predicted indoor air concentrations using soil gas to indoor air dilution factors (DF) as a function of depth/distance from building to contamination. These predicted concentrations were then used to determine a Hazard Quotient (HQ) for threshold chemicals, or an Incremental Lifetime Cancer Risk (ILCR) for non-threshold chemicals. for each of the BTEX constituents and PHC fractions F1 and F2.

The HQ / ILCR for each of the BTEX constituents and PHC fractions F1 and F2 was found to be less than 1 (i.e. the predicted indoor air concentrations were less than the respective indoor air guideline concentrations), therefore, there are no significant risks associated with the occupancy of a building exhibiting such concentrations.

Based on the soil vapour assessment the remedial design was modified as follows:

Benzene impacted soil (based on indoor air vapour guideline values) that is not co-located with
other contaminants requiring remediation driven a pathway other than indoor air will be left in
place. This is a result of the modeling indicating that there is negligible exposure risk from soil
vapours and benzene concentrations do not exceed remedial criteria for any other applicable
exposure pathway.

Details of the evaluation and development of Site-specific soil vapour model are provided in **Appendix D**. Sample location and sample results for identified COCs are illustrated on **Figure 8**. Copies of vapour probe installation logs are provided in **Appendix A**.

4.3 Proposed Site Remediation Activities

4.3.1 Preliminary Health and Safety Planning

The Site-Specific Health and Safety Plan (SSHASP) will be updated to address any additional safety, health, and security considerations for the Site tasks required for remediation of the Site provided to Imperial under separate cover.

4.3.2 Site Survey

The Site property boundaries, boundaries of former structures, and key investigation locations will be surveyed and staked prior to remedial activities. A copy of the most recent legal property survey of the Site is attached in **Appendix B**.

4.3.3 Imported Fill Material Verification

Approximately 380 m³ (in-situ volume) of imported fill material maybe required to replace the impacted soils that are to be excavated for potential offsite disposal. Material imported to the Site to be used as backfill will be sampled to verify that the material meets the remedial criteria for the Site. Soil samples from the imported backfill will be collected and submitted for laboratory analysis of grain size, BTEX, PHC fractions F1 to F4, metals, VOCs, PAHs, salinity parameters, and PCBs, at a minimum. Any backfill source will require at least two samples be provided for analysis, one sample for every 500 m³ for the first 2,000 m³ and one sample for each 1,000 m³ thereafter.

4.3.4 Waste Characterization and Disposal Facility Acceptance

To obtain approval for acceptance of the select impacted soils at an appropriate disposal facility, soil samples will be collected at the start of remedial work and select samples will be submitted for laboratory analysis of landfill acceptance parameters. The analytical results will be forwarded to the appropriate disposal facility for approval prior to remedial work.

Based on historical soil analytical results, the PHC-impacted soils are expected to be suitable for disposal at a licensed soil treatment facility capable of accepting PHC-impacted soil the such as: the Progressive Waste Solutions facility near Winnipeg, Manitoba; the MidCanada Soil Treatment Facility in Ile des Chenes, Manitoba; or the Miller Environmental Corporation Industrial Waste Treatment Facility in the Rural Municipality of Montcalm, Manitoba.

4.3.5 Excavation, Treatment and Disposal of Select Impacted Soil

4.3.5.1 Soil Volume Estimate

The proposed extents of the remedial excavation are shown on **Figure 6**. The total estimated in-situ volume of soil to be excavated is approximately 1,718 m³, including 1,308 m³ of un-impacted overburden and soil from excavation side slopes, 24 m³ of impacted surface soil that is below subsoil guidelines and can be re-used below 1.5 mbgs, and 386 m³ of impacted soil. The 410 m³ of impacted soil is expected to be treated onsite via Allu Bucket, or similar device. If Allu Bucket treatment is effective, treated soils below the remedial criteria will be reused onsite, with any soil remaining above the remedial criteria disposed of offsite.

Assuming a soil bulk density of 2.0 tonnes/m³, approximately 770 tonnes of soil may require offsite disposal. Pending confirmatory laboratory results, it is estimated that approximately 1,308 m³ of

overburden soils will be stockpiled and reused as backfill (assuming that 100% of soils excavated from building footprint areas will be re-used onsite as no impacts have been previously identified in these areas). These volumes do not include any contingency to account for locations where over-excavation may be required or due to adjustments to soil density.

Proposed excavation extent is illustrated in Figure 9.

4.3.5.2 Former Service Station, Garage, and Car Wash Building Footprints

The soil beneath the former service station, garage, and car wash buildings footprints will be excavated to a depth below the grade of the former slab or base support of said infrastructure for due diligence purposes, assumed to be 1.0 mbgs. Soil excavated from these areas will be stockpiled, and confirmatory samples will be collected from the excavation as described in Section 4.3.5.9 below, and the stockpiles as described in Section 4.3.5.10 below.

4.3.5.3 Monitoring Well Decommissioning

Any groundwater monitoring wells located within the excavation extents will be decommissioned prior to remedial activities by filling the well annulus with bentonite chips and hydrating with water. The metal road boxes, PVC well casing, and other monitoring well components will be removed during the excavation and disposed. Decommissioning of other wells located at the Site will be reviewed following completion of remedial activities.

Decommissioning of five existing groundwater monitoring wells, identified as 04-1, 04-4, 04-7, 04-8, and MW36, is expected to be required.

4.3.5.4 Overhead Power Lines and Underground Utilities

Street light poles and fire hydrants are located adjacent to the east and south sides of the Site. Appropriate safety precautions as per utility owner, government, and Imperial regulations/requirements, such as work setback distances/cable protection/de-energization, will need to be considered as part of the SSHASP.

Utility company representatives and a private locator will be retained to confirm the onsite utilities prior to the excavation. AECOM will coordinate and supervise utility locates with the remediation subcontractor, who will be responsible for performing field activities within a safe distance from any identified utilities, where applicable. Based on previous works it is anticipated that all underground utilities have been removed from the Site except sewer lines located on the southern portion of the Site. If utilities are identified at the Site they will be daylighted via exposure techniques such as hydro-excavation.

Based on previous works it is anticipated that a portion of the sewer line may require protection or removal; should it be required, it will be discussed in the SSHASP and will be the responsibility of the remediation subcontractor.

4.3.5.5 Excavation Stability

Soils at the site primarily consist of fine-grained materials within the areas and depths anticipated for remedial excavation. To maintain safe side walls and reduce chance of collapse, an approximate 1:1 slope will be utilized on excavation walls. As the excavation extents are not expected to abut property boundaries, it is not anticipated that temporary or permanent shoring will be required. If excavation at the

property boundary is required it is anticipated it will be performed using slot cutting, with excavation areas no wider than 2 m open at any one time and backfilled to 1:1 slope immediately following sampling to reduce potential of collapse. The excavation slope stability will be monitored by a competent person at all times. If slope stability indicates shoring is required, an engineered design will be provided by the remedial contractor prior to installation.

The estimated extents of the remedial excavation surface limits maintaining a 1:1 slope are shown on **Figure 9**.

4.3.5.6 Soil Excavation and Management

Soil will be excavated using a track-mounted excavator. AECOM personnel will directly supervise all stages of soil excavation. Select impacted soil will be excavated, stockpiled, and treated onsite using a Allu Bucket, or similar device, to promote degradation of the contaminants. It is estimated that a total of 380 m³ of soil will be treated. Soils will be placed in 50 m³ stockpiles for treatment. Post treatment, soils will be screened and sampled according to the stockpile screening and sampling procedure described in Section 4.3.5.10. Soils meeting applicable remedial criteria will be reused onsite, soils exceeding remedial criteria will under go a second round of treatment and sampling or be disposed of offsite, based on review of the analytical results. If offsite disposal is required, soils will be loaded into trucks and transported offsite for disposal at an Imperial-approved waste facility that is licensed to accept the impacted soil. Temporary stockpiles of excavated soil may be required in some areas to facilitate additional soil characterization prior to transport for offsite disposal.

Soils that are not suspected to be impacted will be stockpiled separately at the Site for potential re-use as backfill material. Confirmatory soil samples will be collected from the stockpiled soils and submitted for laboratory analysis. Should the analytical results of the stockpiled soils meet the remedial objectives for the Site, it will be considered for use as backfill.

4.3.5.7 Excavation Liner

Excavations are expected to abut the property boundary along the south property boundary. The use of a PHC-resistant liner will be considered based on observed site conditions at the property boundary following excavation. If COC concentrations in soil remain above remediation guidelines at the property boundary, a liner will be installed.

4.3.5.8 Excavation Water

Since the proposed maximum depth of excavation is approximately 5.0 mbgs and the potentiometric depths to groundwater ranges from approximately 1.0 mbgs and 4.3 mbgs, groundwater seepage and saturated soils are expected during the remedial excavation.

If required, any accumulated seepage water or precipitation affecting excavation activities will be pumped to temporary storage tanks onsite and the water will be sampled and submitted for laboratory analysis as required. If the water meets applicable regulations it will be discharged to the municipal drainage system, subject to approval. Should the water not meet applicable regulations it will be directly transported and disposed offsite at an Imperial-approved facility licensed to accept the wastewater. The remediation subcontractor will be responsible for obtaining the applicable permits and agreements from the municipal regulators as required.

4.3.5.9 Confirmatory Soil Sampling

Excavated soils will be visually screened for impacts (i.e. stained and non-stained areas), and representative grab samples collected at 1 m depth intervals, or at obvious stratigraphic boundaries along the excavation face. Organic vapour readings will be used as a preliminary screening tool during excavation activities and selection of soil samples for analysis.

The primary limits of the excavation will be based on organic vapour readings (i.e. using an RKI Eagle Combustible Vapour Analyzer or equivalent meter) of soil samples obtained at the time of excavation, as well as any visual indicators of PHC impacts (staining). Confirmatory samples will be collected once the primary margins of the excavation have been reached in a given section of the excavation. Discrete samples will be collected at 1 m depth intervals on excavation walls, spaced 5 m apart laterally (i.e. approximately one sample collected from every 5 m² or less) and at the base of the excavation in a minimum 3 m x 3 m grid. Organic vapour readings will be recorded for each sample collected. More closely spaced confirmatory sampling may be necessary where thin identifiable strata are present.

Select soil samples from the excavation extents will be submitted for laboratory analysis of relevant COCs to confirm that residual soils meet the remedial criteria. Samples selected for laboratory analysis will represent worst case potential impacts from the sampled area, based on organic vapour readings and field observations. Samples will be submitted for laboratory analysis as per the following: one for approximately every 100 m² in excavation base area (i.e. approximately one for every 10 floor samples field screened), and one sample from every wall profile (i.e. minimum every 5 m laterally along the excavation walls). If any analytical results exceed the established remedial criteria, additional soil will be excavated, and representative samples collected from the new limits of the excavation.

4.3.5.10 Stockpile Soil Sampling

For suspected non-impacted soil stockpiles (e.g. overburden, excavation side sloping, etc.), one soil sample for each 10 m³ of soil will be collected for observation and organic vapour analysis. Based on field results, one discrete soil sample for each 50 m³ of soil will be submitted to the laboratory for BTEX and PHC fractions F1 to F4 analysis (i.e. sample with the highest organic vapour reading of the five collected per 50 m³ will be submitted for laboratory analysis). Should any analytical result exceed the established remedial criteria, the impacted soil will be combined with other impacted soils for offsite disposal, as appropriate, based on the analytical results.

4.3.5.11 Dust, Noise, and Air Quality Management

As the Site surface is primarily covered by vegetation or gravel, and since surrounding roadways are asphalt surfaced, abnormal or significant dust production that would detrimentally affect adjacent properties is not expected. If dust is found to be an issue, mitigation procedures will be implemented.

Site activities will produce noise as is typical for civil construction works. As the Site is located near a residential and commercial area, it is expected that noise will not be a concern; however, among other controls, Site work will be restricted to daytime working hours.

Odours and vapours from impacted soils may be an issue during excavation activities. Monitoring and mitigation measures will be discussed in detail in the SSHASP.

4.3.6 Site Restoration

Following removal of the impacted soil and receipt of confirmatory sampling, the Site will be restored. Backfilling of the excavation will be initiated with the use of non-overburden and treated soil that meet the remedial guidelines. If soil treatment is not successful up to 386 m³ of imported soil may be required to replace impacted soil disposed of offsite. Restoration will entail placement and compaction of backfill to original elevations plus approximately 0.15 m of mounding for potential excavation settlement. The backfill soil will be placed in approximately 0.3 m lifts and compacted with the excavator tracks and/or bucket or other similar equipment prior to placement of the next lift. Compaction testing is not required.

The remediation subcontractor will be responsible for sourcing and importing the appropriate material to be used for backfilling purposes. Imported backfill will be fine-grained material. Prior to placement, backfill soil samples will be collected (one for every 500 m³ for first 2,000 m³ and then one for every 1,000 m³ thereafter) and submitted for laboratory analysis of grain size, BTEX, PHC fractions F1 to F4, metals, VOCs, PAHs, glycols, salinity parameters, and PCBs, at a minimum.

Upon the conclusion of Site restoration activities, all temporary Site fencing will be removed.

Post-Remediation Activities

4.4.1 Post-Remedial Groundwater Well Installation, Monitoring & Sampling

To confirm groundwater quality following remedial activities, a minimum of three groundwater monitoring wells will be installed following remedial activities to augment the remaining groundwater monitoring well network. It is expected that the post-remedial groundwater monitoring and sampling will be conducted twice, with sampling events separated seasonally (approximately three to six months apart). Groundwater samples will be submitted for laboratory analysis of applicable COCs. If there are no groundwater impacts observed after two sampling events following the completion of remedial activities, based on the laboratory analytical results, it is expected that all groundwater monitoring wells at the Site will be decommissioned.

Schedule 5.

A preliminary project schedule is provided below. It is expected that, once remedial activities commence, approximately one year will be required to complete remedial/post-remedial activities and restore the Site. The schedule provided is tentative and will be updated once duration of works and mobilization availability is confirmed with the Imperial project manager and the remedial subcontractor.

Table 5-1: Preliminary Remedial Schedule

Activity		Proposed Schedule							
		2020							
	М	J	J	Α	S	0	N	D	
Site Remediation	1								
Finalization of Health & Safety Plan	Х	Х	Χ						
Site Survey & Utility Locates			Χ	Х					
Imported Fill Material Verification			Х	Х					
Waste Characterization & Landfill Acceptance			Χ	Х					
Utility Protection/Install Shoring (as required)			Χ	Х					
Excavation & Disposal of Impacted Soil				Х					
Site Restoration				Х					
Post-Remediation Activities									
Post-Remedial Groundwater Sampling X X									

6. **Summary**

This RP describes the activities that are recommended to be undertaken to remediate PHC-impacted soils to commercial guidelines. The key remedial activities in this RP include the excavation, onsite treatment, and transportation/disposal of non-treatable soil impacted soil with concentrations of benzene and PHC fractions F1 through F2 above the remedial criteria.

7. References

AEP, 2019a. Alberta Environment and Parks, Alberta Tier 1 Soil and Groundwater Remediation Guidelines, January 10, 2019.

AEP, 2019b. Alberta Environment and Parks, Alberta Tier 2 Soil and Groundwater Remediation Guidelines, January 10, 2019.

AMEC Earth & Environmental. 2004. Environmental Assessment Program, Former IOL Automotive Retail Station, 287 Main Street, Selkirk, Manitoba, 860265/88001943. October 22, 2004.

AMEC Earth & Environmental. 2005. Phase II Environmental Site Assessment, City of Selkirk Property Adjacent to the Former IOL Automotive Retail Station, 287 Main Street, Selkirk, Manitoba, 860265/88001943. February 9, 2005.

Aqua Terre Solutions Inc. 2003. Phase II Environmental Assessment, Red River Esso Service Station, Site #860265, 287 Main Street, Selkirk, Manitoba. October 15, 2003.

Canadian Council of Ministers of the Environment (CCME). A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines. 2006.

CCME. A Protocol For The Derivation Of Soil Vapour Quality Guidelines For Protection Of Human Exposures Via Inhalation Of Vapours. 2014.

CCME. Canadian Environmental Quality Guidelines (CEQG), Online Guidelines, Available online: http://ceqg-rcqe.ccme.ca/en/index.html, copyright 2014.

CCME. Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil. 2001 (revised in January, 2008a).

CCME. Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil – Scientific Rationale Supporting Technical Document. January, 2008b.

CCME. Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil – Technical Supplement. January, 2008c.

CCME. Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil – User Guidance. 2001 (revised in January, 2008d.

CCME Soil Quality Guidelines for the Protection of Environmental and Human Health, Polycyclic Aromatic Hydrocarbons. 2010.

City of Selkirk, Zoning By- law 4968, June 23, 2020.

Health Canada, 2004a. Federal Contaminated Site Risk Assessment in Canada. Part I: Guidance on Human Health Preliminary Quantitative Risk Assessment (PQRA). Prepared by: Environmental Health Assessment Services Safe Environments Programme, September 2004.

Health Canada, 2004b. Federal Contaminated Site Risk Assessment in Canada. Part II: Health Canada Toxicological Reference Values (TRVs). Prepared by: Environmental Health Assessment Services Safe Environments Programme, September 2004

Health Canada, 2010. Federal Contaminated Site Risk Assessment in Canada, Part VII: Guidance for Soil Vapour Intrusion Assessment At Contaminated Sites. September 2010.

Health Canada, 2019, Guidelines for Canadian Drinking Water Quality – Summary Table, 2019 Kleinfelder Canada Inc. 2015. Remedial Action Plan, Former Retail Fuel Facility and Carwash, 287 Main Street, Selkirk, Manitoba, 8001943. April 21, 2015.

Manitoba Conservation and Climate (formerly Manitoba Sustainable Development, formerly Manitoba Conservation and Water Stewardship). 2012. GWDRILL. Manitoba Conservation and Water Stewardship. July 2012.

Manitoba Conservation and Climate (formerly Manitoba Sustainable Development). 2016a. Criteria for Acceptance of Contaminated Soil at Waste Disposal Grounds. Manitoba Sustainable Development, June 2016. (Available online:

http://www.gov.mb.ca/sd/envprograms/contams/pdf/guidlines/criteria_acceptance_contaminated_soil_e.p df).

Manitoba Conservation and Climate (formerly Manitoba Sustainable Development). 2016b. Manitoba Criteria for BTEX in Investigation Results. June 2016. (Available online:

 $https://www.gov.mb.ca/sd/envprograms/contams/pdf/guidlines/manitoba_criteria_for_btex_in_investigation_results_e.pdf).$

Manitoba Conservation and Climate (formerly Manitoba Sustainable Development). 2016c. Treatment and Disposal of Petroleum Contaminated Soil. Manitoba Sustainable Development, June 2016. (Available online:

http://www.gov.mb.ca/sd/envprograms/contams/pdf/guidlines/treatment_disposal_petroleum_contaminate d_soil_en.pdf).

O'Connor Associates Environmental Inc. 2013. 2012 Groundwater Monitoring and Sampling Report, 287 Main Street, Selkirk, Manitoba, Location No.: 88001943. February 21, 2013.

O'Connor Associates Environmental Inc. 2012. Phase I Environmental Site Assessment, Former Service Station, 287 Main Street, Selkirk, Manitoba, 8001943. January 19, 2012.

O'Connor Associates Environmental Inc. 2010. Field Data Report, Former ESSO Retail, 287 Main Street, Selkirk, MB, 88001943 / 860265. Prepared by O'Connor Associates Environmental Inc. on May 13, 2010.

O'Connor Associates Environmental Inc. 2007. Re: Remedial Excavation Estimate Report, Former Red River Service Station, 287 Main Street, Selkirk, Manitoba, Location No. 8600265/88001943. April 9, 2007.

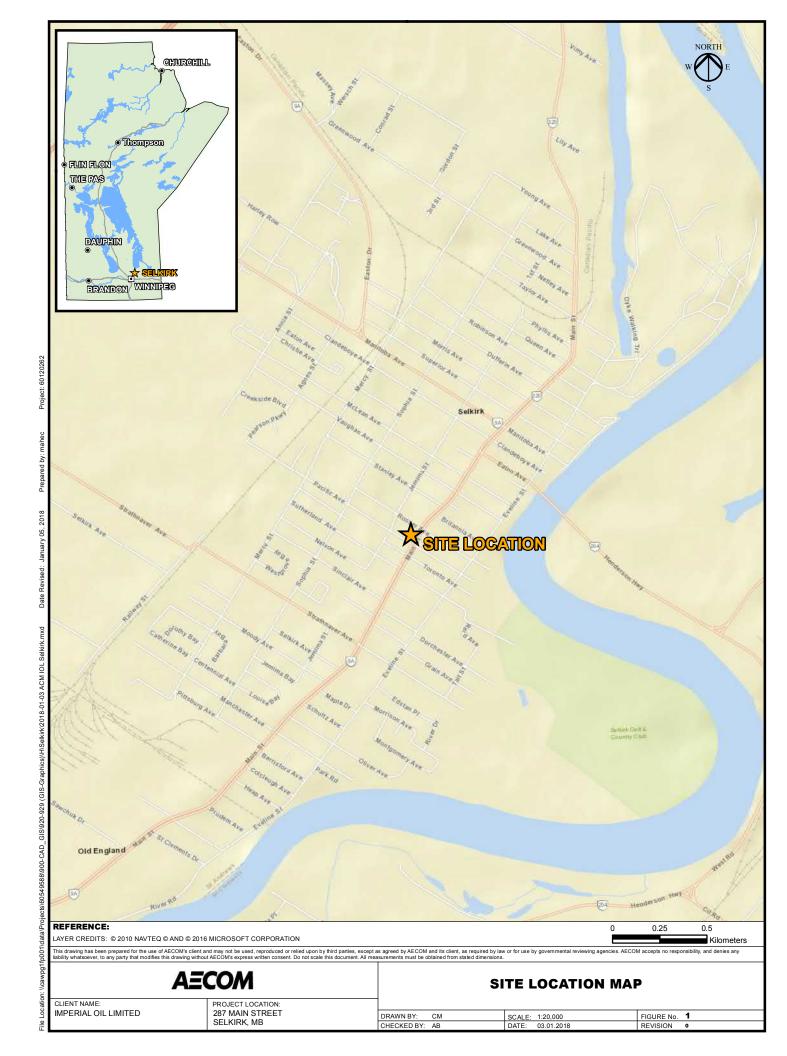
O'Connor Associates Environmental Inc. 1989a. Re: Red River Esso, (60256A), Selkirk, Manitoba. January 3, 1989.

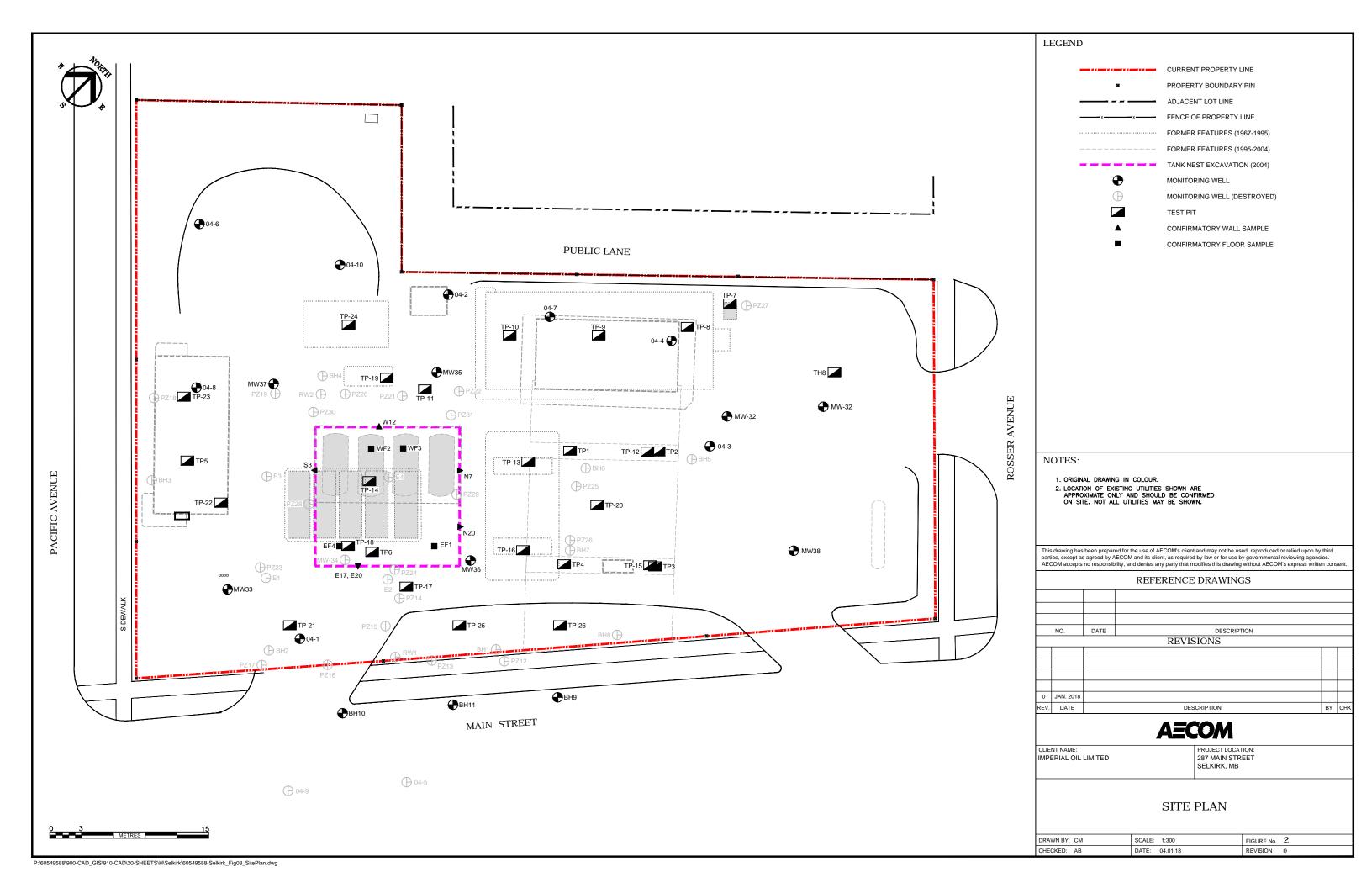
O'Connor Associates Environmental Inc.1989b. Re: Red River Esso, Service Station No. 60256A, Selkirk, Manitoba, March 20, 1989.

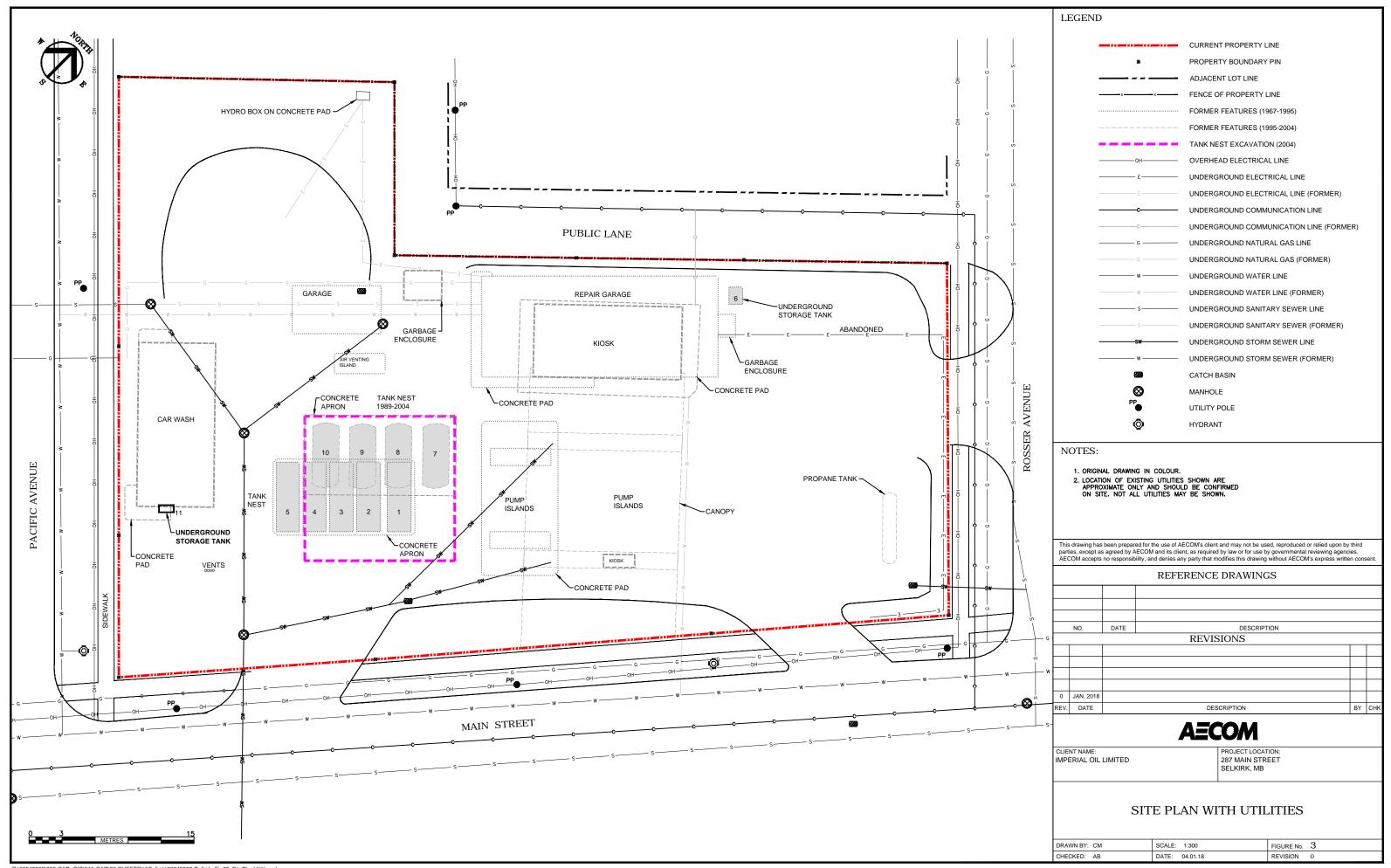
O'Connor Associates Environmental Inc. 1989c. Re: Red River Esso, Service Station No. 60256A, Selkirk, Manitoba. July 31, 1989.

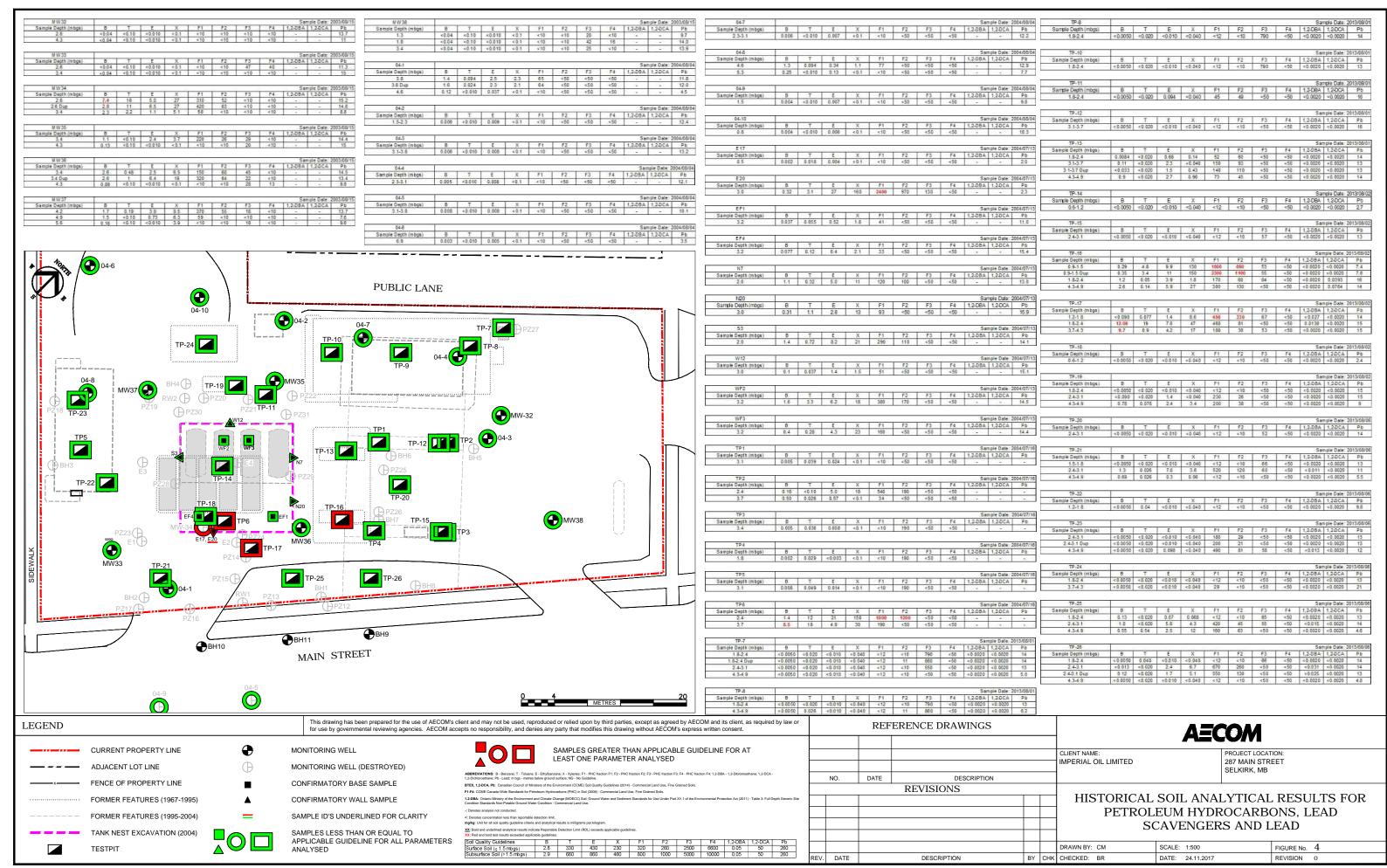
Ontario Ministry of the Environment and Climate Change. 2011. Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, PIBS #7382e01. Ministry of the Environment, April 2011.

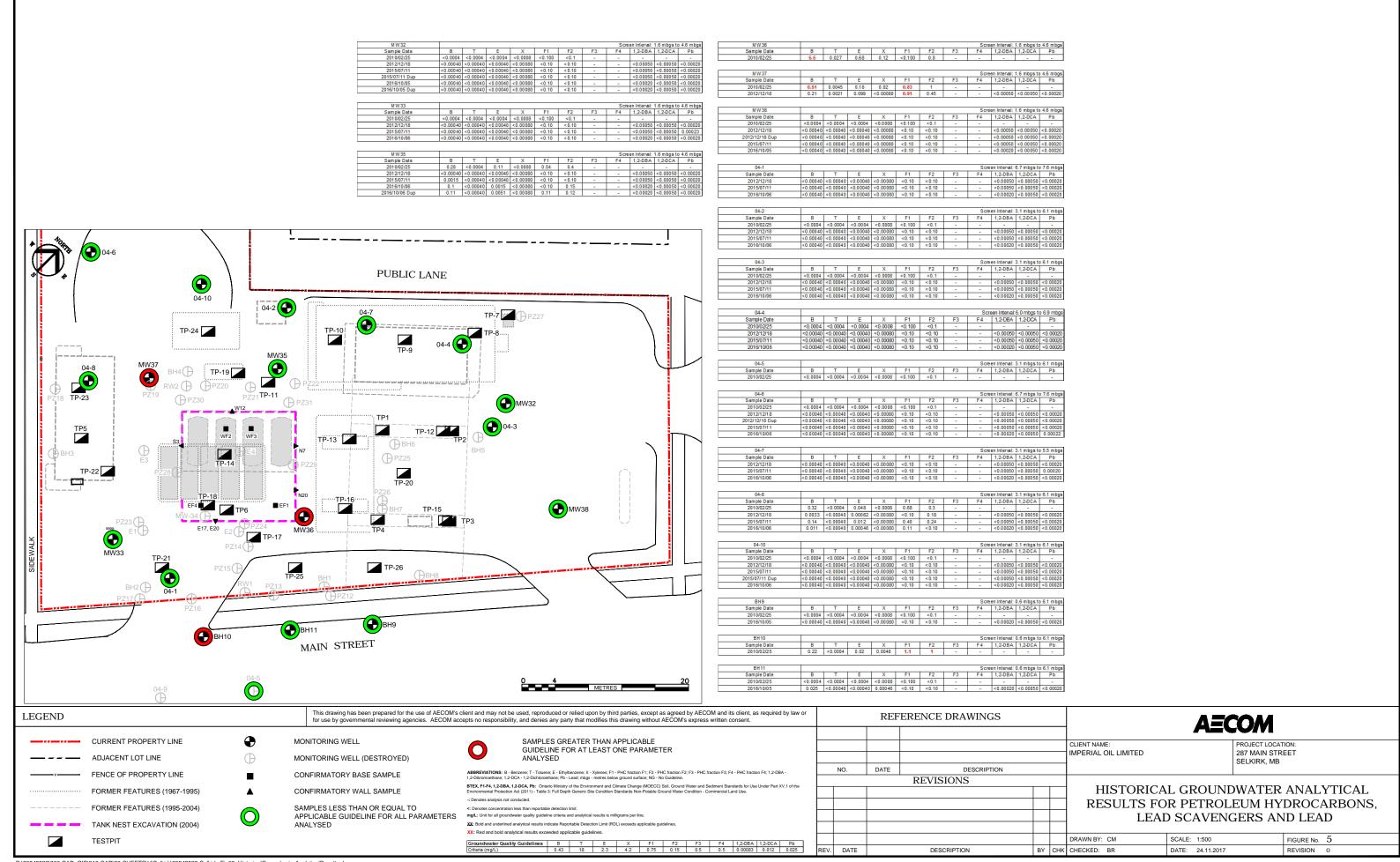
Parsons. 2013. Phase II Environmental Site Assessment, Former Esso Service Station, Car Wash and Retail Fuel Facility, 287 Main Street, Selkirk, Manitoba, 8001943. December 13, 2013.

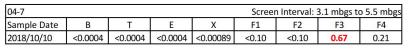

Parsons. 2016a. Remediation Plan, Former Service Station, Car Wash and Retail Fuel Facility, 287 Main Street, Selkirk, Manitoba, 8001943. September 22, 2016.


Parsons Inc. 2016b. 2016 Groundwater Monitoring and Sampling Data Package, 287 Main Street, Selkirk, Manitoba. December 19, 2016.


US EPA (United States Environmental Protection Agency), 2006. Integrated Risk Information System (IRIS) On-Line Database available at www.epa.gov/iris




Figures


04-1					Screen	n Interval:	6.7 mbgs to	7.6 mbgs
Sample Date	В	Т	Е	X	F1	F2	F3	F4
2018/10/10	0.042	<0.0004	0.0071	<0.00089	< 0.10	0.34	<0.10	<0.20

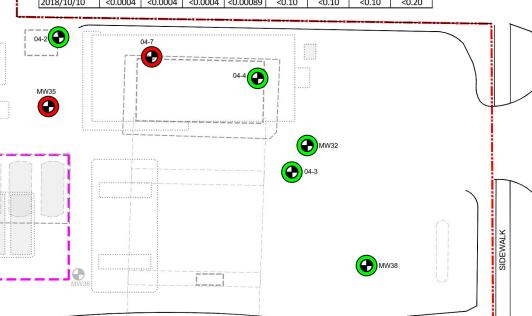
04-2					Screer	n Interval: 3	3.1 mbgs to	6.1 mbgs
Sample Date	В	Т	E	X	F1	F2	F3	F4
2018/10/10	<0.0004	<0.0004	<0.0004	<0.00089	<0.10	<0.10	<0.10	<0.20

04-3 Screen Interval: 3.1 mbgs to 6.1								6.1 mbgs
Sample Date	В	Т	Е	Х	F1	F2	F3	F4
2018/10/10	<0.0004	<0.0004	<0.0004	<0.00089	<0.10	<0.10	<0.10	<0.20

04-4					Screer	Interval:	6.0 mbgs to	6.9 mbgs
Sample Date	В	Т	Е	Χ	F1	F2	F3	F4
2018/10/10	<0.0004	<0.0004	<0.0004	<0.00089	<0.10	<0.10	<0.10	<0.20

					100000				
04-6		Screen Interval: 6.7 mbgs to 7.							
Sample Date	В	Т	Е	Х	F1	F2	F3	F4	
2018/10/10	< 0.0004	<0.0004	<0.0004	<0.00089	<0.10	< 0.10	0.17	<0.20	

04-8					Screen	n Interval:	3.1 mbgs to	6.1 mbgs
Sample Date	В	Τ	Е	X	F1	F2	F3	F4
2018/10/10	<0.0004	<0.0004	<0.0004	<0.00089	0.36	0.27	<0.10	<0.20


04-10	_	_			Screen	n Interval:	3.1 mbgs to	o 6.1 mbgs
Sample Date	В	Т	Е	X	F1	F2	F3	F4
2018/10/10	<0.0004	<0.0004	<0.0004	<0.00089	<0.10	<0.10	<0.10	<0.20

MW32					Scree	n Interval:	1.6 mbgs to	o 4.6 mbgs
Sample Date	В	Т	Е	X	F1	F2	F3	F4
2018/10/10	< 0.0004	<0.0004	<0.0004	<0.00089	<0.10	<0.10	<0.10	<0.20

MW33					Screen	n Interval:	1.6 mbgs to	4.6 mbgs
Sample Date	В	Т	E	Х	F1	F2	F3	F4
2018/10/10	<0.0004	<0.0004	<0.0004	<0.00089	<0.10	<0.10	<0.10	<0.20

MW35	n Interval:	3.1 mbgs t	o 6.1 mbgs					
Sample Date	В	Т	E	X	F1	F2	F3	F4
2018/10/10	0.092	<0.0004	0.013	<0.00089	0.26	0.3	<0.10	<0.20

MW38					Scree	n Interval:	1.6 mbgs to	o 4.6 mbgs
Sample Date	В	Т	Е	X	F1	F2	F3	F4
2018/10/10	< 0.0004	<0.0004	<0.0004	<0.00089	<0.10	<0.10	<0.10	<0.20

SIDEWALK

MAIN STREET

LEGEND

PROPERTY BOUNDARY PIN ADJACENT LOT LINE FORMER FEATURES (1967-1995) FORMER FEATURES (1995-2004) FORMER TANK NEST EXCAVATION

CURRENT PROPERTY LINE

FLAG POLE MONITORING WELL

MONITORING WELL BLOCKED. NO SAMPLE COLLECTED SAMPLES LESS THAN OR EQUAL TO APPLICABLE GUIDELINE FOR ALL PARAMETERS

SAMPLES GREATER THAN APPLICABLE

O GUIDELINE FOR AT LEAST ONE PARAMETER

ABBREVIATIONS: B - Benzene; T - Toluene; E - Ethylbenzene; X - Xylenes; F1 - PHC fraction F1; F2 - PHC fraction F2; F3 - PHC fraction F3; F4 - PHC fraction F4; mbgs - metres below

BTEX, F1-F4: Ontario Ministry of the Environment and Climate Change (MOECC) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (2011) - Table 3: Full Depth Generic Site Condition Standards Non-Potable Ground Water Condition - Commercial Land Use.

- -: Denotes analysis not conducted.
- <: Denotes concentration less than reportable detection limit.

mg/L: Unit for all groundwater quality guideline criteria and analytical results is milligrams per litre.

XX: Bold and underlined analytical results indicate Reportable Detection Limit (RDL) exceeds applicable guidelines.

XX: Red and bold analytical results exceeded applicable guidelines.

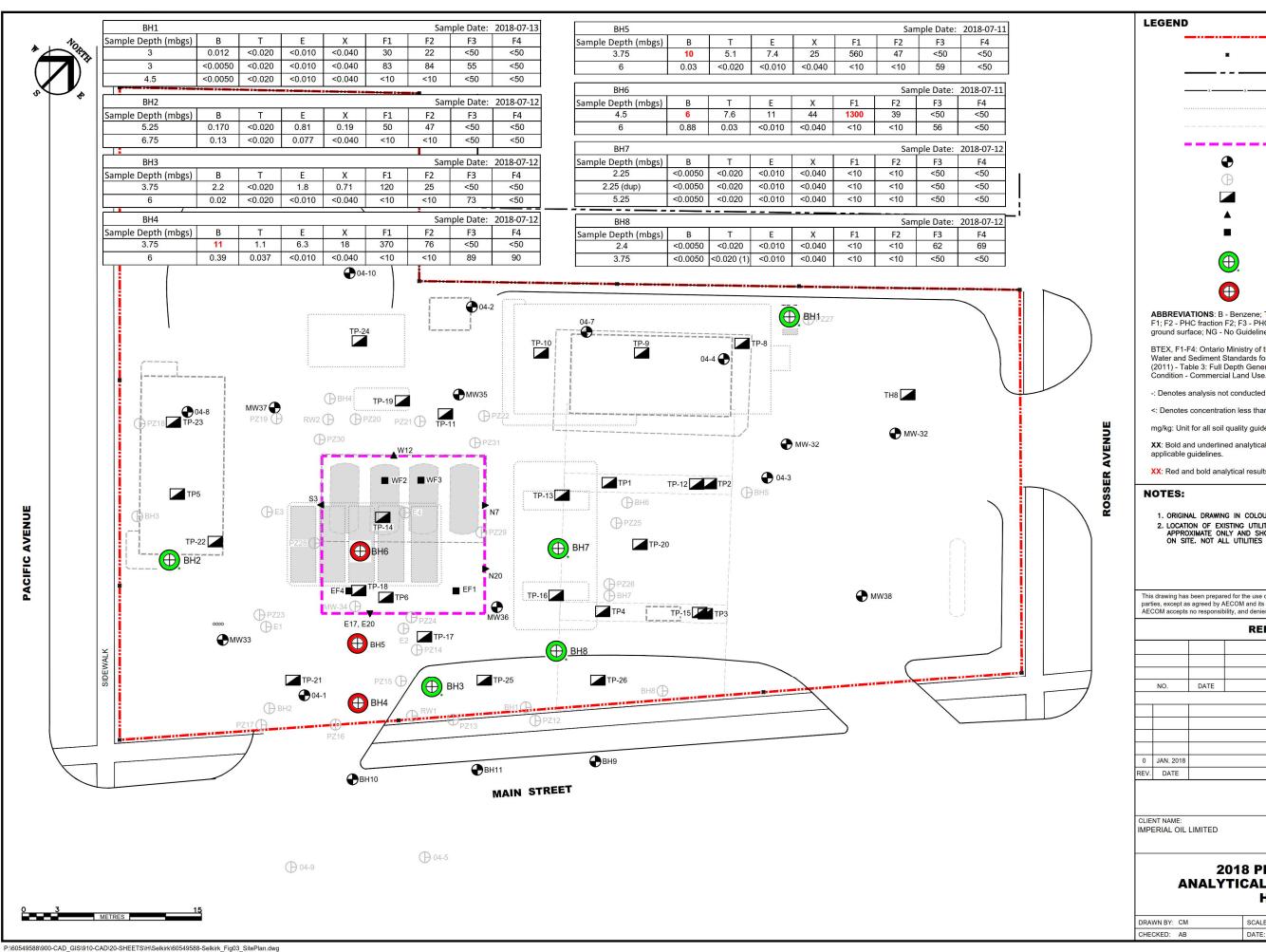
NOTES:

- 1. ORIGINAL DRAWING IN COLOUR.
- LOCATION OF EXISTING UTILITIES SHOWN ARE APPROXIMATE ONLY AND SHOULD BE CONFIRMED ON SITE. NOT ALL UTILITIES MAY BE SHOWN.

This drawing has been prepared for the use of AECOM's client and may not be used, reproduced or relied upon by third parties, except as agreed by AECOM and its client, as required by law or for use by governmental reviewing agencies. AECOM accepts no responsibility, and denies any party that modifies this drawing without AECOM's express written consent.

REFERENCE DRAWINGS DATE **REVISIONS** REV. DATE DESCRIPTION

AECOM


CLIENT NAME: IMPERIAL OIL LIMITED

PROJECT LOCATION: 287 MAIN STREET SELKIRK, MB

2018 PRE-REMEDIATION GROUNDWATER ANALYTICAL RESULTS FOR PETROLEUM HYDROCARBONS

DRAWN BY: SC SCALE: 1:300 FIGURE No. 6 DATE: 31-10-2018 REVISION 0 CHECKED: MK

PACIFIC

CURRENT PROPERTY LINE PROPERTY BOUNDARY PIN ADJACENT LOT LINE FENCE OF PROPERTY LINE FORMER FEATURES (1967-1995) FORMER FEATURES (1995-2004) TANK NEST EXCAVATION (2004) lacksquareMONITORING WELL \oplus MONITORING WELL (DESTROYED) TEST PIT CONFIRMATORY WALL SAMPLE CONFIRMATORY FLOOR SAMPLE SAMPLES LESS THAN OR EQUAL TO APPLICABLE GUIDELINE FOR ALL PARAMETERS ANALYSED SAMPLES GREATER THAN APPLICABLE GUIDELINE FOR AT LEAST ONE PARAMETER ANALYSED

ABBREVIATIONS: B - Benzene; T - Toluene; E - Ethylbenzene; X - Xylenes; F1 - PHC fraction F1; F2 - PHC fraction F2; F3 - PHC fraction F3; F4 - PHC fraction F4; mbgs - metres below

BTEX, F1-F4: Ontario Ministry of the Environment and Climate Change (MOECC) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (2011) - Table 3: Full Depth Generic Site Condition Standards Non-Potable Ground Water Condition - Commercial Land Use.

- <: Denotes concentration less than reportable detection limit.

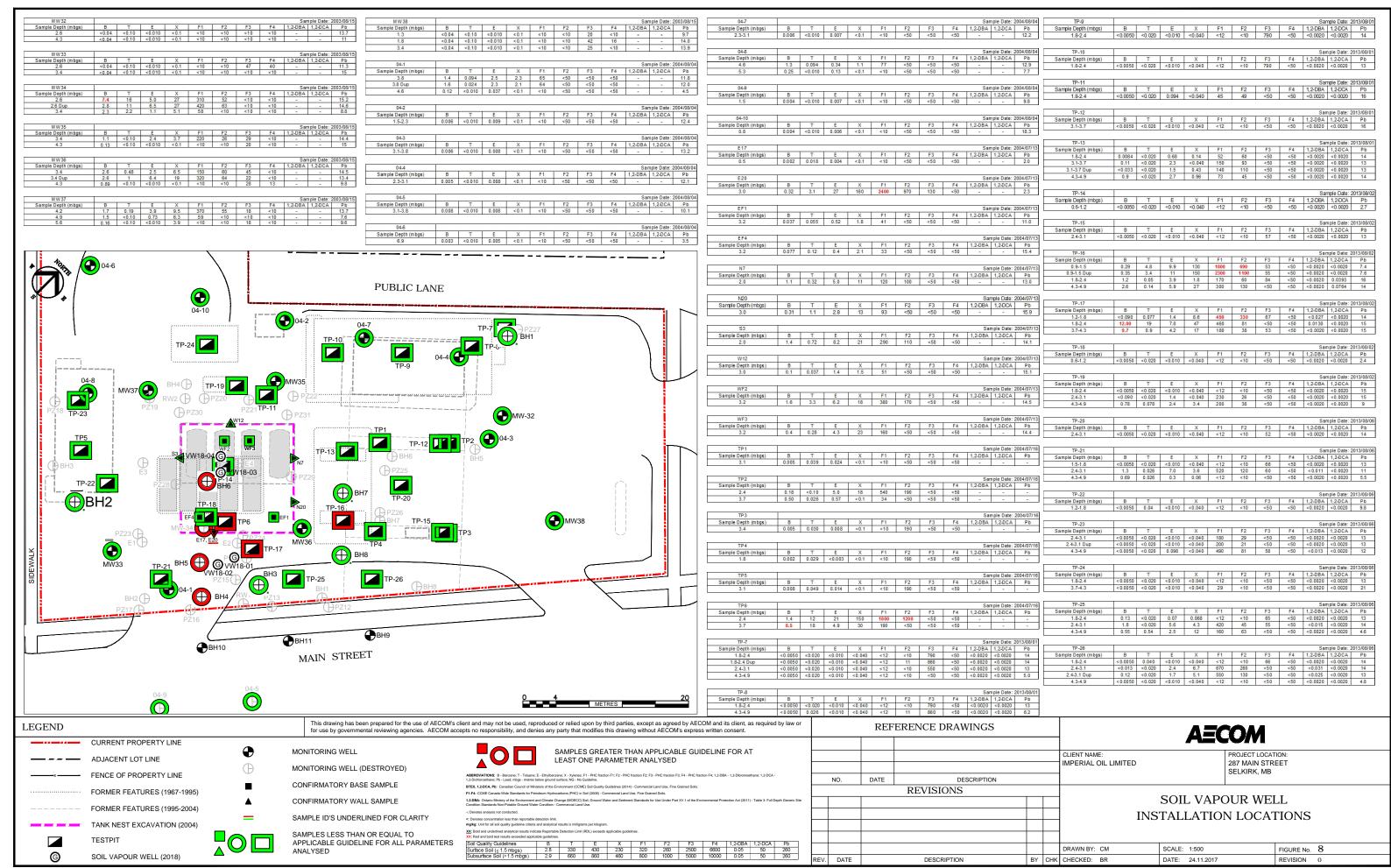
mg/kg: Unit for all soil quality guideline criteria and analytical results is milligrams per kilogram.

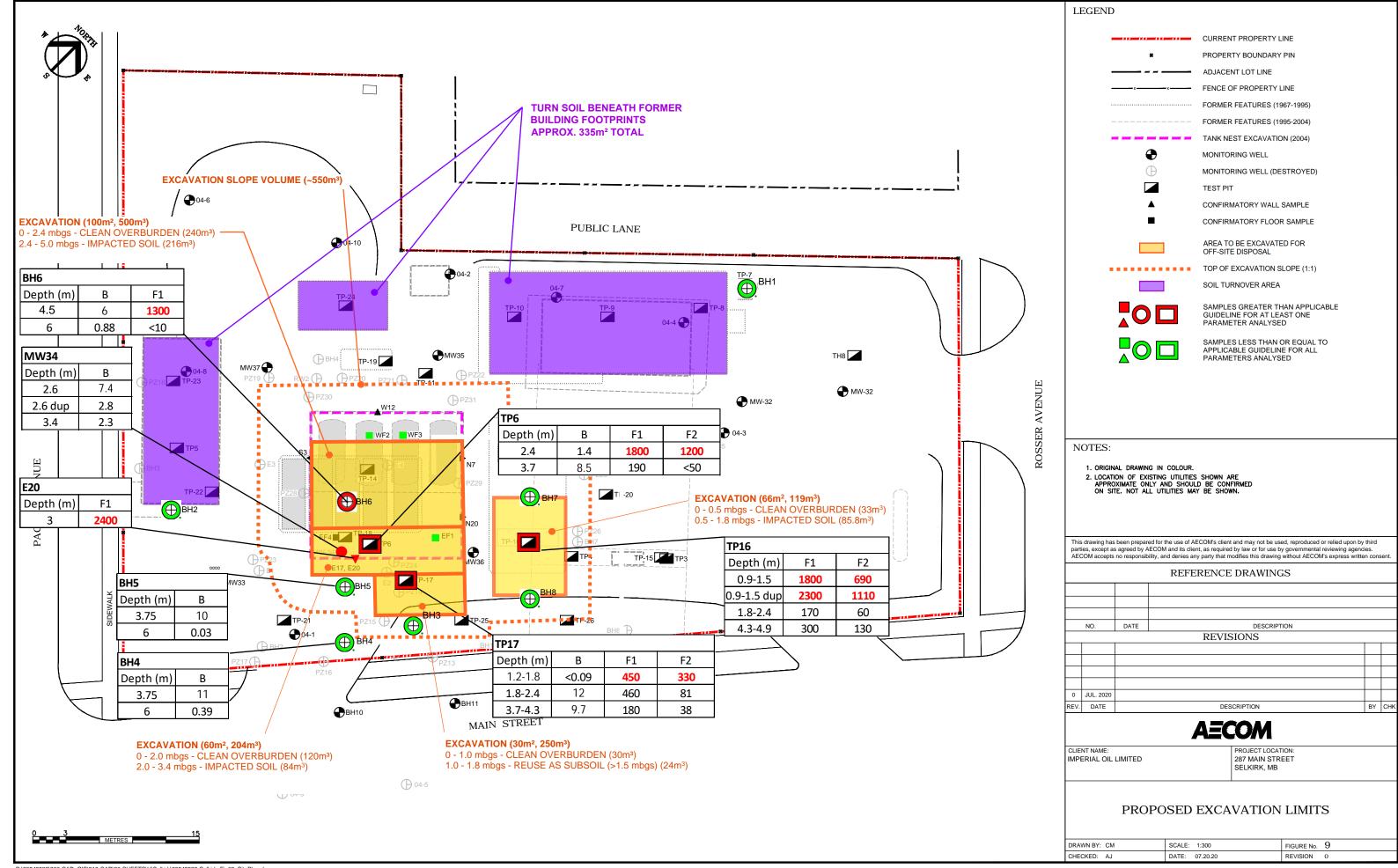
XX: Bold and underlined analytical results indicate Reportable Detection Limit (RDL) exceeds applicable guidelines.

XX: Red and bold analytical results exceeded applicable guidelines.

- 1. ORIGINAL DRAWING IN COLOUR.
- LOCATION OF EXISTING UTILITIES SHOWN ARE APPROXIMATE ONLY AND SHOULD BE CONFIRMED ON SITE. NOT ALL UTILITIES MAY BE SHOWN.

This drawing has been prepared for the use of AECOM's client and may not be used, reproduced or relied upon by third parties, except as agreed by AECOM and its client, as required by law or for use by governmental reviewing agencies. AECOM accepts no responsibility, and denies any party that modifies this drawing without AECOM's express written consent


REFERENCE DRAWINGS DATE **REVISIONS** DESCRIPTION BY C


AECOM

PROJECT LOCATION 287 MAIN STREET SELKIRK, MB

2018 PRE-REMEDIATION SOIL ANALYTICAL RESULTS FOR PETROLEUM HYDROCARBONS

DRAWN BY: CM	SCALE: 1:300	FIGURE No. 7
CHECKED: AB	DATE: 04.01.18	REVISION 0

Tables

Table 1-1: Historical Soil Analytical Results for Petroleum Hydrocarbons, Lead Scavengers and Lead

	Sa	ample Location	M	W32	MV	V33		MW34		MV	/35		MW36			MW37	
		Sample Date	2003-08-15	2003-08-15	2003-08-15	2003-08-15	2003-08-15	2003-08-15	2003-08-15	2003-08-15	2003-08-15	2003-08-15	2003-08-15	2003-08-15	2003-08-15	2003-08-15	2003-08-15
		Sample ID	MW32-4	MW32-6	MW33-4	MW33-5	MW34-4	MW34-14	MW34-6	MW35-5	MW35-6	MW36-5	MW36-15	MW36-6	MW37-6	MW37-7	MW37-8
	Sample	e Depth (mbgs)	2.6	4.3	2.6	3.4	2.6	2.6 Dup	3.4	3.4	4.3	3.4	3.4 Dup	4.3	4.2	4.9	5.6
	Guideline	e Values															
Parameter	Surface Soil (≤1.5 mbgs)	Subsurface Soil (>1.5 mbgs)															
Benzene	2.8 a,d,e	2.9 ^{a,d}	<0.04	< 0.04	<0.04	< 0.04	7.4	2.8	2.3	1.1	0.13	2.6	2.6	0.89	1.7	1.5	0.16
Toluene	330 ^{a,f}	660 ^{a,f}	<0.10	<0.10	<0.10	<0.10	16	11	2.2	<0.10	<0.10	0.48	1	<0.10	0.19	<0.10	<0.10
Ethylbenzene	430 ^{a,f}	860 ^{a,f}	<0.010	<0.010	<0.010	< 0.010	5.0	6.5	1.1	2.4	<0.010	2.5	6.4	<0.010	3.9	0.73	<0.010
Xylenes	230 ^{a,f}	460 ^{a,f}	<0.1	<0.1	<0.1	<0.1	27	27	5.1	3.7	<0.1	6.5	19	<0.1	9.5	6.3	3.9
PHC fraction F1-BTEX (C6 - C10)	320 ^{b,g}	800 ^{b,h}	<10	<10	<10	<10	310	420	58	220	<10	150	320	<10	370	59	<10
PHC fraction F2 (C10 - C16)	260 ^{b,g}	1,000 b,h	<10	<10	<10	<10	52	63	<10	26	<10	60	64	<10	55	<10	<10
PHC fraction F3 (C16 - C34)	2,500 b,g	5,000 b,h	<10	<10	47	<10	<10	<10	<10	29	20	45	22	28	18	<10	18
PHC fraction F4 (C34 - C50)	6,600 b,g	10,000 ^{b,h}	<10	<10	40	<10	<10	<10	<10	<10	<10	<10	<10	13	<10	<10	<10
1,2-Dibromoethane	0.05 ^c	0.05 ^c	-	=	-	-	-	=	=	-	-	=	1	-	=	1	-
1,2-Dichloroethane	50 ^a	50 ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	260 ^a	260 ^a	13.7	11	11.3	15	15.2	14.6	8.8	14.4	15	14.5	13.4	9.8	13.7	7.6	9.6

^a Canadian Council of Ministers of the Environment (CCME) Soil Quality Guidelines (2014) -Commercial Land Use, Fine Grained Soils, Human Health Guideline Check Values 10⁵ incremental risk

^b CCME, Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil (2008) - Commercial Land Use, Fine Grained Soils

° Ontario MOECC Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

d Inhalation of indoor air (basement)

^e Inhalation of Indoor Air (slab on grade) f Soil Contact - Environmental Health

g Eco Soil Contact

< Denotes concentration less than reportable detection limit

- Denotes analysis not conducted mg/kg milligram/kilogram

mbgs metres below ground surface

PHC petroleum hydrocarbon

NG Denotes no applicable guideline value

Units: all units milligrams per kilogram (mg/kg) unless otherwise specified

XX Reportable Detection Limit (RDL) exceeds the applied guideline/standard value

XX Exceeds applied guideline/standard value

All data was obtained by other consultants and drawn from the following reports: Aqua Terre Solutions Inc. 2003. Phase II Environmental Assessment, Red River Esso Service Station, Site #860265, 287 Main Street, Selkirk, Manitoba. October 15, 2003. AMEC Earth & Environmental . 2004. Environmental Assessment Program, Former IOL Automotive Retail Station, 287 Main Street, Selkirk, Manitoba, 860265/88001943. October 22, 2004.

Table 1-1: Historical Soil Analytical Results for Petroleum Hydrocarbons, Lead Scavengers and Lead

	Sa	ample Location		MW38			04-1		04-2	04-3	04-4	04-5	04-6	04-7	04	8	04-9	04-10
		Sample Date	2003-08-15	2003-08-15	2003-08-15	2004-08-04	2004-08-04	2004-08-04	2004-08-04	2004-08-04	2004-08-04	2004-08-04	2004-08-04	2004-08-04	2004-08-04	2004-08-04	2004-08-04	2004-08-04
		Sample ID	MW38-2	MW38-3	MW38-5	04-1 @ 12.5'	DUP 3	04-1 @ 15'			04-4 @ 7.5'-10		04-6 @ 22.5'	04-7 @ 7.5'-10	04-8 @ 2.5'	04-8 @ 15'	04-9 @ 5'	04-10 @ 2.5'
	Sample	e Depth (mbgs)	1.3	1.8	3.4	3.8	3.8 Dup	4.6	1.5-2.3	3.1-3.8	2.3-3.1	3.1-3.8	6.9	2.3-3.1	4.6	5.3	1.5	0.8
	Guideline	e Values																
Parameter	Surface Soil (≤1.5 mbgs)	Subsurface Soil (>1.5 mbgs)																
Benzene	2.8 a,d,e	2.9 ^{a,d}	<0.04	<0.04	< 0.04	1.4	1.6	0.12	0.0060	0.0060	0.0050	0.0080	0.0030	0.0060	1.3	0.25	0.0040	0.0040
Toluene	330 ^{a,f}	660 ^{a,f}	<0.10	<0.10	<0.10	0.094	0.024	<0.010	<0.010	< 0.010	< 0.010	< 0.010	<0.010	<0.010	0.094	< 0.010	<0.010	<0.010
Ethylbenzene	430 ^{a,f}	860 ^{a,f}	<0.010	<0.010	<0.010	2.5	2.3	0.037	0.0090	0.0080	0.0080	0.0080	0.0050	0.0070	0.34	0.13	0.0070	0.0060
Xylenes	230 ^{a,f}	460 ^{a,f}	<0.1	<0.1	<0.1	2.3	2.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.1	<0.1	<0.1	<0.1
PHC fraction F1-BTEX (C6 - C10)	320 ^{b,g}	800 ^{b,h}	<10	<10	<10	65	64	<10	<10	<10	<10	<10	<10	<10	77	<10	<10	<10
PHC fraction F2 (C10 - C16)	260 ^{b,g}	1,000 b,h	<10	<10	<10	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
PHC fraction F3 (C16 - C34)	2,500 b,g	5,000 b,h	20	42	25	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
PHC fraction F4 (C34 - C50)	6,600 b,g	10,000 b,h	<10	16	<10	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
1,2-Dibromoethane	0.05 ^c	0.05 °	=	-	=	-	-	-	-	-	-	-	-	-	-	=	=	-
1,2-Dichloroethane	50 ^a	50 ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	260 ^a	260 ^a	9.7	14.0	13.9	11.8	12.0	4.5	12.4	13.2	12.1	10.1	3.5	12.2	12.9	7.7	9.8	18.3

^a Canadian Council of Ministers of the Environment (CCME) Soil Quality Guidelines (2014) -Commercial Land Use, Fine Grained Soils, Human Health Guideline Check Values 10⁵ incremental risk

^b CCME, Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil (2008) - Commercial Land Use, Fine Grained Soils

Ontario MOECC Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

d Inhalation of indoor air (basement)

^e Inhalation of Indoor Air (slab on grade) f Soil Contact - Environmental Health

g Eco Soil Contact

< Denotes concentration less than reportable detection limit

- Denotes analysis not conducted mg/kg milligram/kilogram

mbgs metres below ground surface

PHC petroleum hydrocarbon

NG Denotes no applicable guideline value

Units: all units milligrams per kilogram (mg/kg) unless otherwise specified

XX Reportable Detection Limit (RDL) exceeds the applied guideline/standard value

XX Exceeds applied guideline/standard value

All data was obtained by other consultants and drawn from the following reports: Aqua Terre Solutions Inc. 2003. Phase II Environmental Assessment, Red River Esso Service Station, Site #860265, 287 Main Street, Selkirk, Manitoba. October 15, 2003. AMEC Earth & Environmental . 2004. Environmental Assessment Program, Former IOL Automotive Retail Station, 287 Main Street, Selkirk, Manitoba, 860265/88001943. October 22, 2004.

Table 1-1: Historical Soil Analytical Results for Petroleum Hydrocarbons, Lead Scavengers and Lead

	Sa	ample Location	E17	E20	EF1	EF4	N7	N20	S3	W12	WF2	WF3	TP1	Т	P2	TP3	TP4	TP5	Т	P6
		Sample Date	2004-07-13	2004-07-13	2004-07-13	2004-07-13	2004-07-13	2004-07-13	2004-07-13	2004-07-13	2004-07-13	2004-07-13	2004-07-16	2004-07-16	2004-07-16	2004-07-16	2004-07-16	2004-07-16	2004-07-16	2004-07-16
		Sample ID	E17	E20	EF1	EF4	N7	N20	S3	W12	WF2	WF3	TP1@10'	TP2@8'	TP2@12'	TP3@11'	TP4@6'	TP5@10'	TP6@8'	TP6@12'
	Sample	e Depth (mbgs)	0.5	3.0	3.2	3.2	2.0	3.0	2.0	3.0	3.2	3.2	3.1	2.4	3.7	3.4	1.8	3.1	2.4	3.7
	Guidelin	e Values																		
Parameter	Surface Soil (≤1.5 mbgs)	Subsurface Soil (>1.5 mbgs)																		
Benzene	2.8 a,d,e	2.9 ^{a,d}	0.0020	0.32	0.037	0.077	1.1	0.31	1.4	0.1	1.6	0.4	0.0050	0.18	0.50	0.0050	0.0020	0.0080	1.4	8.5
Toluene	330 ^{a,f}	660 ^{a,f}	0.018	3.1	0.055	0.12	0.32	1.1	0.72	0.037	3.3	0.28	0.039	<0.10	0.026	0.030	0.029	0.049	12	18
Ethylbenzene	430 ^{a,f}	860 ^{a,f}	0.0040	27	0.52	0.4	5.0	2.8	8.2	1.4	6.2	4.3	0.024	5.0	0.57	0.008	< 0.003	0.014	21	4.9
Xylenes	230 ^{a,f}	460 ^{a,f}	<0.1	160	1.8	2.1	11	13	21	1.5	18	23	<0.1	18	<0.1	<0.1	<0.1	<0.1	150	30
PHC fraction F1-BTEX (C6 - C10)	320 ^{b,g}	800 b,h	<10	2400	41	33	120	93	290	51	380	160	<10	540	34	<10	<10	<10	1800	190
PHC fraction F2 (C10 - C16)	260 b,g	1,000 b,h	<50	970	<50	<50	100	<50	110	<50	170	<50	<50	190	<50	190	190	190	1200	<50
PHC fraction F3 (C16 - C34)	2,500 b,g	5,000 ^{b,h}	<50	130	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
PHC fraction F4 (C34 - C50)	6,600 b,g	10,000 ^{b,h}	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
1,2-Dibromoethane	0.05 ^c	0.05 ^c	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane	50 ^a	50 ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	260 ^a	260 ^a	2.0	2.3	11.0	15.4	13.0	15.9	14.1	15.1	14.5	14.4	-	-	-	-	-	-	-	-

^a Canadian Council of Ministers of the Environment (CCME) Soil Quality Guidelines (2014) -Commercial Land Use, Fine Grained Soils, Human Health Guideline Check Values 10⁻⁵ incremental risk

^b CCME, Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil (2008) - Commercial Land Use, Fine Grained Soils

^c Ontario MOECC Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

d Inhalation of indoor air (basement)

^e Inhalation of Indoor Air (slab on grade) ^f Soil Contact - Environmental Health

g Eco Soil Contact

h Management Limit

Denotes concentration less than reportable detection limit
 Denotes analysis not conducted

mg/kg milligram/kilogram

mbgs metres below ground surface

PHC petroleum hydrocarbon

NG Denotes no applicable guideline value

Units: all units milligrams per kilogram (mg/kg) unless otherwise specified

XX Reportable Detection Limit (RDL) exceeds the applied guideline/standard value

XX Exceeds applied guideline/standard value

All data was obtained by other consultants and drawn from the following reports:

Aqua Terre Solutions Inc. 2003. Phase II Environmental Assessment, Red River Esso
Service Station, Site #860265, 287 Main Street, Selkirk, Manitoba. October 15, 2003.

AMEC Earth & Environmental . 2004. Environmental Assessment Program, Former IOL
Automotive Retail Station, 287 Main Street, Selkirk, Manitoba, 860265/88001943. October
22, 2004.

Table 1-1: Historical Soil Analytical Results for Petroleum Hydrocarbons, Lead Scavengers and Lead

	Sa	ample Location		TF	P-7		TI	P-8	TP-9	TP-10	TP-11	TP-12		TP	-13		TP-14	TP-15
		Sample Date		2013-08-01	2013-08-01	2013-08-01	2013-08-01	2013-08-01	2013-08-01	2013-08-01	2013-08-01	2013-08-01	2013-08-01	2013-08-01	2013-08-01	2013-08-01	2013-08-02	2013-08-02
		Sample ID	TP-7-1.8-2.4	DUP-7	TP-7-2.4-3.1	TP-7-4.3-4.9	TP-8-1.8-2.4	TP-8-4.3-4.9	TP-9-1.8-2.4	TP-10-1.8-2.4	TP-11-1.8-2.4	TP-12-3.1-3.7	TP-13-1.8-2.4	TP-13-3.1-3.7	DUP-13A	TP-13-4.3-4.9	TP-14-0.6-1.2	TP-15-2.4-3.1
	Sample	e Depth (mbgs)	1.8-2.4	1.8-2.4 Dup	2.4-3.1	4.3-4.9	1.8-2.4	4.3-4.9	1.8-2.4	1.8-2.4	1.8-2.4	3.1-3.7	1.8-2.4	3.1-3.7	3.1-3.7 Dup	4.3-4.9	0.6-1.2	2.4-3.1
	Guidelin	e Values																
Parameter	Surface Soil (≤1.5 mbgs)	Subsurface Soil (>1.5 mbgs)																
Benzene	2.8 a,d,e	2.9 ^{a,d}	<0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	0.0084	0.11	< 0.033	0.90	< 0.0050	<0.0050
Toluene	330 ^{a,f}	660 ^{a,f}	<0.020	<0.020	<0.020	<0.020	< 0.020	0.026	<0.020	<0.020	<0.020	<0.020	< 0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ethylbenzene	430 ^{a,f}	860 ^{a,f}	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.094	<0.010	0.68	2.3	1.5	2.7	<0.010	<0.010
Xylenes	230 ^{a,f}	460 ^{a,f}	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	0.14	<0.040	0.43	0.96	<0.040	<0.040
PHC fraction F1-BTEX (C6 - C10)	320 ^{b,g}	800 ^{b,h}	<12	<12	<12	<12	<12	<12	<12	<12	45	<12	52	150	140	73	<12	<12
PHC fraction F2 (C10 - C16)	260 ^{b,g}	1,000 b,h	<10	11	<10	<10	<10	11	<10	<10	49	<10	60	93	110	45	<10	<10
PHC fraction F3 (C16 - C34)	2,500 b,g	5,000 b,h	790	860	550	<50	790	860	790	790	<50	<50	<50	<50	<50	<50	<50	57
PHC fraction F4 (C34 - C50)	6,600 b,g	10,000 b,h	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
1,2-Dibromoethane	0.05 ^c	0.05 ^c	<0.0020	<0.0020	<0.0020	< 0.0020	< 0.0020	<0.0020	<0.0020	<0.0020	< 0.0020	< 0.0020	< 0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
1,2-Dichloroethane	50 ^a	50 ^a	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	< 0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
Lead	260 ^a	260 ^a	14	14	13	5.0	13	6.2	14	13	16	16	14	13	13	14	2.7	13

^a Canadian Council of Ministers of the Environment (CCME) Soil Quality Guidelines (2014) -Commercial Land Use, Fine Grained Soils, Human Health Guideline Check Values 10⁻⁵ incremental risk

^b CCME, Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil (2008) - Commercial Land Use, Fine Grained Soils

Ontario MOECC Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

d Inhalation of indoor air (basement)

^e Inhalation of Indoor Air (slab on grade) f Soil Contact - Environmental Health

g Eco Soil Contact

< Denotes concentration less than reportable detection limit

- Denotes analysis not conducted mg/kg milligram/kilogram

mbgs metres below ground surface

PHC petroleum hydrocarbon

NG Denotes no applicable guideline value

Units: all units milligrams per kilogram (mg/kg) unless otherwise specified

XX Reportable Detection Limit (RDL) exceeds the applied guideline/standard value

XX Exceeds applied guideline/standard value

All data was obtained by other consultants and drawn from the following reports: Aqua Terre Solutions Inc. 2003. Phase II Environmental Assessment, Red River Esso Service Station, Site #860265, 287 Main Street, Selkirk, Manitoba. October 15, 2003. AMEC Earth & Environmental . 2004. Environmental Assessment Program, Former IOL Automotive Retail Station, 287 Main Street, Selkirk, Manitoba, 860265/88001943. October 22, 2004.

Table 1-1: Historical Soil Analytical Results for Petroleum Hydrocarbons, Lead Scavengers and Lead

	Sa	ample Location		TP	-16			TP-17		TP-18		TP-19		TP-20		TP-21		TP-22
		Sample Date	2013-08-02	2013-08-02	2013-08-02	2013-08-02	2013-08-02	2013-08-02	2013-08-02	2013-08-02	2013-08-02	2013-08-02	2013-08-02	2013-08-06	2013-08-06	2013-08-06		2013-08-06
		Sample ID	TP-16-09-1.5	DUP-16	TP-16-1.8-2.4	TP-16-4.3-4.9	TP-17-1.2-1.8	TP-17-1.8-2.4	TP-17-3.7-4.3	TP-18-0.6-1.2	TP-19-1.8-2.4	TP-19-2.4-3.1	TP-19-4.3-4.9	TP-20-2.4-3.1	TP-21-1.5-1.8	TP-21-2.4-3.1	TP-21-4.3-4.9	TP-22-1.2-1.8
	Sample	e Depth (mbgs)	0.9-1.5	0.9-1.5 Dup	1.8-2.4	4.3-4.9	1.2-1.8	1.8-2.4	3.7-4.3	0.6-1.2	1.8-2.4	2.4-3.1	4.3-4.9	2.4-3.1	1.5-1.8	2.4-3.1	4.3-4.9	1.2-1.8
	Guideline	e Values																
Parameter	Surface Soil (≤1.5 mbgs)	Subsurface Soil (>1.5 mbgs)																
Benzene	2.8 a,d,e	2.9 ^{a,d}	0.29	0.35	1.2	2.6	<0.090	12	9.7	< 0.0050	< 0.0050	< 0.090	0.78	< 0.0050	< 0.0050	1.3	0.69	<0.0050
Toluene	330 ^{a,f}	660 ^{a,f}	4.8	3.4	0.050	0.14	0.077	19	0.900	<0.020	<0.020	< 0.020	0.078	<0.020	<0.020	0.026	0.026	0.040
Ethylbenzene	430 ^{a,f}	860 ^{a,f}	9.9	11	3.9	5.9	1.4	7.8	4.2	<0.010	<0.010	1.4	2.4	< 0.010	<0.010	7.0	0.300	<0.010
Xylenes	230 ^{a,f}	460 ^{a,f}	130	150	1.8	27	8.6	47	17	<0.040	<0.040	<0.040	3.4	<0.040	<0.040	3.6	0.06	<0.040
PHC fraction F1-BTEX (C6 - C10)	320 ^{b,g}	800 ^{b,h}	1800	2300	170	300	450	460	180	<12	<12	230	200	<12	<12	520	<12	<12
PHC fraction F2 (C10 - C16)	260 ^{b,g}	1,000 b,h	690	1100	60	130	330	81	38	<10	<10	26	38	<10	<10	120	<10	<10
PHC fraction F3 (C16 - C34)	2,500 b,g	5,000 b,h	53	55	84	<50	67	<50	53	<50	<50	<50	<50	52	66	60	<50	<50
PHC fraction F4 (C34 - C50)	6,600 b,g	10,000 ^{b,h}	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
1,2-Dibromoethane	0.05 ^c	0.05 °	<0.0020	<0.0020	< 0.0020	<0.0020	<0.027	0.0138	<0.0020	< 0.0020	< 0.0020	<0.0020	< 0.0020	<0.0020	<0.0020	<0.011	<0.0020	<0.0020
1,2-Dichloroethane	50 ^a	50 ^a	<0.0020	<0.0020	0.0393	0.0764	<0.0020	<0.0020	< 0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
Lead	260 ^a	260 ^a	7.4	7.6	16	14	14	15	15	2.4	15	15	9	14	13	11	5.5	9.8

^a Canadian Council of Ministers of the Environment (CCME) Soil Quality Guidelines (2014) -Commercial Land Use, Fine Grained Soils, Human Health Guideline Check Values 10⁵ incremental risk

^b CCME, Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil (2008) - Commercial Land Use, Fine Grained Soils

Ontario MOECC Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

d Inhalation of indoor air (basement)

^e Inhalation of Indoor Air (slab on grade) f Soil Contact - Environmental Health

g Eco Soil Contact

< Denotes concentration less than reportable detection limit

- Denotes analysis not conducted mg/kg milligram/kilogram

mbgs metres below ground surface

PHC petroleum hydrocarbon

NG Denotes no applicable guideline value

Units: all units milligrams per kilogram (mg/kg) unless otherwise specified

XX Reportable Detection Limit (RDL) exceeds the applied guideline/standard value

XX Exceeds applied guideline/standard value

All data was obtained by other consultants and drawn from the following reports: Aqua Terre Solutions Inc. 2003. Phase II Environmental Assessment, Red River Esso Service Station, Site #860265, 287 Main Street, Selkirk, Manitoba. October 15, 2003. AMEC Earth & Environmental . 2004. Environmental Assessment Program, Former IOL Automotive Retail Station, 287 Main Street, Selkirk, Manitoba, 860265/88001943. October 22, 2004.

Table 1-1: Historical Soil Analytical Results for Petroleum Hydrocarbons, Lead Scavengers and Lead

	Sa	ample Location		TP-23		TP	-24		TP-25			TP	2-26	
		Sample Date	2013-08-06	2013-08-06	2013-08-06	2013-08-06	2013-08-06	2013-08-06	2013-08-06	2013-08-06	2013-08-06	2013-08-06	2013-08-06	2013-08-06
		Sample ID	TP-23-2.4-3.1	DUP-23	TP-23-4.3-4.9	TP-24-1.8-2.4	TP-24-3.7-4.3	TP-25-1.8-2.4	TP-25-2.4-3.1	TP-25-4.3-4.9	TP-26-1.8-2.4	TP-26-2.4-3.1	DUP-26	TP-26-4.3-4.9
	Sample	e Depth (mbgs)	2.4-3.1	2.4-3.1 Dup	4.3-4.9	1.8-2.4	3.7-4.3	1.8-2.4	2.4-3.1	4.3-4.9	1.8-2.4	2.4-3.1	2.4-3.1 Dup	4.3-4.9
	Guidelin	e Values												
Parameter	Surface Soil (≤1.5 mbgs)	Subsurface Soil (>1.5 mbgs)												
Benzene	2.8 a,d,e	2.9 ^{a,d}	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.13	1.8	0.55	< 0.0050	< 0.013	0.12	< 0.0050
Toluene	330 ^{a,f}	660 ^{a,f}	< 0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.54	0.040	<0.020	<0.020	<0.020
Ethylbenzene	430 ^{a,f}	860 ^{a,f}	<0.010	< 0.010	0.098	<0.010	<0.010	0.07	5.6	2.5	<0.010	2.4	1.7	<0.010
Xylenes	230 ^{a,f}	460 ^{a,f}	< 0.040	< 0.040	<0.040	< 0.040	<0.040	0.068	4.3	12	< 0.040	6.7	5.1	< 0.040
PHC fraction F1-BTEX (C6 - C10)	320 ^{b,g}	800 b,h	180	200	490	<12	29	<12	420	160	<12	670	550	<12
PHC fraction F2 (C10 - C16)	260 ^{b,g}	1,000 ^{b,h}	29	21	81	<10	<10	<10	45	63	<10	260	130	<10
PHC fraction F3 (C16 - C34)	2,500 b,g	5,000 ^{b,h}	<50	<50	58	<50	<50	65	55	<50	66	<50	<50	<50
PHC fraction F4 (C34 - C50)	6,600 b,g	10,000 ^{b,h}	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
1,2-Dibromoethane	0.05 ^c	0.05 ^c	<0.0020	<0.0020	<0.013	<0.0020	<0.0020	<0.0020	<0.015	<0.0020	<0.0020	<0.031	<0.025	<0.0020
1,2-Dichloroethane	50 ^a	50 ^a	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
Lead	260 ^a	260 ^a	13	13	12	13	21	13	14	4.6	14	14	13	4.8

^a Canadian Council of Ministers of the Environment (CCME) Soil Quality Guidelines (2014) -Commercial Land Use, Fine Grained Soils, Human Health Guideline Check Values 10⁵ incremental risk

^b CCME, Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil (2008) - Commercial Land Use, Fine Grained Soils

^c Ontario MOECC Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

d Inhalation of indoor air (basement)

^e Inhalation of Indoor Air (slab on grade) f Soil Contact - Environmental Health

g Eco Soil Contact

< Denotes concentration less than reportable detection limit

- Denotes analysis not conducted mg/kg milligram/kilogram

mbgs metres below ground surface

PHC petroleum hydrocarbon

NG Denotes no applicable guideline value

Units: all units milligrams per kilogram (mg/kg) unless otherwise specified

XX Reportable Detection Limit (RDL) exceeds the applied guideline/standard value

XX Exceeds applied guideline/standard value

All data was obtained by other consultants and drawn from the following reports: Aqua Terre Solutions Inc. 2003. Phase II Environmental Assessment, Red River Esso Service Station, Site #860265, 287 Main Street, Selkirk, Manitoba. October 15, 2003. AMEC Earth & Environmental . 2004. Environmental Assessment Program, Former IOL Automotive Retail Station, 287 Main Street, Selkirk, Manitoba, 860265/88001943. October 22, 2004.

	Sample Location			MW	/32				MV	/33				MW35		
	Sample Date	2010/02/25	2012/12/18	2015/07/11	2015/07/11 Dup	2016-10-05	2016/10/05 Dup	2010/02/25	2012/12/18	2015/07/11	2016/10/06	2010/02/25	2012/12/18	2015/07/11	2016/10/06	2016/10/06 Dup
	Sample ID	MW32	MW32	MW32	DUP-0711-A	MW32	DUP-1	MW33	MW33	MW33	MW33	MW35	MW35	MW35	MW35	DUP-2
	Screen Interval (mbgs)	1.6 to 4.6 mbgs														
Parameter	Guideline Values ^a															
Benzene	0.43	<0.0004	<0.00040	<0.00040	< 0.00040	< 0.00040	<0.00040	< 0.0004	<0.00040	< 0.00040	<0.00040	0.28	<0.00040	0.0015	0.051	0.11
Toluene	18	< 0.0004	< 0.00040	< 0.00040	< 0.00040	<0.00040	< 0.00040	< 0.0004	< 0.00040	< 0.00040	< 0.00040	< 0.0004	< 0.00040	< 0.00040	< 0.00040	< 0.00040
Ethylbenzene	2.3	< 0.0004	< 0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.0004	< 0.00040	< 0.00040	< 0.00040	0.11	< 0.00040	< 0.00040	0.0015	0.0051
Xylenes, Total	4.2	<0.0008	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.0008	<0.00080	<0.00080	<0.00080	<0.0008	<0.00080	<0.00080	<0.00080	<0.00080
PHC fraction F1 (C6 - C10)	0.75	<0.100	<0.10	<0.10	<0.10	<0.10	<0.10	<0.100	<0.10	<0.10	<0.10	0.54	<0.10	<0.10	<0.10	0.11
PHC fraction F2 (C10 - C16)	0.15	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.40	<0.10	<0.10	0.15	0.12
PHC fraction F3 (C16 - C34)	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-		-
PHC fraction F4 (C34 - C50)	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-
1,2-Dibromoethane	0.00083	-	< 0.00050	< 0.00050	< 0.00050	< 0.00020	< 0.00020	-	< 0.00050	< 0.00050	< 0.00020	-	< 0.00050	< 0.00050	< 0.00020	<0.00020
1,2-Dichloroethane	0.012	-	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	-	< 0.00050	< 0.00050	< 0.00050	-	< 0.00050	< 0.00050	< 0.00050	< 0.00050
Lead, Dissolved	0.025	-	<0.00020	<0.00020	< 0.00020	< 0.00020	< 0.00020	-	<0.00020	0.00023	<0.00020	-	<0.00020	< 0.00020	< 0.00020	< 0.00020

Table Notes:

^a Ontario MOE Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (MOE, 2011) - Table 3: Full Depth Generic Site Condition Standards Non-Potable Ground Water Condition - Fine Textured Soils

< Denotes concentration less than reportable detection limit

- Denotes analysis not conducted

mbgs metres below ground surface

PHC petroleum hydrocarbon NG Denotes no applicable guideline value

Units: all units milligrams per litre (mg/L) unless otherwise specified

XX Reportable Detection Limit (RDL) exceeds the applied standard
XX Exceeds applied standard

All data was obtained by other consultants and drawn from the following reports:

O'Connor Associates Environmental Inc. 2010. Field Data Report, Former ESSO Retail, 287 Main Street, Selkirk, MB, 88001943 / 860265. Prepared by O'Connor Associates Environmental Inc. on May 13, 2010.

O'Connor Associates Environmental Inc. 2013. 2012 Groundwater Monitoring and Sampling Report, 287 Main Street, Selkirk, Manitoba, Location No.: 88001943. Prepared by O'Connor Associates Environmental Inc. on February 21, 2013.

Kleinfelder Canada Inc. 2015. Groundwater Monitoring Report, Former Imperial Oil Service Station SAP No. 88001943, 287 Main Street, Selkirk, Manitoba. Prepared by Kleinfelder Canada Inc. on August 24, 2015.

Parsons Inc. 2016. 2016 Groundwater Monitoring and Sampling Data Package, Site Address: 287 Main Street, Selkirk, Manitoba, SAP Site Location No.: 88001943. Prepared by Parsons Inc. on December 19, 2016.

	Sample Location	MW36	MW	'37			MW38				04-1			04-	2	
	Sample Date		2010/02/25	2012/12/18	2010/02/25	2012/12/18	2012/12/18 Dup	2015/07/11	2016/10/05	2012/12/18	2015/07/11	2016/10/06	2010/02/25	2012/12/18	2015/07/11	2016/10/06
	Sample ID Screen Interval (mbgs)	MW36 1.6 to 4.6 mbgs	MW37 1.6 to 4.6 mbgs	MW37 1.6 to 4.6 mbgs	MW38 1.6 to 4.6 mbgs	MW38 1.6 to 4.6 mbgs	DUP-2 1.6 to 4.6 mbgs	MW38 1.6 to 4.6 mbgs	MW38 1.6 to 4.6 mbgs	04-1 6.7 to 7.6 mbgs	04-1 6.7 to 7.6 mbgs	04-1 6.7 to 7.6 mbgs	04-2 3.1 to 6.1 mbgs			
Parameter	Guideline Values ^a			_		_			_	_			_	_		
Benzene	0.43	5.5	0.51	0.21	<0.0004	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.0004	<0.00040	<0.00040	<0.00040
Toluene	18	0.027	0.0045	0.0021	< 0.0004	<0.00040	< 0.00040	< 0.00040	<0.00040	< 0.00040	<0.00040	< 0.00040	< 0.0004	<0.00040	< 0.00040	< 0.00040
Ethylbenzene	2.3	0.68	0.18	0.099	< 0.0004	< 0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.0004	< 0.00040	< 0.00040	< 0.00040
Xylenes, Total	4.2	0.12	0.020	<0.00080	<0.0008	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.0008	<0.00080	<0.00080	<0.00080
PHC fraction F1 (C6 - C10)	0.75	<0.100	0.83	0.91	<0.100	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.100	<0.10	<0.10	<0.10
PHC fraction F2 (C10 - C16)	0.15	8.0	1	0.45	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
PHC fraction F3 (C16 - C34)	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PHC fraction F4 (C34 - C50)	0.5	-	-	-	-	-	-		-	-	-	-	-	-	-	-
1,2-Dibromoethane	0.00083	-	-	< 0.00050	-	< 0.00050	< 0.00050	< 0.00050	< 0.00020	< 0.00050	< 0.00050	< 0.00020	-	< 0.00050	< 0.00050	< 0.00020
1,2-Dichloroethane	0.012	-	-	< 0.00050	-	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	-	< 0.00050	< 0.00050	< 0.00050
Lead, Dissolved	0.025	-	-	< 0.00020	-	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	-	< 0.00020	< 0.00020	< 0.00020

Table Notes:

^a Ontario MOE Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (MOE, 2011) - Table 3: Full Depth Generic Site Condition Standards Non-Potable Ground Water Condition - Fine Textured Soils

< Denotes concentration less than reportable detection limit

- Denotes analysis not conducted

mbgs metres below ground surface

PHC petroleum hydrocarbon NG Denotes no applicable guideline value

Units: all units milligrams per litre (mg/L) unless otherwise specified

XX Reportable Detection Limit (RDL) exceeds the applied standard
XX Exceeds applied standard

All data was obtained by other consultants and drawn from the following reports:

O'Connor Associates Environmental Inc. 2010. Field Data Report, Former ESSO Retail, 287 Main Street, Selkirk, MB, 88001943 / 860265. Prepared by O'Connor Associates Environmental Inc. on May 13, 2010.

O'Connor Associates Environmental Inc. 2013. 2012 Groundwater Monitoring and Sampling Report, 287 Main Street, Selkirk, Manitoba, Location No.: 88001943. Prepared by O'Connor Associates Environmental Inc. on February 21, 2013.

Kleinfelder Canada Inc. 2015. Groundwater Monitoring Report, Former Imperial Oil Service Station SAP No. 88001943, 287 Main Street, Selkirk, Manitoba. Prepared by Kleinfelder Canada Inc. on August 24, 2015.

Parsons Inc. 2016. 2016 Groundwater Monitoring and Sampling Data Package, Site Address: 287 Main Street, Selkirk, Manitoba, SAP Site Location No.: 88001943. Prepared by Parsons Inc. on December 19, 2016.

	Sample Location		04	-3			04	-4		04-5			04-6		
	Sample Date	2010/02/25	2012/12/18	2015/07/11	2016/10/06	2010/02/25	2012/12/18	2015/07/11	2016/10/06	2010/02/25	2010/02/25	2012/12/18	2012/12/18 Dup	2015/07/11	2016/10/06
	Sample ID	04-3	04-3	04-3	04-3	04-4	04-4	04-4	04-4	04-5	04-6	04-6	DUP-1	04-6	04-6
	Screen Interval (mbgs)	3.1 to 6.1 mbgs	6.0 to 6.9 mbgs	3.1 to 6.1 mbgs	6.7 to 7.6 mbgs										
Parameter	Guideline Values ^a														
Benzene	0.43	< 0.0004	< 0.00040	<0.00040	<0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.00040	<0.00040	<0.00040	<0.00040	<0.00040	< 0.00040	<0.00040
Toluene	18	<0.0004	<0.00040	< 0.00040	<0.00040	< 0.00040	<0.00040	<0.00040	< 0.00040	<0.00040	< 0.00040	< 0.00040	<0.00040	<0.00040	< 0.00040
Ethylbenzene	2.3	< 0.0004	<0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.00040	<0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.00040
Xylenes, Total	4.2	<0.0008	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080
PHC fraction F1 (C6 - C10)	0.75	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
PHC fraction F2 (C10 - C16)	0.15	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
PHC fraction F3 (C16 - C34)	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PHC fraction F4 (C34 - C50)	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	0.00083	-	< 0.00050	< 0.00050	<0.00020	•	< 0.00050	< 0.00050	< 0.00020	-	•	< 0.00050	< 0.00050	< 0.00050	< 0.00020
1,2-Dichloroethane	0.012	-	< 0.00050	< 0.00050	< 0.00050	-	< 0.00050	< 0.00050	< 0.00050	-		< 0.00050	< 0.00050	< 0.00050	< 0.00050
Lead, Dissolved	0.025	-	<0.00020	< 0.00020	< 0.00020	-	< 0.00020	< 0.00020	< 0.00020	-	-	< 0.00020	< 0.00020	<0.00020	0.00022

Table Notes:

^a Ontario MOE Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (MOE, 2011) - Table 3: Full Depth Generic Site Condition Standards Non-Potable Ground Water Condition - Fine Textured Soils

< Denotes concentration less than reportable detection limit

- Denotes analysis not conducted mbgs metres below ground surface

PHC petroleum hydrocarbon

NG Denotes no applicable guideline value

Units: all units milligrams per litre (mg/L) unless otherwise specified

XX Reportable Detection Limit (RDL) exceeds the applied standard
XX Exceeds applied standard

All data was obtained by other consultants and drawn from the following reports:

O'Connor Associates Environmental Inc. 2010. Field Data Report, Former ESSO Retail, 287 Main Street, Selkirk, MB, 88001943 / 860265. Prepared by O'Connor Associates Environmental Inc. on May 13, 2010.

O'Connor Associates Environmental Inc. 2013. 2012 Groundwater Monitoring and Sampling Report, 287 Main Street, Selkirk, Manitoba, Location No.: 88001943. Prepared by O'Connor Associates Environmental Inc. on February 21, 2013.

Kleinfelder Canada Inc. 2015. Groundwater Monitoring Report, Former Imperial Oil Service Station SAP No. 88001943, 287 Main Street, Selkirk, Manitoba. Prepared by Kleinfelder Canada Inc. on August 24, 2015.

Parsons Inc. 2016. 2016 Groundwater Monitoring and Sampling Data Package, Site Address: 287 Main Street, Selkirk, Manitoba, SAP Site Location No.: 88001943. Prepared by Parsons Inc. on December 19, 2016.

	Sample Location		04-7			04	l-8				04-10			BH	19	BH10	BH11	BH11
	Sample Date	2012/12/18	2015/07/11	2016/10/06	2010/02/25	2012/12/18	2015/07/11	2016/10/06	2010/02/25	2012/12/18	2015/07/11	2015/07/11 Dup	2016/10/06	2010/02/25	2016/10/05	2010/02/25	2010/02/25	2016/10/05
	Sample ID	04-7	04-7	04-7	04-8	04-8	04-8	04-8	04-10	04-10	04-10	DUP-0711-B	04-10	BH9	BH9	BH10	BH11	BH11
	Screen Interval (mbgs)	3.1 to 5.5 mbgs	3.1 to 5.5 mbgs	3.1 to 5.5 mbgs	3.1 to 6.1 mbgs	0.6 to 6.1 mbgs												
Parameter	Guideline Values ^a																	i
Benzene	0.43	<0.00040	< 0.00040	<0.00040	0.32	0.0033	0.14	0.011	<0.00040	< 0.00040	<0.00040	< 0.00040	<0.00040	<0.00040	<0.00040	0.22	<0.00040	0.025
Toluene	18	< 0.00040	< 0.00040	< 0.00040	< 0.00040	<0.00040	< 0.00040	< 0.00040	<0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.0004	<0.00040	<0.00040
Ethylbenzene	2.3	< 0.00040	< 0.00040	< 0.00040	0.048	0.00062	0.012	0.00046	< 0.00040	< 0.00040	< 0.00040	< 0.00040	<0.00040	< 0.00040	< 0.00040	0.02	<0.00040	<0.00040
Xylenes, Total	4.2	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	0.0048	<0.00080	0.00046
PHC fraction F1 (C6 - C10)	0.75	<0.10	<0.10	<0.10	0.68	<0.10	0.40	0.11	<0.100	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	1.1	<0.10	<0.10
PHC fraction F2 (C10 - C16)	0.15	<0.10	<0.10	<0.10	0.30	0.18	0.24	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	1	<0.1	<0.10
PHC fraction F3 (C16 - C34)	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PHC fraction F4 (C34 - C50)	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-Dibromoethane	0.00083	< 0.00050	< 0.00050	< 0.00020	-	< 0.00050	< 0.00050	< 0.00020	-	< 0.00050	< 0.00050	< 0.00050	<0.00020	-	< 0.00020	-	-	< 0.00020
1,2-Dichloroethane	0.012	< 0.00050	< 0.00050	< 0.00050	-	< 0.00050	< 0.00050	< 0.00050	-	< 0.00050	< 0.00050	< 0.00050	< 0.00050	-	< 0.00050	-	-	< 0.00050
Lead, Dissolved	0.025	<0.00020	0.00020	<0.00020	-	<0.00020	<0.00020	<0.00020	-	< 0.00020	< 0.00020	< 0.00020	<0.00020	-	< 0.00020	-	-	<0.00020

Table Notes:

^a Ontario MOE Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (MOE, 2011) - Table 3: Full Depth Generic Site Condition Standards Non-Potable Ground Water Condition - Fine Textured Soils

< Denotes concentration less than reportable detection limit

- Denotes analysis not conducted mbgs metres below ground surface

PHC petroleum hydrocarbon

NG Denotes no applicable guideline value

Units: all units milligrams per litre (mg/L) unless otherwise specified

XX Reportable Detection Limit (RDL) exceeds the applied standard
XX Exceeds applied standard

All data was obtained by other consultants and drawn from the following reports:

O'Connor Associates Environmental Inc. 2010. Field Data Report, Former ESSO Retail, 287 Main Street, Selkirk, MB, 88001943 / 860265. Prepared by O'Connor Associates Environmental Inc. on May 13, 2010.

O'Connor Associates Environmental Inc. 2013. 2012 Groundwater Monitoring and Sampling Report, 287 Main Street, Selkirk, Manitoba, Location No.: 88001943. Prepared by O'Connor Associates Environmental Inc. on February 21, 2013. Kleinfelder Canada Inc. 2015. Groundwater Monitoring Report, Former Imperial Oil Service Station SAP No. 88001943, 287 Main Street, Selkirk, Manitoba. Prepared by Kleinfelder Canada Inc. on August 24, 2015.

Parsons Inc. 2016. 2016 Groundwater Monitoring and Sampling Data Package, Site Address: 287 Main Street, Selkirk, Manitoba, SAP Site Location No.: 88001943. Prepared by Parsons Inc. on December 19, 2016.

Table 3-1: 2018 Groundwater Analytical Results for Petroleum Hydrocarbons in Water

		S	ample Location	04-1	04-2	04-3	04-4	04-6	04-7	04-8
			Sample ID	04-1_M3_2018	04-2_M3_2018	04-3_M3_2018	04-4_M3_2018	04-6_M3_2018	04-7_M3_2018	04-8_M3_2018
		Sample	Collection Date	Oct 10, 2018						
			Screen Interval	6.7 to 7.6 mbgs	3.1 to 6.1 mbgs	3.1 to 6.1 mbgs	6.0 to 6.9 mbgs	6.7 to 7.6 mbgs	3.1 to 5.5 mbgs	3.1 to 6.1 mbgs
Parameter	Guideline Value ¹	Units	RDL							
Petroleum Hydrocarbons										
Benzene	0.43	mg/L	0.00040	0.042	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	0.13
Toluene	18	mg/L	0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040
Ethylbenzene	2.3	mg/L	0.00040	0.0071	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	0.0099
Xylenes, Total	4.2	mg/L	0.00089	<0.00089	<0.00089	<0.00089	<0.00089	<0.00089	<0.00089	<0.00089
F1 (C6-C10)	0.75	mg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.22
F2 (C10-C16)	0.15	mg/L	0.10	0.34	<0.10	<0.10	<0.10	<0.10	<0.10	0.27
F3 (C16-C34)	0.5	mg/L	0.10	<0.10	<0.10	<0.10	<0.10	0.17	0.67	<0.10
F4 (C34-C50)	0.5	mg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.21	<0.20

¹ Ontario MOE Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act (MOE, 2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, fine grained soil

- Denotes analysis not conducted

mg/L milligram/litre

mbgs metres below ground surface

XX Reportable Detection Limit (RDL) exceeds the applicable guideline value

Table 3-1: 2018 Groundwater Analytical Results for Petroleum Hydrocarbons in Water

		S	Sample Location	04-10	MW32	MW33	MW35	MW38	Duplicate of MW04- 7	Duplicate of MW04- 3
			Sample ID	04-10_M3_2018	MW32_M3_2018	MW33_M3_2018	MW35_M3_2018	MW38_M3_2018	DUP01_M3_2018	DUP02_M3_2018
		Sample	Collection Date	Oct 10, 2018	Oct 10, 2018					
			Screen Interval	3.1 to 6.1 mbgs	1.6 to 4.6 mbgs	3.1 to 5.5 mbgs	3.1 to 6.1 mbgs			
Parameter	Guideline Value ¹	Units	RDL							
Petroleum Hydrocarbons										
Benzene	0.43	mg/L	0.00040	<0.00040	<0.00040	< 0.00040	0.092	<0.00040	<0.00040	<0.00040
Toluene	18	mg/L	0.00040	<0.00040	<0.00040	<0.00040	< 0.00040	<0.00040	<0.00040	<0.00040
Ethylbenzene	2.3	mg/L	0.00040	<0.00040	<0.00040	<0.00040	0.013	<0.00040	<0.00040	<0.00040
Xylenes, Total	4.2	mg/L	0.00089	<0.00089	<0.00089	<0.00089	<0.00089	<0.00089	<0.00089	<0.00089
F1 (C6-C10)	0.75	mg/L	0.10	<0.10	<0.10	<0.10	0.16	<0.10	< 0.10	<0.10
F2 (C10-C16)	0.15	mg/L	0.10	<0.10	<0.10	<0.10	0.30	<0.10	<0.10	<0.10
F3 (C16-C34)	0.5	mg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
F4 (C34-C50)	0.5	mg/L	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20

¹ Ontario MOE Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act (MOE, 2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, fine grained soil

- Denotes analysis not conducted

mg/L milligram/litre

mbgs metres below ground surface

XX Reportable Detection Limit (RDL) exceeds the applicable guideline value

Table 3-2: 2018 Groundwater Analytical Results for Glycols in Water

		S	ample Location	04-2	04-4	04-6	04-7	04-8
			Sample ID	04-2_M3_2018	04-4_M3_2018	04-6_M3_2018	04-7_M3_2018	04-8_M3_2018
		Sample	Collection Date	Oct 10, 2018				
			Screen Interval	3.1 to 6.1 mbgs	6.0 to 6.9 mbgs	6.7 to 7.6 mbgs	3.1 to 5.5 mbgs	3.1 to 6.1 mbgs
Parameter	Guideline Value ¹	Units	RDL					
Glycols								
Ethylene Glycol	15,000	mg/L	3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Propylene Glycol	NG	mg/L	5.0	<5.0	<5.0	<5.0	<5.0	<5.0

- Denotes analysis not conducted

mg/L milligram/litre

mbgs metres below ground surface

NG Denotes no applicable guideline value

XX Reportable Detection Limit (RDL) exceeds the applicable guideline value

¹ Alberta Environment and Parks (AEP). 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 197 pp. - Table B-3. Groundwater Remediation Guidelines for Commercial Land Use - All Water Uses, for non-potable water and fine grained soils.

< Denotes concentration less than reportable detection limit

Table 3-2: 2018 Groundwater Analytical Results for Glycols in Water

		S	ample Location	04-10	MW32	MW33	MW35	Duplicate of MW04-7
			Sample ID	04-10_M3_2018	MW32_M3_2018	MW33_M3_2018	MW35_M3_2018	DUP01_M3_2018
		Sample	Collection Date	Oct 10, 2018				
			Screen Interval	3.1 to 6.1 mbgs	1.6 to 4.6 mbgs	1.6 to 4.6 mbgs	1.6 to 4.6 mbgs	3.1 to 5.5 mbgs
Parameter	Guideline Value ¹	Units	RDL					
Glycols								
Ethylene Glycol	15,000	mg/L	3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Propylene Glycol	NG	mg/L	5.0	<5.0	<5.0	<5.0	<5.0	<5.0

- Denotes analysis not conducted

mg/L milligram/litre

mbgs metres below ground surface

NG Denotes no applicable guideline value

XX Reportable Detection Limit (RDL) exceeds the applicable guideline value

¹ Alberta Environment and Parks (AEP). 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 197 pp. - Table B-3. Groundwater Remediation Guidelines for Commercial Land Use - All Water Uses, for non-potable water and fine grained soils.

< Denotes concentration less than reportable detection limit

Table 3-3: 2018 Groundwater Analytical Results for Metals in Water

		S	ample Location	04-2	04-4	04-6	04-7	04-8
			Sample ID	04-2_M3_2018	04-4_M3_2018	04-6_M3_2018	04-7_M3_2018	04-8_M3_2018
		Sample	Collection Date	Oct 10, 2018	Oct 10, 2018	Oct 10, 2018	Oct 10, 2018	Oct 10, 2018
			Screen Interval	3.1 - 6.1 mbgs	6.0 to 6.9 mbgs	6.7 to 7.6 mbgs	3.1 to 5.5 mbgs	3.1 to 6.1 mbgs
Parameter	Guideline Value ¹	Units	RDL					
Elements								
Dissolved Arsenic (As)	1.9	mg/L	0.00020	0.00045	0.00072	0.00032	0.00037	0.0019
Dissolved Barium (Ba)	29	mg/L	0.010	0.14	0.10	0.11	0.19	0.52
Dissolved Chromium (Cr)	0.81	mg/L	0.0010	<0.010	<0.010	<0.010	<0.010	<0.010
Dissolved Copper (Cu)	0.087	mg/L	0.00020	0.0039	0.00037	0.0025	0.0034	0.00031
Dissolved Lead (Pb)	0.025	mg/L	0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Dissolved Tin (Sn)	NG	mg/L	0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Dissolved Zinc (Zn)	1.1	mg/L	0.0030	0.063	<0.0030	0.041	0.0057	<0.0030

mg/L milligram/litre

mbgs metres below ground surface

NG Denotes no applicable standard value

 $\underline{\textbf{XX}}$ Reportable Detection Limit (RDL) exceeds the applicable guideline value

¹ Ontario MOE Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act (MOE, 2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, fine grained soil

< Denotes concentration less than reportable detection limit

⁻ Denotes analysis not conducted

Table 3-3: 2018 Groundwater Analytical Results for Metals in Water

		S	Sample Location	04-10	MW32	MW33	MW35	Duplicate of MW04-7
			Sample ID	04-10_M3_2018	MW32_M3_2018	MW33_M3_2018	MW35_M3_2018	DUP01_M3_2018
		Sample	Collection Date	Oct 10, 2018				
			Screen Interval	3.1 to 6.1 mbgs	1.6 to 4.6 mbgs	1.6 to 4.6 mbgs	1.6 to 4.6 mbgs	3.1 to 5.5 mbgs
Parameter	Guideline Value ¹	Units	RDL					
Elements								
Dissolved Arsenic (As)	1.9	mg/L	0.00020	0.00043	0.00044	0.00042	0.0049	0.00037
Dissolved Barium (Ba)	29	mg/L	0.010	0.13	0.36	0.33	0.57	0.19
Dissolved Chromium (Cr)	0.81	mg/L	0.0010	<0.010	<0.010	<0.010	<0.010	<0.010
Dissolved Copper (Cu)	0.087	mg/L	0.00020	0.0030	0.0038	0.0045	0.0011	0.0038
Dissolved Lead (Pb)	0.025	mg/L	0.00020	<0.00020	<0.00020	0.00066	0.00071	<0.00020
Dissolved Tin (Sn)	NG	mg/L	0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Dissolved Zinc (Zn)	1.1	mg/L	0.0030	0.018	<0.0030	0.007	0.0031	0.014

mg/L milligram/litre

mbgs metres below ground surface

NG Denotes no applicable standard value

 $\underline{\textbf{XX}}$ Reportable Detection Limit (RDL) exceeds the applicable guideline value

¹ Ontario MOE Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act (MOE, 2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, fine grained soil

< Denotes concentration less than reportable detection limit

⁻ Denotes analysis not conducted

Table 3-4: 2018 Groundwater Analytical Results for Volatile Organic Compounds (VOCs) in Water

		S	ample Location	04-1	04-2	04-3	04-4	04-6	04-7	04-8
			Sample ID	04-1_M3_2018	04-2_M3_2018	04-3_M3_2018	04-4_M3_2018	04-6_M3_2018	04-7_M3_2018	04-8_M3_2018
		Sample	Collection Date	Oct 10, 2018						
			Screen Interval	6.7 to 7.6 mbgs	3.1 to 6.1 mbgs	3.1 to 6.1 mbgs	6.0 to 6.9 mbgs	6.7 to 7.6 mbgs	3.1 to 5.5 mbgs	3.1 to 6.1 mbgs
Parameter	Guideline Value ¹	Units	RDL							
Volatiles										
Total Trihalomethanes	NG	mg/L	0.0013	-	< 0.0013	-	<0.0013	< 0.0013	<0.0013	<0.0013
Hexane	0.52	mg/L	0.0010	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bromodichloromethane	85	mg/L	0.00050	-	<0.00050	-	<0.00050	< 0.00050	< 0.00050	<0.00050
Bromoform	0.77	mg/L	0.00050	-	<0.00050	-	<0.00050	<0.00050	<0.00050	<0.00050
Bromomethane	0.056	mg/L	0.00200	-	<0.0020	-	<0.0020	<0.0020	<0.0020	<0.0020
Carbon tetrachloride	0.0084	mg/L	0.00050	-	<0.00050	-	<0.00050	< 0.00050	< 0.00050	<0.00050
Chlorobenzene	0.63	mg/L	0.00050	-	<0.00050	-	<0.00050	<0.00050	<0.00050	<0.00050
Chlorodibromomethane	82	mg/L	0.00100	-	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010
Chloroethane	NG	mg/L	0.00100	-	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010
Chloroform	0.022	mg/L	0.00050	-	<0.00050	-	<0.00050	< 0.00050	<0.00050	<0.00050
Chloromethane	NG	mg/L	0.00200	-	<0.0020	-	<0.0020	<0.0020	<0.0020	<0.0020
1,2-dibromoethane	0.00083	mg/L	0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
1,2-dichlorobenzene	9.6	mg/L	0.00050	=	<0.00050	-	<0.00050	< 0.00050	< 0.00050	< 0.00050
1,3-dichlorobenzene	9.6	mg/L	0.00050	ē	<0.00050	-	<0.00050	< 0.00050	< 0.00050	< 0.00050
1,4-dichlorobenzene	0.067	mg/L	0.00050	ē	<0.00050	-	<0.00050	< 0.00050	< 0.00050	< 0.00050
1,1-dichloroethane	3.1	mg/L	0.00050	-	<0.00050	-	<0.00050	<0.00050	<0.00050	<0.00050
1,2-dichloroethane	0.012	mg/L	0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	< 0.00050	< 0.00050	< 0.00050
1,1-dichloroethene	0.017	mg/L	0.00050	-	<0.00050	-	<0.00050	<0.00050	<0.00050	<0.00050
cis-1,2-dichloroethene	0.017	mg/L	0.00050	-	<0.00050	-	<0.00050	<0.00050	<0.00050	<0.00050
trans-1,2-dichloroethene	0.017	mg/L	0.00050	-	<0.00050	-	<0.00050	<0.00050	<0.00050	<0.00050
Dichloromethane	5.5 ^b	mg/L	0.00200	-	<0.0020	-	<0.0020	<0.0020	<0.0020	<0.0020
1,2-dichloropropane	0.14	mg/L	0.00050	-	<0.00050	-	<0.00050	<0.00050	<0.00050	<0.00050
cis-1,3-dichloropropene	0.045	mg/L	0.00050	-	<0.00050	-	<0.00050	<0.00050	<0.00050	<0.00050
trans-1,3-dichloropropene	0.045	mg/L	0.00050	-	<0.00050	-	<0.00050	<0.00050	<0.00050	<0.00050
Methyl methacrylate	120 ^b	mg/L	0.00050	-	<0.00050	-	<0.00050	<0.00050	<0.00050	0.00058
Methyl-tert-butylether (MTBE)	1.4	mg/L	0.00050	-	<0.00050	-	<0.00050	<0.00050	<0.00050	0.0083
Styrene	9.1	mg/L	0.00050	-	<0.00050	-	<0.00050	<0.00050	<0.00050	<0.00050
1,1,1,2-tetrachloroethane	0.028	mg/L	0.00100	-	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010
1.1.2.2-tetrachloroethane	0.015	mg/L	0.00200	_	<0.0020	_	<0.0020	<0.0020	<0.0020	<0.0020
Tetrachloroethene	0.017	mg/L	0.00050	-	<0.00050	-	<0.00050	<0.00050	<0.00050	<0.00050
1,2,3-trichlorobenzene	6.9 ^b	mg/L	0.00100	-	<0.0010	_	<0.0010	<0.0010	<0.0010	<0.0010
1,2,4-trichlorobenzene	0.85	mg/L	0.00100	<u>-</u>	<0.0010	-	<0.0010	<0.0010	<0.0010	<0.0010
1,3,5-trichlorobenzene	3.3 ^b	mg/L	0.00050		<0.00050	_	<0.00050	<0.00050	<0.00050	<0.00050
,1,1-trichloroethane	6.7	mg/L	0.00050		<0.00050		<0.00050	<0.00050	<0.00050	<0.00050
1,1,2-trichloroethane	0.03	mg/L	0.00050	-	<0.00050	-	<0.00050	<0.00050	<0.00050	<0.00050
Trichloroethene	0.017	mg/L	0.00050		<0.00050	-	<0.00050	<0.00050	<0.00050	<0.00050
Frichlorofluoromethane	2.5	mg/L	0.00050	-	<0.00050	-	<0.00050	<0.00050	<0.00050	<0.00050
1,2,4-trimethylbenzene	NG		0.00050	-	<0.00050	-	<0.00050	<0.00050	<0.00050	<0.00050
1,2,4-trimethylbenzene	NG	mg/L mg/L	0.00050	-	<0.00050	-	<0.00050	<0.00050	<0.00050	<0.00050
Vinyl chloride	0.0017	mg/L	0.00050	-	<0.00050	-	<0.00050	<0.00050	<0.00050	<0.00050

¹ Ontario MOE Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act (MOE, 2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, fine grained soil.

mg/L milligram/litre

mbgs metres below ground surface

NG Denotes no applicable standard value

 $\underline{\textbf{XX}}$ Reportable Detection Limit (RDL) exceeds the applicable guideline value

^b Alberta Ervironment and Parks (AEP), 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 197 pp. - Table 8-3. Groundwater Remediation Guidelines for Commercial Land Use - All Water Uses, for non-potable water and fine grained soils.

< Denotes concentration less than reportable detection limit

⁻ Denotes analysis not conducted

Table 3-4: 2018 Groundwater Analytical Results for Volatile Organic Compounds (VOCs) in Water

Table 3-4: 2018 Groundwater	Analytical Result					1				
		S	ample Location	04-10	MW32	MW33	MW35	MW38	Duplicate of MW04-7	Duplicate of MW04-3
			Sample ID	04-10_M3_2018	MW32_M3_2018	MW33_M3_2018	MW35_M3_2018	MW38_M3_2018	DUP01_M3_2018	DUP02_M3_2018
		Sample	Collection Date	Oct 10, 2018	Oct 10, 2018					
			Screen Interval	3.1 to 6.1 mbgs	1.6 to 4.6 mbgs	3.1 to 5.5 mbgs	3.1 to 6.1 mbgs			
Parameter	Guideline Value ¹	Units	RDL							
Volatiles										
Total Trihalomethanes	NG	mg/L	0.0013	<0.0013	< 0.0013	<0.0013	<0.0013	-	<0.0013	-
Hexane	0.52	mg/L	0.0010	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001
Bromodichloromethane	85	mg/L	0.00050	< 0.00050	< 0.00050	< 0.00050	<0.00050	=	<0.00050	=
Bromoform	0.77	mg/L	0.00050	< 0.00050	<0.00050	< 0.00050	<0.00050	-	<0.00050	-
Bromomethane	0.056	mg/L	0.00200	<0.0020	< 0.0020	< 0.0020	<0.0020	-	<0.0020	-
Carbon tetrachloride	0.0084	mg/L	0.00050	< 0.00050	<0.00050	< 0.00050	<0.00050	-	<0.00050	-
Chlorobenzene	0.63	mg/L	0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	-	<0.00050	-
Chlorodibromomethane	82	mg/L	0.00100	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	-
Chloroethane	NG	mg/L	0.00100	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	-
Chloroform	0.022	mg/L	0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	-	<0.00050	-
Chloromethane	NG	mg/L	0.00200	<0.0020	<0.0020	<0.0020	<0.0020	-	<0.0020	-
1,2-dibromoethane	0.00083	mg/L	0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
1,2-dichlorobenzene	9.6	mg/L	0.00050	<0.00050	< 0.00050	< 0.00050	< 0.00050	-	< 0.00050	-
1,3-dichlorobenzene	9.6	mg/L	0.00050	< 0.00050	< 0.00050	< 0.00050	<0.00050	-	<0.00050	-
1,4-dichlorobenzene	0.067	mg/L	0.00050	< 0.00050	< 0.00050	< 0.00050	<0.00050	-	<0.00050	-
1,1-dichloroethane	3.1	mg/L	0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	-
1,2-dichloroethane	0.012	mg/L	0.00050	< 0.00050	< 0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050
1,1-dichloroethene	0.017	mg/L	0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	-
cis-1,2-dichloroethene	0.017	mg/L	0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	-
trans-1,2-dichloroethene	0.017	mg/L	0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	-	<0.00050	-
Dichloromethane	5.5 ^b	mg/L	0.00200	<0.0020	< 0.0020	<0.0020	<0.0020	-	<0.0020	-
1,2-dichloropropane	0.14	mg/L	0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	-	<0.00050	-
cis-1,3-dichloropropene	0.045	mg/L	0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	-	<0.00050	-
trans-1,3-dichloropropene	0.045	mg/L	0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	-
Methyl methacrylate	120 ^b	mg/L	0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	-
Methyl-tert-butylether (MTBE)	1.4	mg/L	0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	-
Styrene	9.1	mg/L	0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	-
1,1,1,2-tetrachloroethane	0.028	mg/L	0.00100	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	-
1,1,2,2-tetrachloroethane	0.015	mg/L	0.00200	<0.0020	<0.0020	<0.0020	<0.0020	-	<0.0020	-
Tetrachloroethene	0.017	mg/L	0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	-
1,2,3-trichlorobenzene	6.9 ^b	mg/L	0.00100	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	-
1,2,4-trichlorobenzene	0.85	mg/L	0.00100	<0.0010	<0.0010	<0.0010	<0.0010	-	<0.0010	-
1,3,5-trichlorobenzene	3.3 ^b	mg/L	0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	-
1,1,1-trichloroethane	6.7	mg/L	0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	-
1,1,2-trichloroethane	0.03	mg/L	0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	-
Trichloroethene	0.017	mg/L	0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	-
Trichlorofluoromethane	2.5	mg/L	0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	-
1,2,4-trimethylbenzene	NG	mg/L	0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	_
1,3,5-trimethylbenzene	NG	mg/L	0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	-
Vinyl chloride	0.0017	mg/L	0.00050	<0.00050	<0.00050	<0.00050	<0.00050		<0.00050	

¹ Ontario MOE Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act (MOE, 2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, fine grained soil.

mg/L milligram/litre

mbgs metres below ground surface

NG Denotes no applicable standard value

 $\underline{\mathbf{XX}}$ Reportable Detection Limit (RDL) exceeds the applicable guideline value

^b Alberta Ervironment and Parks (AEP), 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 197 pp. - Table 8-3. Groundwater Remediation Guidelines for Commercial Land Use - All Water Uses, for non-potable water and fine grained soils.

< Denotes concentration less than reportable detection limit

⁻ Denotes analysis not conducted

Table 3-5: 2018 Groundwater Analytical Results for Polycyclic Aromatic Hydrocarbons (PAHs) in Water

		9	Sample Location	04-1	04-2	04-3	04-4	04-6	04-7	04-8
			Sample ID	04-1_M3_2018	04-2_M3_2018	04-3_M3_2018	04-4_M3_2018	04-6_M3_2018	04-7_M3_2018	04-8_M3_2018
		Sample	Collection Date	Oct 10, 2018	Oct 10, 2018	Oct 10, 2018	Oct 10, 2018	Oct 10, 2018	Oct 10, 2018	Oct 10, 2018
			Screen Interval	6.7 to 7.6 mbgs	3.1 to 6.1 mbgs	3.1 to 6.1 mbgs	6.0 to 6.9 mbgs	6.7 to 7.6 mbgs	3.1 to 5.5 mbgs	3.1 to 6.1 mbgs
Parameter	Guideline Value ¹	Units	RDL							
Polycyclic Aromatics										
Benzo[a]pyrene equivalency	NG	mg/L	0.000010	-	<0.00010	-	<0.00010	<0.00010	<0.00010	<0.00010
Acenaphthene	1.7	mg/L	0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Acenaphthylene	0.0018	mg/L	0.00010	-	<0.00010	-	<0.00010	<0.00010	<0.00010	<0.00010
Acridine	NG	mg/L	0.000050	-	<0.000050	-	<0.000050	<0.000050	<0.000050	<0.00050
Anthracene	0.0024	mg/L	0.000010	<0.00010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.00010
Benzo(a)anthracene	0.0047	mg/L	0.0000085	-	<0.000085	-	<0.000085	<0.000085	<0.000085	<0.000085
Benzo(b&j)fluoranthene	0.00075	mg/L	0.0000085	-	<0.000085	-	<0.000085	<0.000085	<0.000085	<0.000085
Benzo(k)fluoranthene	0.0004	mg/L	0.0000085	-	<0.000085	-	<0.000085	<0.000085	<0.000085	<0.000085
Benzo(g,h,i)perylene	0.0002	mg/L	0.0000085	-	<0.000085	-	<0.000085	0.00001	<0.000085	<0.000085
Benzo(c)phenanthrene	NG	mg/L	0.000050	-	<0.000050	-	<0.000050	<0.000050	<0.000050	< 0.000050
Benzo(a)pyrene	0.00081	mg/L	0.0000075	-	<0.000075	-	<0.000075	<0.000075	<0.000075	<0.0000075
Benzo[e]pyrene	NG	mg/L	0.000050	-	<0.000050	-	<0.000050	<0.000050	<0.000050	< 0.000050
Chrysene	0.001	mg/L	0.0000085	-	<0.000085	-	<0.000085	<0.000085	<0.000085	<0.000085
Dibenz(a,h)anthracene	0.00052	mg/L	0.0000075	-	<0.0000075	-	< 0.0000075	<0.000075	<0.0000075	<0.0000075
Fluoranthene	0.13	mg/L	0.000010	-	<0.00010	-	<0.00010	<0.00010	<0.00010	<0.00010
Fluorene	0.4	mg/L	0.000050	<0.000050	<0.00050	<0.00050	<0.000050	<0.000050	<0.000050	<0.00050
Indeno(1,2,3-cd)pyrene	0.0002	mg/L	0.0000085	-	<0.000085	-	<0.000085	<0.000085	<0.000085	<0.000085
1-Methylnaphthalene	1.8	mg/L	0.00010	-	<0.00010	-	<0.00010	<0.00010	<0.00010	0.00074
2-Methylnaphthalene	1.8	mg/L	0.00010	-	<0.00010	-	<0.00010	<0.00010	<0.00010	<0.00010
Naphthalene	6.4	mg/L	0.00010	0.00031 ²	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00048
Phenanthrene	0.58	mg/L	0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.00050
Perylene	NG	mg/L	0.000050	-	<0.000050	-	<0.00050	<0.000050	<0.000050	<0.000050
Pyrene	0.068	mg/L	0.000020	-	<0.000020	-	<0.000020	0.000039	<0.000020	<0.000020
Quinoline	NG	mg/L	0.00020	-	<0.00020	-	<0.00020	<0.00020	<0.00020	0.0019

- Denotes analysis not conducted

mg/L milligram/litre

mbgs metres below ground surface

NG Denotes no applicable standard value

 $\underline{\mathbf{XX}}$ Reportable Detection Limit (RDL) exceeds the applicable guideline value

¹ Ontario MOE Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act (MOE, 2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, fine grained Soil

 $^{^{2}}$ Qualifying ion outside of acceptance criteria. Results are tentatively identified and potentially biased high.

< Denotes concentration less than reportable detection limit

Table 3-5: 2018 Groundwater Analytical Results for Polycyclic Aromatic Hydrocarbons (PAHs) in Water

		9	Sample Location	04-10	MW32	MW33	MW35	MW38	Duplicate of MW04-7	Duplicate of MW04-3
			Sample ID	04-10_M3_2018	MW32_M3_2018	MW33_M3_2018	MW35_M3_2018	MW38_M3_2018	DUP01_M3_2018	DUP02_M3_2018
		Sample	Collection Date	Oct 10, 2018	Oct 10, 2018					
			Screen Interval	3.1 to 6.1 mbgs	1.6 to 4.6 mbgs	3.1 to 5.5 mbgs	3.1 to 6.1 mbgs			
Parameter	Guideline Value ¹	Units	RDL							
Polycyclic Aromatics										
Benzo[a]pyrene equivalency	NG	mg/L	0.000010	<0.000010	<0.000010	<0.000010	<0.000010	-	<0.000010	-
Acenaphthene	1.7	mg/L	0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Acenaphthylene	0.0018	mg/L	0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010	-
Acridine	NG	mg/L	0.000050	<0.000050	< 0.000050	<0.000050	<0.000050	-	<0.000050	-
Anthracene	0.0024	mg/L	0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.00010	<0.000010	<0.000010
Benzo(a)anthracene	0.0047	mg/L	0.0000085	<0.000085	<0.000085	<0.0000085	<0.000085	-	<0.000085	-
Benzo(b&j)fluoranthene	0.00075	mg/L	0.0000085	<0.000085	<0.000085	<0.000085	<0.000085	-	<0.000085	-
Benzo(k)fluoranthene	0.0004	mg/L	0.0000085	<0.000085	<0.000085	<0.000085	<0.000085	-	<0.000085	-
Benzo(g,h,i)perylene	0.0002	mg/L	0.0000085	<0.000085	<0.000085	<0.000085	<0.000085	-	<0.000085	-
Benzo(c)phenanthrene	NG	mg/L	0.000050	<0.000050	<0.000050	<0.000050	<0.000050	-	<0.000050	-
Benzo(a)pyrene	0.00081	mg/L	0.0000075	<0.000075	<0.0000075	<0.0000075	< 0.0000075	-	< 0.0000075	-
Benzo[e]pyrene	NG	mg/L	0.000050	<0.000050	<0.000050	<0.000050	<0.000050	-	<0.000050	-
Chrysene	0.001	mg/L	0.0000085	<0.000085	<0.000085	<0.000085	<0.000085	-	<0.000085	-
Dibenz(a,h)anthracene	0.00052	mg/L	0.0000075	<0.000075	<0.0000075	<0.0000075	< 0.0000075	-	< 0.0000075	-
Fluoranthene	0.13	mg/L	0.000010	<0.000010	<0.00010	<0.00010	<0.00010	-	<0.000010	-
Fluorene	0.4	mg/L	0.000050	< 0.000050	<0.000050	<0.000050	<0.000050	< 0.000050	<0.000050	<0.000050
Indeno(1,2,3-cd)pyrene	0.0002	mg/L	0.0000085	<0.000085	<0.000085	<0.000085	<0.000085	-	<0.000085	-
1-Methylnaphthalene	1.8	mg/L	0.00010	<0.00010	<0.00010	<0.00010	0.00011	-	<0.00010	-
2-Methylnaphthalene	1.8	mg/L	0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010	-
Naphthalene	6.4	mg/L	0.00010	<0.00010	<0.00010	<0.00010	0.00034	<0.00010	<0.00010	<0.00010
Phenanthrene	0.58	mg/L	0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.00050	<0.000050	<0.000050
Perylene	NG	mg/L	0.000050	<0.000050	<0.000050	<0.000050	<0.000050	-	<0.000050	-
Pyrene	0.068	mg/L	0.000020	<0.000020	<0.000020	<0.000020	<0.000020	-	<0.000020	-
Quinoline	NG	mg/L	0.00020	<0.00020	<0.00020	<0.00020	0.0016	-	<0.00020	-

mg/L milligram/litre

mbgs metres below ground surface

XX Reportable Detection Limit (RDL) exceeds the applicable guideline value

¹ Ontario MOE Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act (MOE, 2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition, fine grained Soil

 $^{^{2}}$ Qualifying ion outside of acceptance criteria. Results are tentatively identified and potentially biased high.

< Denotes concentration less than reportable detection limit

⁻ Denotes analysis not conducted

Table 3-6: 2018 Groundwater Analytical Results for Polychlorinated Biphenyls (PCBs) in Water

		;	Sample Location	04-2	04-4	04-6	04-7	04-8
			Sample ID	04-2_M3_2018	04-4_M3_2018	04-6_M3_2018	04-7_M3_2018	04-8_M3_2018
		Sample	Collection Date	Oct 10, 2018	Oct 10, 2018	Oct 10, 2018	Oct 10, 2018	Oct 10, 2018
			Screen Interval	3.1 - 6.1 mbgs	6.0 to 6.9 mbgs	6.7 to 7.6 mbgs	3.1 to 5.5 mbgs	3.1 to 6.1 mbgs
Parameter	Guideline Value ¹	Units	RDL					
Polychlorinated Biphenyls								
Aroclor 1016	NG	mg/L	0.000050	<0.00050	<0.000050	<0.000050	<0.000050	<0.000050
Aroclor 1221	NG	mg/L	0.000050	<0.00050	<0.000050	<0.000050	<0.000050	<0.000050
Aroclor 1232	NG	mg/L	0.000050	<0.00050	<0.000050	<0.000050	<0.000050	<0.000050
Aroclor 1242	NG	mg/L	0.000050	<0.00050	<0.000050	<0.000050	<0.000050	<0.000050
Aroclor 1248	NG	mg/L	0.000050	<0.00050	<0.000050	<0.000050	<0.000050	<0.000050
Aroclor 1254	NG	mg/L	0.000050	<0.00050	<0.000050	<0.000050	<0.000050	<0.000050
Aroclor 1260	NG	mg/L	0.000050	<0.00050	<0.000050	<0.000050	<0.000050	<0.000050
Aroclor 1262	NG	mg/L	0.000050	<0.00050	<0.000050	<0.000050	<0.000050	<0.000050
Aroclor 1268	NG	mg/L	0.000050	<0.00050	<0.000050 <0.000050		<0.000050	<0.000050
Total PCB	0.015	mg/L	0.000050	<0.00050	<0.000050	<0.000050	<0.000050	<0.000050

- < Denotes concentration less than reportable detection limit
- Denotes analysis not conducted

mg/L milligram/litre

mbgs metres below ground surface

NG Denotes no applicable standard value

XX Reportable Detection Limit (RDL) exceeds the applicable guideline value

Ontario MOE Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act (MOE, 2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Table 3-6: 2018 Groundwater Analytical Results for Polychlorinated Biphenyls (PCBs) in Water

		;	Sample Location	04-10	MW32	MW35	Duplicate of MW04-7
			Sample ID	04-10_M3_2018	MW32_M3_2018	MW35_M3_2018	DUP01_M3_2018
		Sample	Collection Date	Oct 10, 2018	Oct 10, 2018	Oct 10, 2018	Oct 10, 2018
			Screen Interval	3.1 to 6.1 mbgs	1.6 to 4.6 mbgs	1.6 to 4.6 mbgs	3.1 to 5.5 mbgs
Parameter	Guideline Value ¹	Units	RDL				
Polychlorinated Biphenyls							
Aroclor 1016	NG	mg/L	0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Aroclor 1221	NG	mg/L	0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Aroclor 1232	NG	mg/L	0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Aroclor 1242	NG	mg/L	0.000050	<0.000050	<0.000050	<0.000050	<0.00050
Aroclor 1248	NG	mg/L	0.000050	<0.000050	<0.000050	<0.000050	<0.00050
Aroclor 1254	NG	mg/L	0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Aroclor 1260	NG	mg/L	0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Aroclor 1262	NG	mg/L	0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Aroclor 1268	NG	mg/L	0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Total PCB	0.015	mg/L	0.000050	<0.000050	<0.000050	<0.000050	<0.00050

- < Denotes concentration less than reportable detection limit
- Denotes analysis not conducted

mg/L milligram/litre

mbgs metres below ground surface

NG Denotes no applicable standard value

XX Reportable Detection Limit (RDL) exceeds the applicable guideline value

Ontario MOE Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act (MOE, 2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Table 4-1: 2018 Soil Analytical Results - Petroleum Hydrocarbons

		APEC		Waste Oil UST		Car Wa	sh UST				Fuel U	ST Area						Pump Island Area		
	Sa	mple Location		BH1		В	H2	BH	13	В	H4	В	H5	В	H6		BH7		E	3H8
		Sample Date	2018-07-13	2018-07-13	2018-07-13	2018-07-12	2018-07-12	2018-07-12	2018-07-12	2018-07-12	2018-07-12	2018-07-11	2018-07-11	2018-07-11	2018-07-11	2018-07-12	2018-07-12	2018-07-12	2018-07-12	2018-07-12
		Sample ID		BH1_3.0_DUP02_M3	BH1_4.5_M3	BH2_5.25_M3	BH2_6.75_M3	BH3_3.75_M3	BH3_6.0_M3	BH4_3.75_M3	BH4_6.0_M3	BH5_3.75_M3	BH5_6.0_M3	BH6_4.5_M3	BH6_6.0_M3	BH7_2.25_M3	BH7_2.25_DUP01_M3	BH7_5.25_M3	BH8_2.4_M3	BH8_3.75_M3
	Sample	Depth (mbgs	3	3	4.5	5.25	6.75	3.75	6	3.75	6	3.75	6	4.5	6	2.25	2.25	5.25	2.4	3.75
	Guidelin	e Values																		
Parameter	Surface Soil (≤1.5 mbgs)	Subsurface Soil																		
	(31.5 Hbgs)	(>1.5 mbgs)																		
Petroleum Hydrocarbons	2 8 a,d,e	2 0 a,d	0.040	0.0050	0.0050	0.470	0.13	0.0	0.00	44	0.00	40	0.00	6.0	0.00	0.0050	0.0050	0.0050	0.0050	0.0050
Benzene	2.0	2.9	0.012	<0.0050	<0.0050	0.170		2.2	0.02	- 11	0.39	10	0.03	0.0	0.88	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Toluene	330 ^{a,f}	660 ^{a,t}	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	1.1	0.037	5.1	<0.020	7.6	0.030	<0.020	<0.020	<0.020	<0.020	<0.020 (1)
Ethylbenzene	430 ^{a,f}	860 ^{a,f}	<0.010	<0.010	<0.010	0.81	0.077	1.8	<0.010	6.3	<0.010	7.4	<0.010	11	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Xylenes	230 ^{a,f}	460 ^{a,f}	< 0.040	< 0.040	< 0.040	0.19	< 0.040	0.71	< 0.040	18	< 0.040	25	< 0.040	44	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040
PHC fraction F1 - BTEX (C6 - C10)	320 ^{b,g}	800 b,h	30	83	<10	50	<10	120	<10	370	<10	560	<10	1300	<10	<10	<10	<10	<10	<10
PHC fraction F2 (C10 - C16)	260 b,g	1,000 b,h	22	84	<10	47	<10	25	<10	76	<10	47	<10	39	<10	<10	<10	<10	<10	<10
PHC fraction F3 (C16 - C34)	2,500 b,g	5,000 b,h	<50	55	<50	<50	<50	<50	73	<50	89	<50	59	<50	56	<50	<50	<50	62	<50
PHC fraction F4 (C34 - C50)	6.600 b,g	10,000 b,h	<50	<50	<50	<50	<50	<50	<50	<50	90	<50	<50	<50	<50	<50	<50	<50	69	<50

Table Notes:

^a Canadian Council of Ministers of the Environment (CCME) Soil Quality Guidelines (2014) - Commercial Land Use, Fine Grained Soils, Human Health Guideline Check Values 10⁻⁵ incremental risk

^b CCME, Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil (2008) - Commercial Land Use, Fine Grained Soils

^c Ontario MOECC Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

d Inhalation of indoor air (basement)
le Inhalation of Indoor Air (slab on grade)
Soil Contact - Environmental Health
Eco Soil Contact

Management Limit

Moberta Environment and Parks (AEP). 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 197 pp. - Table 1. Alberta Tier 1 Soil Remediation Guidelines - Fine grained soils, Commercial land use

(1) Qualifying ion outside of acceptance criteria. Results are tentatively identified and potentially biased high.

- Denotes concentration less than reportable detection limit

- Denotes analysis not conducted mg/kg milligram/kilogram mbgs metres below ground surface
PHC petroleum hydrocarbon

NG Denotes no applicable guideline value

Units: all units milligrams per kilogram (mg/kg) unless otherwise specified

XX Reportable Detection Limit (RDL) exceeds the applicable guideline value

XX Exceeds applicable guideline value

Table 4-2: 2018 Soil Analytical Results - Volitile Organic Compounds (VOCs)

		APEC		Waste Oil UST		Car Wa	sh UST	1			Fuel U	ST Area						Pump Island Area		
	Sa	mple Location		BH1			H2	В	H3	В	H4		BH5	В	H6		BH7	i ump isianu Area	BI	H8
		Sample Date	2018-07-13	2018-07-13	2018-07-13	2018-07-12	2018-07-12	2018-07-12	2018-07-12	2018-07-12	2018-07-12	2018-07-11	2018-07-11	2018-07-11	2018-07-11	2018-07-12	2018-07-12	2018-07-12	2018-07-12	2018-07-12
		Sample ID	BH1 3.0 M3	BH1 3.0 DUP02 M3	BH1 4.5 M3	BH2 5.25 M3	BH2 6.75 M3	BH3 3.75 M3	BH3 6.0 M3	BH4 3.75 M3	BH4 6.0 M3	BH5 3.75 M3	BH5 6.0 M3	BH6 4.5 M3	BH6 6.0 M3	BH7 2.25 M3	BH7 2.25 DUP01 M3	BH7 5.25 M3	BH8 2.4 M3	BH8 3.75 M3
	Sample	Depth (mbgs)	3	3	4.5	5.25	6.75	3.75	6	3.75	6	3.75	6	4.5	6	2.25	2.25	5.25	2.4	3.75
	Guideline	e Values																		
Parameter	Surface Soil (≤1.5 mbgs)	Subsurface Soil (>1.5 mbgs)																		
VOCs		(×1.0 mbgs)																		
Hexane	21 ^a	21 ^a	<0.20	<0.20	<0.20	0.9	<0.20	1.5 (1)	<0.20	4.4	<0.20	5.5	<0.20	9.3 (1)	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	18 °	18 °	< 0.030	< 0.030	< 0.030	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromoform	1.7 °	1.7 °	<0.050	< 0.050	< 0.050	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bromomethane	0.05 °	0.05 ^c	<0.020	<0.020	<0.020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon tetrachloride	50 ^a	50 ^a	<0.00050	<0.00050	<0.00050	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorobenzene	10 ^a	10 ^a	<0.0010	<0.0010	<0.0010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chlorodibromomethane	13 °	13 °	<0.020	<0.020	<0.020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroethane	NG	NG	<0.020	<0.020	<0.020	<0.020	<0.020	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform	50 ^a	50 ^a	<0.00080	<0.00080	<0.00080	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloromethane	NG	NG	<0.030	<0.030	<0.030	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-dibromoethane	0.05 ^c	0.05 ^c	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
1,2-dichlorobenzene	10 ^a	10 ^a	<0.020	<0.020	<0.020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3-dichlorobenzene	10 ^a	10 ^a	<0.020	<0.020	<0.020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,4-dichlorobenzene	10 ^a	10 ^a	<0.020	<0.020	<0.020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1-dichloroethane	50 ^a	50 ^a	<0.020	<0.020	<0.020	<0.020	<0.020	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-dichloroethane	50 ^a	50 ^a	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.030	<0.0020	<0.0020	0.0033	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
1,1-dichloroethene	50 ^a	50 ^a	<0.020	<0.020	<0.020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,2-dichloroethene	50 ^a	50 ^a	<0.020	<0.020	<0.020	<0.020	<0.020	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,2-dichloroethene	50 ^a	50 ^a	<0.020	<0.020	<0.020	<0.020	<0.020	-	-	-	-	-	-	-	-	-	-	-	-	-
Dichloromethane	50 ^a	50 ^a	<0.030	<0.030	<0.030	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2-dichloropropane	50 ^a	50 ^a	<0.020	<0.020	<0.020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
cis-1,3-dichloropropene	0.21 ^c	0.21 ^c	<0.020	<0.020	<0.020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trans-1,3-dichloropropene	0.21 ^c	0.21 ^c	<0.020	<0.020	<0.020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl methacrylate	1.3 ⁱ	1.3 ⁱ	<0.040	<0.040	<0.040	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl-tert-butylether (MTBE)) 3.2 ^b	3.2 b	<0.030	<0.030	<0.030	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene	50°	50°	<0.020	<0.020	<0.020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1,2-tetrachloroethane	0.11 °	0.11 °	<0.10	<0.10	<0.10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2,2-tetrachloroethane	50 ^a	50 ^a	1.5	5.1	<0.050	-		-	-	-	-	-	-	-	-	-	-	-	-	-
Tetrachloroethene	50 ^a	50 ^a	<0.010	<0.010	<0.010	<0.010	<0.010	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,3-trichlorobenzene	10 ^a	10 ^a	<0.040	<0.040	<0.040	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-trichlorobenzene	10 ^a	10 ^a	<0.040	<0.040	<0.040	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3,5-trichlorobenzene	10 a	10 ^a	<0.040	<0.040	<0.040	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,1-trichloroethane	50 ^a	50 ^a	<0.020	<0.020	<0.020	<0.020	<0.020	-	-	-	-	-	-	-	-	-	-	-	-	-
1,1,2-trichloroethane	50 ^a	50 ^a	<0.020	<0.020	<0.020	<0.020	<0.020	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichloroethene	0.01 ^a	0.01 ^a	<0.010	<0.010	<0.010	<0.010	<0.010	-	-	-	-	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	5.8 °	5.8 °	<0.020	<0.020	<0.020	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,2,4-trimethylbenzene	NG	NG	<0.50	<0.50	<0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1,3,5-trimethylbenzene	NG	NG	<0.50	<0.50	<0.50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl chloride Table Notes:	0.25 ^c	0.25 ^c	<0.00030	<0.00030	<0.00030	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-	•	

Table Notes:

* Canadian Council of Ministers of the Environment (CCME) Soil Quality
Guidelines (2014) - Commercial Land Use, Fine Grained Soils, Human Health
Guideline Check Values 10 s incremental risk

^b CCME, Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil (2008) - Commercial Land Use, Fine Grained Soils

^c Ontario MOECC Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

^d Inhalation of indoor air (basement)

Inhalation of Indoor Air (slab on grade)
 Soil Contact - Environmental Health
 Eco Soil Contact
 Management Limit

Management Limit

Alberta Environment and Parks (AEP), 2019. Alberta Tier 1 Soil and
Groundwater Remediation Guidelines. Land Policy Branch, Policy and
Planning Division. 197 pp. - Table 1. Alberta Tier 1 Soil Remediation Guidelines

- Fine grained soils, Commercial land use

- Fine grained soils, Commercial land use
(1) Qualifying ion outside of acceptance criteria. Results are tentatively identified and potentially biased high.

< Denotes concentration less than reportable detection limit

- Denotes analysis not conducted
mg/kg milligram/kilogram
mbgs metres below ground surface
PHC petroleum hydrocarbon

NG Denotes no applicable guideline value

Units: all units milligrams per kilogram (mg/kg) unless otherwise specified

XX Reportable Detection Limit (RDL) exceeds the applicable guideline value

XX Exceeds applicable guideline value

Imperial Cross Canada Cost to Closure 287 Main Street, Selkirk, Manitoba Remediation Plan

Table 4-3: 2018 Soil Analytical Results - Polycyclic Aromatic Hydrocarbons (PAHs)

	APEC				Fuel UST Area						Pump Island Area				
	Sample Location Sample Date Sample ID		tion BH3		BH4		BH5		BH6		ВН7			BH8	
			2018-07-12	2018-07-12	2018-07-12 BH4_3.75_M3	2018-07-12 BH4_6.0_M3	2018-07-11	2018-07-11 BH5_6.0_M3	2018-07-11 BH6_4.5_M3	2018-07-11 BH6_6.0_M3	2018-07-12 BH7_2.25_M3	2018-07-12 BH7_2.25_DUP01_M3	2018-07-12 B BH7_5.25_M3	2018-07-12 BH8_2.4_M3	2018-07-12 BH8_3.75_M3
			BH3_3.75_M3	BH3_6.0_M3			BH5_3.75_M3								
	Sample	e Depth (mbgs)	3.75	6	3.75	6	3.75	6	4.5	6	2.25	2.25	5.25	2.4	3.75
	Guidelin	e Values													
Parameter	Surface Soil (≤1.5 mbgs)	Subsurface Soil (>1.5 mbgs)													
Acenaphthene	96 °	96 °	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Anthracene	32 ^a	32 ^a	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
Fluorene	69 °	69 ^c	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Naphthalene	22 ^a	22 ^a	0.08	<0.0050	2.1	<0.0050	1.7	<0.0050	1.6	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Phenanthrene	50 ^a	50 ^a	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0061	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050

Table Notes

^a Canadian Council of Ministers of the Environment (CCME) Soil Quality Guidelines for the Protection of Environmental and Human Health, Polycyclic Aromatic Hydrocarbons. 2010.

^b CCME, Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil (2008) - Commercial Land Use, Fine Grained Soils

^c Ontario MOECC Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

^d Inhalation of indoor air (basement)

^e Inhalation of Indoor Air (slab on grade)

f Soil Contact - Environmental Health

g Eco Soil Contact

^h Management Limit

¹Alberta Environment and Parks (AEP). 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 197 pp. - Table 1. Alberta Tier 1 Soil Remediation Guidelines - Fine grained soils, Commercial land use

< Denotes concentration less than reportable detection limit

- Denotes analysis not conducted mg/kg milligram/kilogram

mbgs metres below ground surface

PHC petroleum hydrocarbon

NG Denotes no applicable guideline value

Units: all units milligrams per kilogram (mg/kg) unless otherwise specified

XX Reportable Detection Limit (RDL) exceeds the applicable guideline value

Table 4-4: 2018 Soil Analytical Results - Glycols

		Car Wash UST				
		BH2				
		2018-07-12	2018-07-12			
		BH2_5.25_M3	BH2_6.75_M3			
		5.25	6.75			
		Guideline	e Values			
	Parameter	Surface Soil (≤1.5 mbgs)	Subsurface Soil (>1.5 mbgs)			
"	Ethylene Glycol	960 ^a	960 ^a	<10	<10	
8	Diethylene Glycol	10 ⁱ	10 ⁱ	<10	<10	
Glycols	Triethylene Glycol	100 ⁱ	100 ⁱ	<10	<10	
Ľ	Propylene Glycol	NG	NG	<10	<10	

^a Canadian Council of Ministers of the Environment (CCME) Soil Quality Guidelines (2014) - Commercial Land Use, Fine Grained Soils, Human Health Guideline Check Values 10⁻⁵ incremental risk

^b CCME, Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil (2008) - Commercial Land Use, Fine Grained Soils

^c Ontario MOECC Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

ⁱ Alberta Environment and Parks (AEP). 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 197 pp. - Table 1. Alberta Tier 1 Soil Remediation Guidelines - Fine grained soils, Commercial land use

- < Denotes concentration less than reportable detection limit
- Denotes analysis not conducted

mg/kg milligram/kilogram

mbgs metres below ground surface

PHC petroleum hydrocarbon

NG Denotes no applicable guideline value

Units: all units milligrams per kilogram (mg/kg) unless otherwise specified

XX Reportable Detection Limit (RDL) exceeds the applicable guideline value

^d Inhalation of indoor air (basement)

e Inhalation of Indoor Air (slab on grade)

^f Soil Contact - Environmental Health

g Eco Soil Contact

h Management Limit

Table 4-5: Soil Analytical Results - Polychlorinated Biphenyls (PCBs)

		APEC		Waste Oil UST	Car Wash UST			
	Sa	ample Location		BH1	BH2			
		Sample Date	2018-07-13	2018-07-13	2018-07-13	2018-07-12	2018-07-12	
		Sample ID	BH1_3.0_M3	BH1_3.0_DUP02_M3	BH1_4.5_M3	BH2_5.25_M3	BH2_6.75_M3	
	Sample	e Depth (mbgs)	3	3	4.5	5.25	6.75	
	Guideline	e Values						
Parameter	Surface Soil	Subsurface Soil						
	(≤1.5 mbgs)	(>1.5 mbgs)						
Polychlorinated Biphenyl								
Aroclor 1016	NG	NG	<0.010	<0.010	<0.010	< 0.050	<0.010	
Aroclor 1221	NG	NG	<0.010	<0.010	<0.010	< 0.050	<0.010	
Aroclor 1232	NG	NG	<0.010	<0.010	<0.010	< 0.050	<0.010	
Aroclor 1242	NG	NG	<0.010	<0.010	<0.010	<0.050	<0.010	
Aroclor 1248	NG	NG	<0.010	<0.010	<0.010	<0.050	<0.010	
Aroclor 1254	NG	NG	<0.010	<0.010	<0.010	<0.050	<0.010	
Aroclor 1260	NG	NG	<0.010	<0.010	<0.010	<0.050	<0.010	
Aroclor 1262	NG	NG	<0.010	<0.010	<0.010	<0.050	<0.010	
Aroclor 1268	NG	NG	<0.010	<0.010	<0.010	<0.050	<0.010	
Total PCB	33ª	33 ^a	<0.010	<0.010	<0.010	<0.050	<0.010	

^a Canadian Council of Ministers of the Environment (CCME) Soil Quality Guidelines (2014) - Commercial Land Use, Fine Grained Soils, Human Health Guideline Check Values 10⁻⁵ incremental risk

^b CCME, Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil (2008) - Commercial Land Use, Fine Grained Soils

^c Ontario MOECC Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

^d Inhalation of indoor air (basement)

e Inhalation of Indoor Air (slab on grade)

^f Soil Contact - Environmental Health

g Eco Soil Contact

h Management Limit

ⁱ Alberta Environment and Parks (AEP). 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 197 pp. - Table 1. Alberta Tier 1 Soil Remediation Guidelines - Fine grained soils, Commercial land use

- < Denotes concentration less than reportable detection limit
- Denotes analysis not conducted

mg/kg milligram/kilogram

mbgs metres below ground surface

PHC petroleum hydrocarbon

NG Denotes no applicable guideline value

Units: all units milligrams per kilogram (mg/kg) unless otherwise specified

XX Reportable Detection Limit (RDL) exceeds the applicable guideline value

Table 4-6: 2018 Soil Analytical Results - Metals

		APEC		Waste Oil UST	Car Wash UST BH2		
	Sa	mple Location		BH1			
		Sample Date	2018-07-13	2018-07-13	2018-07-13	2018-07-12	2018-07-12
		Sample ID	BH1_3.0_M3	BH1_3.0_DUP02_M3	BH1_4.5_M3	BH2_5.25_M3	BH2_6.75_M3
	Sample	Depth (mbgs)	3	3	4.5	5.25	6.75
	Guideline	e Values					
Parameter	Surface Soil (≤1.5 mbgs)	Soil					
Metals							
Total Arsenic (As)	12 ^a	12 ^a	10	8.5	4.8	4.7	4.7
Total Barium (Ba)	2000 ^a	2000 ^a	200	200	130	120	130
Total Chromium (Cr)	87 ^a	87 ^a	41	36	30	27	27
Total Copper (Cu)	91 ^a	91 ^a	38	33	20	18	18
Total Lead (Pb)	260 ^a	260 ^a	16	14	8.7	9.7	8.2
Total Tin (Sn)	300 ^a	300 ^a	1.3	1.1	<1.0	<1.0	<1.0
Total Zinc (Zn)	410 ^a	410 ^a	96	81	49	43	42

- < Denotes concentration less than reportable detection limit
- Denotes analysis not conducted

mg/kg milligram/kilogram

mbgs metres below ground surface

PHC petroleum hydrocarbon

NG Denotes no applicable guideline value

Units: all units milligrams per kilogram (mg/kg) unless otherwise specified

XX Reportable Detection Limit (RDL) exceeds the applicable guideline value

^a Canadian Council of Ministers of the Environment (CCME) Soil Quality Guidelines (2014) - Commercial Land Use, Fine Grained Soils, Human Health Guideline Check Values 10⁻⁵ incremental risk

^b CCME, Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil (2008) - Commercial Land Use, Fine Grained Soils

^c Ontario MOECC Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (2011) - Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

^d Inhalation of indoor air (basement)

^e Inhalation of Indoor Air (slab on grade)

f Soil Contact - Environmental Health

g Eco Soil Contact

^h Management Limit

ⁱ Alberta Environment and Parks (AEP). 2019. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. Land Policy Branch, Policy and Planning Division. 197 pp. - Table 1. Alberta Tier 1 Soil Remediation Guidelines - Fine grained soils, Commercial land use

Appendix A

Borehole and Test Pit Logs

PRC	DJECT: Red River Esso (#60256A)	GD ELEV.: 99.386 m						HOLE No.: A			
LOC	CATION: Selkirk, MB	TPC ELEV.: 99.253 m						DRILL: Backhoe			
SAN	APLE TYPE: SHELBY S							NO RECOVERY OTHER			
METRES	SOIL DESCRIPTION	SAMPLE	FEET	9%	Val Ce LE 0 20 0 4	ntre L &	ppr 0 40	n	N	OT! TE:	HER STS
1	ASPHALT - 75 mm thick GRAVEL (FILL) - frozen CLAY - olive brown, silty, trace gravel, trace sand, trace limestone inclusions,			4							_
-2	moist, firm, medium plasticity		5 	A							-
-3	BOTTOM OF EXCAVATION AT 3.7 m.		10 -				A				-
4 5	Monitoring piezometer installed to 3.7 m.		- - -15								_
-6			- - - -20								_
-7			- - -								-
-8			- -25 -								-
-9			- - -30				Nia.				-
)	- DAT	E:	8	9/02/	28		JOI	3 No.:	10-907.2
	o'connor associates 🎬	LOGGED BY: APM						DWG.No.: A-1			

PRO	DJECT: Red River Esso (#60256A)		GD	EL	EV.		99.40	O m	НС	LE No).: B
LOC	CATION: Selkirk, MB	aarooda dar liibuwaayda araasay kaaraa-vay aasaa k	TPO	3 E	LEV	7.: 9	99.34	3 m	DR	ILL: Ba	ackhoe
SAI	MPLE TYPE: SHELBY S	PLIT SPOC	N E	CO	ł E		DISTU	RBED		NO RECOV	ERY OTHER
METRES	SOIL DESCRIPTION	SAMPLE	FART	99	Va nce 6 LE	L A	pp 1	ns m	N		THER ESTS
-1	ASPHALT - 75 mm thick GRAVEL (FILL) - frozen CLAY - olive brown, silty, trace gravel, trace sand, trace limestone inclusions, moist, firm, medium plasticity		_ _ _ _ _5		A						
-2			<u>-</u>								-
-3			- -10 -	Shake and the state of the stat	A						
-4	BOTTOM OF EXCAVATION AT 4.1 m.		- - -15								-
-5	Monitoring piezometer installed to 4.1 m.		- -								-
-6	·		_ _20 _								-
-7											-
-8			-25 - -							·	-
-9			- -30 -								-
		A	DAT	E:	89/ 0	02/28			JOE	No.:	10-907.2
	O'CONNOR ASSOCIATES		LOG	GE	····		AF	М	DW	G.No.:	A -2

PRO	DJECT: Red River Esso (#60256A)		GD	EL	EV.	•	99.63	54 m	нс	LE No).: C
LOC	CATION: Selkirk, MB		TP	CE	LEV	/ .:	99,48	36 m	DA	ILL:	Backhoe
SAN	APLE TYPE: SHELBY SF	PLIT SPO	ON E	∏ co	RE		DISTU	RBED		NO RECOV	ERY OTHER
METRES	SOIL DESCRIPTION	SAMPLE	FEET	● °	nce	pou ntr L 2	atic 1pp 00 4	ons m 00 80	N		THER ESTS
-1	ASPHALT - 75 mm thick GRAVEL (FILL) - frozen CLAY (FILL) - olive brown, silty, trace gravel, trace sand, trace limestone inclusions SAND (FILL) - gray, silty,										
-3	some gravel, frozen, well graded, noticeable petroleum odour CLAY - olive brown, silty, trace gravel, trace sand, trace limestone inclusions, moist, firm, medium plasticity		- - -10 -		•		<u> </u>				
- 4			<u>-</u> - -15								-
-5	BOTTOM OF EXCAVATION AT 4.6 m. Monitoring piezometer installed to 4.6 m.		- - -								-
-6	Note: Two dry former vent lines were located in the sand fill.		-20 -								-
7			- - -25								· -
8			- - -								-
9			-30 -								-
		<u> </u>	DAT	E:		39/02	/28		JOE	3 No.:	10-907.2
C	O'CONNOR ASSOCIATES		LOG	GE	Э В	Υ:	A	.PM	DW	G.No.:	A-3

PRO	JECT: Red River Esso (#60)256A)		GD	ELE	EV.:	99	9.634	m	но	LE No.	, : D
LOC	ATION: Selkirk, MB			TPC	EL	EV.	: 99	9.570	m	DR	ILL: Bad	ckhoe
SAN	APLE TYPE: SHELBY	SPLIT	SPOO	N [CORI]] 0	ISTUR	BED		NO RECOVE	RY OTHER
METRES	SOIL DESCRIPTION		SAMPLE		● %	Vap Cer LEL		ppn 0 40	n 0	Z		HER STS
–1	ASPHALT - 75 mm thick GRAVEL (FILL) - frozen CLAY - olive brown, silty, trace gravel, trace sand, trace limestone inclusions moist, firm, medium plast	s,		_ _ _ _ _ _5	<u> </u>				A			-
-2				- - -		-						-
-3 -4				10 								-
-5	BOTTOM OF EXCAVATION AT 4.1 Monitoring piezometer installed to 4.1 m.	m.		- -15 - -								-
-6				20 								-
-7				_ _ _ 25								-
-8				_								_ _
-9 				-30 - -								
	O'CONNOR ASSOCIATES					89/ D E	02/28 I Y:		 P M		B No.: /G.No.:	10-907.2 A-4

PRC	OJECT: Red River Esso (#602	56 A)		GD	ELE	EV.:	9	9.659	m	но	LE No.:	E
LOC	ATION: Selkirk, MB			TPC	EL	.EV	.: 9	9.536	m	DR	ILL: Backho	oe Oe
SAN	APLE TYPE: SHELBY	SPLIT	SPOO	N [COR		ш.	ISTUF		\square	NO RECOVERY	OTHER
METRES	SOIL DESCRIPTION		SAMPLE TYPE	FEET	●%	Val Ce LE		ppr 0 40	n	Z	OTH TES	
-1 -2 -3	ASPHALT - 75 mm thick GRAVEL (FILL) - frozen CLAY - olive brown, silty, trace gravel, trace sand, trace limestone inclusions, moist, firm, medium plastic - noticeable petroleum odour	•		- - -5 - - - -		<u> </u>						
-4	BOTTOM OF EXCAVATION AT 3.7 m Monitoring piezometer installed to 3.7 m.	•		- - - -15								_
-5				_ _ _								
-6				-20 - -								_
-7				_ _ _25							·	_
-8				_ _ _								_
-9				- -30 - -								
	ADA					89,	/02/2	8		JO	B No.:	10-907.2
	O'CONNOR ASSOCIATES		LOG	GE) E	3 Y :	A	.PM	אם	/G. No. :	A-5	

2 5/8/252	JECT: Red River Esso Service Sta					9.665	2000	НО	LE No.:	BH1
LOC	ATION: Selkirk, MB (#60256A)		TPC	ELI	EV.: 9	9.539	m	DR	ILL: Auge	r
SAM	IPLE TYPE: SHELBY SP	LIT SPOO		CORE		DISTUR	BED		NO RECOVERY	o
METRES	SOIL DESCRIPTION	SAMPLE	FEET	Cond •% I		r etion ppn 00 40	n 0	N	OTH TES	
	SILT (TOPSOIL) - dark brown, some clay, organics, damp		_	_						
-1	CLAY - light grayish brown, silty, damp, firm		- - -5			140				
-2	- light olive brown, trace silt, silt inclusions, dry to damp, firm, laminated	П	_							
-3	- stiff below 1.7 m, fractured - moist below 2.6 m		_ _ _10	A						
	- olive brown, trace sand, occasional gravel, moist, soft, medium plasticity, laminated		_							
-4		#	- - -15							
-5	- grayish brown, silty, gravelly, oxidized, laminated									
-6		X	- -20	<u></u>						
-7	END OF HOLE AT 6.1 m. Monitoring piezometer installed to 6.1 m.		_ _ _					0		
			- -25							
-8	x x		_							
-9		(4)	_ _ _30							
			_							
	CONNOR ASSOCIATES	λ	DATE: 88/11/11 JOB No.:						10-90	

PROJ	JECT: Red River Esso Service St	ation	GD	ELE	EV.:	9	9.510	m	НС	LE No.:	BH2
LOCA	TION: Selkirk, MB (60256A)		TPC	EL	.EV	.: 9	9,410	m	DR	ILL: Auge	
SAM	PLE TYPE: SHELBY SP	LIT SPOC	N E	COR	E	<u></u> P	ISTUR	BED		NO RECOVERY	
METRES	SOIL DESCRIPTION	SAMPLE	FEET	● %	nce	0 30 0 6	ppn 0 40	n 0	2	OTH TES	
	SILT (TOPSOIL) - dark brown, organics, some clay, damp		-								
-1	CLAY - olive brown, silty, damp, firm, fractured, laminated - trace silt below 1.2 m		 _ _ 5								
-2			-							.8	
-3 <u> </u>	- moist below 2.4 m - silt inclusions and firm below 3.0 m		_ 10	A	•						
-4	-75		- -	_							
-5	- trace gravel, moist, soft, laminated	11	-15 -								
-6	- grayish brown, moist, soft	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	20								
-7	END OF HOLE AT 6.1 m. Monitoring piezometer installed to 6.1 m.										
-8			-25 - -								
-9			_ _ _30								
			-								
	CONNOR ASSOCIATES		DAT	E:	88/	11/11			JO	B No.:	10-90

	JECT: Red River Esso Service S	tation		ELEV.		9.392 m	+	DLE No.:	
	ATION: Selkirk, MB (#60256A)			ELEV		32.02.10		NLL: Auger	
SAM	IPLE TYPE: SHELBY S	PLIT SPOO	N E	CORE	سا	ISTURBE		NO RECOVERY	
METRES	SOIL DESCRIPTION	SAMPLE	FEET	Conce •% LE • 100 2 • 20	LA	ations ppm	N	OTH TES	
	SILT (TOPSOIL) - dark brown and black, organics, some clay, damp		_	<u> </u>					
-1	CLAY - olive brown, trace silt, trace gravel, stiff, fractured, laminated		_ - -5	<u> </u>					
-2	- moist and firm below 2.1 m								
-3	- some silt and damp below 3.0 m		_ _10 _	<u> </u>		A			
-4			- - -						
-5			-15 - -						
-6	- gray, silty	X	_ _ _20						
-7	END OF HOLE AT 6.1 m. Monitoring piezometer installed to 6.1 m.						-		
,			_ _ _25						
-8									
-9		8	_ _ _30						
	CONNOR ASSOCIATES		DAT	E:	88/11	/11	JO	B No.:	10-90

PROJ	JECT: Red River Esso Service St	tation	GD	ELE	V.:	99.61	1 m	НС	LE No.:	ВН4
LOCA	ATION: Selkirk, MB (#60256A)		TPC	ELI	EV.:	99.49	1 m	DR	ILL: Auger	
SAM	IPLE TYPE: SHELBY SI	PLIT SPOO	N E	CORE		DISTU	RBED		NO RECOVERY	ОТН
METRES	SOIL DESCRIPTION	SAMPLE	FEET	Conc • % L • 100 • 20	200 3	atic Appi		N	OTHE TEST	
	SILT (TOPSOIL) - dark brown, organics, some clay, damp		-	_						
-1	CLAY - olive brown, silty, damp, stiff, laminated									
	- fractured below 1.5 m		-5 -							
-2	- moist and firm below 2.1 m	-	-							
-3	- noticeable petroleum		- -10				A			
-4	odour at 3.0 m				A				٨	
	- grayish brown, some gravel, damp, firm		15	_						
-5	- stiff below 4.6 m									
-6	- trace gravel, trace silt inclusions			A	+					
	SILT - grayish brown, gravelly		<u>–</u> 20						N-1	
-7	END OF HOLE AT 6.2 m.									
	Monitoring piezometer installed to 6.1 m.		_ _25							
-8			-	+	+					
-9			_30							
H										
			DAT	E:	88/11	/11		JOI	B No.:	10-907
0	O'CONNOR ASSOCIATES		LOC	GED	BY:	GN	4D	DW	/G. No. :	A-4

\$

PRO	DJECT: Red River Esso Service S	tatio	on	GD	ELI	≣V.:				но	LE No.:	BH5	
LOC	CATION: Selkirk, MB (#60256A)			TPC	EL	EV				DR	ILL: Auge	r	
SAI	VIPLE TYPE: SHELBY SI	PLIT	SPOO	N 🎚	COR	E	P	ISTUR	BED		NO RECOVERY	OTHER	
METRES	SOIL DESCRIPTION		SAMPLE TYPE	FEET	© %	LEI	0 30	ppn 0 40	0	N	OTH TES	7000	
-1 -2 -3	SAND AND GRAVEL (FILL) - light brown, some silt, some clay, damp, soft CLAY - dark brown and black, silty, organics, damp - olive brown, trace silt, damp, stiff, fractured, laminated - very stiff below 1.8 m - stiff below 2.4 m - firm below 3.0 m - olive brown, silt inclusions, moist, fractured - grayish brown, laminated, silt lenses, some gravel,			- - - - - - - - - - - - - - - - - - -			0 6	0 8	0				
-5 -6	- olive brown, trace gravel, silt inclusions, moist, firm		H H	_		<u>.</u>				В		_	
- 7	END OF HOLE AT 6.1 m. Monitoring piezometer installed to 6.1 m.	4-	-20 - - - - - - -25								_		
-8												_	
-9			ė.	30 								_	
ci.	C'COCOD OUCCIOTES					DATE: 88/11/11					JOB No.: 10-907		
	O'CONNOR ASSOCIATES		LOG	LOGGED BY: GMD DWG.No.: A						A-5			

a triad

	TION: Salkirk						EV.:		762 m			E No.:	
SAME	TION SEININ	, MB (#60256	A)		TPC	EL	.EV.	99.	698 m	DF	SIL	L: Auger	•
JAIVIF	PLE TYPE:	SHELBY	SPLI	T SPOO	N [CORI			TURBI	D _	NC	RECOVERY	OTHE
METRES	SO DESCRI			SAMPLE	FEET	• %	Vapo Cen LEL 00 200 0 40	trat ▲p	pm	N		OTH TES	State of the later
-1	ASPHALT (25 mm CONCRETE (75 m GRAVEL (FILL) brown, oxidi some silt, of	nm) - light redd zed, sandy, damp, dense,	ish		- - -								
-2	SILT - dark ol with black m some clay, m	live brown		X	5 4 								
-3	laminated	oist, very um plasticity	,	X	_ _10 4 _								
4	becoming moi depthwet below 2.trace sand a	1 m, fracture			- 4 - - 4								
5	below 3.3 m	e at 4.6 m		X	- - -								
6	- dark gray				- -20 4 -								
7	Monitoring pie	zometer			_								
-8					-25 - -								
9					- - -30 -								
												March 1995	
0'	CONNOR ASS	OCIATES			DAT	Έ:	88/1	2/06		JC	B	No.:	10-907

	JJECT: Red River Esso Service St	ation	GD	EL	EV.:	:	99.69	9 m	НС	LE No.:	BH7
LOC	ATION: Selkirk, MB (#60256A)		TPO	E	LEV	. :	99.74	1 m	DR	ILL: Auge	r
SAN	APLE TYPE: SHELBY SI	PLIT SPOC		COF		ш	ISTUR			NO RECOVERY	OTHER
METRES	SOIL DESCRIPTION	SAMPLE	FEET	9%	Va nce LE	L	r atio ppr 00 40	n	N	OTH TES	
-1 -2 -3	ASPHALT (50 mm) GRAVEL (FILL) - light reddish brown, oxidized, sandy, some silt, damp, dense, frozen to 0.3 m SILT - olive brown, oxidized, some clay, trace sand, firm, wet CLAY - dark olive brown, oxidized, some silt, moist, very stiff, medium plasticity fractured - water seepage at 3.0 m - trace sand and silt lenses		5	<u></u>		•	A				-
-5 -6	- light brown, silty, some sand, trace cobbles, wet, dense, laminae below 3.0 m	X	15	<u> </u>							-
-7 -	END OF HOLE AT 6.2 m. Monitoring piezometer installed to 6.1 m.		_ _ _ _ _25								-
-8 - -9 -			_ _ _ _ _30								-
		<u> </u>	DAT	E:	88/	12/06	5		JOI	B No.:	10-907
(O'CONNOR ASSOCIATES		LOG	GE	D E	3Y:	GJB	•	DW	/G. No. :	A-7

Borehole/Monitoring Well ID: MW-32

Page 1 of 1

Project No.: 03937

Client: Imperial Oil Limited

Location: Red River Esso (860265)

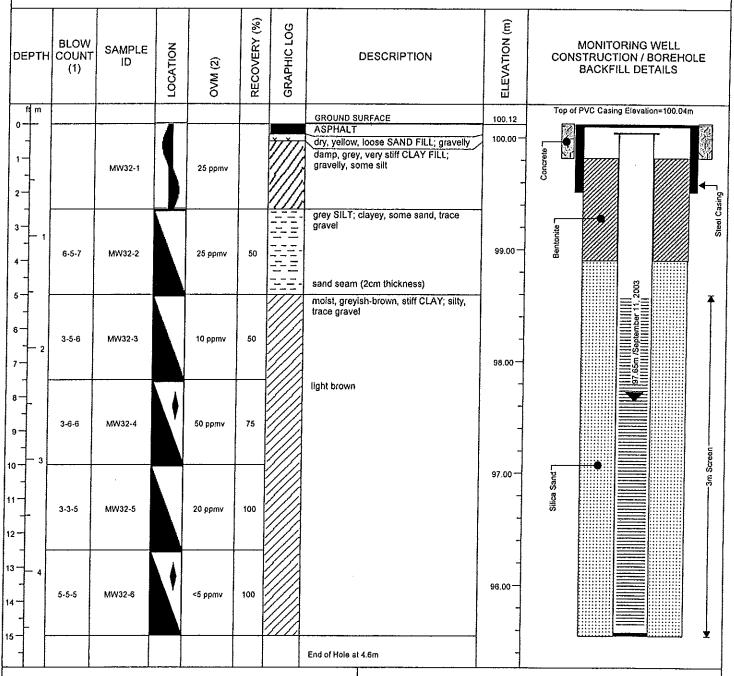
Date Completed: August 15, 2003

Site Datum: West Bolt on Lightpost

ATSI Supervisor: B. Kohlsmith

Drilling Method: Auger (Split Spoon)

Borehole Diameter: 15cm


Monitoring Well Diameter: 5cm

Drilling Company: Paddock Drilling

Drilling Equipment: Hollow Stem Auger

Well Casing: 5cm PVC Solid Pipe Well Screen: 5cm PVC Slotted Pipe

OVM: Gastech 1238 ME

⁽¹⁾ Blow count per 0.15 m

The data represented in this borehole log requires interpretation by Aqua Terre personnel. Third parties using this log do so at their own risk.

All elevations and locations are approximate.

Monitoring well equipped with dedicated inertial foot valve and polyethylene tubing for sampling.

= Sample submitted for laboratory analysis

Soil samples MW32-4 and MW32-6 were submitted for laboratory analyses of CCME -PHC (Fractions 1-4 plus BTEX) and lead.

⁽²⁾ Organic Vapour Meter (OVM) reading

Client: Imperial Oil Limited

Location: Red River Esso (860265)

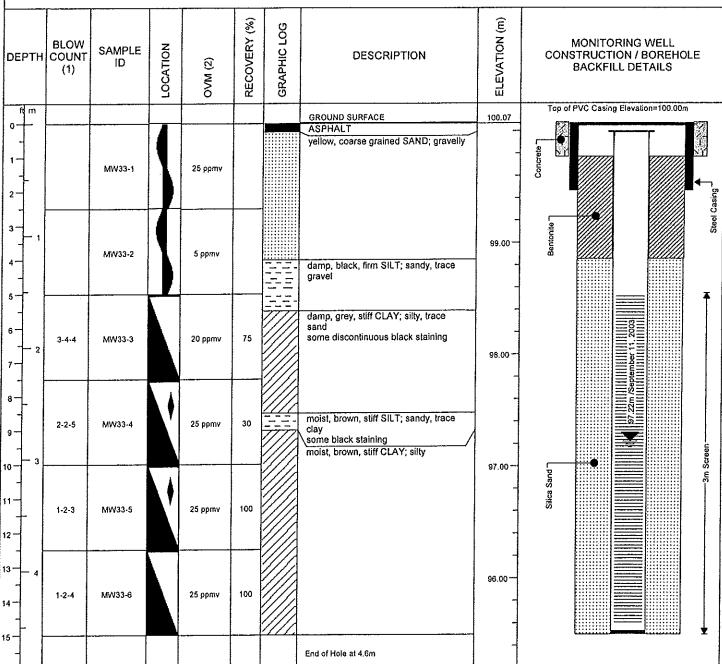
Date Completed: August 15, 2003

Site Datum: West Bolt on Lightpost

ATSI Supervisor: B. Kohlsmith

Drilling Method: Auger (Split Spoon)

Borehole Diameter: 15cm


Monitoring Well Diameter: 5cm

Drilling Company: Paddock Drilling

Drilling Equipment: Hollow Stem Auger

Well Casing: 5cm PVC Solid Pipe Well Screen: 5cm PVC Slotted Pipe

OVM: Gastech 1238 ME

⁽¹⁾ Blow count per 0.15 m

The data represented in this borehole tog requires interpretation by Aqua Terre personnel. Third parties using this log do so at their own risk.

All elevations and locations are approximate.

Monitoring well equipped with dedicated inertial foot valve and polyethylene tubing for sampling.

= Sample submitted for laboratory analysis

Soil samples MW33-4 and MW33-5 were submitted for laboratory analyses of CCME -PHC (Fractions 1-4 plus BTEX) and lead.

⁽²⁾ Organic Vapour Meter (OVM) reading

Client: Imperial Oil Limited

Location: Red River Esso (860265)

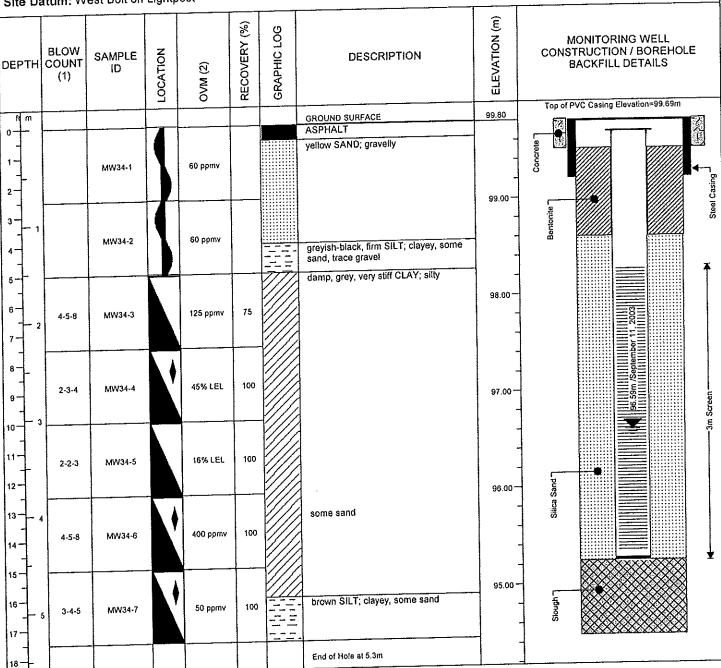
Date Completed: August 15, 2003

Site Datum: West Bolt on Lightpost

ATSI Supervisor: B. Kohlsmith

Drilling Method: Auger (Split Spoon)

Borehole Diameter: 15cm


Monitoring Well Diameter: 5cm

Drilling Company: Paddock Drilling

Drilling Equipment: Hollow Stem Auger

Well Casing: 5cm PVC Solid Pipe Well Screen: 5cm PVC Slotted Pipe

OVM: Gastech 1238 ME

(1) Blow count per 0.15 m

(2) Organic Vapour Meter (OVM) reading

The data represented in this borehole log requires interpretation by Aqua Terre personnel. Third parties using this log do so at their own risk.

All elevations and locations are approximate.

Monitoring well equipped with dedicated inertial foot valve and polyethylene tubing for sampling.

Sample submitted for laboratory analysis

Soil samples MW34-4, MW34-6 and MW34-7 were submitted for laboratory analyses of CCME -PHC (Fractions 1-4 plus BTEX) and lead.

Client: Imperial Oil Limited

Location: Red River Esso (860265)

Date Completed: August 15, 2003

Site Datum: West Bolt on Lightpost

ATSI Supervisor: B. Kohlsmith

Drilling Method: Auger (Split Spoon)

Borehole Diameter: 15cm

Monitoring Well Diameter: 5cm

Drilling Company: Paddock Drilling

Drilling Equipment: Hollow Stem Auger

Well Casing: 5cm PVC Solid Pipe Well Screen: 5cm PVC Slotted Pipe

OVM: Gastech 1238 ME

					,		Y	1	
DEPTH	BLOW COUNT (1)	SAMPLE ID	LOCATION	OVM (2)	RECOVERY (%)	GRAPHIC LOG	DESCRIPTION	ELEVATION (m)	MONITORING WELL CONSTRUCTION / BOREHOLE BACKFILL DETAILS
£ m							GROUND SURFACE	100.01	Top of PVC Casing Elevation=99.92m
1-2-		MW35-1		100 ppmv		* *	ASPHALT yellow SAND FILL; gravelly damp, greyish-black, very stiff SILT; clayey, some sand, trace gravel	_	Concrete
3	6-6-7	MW35-2		75 ppmv	10		damp, brownish-grey, very stiff CLAY;	99.00	Bentonite Steel Casing
5— 6— 1— 2 7—	4-5-6	MW35-3		125 ppm v	75		silty, some sand reddish	98.00	
9 - 3	3-4-5	MW35-4		200 ppmv	100			97.00	
11-	3-3-4	MW35-5	V	6% LEL	100			-	
13 - 4	3-3-3	MW35-6	*	125 ppmv	100		some sand	96.00 -	Sikes Sand
15 — 16 — 17 — 5	3-4-6	MW35-7		100 ppm v	100		moist, brown, stiff SILT; sandy, some coal and clay, trace gravel medium grained sand seam (7.5cm thickness)	95.00	Slough
18							End of Hole at 5.3m		

(1) Blow count per 0.15 m

The data represented in this borehole log requires interpretation by Aqua Terre personnel. Third parties using this log do so at their own risk.

All elevations and locations are approximate.

Monitoring well equipped with dedicated inertial foot valve and polyethylene tubing for sampling.

= Sample submitted for laboratory analysis

Soil samples MW35-5 and MW35-6 were submitted for laboratory analyses of CCME -PHC (Fractions 1-4 plus BTEX) and lead. Soil sample MW35-3 was submitted for grain size analysis.

⁽²⁾ Organic Vapour Meter (OVM) reading

Client: Imperial Oil Limited

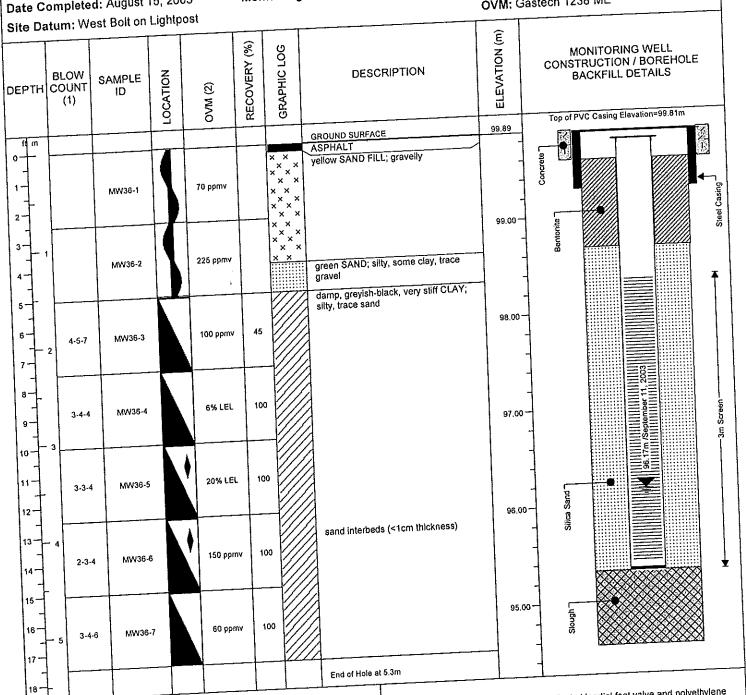
Location: Red River Esso (860265)

Date Completed: August 15, 2003

ATSI Supervisor: B. Kohlsmith

Drilling Method: Auger (Split Spoon)

Borehole Diameter: 15cm


Monitoring Well Diameter: 5cm

Drilling Company: Paddock Drilling

Drilling Equipment: Hollow Stem Auger

Well Casing: 5cm PVC Solid Pipe Well Screen: 5cm PVC Slotted Pipe

OVM: Gastech 1238 ME

(1) Blow count per 0.15 m

(2) Organic Vapour Meter (OVM) reading

The data represented in this borehole log requires interpretation by Aqua Terre personnel. Third parties using this log do so at their own risk.

All elevations and locations are approximate.

Monitoring well equipped with dedicated inertial foot valve and polyethylene

= Sample submitted for laboratory analysis

Soil samples MW36-5 and MW36-6 were submitted for laboratory analyses of CCME -PHC (Fractions 1-4 plus BTEX) and lead.

Client: Imperial Oil Limited

Location: Red River Esso (860265)

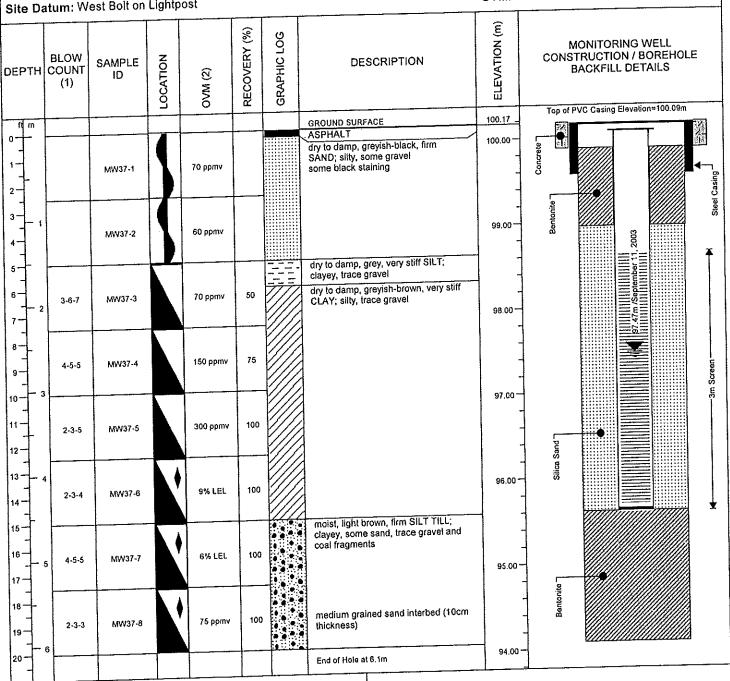
Date Completed: August 15, 2003

Site Datum: West Bolt on Lightpost

ATSI Supervisor: B. Kohlsmith

Drilling Method: Auger (Split Spoon)

Borehole Diameter: 15cm


Monitoring Well Diameter: 5cm

Drilling Company: Paddock Drilling

Drilling Equipment: Hollow Stem Auger

Well Casing: 5cm PVC Solid Pipe Well Screen: 5cm PVC Slotted Pipe

OVM: Gastech 1238 ME

⁽¹⁾ Blow count per 0.15 m

The data represented in this borehole log requires interpretation by Aqua Terre personnel. Third parties using this log do so at their own risk.

All elevations and locations are approximate.

Monitoring well equipped with dedicated inertial foot valve and polyethylene tubing for sampling.

Soil samples MW37-6, MW37-7 and MW37-8 were submitted for laboratory analyses of CCME -PHC (Fractions 1-4 plus BTEX) and lead.

⁽²⁾ Organic Vapour Meter (OVM) reading

Client: Imperial Oil Limited

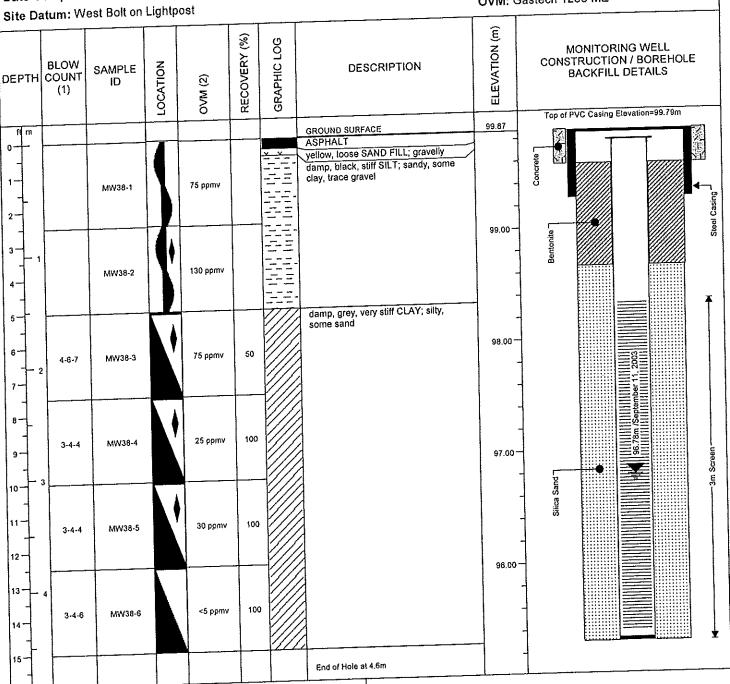
Location: Red River Esso (860265)

Date Completed: August 15, 2003

ATSI Supervisor: B. Kohlsmith

Drilling Method: Auger (Split Spoon)

Borehole Diameter: 15cm


Monitoring Well Diameter: 5cm

Drilling Company: Paddock Drilling

Drilling Equipment: Hollow Stem Auger

Well Casing: 5cm PVC Solid Pipe Well Screen: 5cm PVC Slotted Pipe

OVM: Gastech 1238 ME

(1) Blow count per 0.15 m

(2) Organic Vapour Meter (OVM) reading

The data represented in this borehole tog requires interpretation by Aqua Terre personnel. Third parties using this log do so at their own risk.

All elevations and locations are approximate.

Monitoring well equipped with dedicated inertial foot valve and polyethylene tubing for sampling.

= Sample submitted for laboratory analysis

Soil samples MW38-2, MW38-3 and MW38-5 were submitted for laboratory analyses of CCME -PHC (Fractions 1-4 plus BTEX) and lead. Soil sample MW38-4 was submitted for grain size analysis.

	NT: Imperial Oil Lin	nited					trusive Assessment	BOREHOLE NO	D: 04-01	
	ER: Maple Leaf			ro	CATIO	ON: 2	87 Main Street Selkirk, MB	PROJECT NO:	WX058	76
	_/METHOD: HSA							ELEVATION: 9	9.22 m	
	PLE TYPE	Shelby Tul					SPT Test (N) Grab Sample	∭Split-Pen		же
BACK	FILL TYPE	Bentonite	Pea C	Gravel			Orill Cuttings Grout	Bentonite Chips	∷Sa	and
Depth (m)	◆ GASTECH VAPOU 100 200 30	R (ppmv) ◆ 0 400	● GASTECH VAPOUR (20 40 60	%LEL) • 80	SOIL SYMBOL	SOSN	SOIL DESCRIPT	TION	SAMPLE TYPE	SAMPLE NO SLOTTED PIEZOMETER
0	•					SP	SAND (FILL) - gravelly, poorly grade brown	d, medium grained, damp,		1
1	•					LI	CRUSHED LIMESTONE (FILL) - san CLAY - high plastic, damp, firm to stil			2
2							inclusions			3
						СН	- coarse sand lens with black staining	between 2.9m and 3.2m		5
							- grey staining between 3.7m and 4.3 SILT (TILL) - sandy, gravelly, low plas			6
							energy candy, gravery, on place	inois, from, some day		7
						ML			3	
									C)	
					THE PROPERTY OF THE PROPERTY O		TESTHOLE TERMINATED AT 7.6m. NOTES: Seepage zones from sand at 2.9m to 3 installed on completion.	3.2m. Monitoring well		
							таканов он котприятия.			
		3	AMEC Earth &	Enviro	nmen	tal	LOGGED BY: AH	COMPLETION		
~	mec*	7	Winnipeg,				REVIEWED BY: AD Fig. No: 2	COMPLETION	DATE: 5	August 200

CLIENT: Imperial Oil Limited			ntrusive Assess		BOREHOLE NO		
DRILLER: Maple Leaf		LOCATION:	287 Main Street	Selkirk, MB	PROJECT NO:		3
DRILL/METHOD: HSA					ELEVATION: 99		
	helby Tube No Recov		SPT Test (N)	Grab Sample	Split-Pen -	Core	
BACKFILL TYPE BE	entonite Pea Grave	<u> </u>	Drill Cuttings	Grout	Bentonite Chips	::]San	d
(E)	e) ♦ GASTECH VAPOUR (%LEL 20 40 60 8)	SOIL SYMBOL USCS	7	SOIL DESCRIPTIO	ON	SAMPLE TYPE	SLOTTED PIEZOMETER
2		CI	dark brown, so	sandy, gravelly, medium me organics and silt	to high plastic, damp, firm, ark brown to black, organics own/ olive, frequent silt	1	
4			- brown, soft be	low 3.8m andy, silty, gravelly, low	plastic, soft, grey	6	
		CL	- very dense be			8	
			NOTES:	RMINATED AT 6.1m. Installed on completion.			
amec [©]	AMEC Earth & Env Winnipeg, Ma			DBY: AH EDBY: AD	COMPLETION D		

	NT: Imperial Oil Li						ssessment	BOREHOLE N				
	LER: Maple Leaf			LOCATI	ON: 2	87 Main	Street Selkirk, MB	PROJECT NO				
DRIL	L/METHOD: HSA							ELEVATION:				
SAMF	PLE TYPE .	Shelby Tube	☑No Recover	у		SPT Test (I		Split-Pen		Core		
BACK	(FILL TYPE	Bentonite	Pea Gravel			Orill Cutting	s Grout	Bentonite Chips	∷ !s	Sand		
Depth (m)	◆ GASTECH VAPO 100 200 3	UR (ppmv) ◆	TECH VAPOUR (%LEL) 40 60 80	SOIL SYMBOL	nscs	1 (And 4 co	SOIL DESCRIPTI	ION	SAMPLE TYPE	SAMPLE NO	SLOTTED PIEZOMETER	FI FVATION (m)
0	1				\leftarrow	ASPHA						Ė
	•				SP	SAND	RETE FILL) - gravelly, poorly graded	l, damp, brown		1		
-1						CLAY -	high plastic, damp, soft, browi	n, some silt	111774			98
-2					СН					3		- - - - 97 -
-3	**************************************					- silty a	nd moist below 2.4m			4		- - - - - - - - - - - - - - - - - - -
						CLAY (FILL) - silty, gravelly, low plasti	ic, soft, brown		5		- - -
4	•					- grey/ t	orown below 4.0m			6		-95 95
5					CL	- dark b	own below 5.5m, stiff with larg	je silt pockets		7		94
6						TESTHO NOTES:	DLE TERMINATED AT 6.1m.					-93 -
7						Monitori	ng well installed on completior).	4			- -92
1												
8												91 91
9					A. C.							- - - - -90
	6	O	EC Earth & Env	ironmo	ntal		LOGGED BY: AH	COMPLETIO				
2	mec'	J AWI	CC במונוו & בווע Winnipeg, Ma		iital	h-	REVIEWED BY: AD	COMPLETIO	V DATE:			
اللسا							Fig. No: 6	(Page	1 0

	NT: Imperial Oil Limited				trusive Assessment	BOREHOLE NO	
	LER: Maple Leaf		LOCATI	ON: 2	87 Main Street Selkirk, MB	PROJECT NO:	
	L/METHOD: HSA		<u>L</u>			ELEVATION: 99	
		relby Tube No Reco			SPT Test (N) Grab Sample	Spfit-Pen	Core
BACK	KFILL TYPE 💹 Be	entonite Pea Grav	rel .		Orill Cuttings Grout	Bentonite Chips	Sand
Depth (m)	◆ GASTECH VAPOUR (ppmv) 100 200 300 40	● GASTECH VAPOUR (%LE 0 20 40 60	SOIL SYMBOL	nscs	SOIL DESCRIPTI	ON	SAMPLE TYPE SAMPLE NO SLOTTED PIEZOMETER
0				SP	SAND (FILL) - gravelly, poorly graded damp, light brown	, fine to medium grained,	1
2					CLAY - silty, high plastic, moist, soft, to organics to 1.5m	orown/ grey mottled, trace	2
3				CH	- frequent oxidized silt inclusions below	w 2.4m	5
\$	•				- very silty between 4.1m and 4.4m SILT (TILL) - sandy, gravelly, low plast	iic, moist, brown, some clay	6 111
5	*		The state of the s	ML	- dense below 5.2m		7
5					TESTHOLE TERMINATED AT 5.5m. NOTES: Monitoring well installed upon completing the state of the s	ion.	
, garage,				11-11-11-11-11-11-11-11-11-11-11-11-11-			
i			<u></u>		LOGGED BY: AH	COMPLETION	
	mec	AMEC Earth & Er		ntal	REVIEWED BY: AD		DATE: 4 August 20
		Winnipeg, M	aniioda		Fig. No: 8		Page 1

	NT: Imperial Oil Limited	d		PRO	JEC	T: In	trusive Assessment	BOREHOLE NO	: 04-09	
	LER: Maple Leaf	***************************************		LOC	ATIO	N: 2	287 Main Street Selkirk, MB	PROJECT NO:	WX0587	6
DRILL	L/METHOD: HSA							ELEVATION: 98	3.83 m	***************************************
SAMF	PLE TYPE	Shelby Tube	☑No Recov	very		X:	SPT Test (N)	Split-Pen	Со	re
BACK	(FILL TYPE	Bentonite	Pea Grav					Bentonite Chips	Sar	
					T					
Depth (π)	◆ GASTECH VAPOUR (ppr 100 200 300	mv) ◆ ■ GAS 400 20	TECH VAPOUR (%LEI 40 60 8	E) • 80	SOIL SYMBOL	SOSN	SOIL DESCRIPTION		SAMPLE TYPE	SLOTTED PIEZOMETER
0			<u>;,,</u>	ļ <u>į.</u>		\	ASPHALT		\perp	
,						SP	CONCRETE SAND (FILL) - gravelly, poorly graded, fine to damp, brown	o medium grained,		
-1	•						CLAY - high plastic, damp, firm, brown, oxide inclusions	ation, occasional silt		2
-2	•									
3	*					СН			4	
1	•						- moist and soft with frequent silt inclusions b	elow 3.1m	5	
4	•						CLAY (TILL) - silty, gravelly, low plastic, mois sand	t, soft, brown, some	6	
5	•								7	
						CL	- dark and firm below 5.2m		8	
5							TESTHOLE TERMINATED AT 6.1m. NOTES:			
						- Andreas	Monitoring well installed upon completion.		4444	- 9
-										
:	*******									-9
						***************************************				- - - - - - - - - - - - - - - - - - -
	mec [©]	AMI	EC Earth & En	viron	ment	al	LOGGED BY: AH REVIEWED BY: AD	COMPLETION I		- 9(

	NT: Imperial Oil Limited LER: Hazco				estpit Program 287 Main Street Selkirk, MB				DLE NO: TP1 T NO: WX05876	
	L/METHOD: Backhoe		12004	I FOIY. Z	LOT MIGHT OFFECT OFFICIAL INID			EVATI		
		nelby Tube No Recov	erv	∇	SPT Test (N) Grab Sample	П		t-Pen	Core	
		entonite Pea Grave			Drill Cuttings Grout			tonite C		
					.4jorost		Ī	TOTALE C	inipo E Ganu	\top
Depth (m)	◆ GASTECH VAPOUR (ppmv, 100 200 300 40) ♦ GASTECH VAPOUR (%LEI 10 20 40 60 8	0	SOIL SYMBOL USCS	SOIL DESCRIPTION		SAMPLE TYPE	SAMPLE NO	OTHER TESTS COMMENTS	
0				GP	GRANULAR FILL - sandy, poorly g medium grained, damp, brown	graded,				
-1					CLAY - high plastic, damp, firm to brown	stiff,		1		
•				CH CH				2		
2								3		
3	•				TESTPIT TERMINATED AT 3.1m.			4		
1				***************************************	TESTET TERMINATED AT 3.1M.	***************************************				7
\$ 										
						, pro-		- AMALINA		
								i pagan da sa Asa		11111

-								7777444		
							Washington and the same of the	- And the state of		
						1 () () () () () () () () () (apat Ar	A program,		
		AMEC Earth & En	vironm	<u> </u>	LOGGED BY: AH				ETION DEPTH: 3 m	Г
2	mec	Winnipeg, Ma		ornal	REVIEWED BY: AD Fig. No: 2		(COMPL	ETION DATE: 16 July 20 Page	

	IT: Imperial Oil Li ER: Hazco	mited				Testpit Pro	gram Street Selkirk, MB				DLE NO: TP3 T NO: WX05876	
	/METHOD: Back	khoe		12004	, , , , , , , ,	_v, muss	ocor commit, mo			EVATI		
	LE TYPE	Shelby Tu	ube No Recov	ery	$\overline{\times}$	SPT Test (I	N) Grab Sample	П	Spli	t-Pen	Core	
	FILL TYPE	Bentonite				Drill Cutting				tonite C	Chips :: Sand	
Depth (m)	◆GASTECH VAPO 100 200 3	iUR (ppmv) ♦	● GASTECH VAPOUR (%LEE 20 40 60 8	L) • 0	SOIL SYMBOL	2000	SOIL DESCRIPTION		SAMPLE TYPE	SAMPLE NO	OTHER TESTS COMMENTS	Death (m)
. 0					G C	CLAY (JLAR FILL - gravel, poorly grad n grained, damp, brown FILL) - high plastic, damp, firm own	ded, i to		1		
-1 -1					М	arow/ bi	ILL) - sandy, low plastic, damp lack	o, soft,		2		- -1 - -
-2						CLAY - brown	high plastic, damp, firm to stiff	,		3		-2 -2
_					c	Ħ				-		
-3	•					TESTP	IT TERMINATED AT 3.3m.			4		
-4												-4
-5										Port date of the second		-5 -5
-6												- - - - - - - - - - -
4						-						- - - - - - - - -
7												7
8										**************************************		8
9					West of the second seco						DI ETION DESTINA	
a	med	9	AMEC Earth & E Winnipeg, N			ıl	LOGGED BY: AH REVIEWED BY: AD Fig. No: 4				PLETION DEPTH: 3.3 r PLETION DATE: 16 Ju P	

	NT: Imperial Oil Limited	d			stpit Program			OLE NO: TP5	
	LER: Hazco		LOCATIO	ON: 28	87 Main Street Selkirk, MB			CT NO: WX05876	
	L/METHOD: Backhoe		L	Ma	DTT (40)		EVAT		
		Shelby Tube No Recover				∭Spl		Core	
BAUN	APILL TIPE	Bentonite Pea Grave) 	I Mln	rill Cuttings Grout	Bei	ntonite	Chips Sand	Т-
Depth (m)	◆ GASTECH VAPOUR (ppr 100 200 300	mv) ♦ GASTECH VAPOUR (%LEL 400 20 40 60 8i	SOIL SYMBOL	nscs	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLENO	OTHER TESTS COMMENTS	-
0	★:		7//	SP	SAND (FILL) - gravelly, poorly graded, medium grained, damp, brown CLAY (FILL) - silty, medium to high plastic, moist, grey/ black, some sand		1		
1				CI	SAND (FILL) - poorly graded, fine grained,		2		1
2				SP	moist, brown, some silt		3		
3	*			СН	CLAY - high plastic, moist, brown, sulphate inclusions TESTPIT TERMINATED AT 3.0m		4		-3
					TEGETT TERMINATED AT 3.0/A				
4							local part		4
									5
									- - - - - - - - 7
							2		
				, introduction					8
1.								ļ	Ė
									-
_		AMEC Earth & En	vironmen	ital	LOGGED BY: AH			PLETION DEPTH: 3 m	~-
\boldsymbol{A}	mec [©]	Winnipeg, Ma			REVIEWED BY: AD Fig. No: 6	-	COMP	PLETION DATE: 16 July 20 Page	

	PIT LOCATION: 287 Main Street, Selkirk, Manitoba		-	FII LOG	RE	EF. N	0: 10)-907	7T07							PIT		
	NT: Imperial Oil PLE TYPE: G - Grab OS - Other															T DA	E: 2013/08/0 DN DATE: 2013/08/0	
O7 11111	22 111 2. 3 3145 35 31161												\rightarrow			1		
Depth (m)	DESCRIPTION STRATIGRAPHY	SAMPLE TYPE		SAMPLING LAB SAMPLE NAME LAB ANALYSES	Ξ/	С	ONCE	NTR	OUR ATIOI	N 0							COMMENTS	Depth (#)
0 	GROUND SURFACE ASPHALT. GRAVEL (Fill) - brown, coarse grained, some sand, trace silt, trace clay, moist.	G																<u> </u>
-1 - - - - - - -	CLAY - dark gray, some silt, trace sand, moist. - brown below 1.8 m.	G	1/	7														5
-2 - - - - - - - - - -	- mottled gray from 1.8 m to 4.3 m.	G	<u> </u>	TP-7-1.8-2.4 (DUP-7)/ BTEX, PHC F1-F4, PAH, Sel-Metals, 1.2-DBA, 1.2-DCA, glycols TP-7-2.4-3.1/BTEX, PHC F1-F4, PAH, Sel-Metals, 1.2-DBA, 1.2-DCA, glycols													Test Pit backfilled with excavated material which was replaced in the original order and then nominally	- 10
- - - - - - - - - - - -		G	<u>/</u>	7													then nominally compacted with the excavator bucket.	
- - - -5	- trace gravel below 4.3 m. END OF TEST PIT at 4.9 m	G		TP-7-4,3-4,9 / BTEX, PHC F1-F4, PAH, Sel-Metals, 1,2-DBA, 1,2-DCA, glycols														-1
- - - - - - - - -	No Daylighting Performed																	-2
- - - - -																		-2
-8 																		
	T DATE START DEPTH EQUIPMENT 01 0.0 m Hitachi 200LC Track Excavator			CONTRA(G	AS OG(ME1	ΓER 1: ΑΤ	: TY		KI Eagle /IEW: KAF DRAFTED	
																	SON	

CLIEN	PIT LOCATION: 287 Main Street, Selkirk, Manitoba NT: Imperial Oil PLE TYPE: G - Grab OS - Other			111 200	F	REF. NO: 10-907T07		TEST PIT NO START DAT COMPLETION	E: 2013/08/0	
								PAGE 1 of		
Depth (m)	DESCRIPTION STRATIGRAPHY	SAMPLE TYPE	_	SAMPLING LAB SAMPLE NA LAB ANALYSE	.ME/	▲ SOIL VAPOUR CONCENTRATION (ppmv) 100 200 300 400			COMMENTS	Depth (ft)
- 0	GROUND SURFACE ASPHALT. GRAVEL (Fill) - brown, coarse grained, sandy, some silt, trace day, moist.	G								- 0
-1 - - - - - - - - - - -	CLAY - dark gray, some silt, trace sand, moist. - brown below 1.8 m.	G	1/	7						5
-2 - - - - - - 3	- mottled gray from 2.4 m to 3.7 m.	G G	/	TP-8-1.8-2.4 / BTEX, PHC F1-F4, PAH, SeMetals, 12-DBA, 1,2-DCA, glycols					Test Pit backfilled with excavated material which was replaced in the original order and then nominally compacted with the excavator bucket.	
- 4	- grayish brown, trace gravel below 4.3 m.	G	<u>/</u>	TP-8-4.3-4.9 / BTEX, PHC F1-F4, PAH, Sel-Metals, 1,2-DBA, 1,2-DCA, glycols						15
PRACCES REPORT LOG ST. PEAL-CEG DATA V.2.00T PEAL-CEG LIBRARY V.2.01B. PREPARED. 2013/09/17. PRINTED: 12/13/20/18	END OF TEST PIT at 4.9 m No Daylighting Performed									20
CEG DATA VZ.GDT PE&I.CEG LIBRA										25
ONS PER-CEG REPORT LOG 51 PER-C										-
STAR 2013/08	T DATE START DEPTH EQUIPMENT 01 0.0 m Hitachi 200LC Track Excavator			CONTF Main Line			LOGGE		(I Eagle /IEW: KAF DRAFTED:	

	PIT LOCATION: 287 Main Street, Selkirk, Manitoba			rii LOG	RE	F. N	10:	10-	907	7T07	,							NC		100101
	NT: Imperial Oil PLE TYPE: G - Grab OS - Other																	ATI	E: 2013 ON DATE: 2013	
OAW	EL TTI E. O - Grab GG - Girler																	of		00/01
(m)	DESCRIPTION	끮		SAMPLING																#
Depth (m)	STRATIGRAPHY	SAMPLE TYPE	ZONE TESTED	LAB SAMPLE NAME LAB ANALYSES	Ε/	(ON	CEN	ITR	OUR ATIC	N								COMMENTS	(#)
<u>-</u> 0	GROUND SURFACE GRAVEL (Fill) - grayish brown, medium grained, sandy, trace silt, trace clay, moist.	1																		<u> </u>
-	SILT - grayish brown, some clay, trace gravel, trace sand, moist.	G																		
- 1 - - -		G	/																	- - - - - - -
-		G	<u>//</u>	TP.0.1 8.2 A / RTEV																5
-2 - - -	CLAY - brown, some silt, trace sand, moist.	G	\bigvee	TP-9-1.8-2.4 / BTEX, PHC F1-F4, PAH, Sel-Metals, 1,2-DBA, 1,2-DCA, glycols																-
-3		G	u	7	4														Test Pit backfilled w excavated material which was replaced the original order an then nominally	in F
- - - -		G																	then nominally compacted with the excavator bucket.	-
- 4 -	- grayish brown, trace gravel below 3.7 m.	G																		- - - - - -
-		G																		<u>-</u> 1
-5	END OF TEST PIT at 4.9 m			-		:		:				:	:				:			E
	No Daylighting Performed																			-
- -6 -																				-2
- - -																				-
-7 - -																				-
- - - - - 8																				-2
-																				-
- - - -9																				- - - - -
STAR 2013/08				CONTRAI Main Line Inc				•	: :	•	-	LO	GGE	ED:	ΑТ	K	I	REV		TED: MLN
)	A	A	ŀ	7	50 N	IS

	PIT LOCATION: 287 Main Street, Selkirk, Manitoba			TI LOG	RI	F. I	VO:	1()-90	7T	07							TN			TP-1	10 2013/	00/04	
	NT: Imperial Oil PLE TYPE: G - Grab OS - Other																	DAT STIC		ATE		2013/ 2013/		
												_						1 of						
Depth (m)	DESCRIPTION STRATIGRAPHY	SAMPLE TYPE		SAMPLING LAB SAMPLE NAMI LAB ANALYSES	E/		201	NCE	VAF NTF opm	RAT	IR ION 400								-	C	OMME	NTS		Depth (ft)
-0 	GROUND SURFACE ASPHALT. GRAVEL (Fill) - brown, medium grained, sandy, some silt, some clay, damp. SAND (Fill) - brown, medium to fine grained, trace silt, trace clay, damp.	G																						0
- - - - -	CLAY - brown, some silt, trace sand, moist.	G																						5
_2 - -		G		TP-10-1.8-2.4 / BTEX, PHC F1-F4, PAH, Sel-Metals, 1,2-DBA, 1,2-DCA, glycols																of Dit	hookfi	i ll ed wit	-1-0	- - - - - - - -
-3		G	<u>/</u>																w th th	cavat nich w e origi en noi empac	ed mate as rep inal ord minally ted wit	terial laced i der and th the		10
_ - - -4		G	/																e)	cavat	or bucl	ket.		
		G																						15
_5 - - - -	END OF TEST PIT at 4.9 m No Daylighting Performed																							
6 6																								20
- - - -7																								
-																								25
-8 -8 -																								
- - -9																								- - - - - -
STAR 2013/08	T DATE START DEPTH EQUIPMENT 0.0 m Hitachi 200LC Track Excavator			CONTRA Main Line Ind			ı.						L	OG	GEI	D: A	TK	RE'		/: KAF		DRAF		

	PIT LOCATION: 287 Main Street, Selkirk, Manitoba NT: Imperial Oil		 TI LOG	R	EF. N	10:	10-	907	T07							T NO		P-11 2013/08	2/01
	PLE TYPE: G - Grab OS - Other												C	OM	PLE	ETIC	N DATE:	2013/08	
	7-7-7-1-1-1	_											P	AGE		l of	1		
Depth (m)	DESCRIPTION STRATIGRAPHY	SAMPLE TYPE	SAMPLING LAB SAMPLE NAMI LAB ANALYSES	E/	(ON	CEN	TR/	OUR ATIO	N						-	CON	MENTS	Depth (ft)
_0 - - - - - - -	GROUND SURFACE _ASPHALT. SAND (Fill) - brown, coarse to fine grained, some gravel, some silt, trace cobbles, moist. SILT - grayish brown, some day, trace gravel, trace sand, wet.	G																	-0
- - - - - - - - 2 - - - - - -	CLAY - grayish brown, some silt, trace gravel, trace sand, moist, mottled gray below 1.8 m.	G G	TP-11-1.8-2.4 / BTEX, PHC F1-F4, Lead, 1,2-DBA 1,2-DCA														excavated	replaced in Il order and nally d with the	⊢5
-3 3 	END OF TEST PIT at 2.4 m No Daylighting Performed																		- 10
5																			- 15
-6 - - - - - - - - - -																			20
																			25
—9 STAR 2013/08	T DATE START DEPTH EQUIPMENT 01 0.0 m Hitachi 200LC Track Excavator		CONTRA Main Line In								LOG	GE	D: A	λTK		REV	KI Eagle /IEW: KAF		ED: MLM

	T PIT LOCATION: 287 Main Street, Selkirk, Manitoba				RE	EF. NO: 10-907T07				TES				
	:NT: Imperial Oil IPLE TYPE: G - Grab OS - Other									STA			E: 2013/08/0 ON DATE: 2013/08/0	
O/ 1111	1 LE 111 E. G. Glab. GG. Galloi									PAG				
Depth (m)	DESCRIPTION STRATIGRAPHY	SAMPLE TYPE	_	SAMPLING LAB SAMPLE NAMI LAB ANALYSES	E/	▲ SOIL VAPOUR CONCENTRATIC (ppmv)	N						- COMMENTS	Depth (ft)
-0 -1 -1 -2 -3 4 	GROUND SURFACE ASPHALT. GRAVEL (Fill) - light brown, coarse to fine grained, some sand, trace silt, damp. ORGANIC SILT - black, some clay, trace sand, moist. SILT - grayish brown, trace gravel, trace sand, moist. CLAY - brown, trace sand, trace silt, moist.	SAMS		TP-12-1.8-2.4 / Grain Size TP-12-3.1-3.7 / BTEX, PHC F1-F4, Lead, 1,2-DBA TP-12-3.7-4.3 / Grain Size		(ppmv) 4 4 4 4 4 4 4 4 4							Test Pit backfilled with excavated material which was replaced in the original order and then nominally compacted with the excavator bucket.	0
	RT DATE START DEPTH EQUIPMENT 8/01 0.0 m Hitachi 200LC Track Excavator			CONTRA Main Line In				LO	GGE): ATŁ	K	RE'	KI Eagle VIEW: KAF DRAFTED:	

	PIT LOCATION: 287 Main Street, Selkirk, Manitoba		PII LO		REF.	NO:	10-90	7T07	,					IT NO		P-13	
	T. Imperial Oil E TYPE: G - Grab OS - Other											STA			E: ON DATE:	2013/08/0	
												PAC					
Depth (m)	DESCRIPTION STRATIGRAPHY	SAMPLE TYPE	SAMPLII	PLE NAME/		SOI CONO	ENTF (ppm)	RATIC v)	N	CC	DNCE	VAPC NTRA	OITA		COMM	MENTS	Denth (#)
-0 -1 -2 -3 -4 -5	GROUND SURFACE ASPHALT. GRAVEL (Fill) - light brown, coarse grained, some sand, some silt, damp. ORGANIC SILT - black, some day, trace gravel, trace sand, moist. SILT - brown, trace sand, trace day, moist. - grayish brown, clayey, trace gravel, trace sand, damp. CLAY - brown, some silt, trace gravel, trace sand, moist, mottled gray from 3.0 m to 4.9 m. END OF TEST PIT at 4.9 m No Daylighting Performed	SAMI	TP-13-1.8-2-4/ PHC F1-F4, Le 1,2-DCA	BTEX, ad, 1,2-DBA, BTEX, ad, 1,2-DBA,		100	(ppm	v)		200	(%)	6LEL) 600	84 84 84 84 84 84 84 84 84 84 84 84 84 8		Test Pit bac excavated r which was r the original then nomina compacted excavator b	material replaced in order and ally with the	
-9 START [2013/08/01				CONTRACT		d.		, , , , , , , , , , , , , , , , , , ,		LO	GGEI	D: ATI	K	REV	KI Eagle VIEW: KAF	DRAFTED	

CLIE	PIT LOCATION: 287 Main Street, Selkirk, Manitoba NT: Imperial Oil PLE TYPE: G - Grab OS - Other			PII LOG		EF. NO: 10-907T07		TEST PIT NO START DAT COMPLETION	E: 2013/08/0	
								PAGE 1 of		,
Depth (m)	DESCRIPTION STRATIGRAPHY	SAMPLE TYPE	_	SAMPLING LAB SAMPLE LAB ANALY	NAME/	▲ SOIL VAPOUR CONCENTRATION (ppmv) 100 200 300 400			- COMMENTS	:
-0 1 2 3 5 6 7 8	GROUND SURFACE GRAVEL (Fill) - light brown, coarse grained, some sand, some silt, damp. SAND (Fill) - brown, trace gravel, damp. GRAVEL (Fill) - brown, coarse to fine grained, some sand, trace silt, damp. END OF TEST PIT at 2.4 m No Daylighting Performed	SAMPS G G G G		TP-14-0.6-1.2 / BTE PHC F1-F4, Lead, 1,2-DCA	'SES	CONCENTRATION (ppmv) 100 200 300 400			Test Pit backfilled with excavated material which was replaced in the original order and then nominally compacted with the excavator bucket.	
-8 - -9										
STAR 2013/08					NTRACT Line Indust		LOGGE	TER TYPE: R	I KI Eagle VIEW: KAF DRAFTED	

STATE OF ITEM STATE OF ITE		FPIT LOCATION: 287 Main Street, Selkirk, Manitoba			TII LOG	RE	F. 1	10:	10-	907	T07							'IT N			
DESCRIPTION SAMPLING STRATIGRAPHY STRATIGRAP																					
DESCRIPTION SAMPLING STRATIGRAPHY To get a service of the service	JAIVI	-LETTEL G-Glab 03-Other													_						102
ORGANIO SURFACE ASPIRUT GRAVEL, Fig troon, coerse grained, sity, sone sand, damp. GRANIO SUT- Nack, some clay, trace sand, damp. CLAY - Gark brown, sity, trace sand, damp. 0 Trace-Pit backlist NOTES. 0 Trace-Pit backlist NOTES. 1 Tace-Pit backlist Administration of the control o	Depth (m)		SAMPLE TYPE	_	LAB SAMPLE NAME	E/	(CONC	CEN	ITR/	ATIC	N									Denth (#)
CLAY - dark brown, sity, trace gravel, frace sand, damp. CLAY - dark brown, sity, trace gravel, frace sand, damp.	- - - - - - -	ASPHALT. GRAVEL (Fill) - brown, coarse grained, silty, some sand, damp.	G						200												_ 0
Test Pt boddled with exposited release according release to the original code and the normal with two supposed in the original coder and the normal with the extremellar bushed. END OF TEST PIT at 4.9 m No Daylighting Performed Test Pt boddled with exposed coder and the normal with the extremellar bushed. END OF TEST PIT at 4.9 m No Daylighting Performed FIND OF TEST PIT at 4.9 m No Daylighting Performed GAS METER TYPE, RVI Eagle	-1 - - - - - - - -	CLAY - dark brown, silty, trace gravel, trace sand, damp.		<u>/</u> /																	5
excepted material with was replaced in the original order and the normary compacted with the excepted material with the original order and the normary compacted with the excepted bucket. - trace gravet, mottled gray below 4.3 m. - 5 END OF TEST PIT at 4.9 m No Daylighting Performed - 7 - 7 - 7 - 8 START DATE START DEPTH EQUIPMENT CONTRACTOR GAS METER TYPE: RNI Egigle	-2 -2 -	- brown, trace silt, moist.	G	γ,	TD.15.27.24 / BTEV															Test Pit hackfilled with	
-trace gravel, mottled gray below 4.3 m. START DATE START DEPTH EQUIPMENT CONTRACTOR GAS METER TYPE: RNI Eagle	-3 -3 -			<u>/</u>	PHC F1-F4, Lead, 1,2-DBA, 1,2-DCA	,														excavated material which was replaced in the original order and then nominally compacted with the	<u>-</u> 1(
END OF TEST PIT at 4.9 m No Daylighting Performed -6 -7 -8 -8 -9 START DATE START DEPTH EQUIPMENT CONTRACTOR GAS METER TYPE: RKI Eagle	- - - 4 - -	- trace gravel, mottled gray below 4.3 m.	G																		
START DATE START DEPTH EQUIPMENT CONTRACTOR GAS METER TYPE: RKI Eagle	- - - - - 5		G																		15
START DATE START DEPTH EQUIPMENT CONTRACTOR GAS METER TYPE: RKI Eagle	- - - - -	No Daylighting Performed																			
START DATE START DEPTH EQUIPMENT CONTRACTOR GAS METER TYPE: RKI Eagle	6																				20
START DATE START DEPTH EQUIPMENT CONTRACTOR GAS METER TYPE: RKI Eagle	- - -7 -																				
START DATE START DEPTH EQUIPMENT CONTRACTOR GAS METER TYPE: RKI Eagle	- - - - - - 8														. 1 10 1						- 25 25
START DATE START DEPTH EQUIPMENT CONTRACTOR GAS METER TYPE: RKI Eagle	- - - - -																				
PARSONS	STAF												.00	GE	D: /	٩TK	(RE	VIE	EW: KAF DRAFTE	

	PIT LOCATION: 287 Main Street, Selkirk, Manitoba				LOG	REF.	. NO: 10-907T07		TEST PIT N		
	IT: Imperial Oil PLE TYPE: G - Grab OS - Other								START DAT		
									PAGE 1 o		_
_	DESCRIPTION	1		_	MPLING						_
Depth (m)	STRATIGRAPHY	SAMPLE TYPE	ZONE TESTED	L	AB SAMPLE NAME/ LAB ANALYSES		▲ SOIL VAPOUR CONCENTRATION (ppmv) 100 200 300 400	CONCE	VAPOUR ENTRATION %LEL) 0 60 80	- COMMENTS	Denth (#)
	GROUND SURFACE ASPHALT. SAND (Fill) - brown, coarse to fine grained, some cobbles, some gravel, some silt, damp. SILT - gray, trace sand, trace clay, damp. CLAY - dark gray, silty, trace gravel, trace sand, damp. - brown, trace silt, moist, mottled dark gray below 1.8 m. END OF TEST PIT at 4.9 m No Daylighting Performed	WWS G G G G G G G		TP-PHC 1,2-1	AB SAMPLE NAME/ LAB ANALYSES 16-0.9-1.5 (DUP-16) / X, PHC F1-F4, Lead, DBA, 1,2-DCA 16-1.8-2.4 / BTEX, F1-F4, Lead, 1,2-DBA, DCA		(ppmv) 100 200 300 400	20 44	%LEL) 0 60 80	Test Pit backfilled with excavated material which was replaced in the original order and then nominally compacted with the excavator bucket.	
9											
- 1	F DATE CTART REDTH FOUIDMENT				CONTRAC	TOR		GAS ME	ETER TYPE: F	 	Щ
START	FDATE START DEPTH EQUIPMENT				CONTINAC	1011		OAO IVIL	_ , _ , , , , , , , , , , , ,	un Lagic	
START 1013/08/					Main Line Indus					VIEW: KAF DRAFTED: I	MLI

	PIT LOCATION: 287 Main Street, Selkirk, Manitoba NT: Imperial Oil			TI LOG	R	EF. NO: 10-907T07					PIT T DA			/08/02
	PLE TYPE: G - Grab OS - Other								CO	MP	LET	1017	N DATE: 2013	/08/02
	DECODIDETION .	_		0.4.4.0.1.1.0					PA	GE.	1	of	1	
Depth (m)	DESCRIPTION STRATIGRAPHY	SAMPLE TYPE		SAMPLING LAB SAMPLE NAMI LAB ANALYSES	E/	▲ SOIL VAPOUR CONCENTRATION (ppmv) 100 200 300 400	◆ SC CON	NCEI %)	VAP NTR LEL	ATI -)	R ON 80		COMMENTS	Depth (ft)
0 	GROUND SURFACE ASPHALT. GRAVEL (Fill) - light brown, coarse grained, some sand, some silt, damp. CLAY - gray, some silt, trace sand, damp.	6			4									-0
- - - - - - - 2	- brown, silty, moist brown, trace silt, mottled gray below 1.8 m.	G		TP-17-1.2-1.8 / BTEX, PHC F1-F4, Lead, 1,2-DBA 1,2-DCA		<u>*</u>								5
- - - - - -		G G	7	TP-17-1.8-2.4 / BTEX, PHC F1-F4, Lead, 1,2-DBA 1,2-DCA	۱,			•				•	Test Pit backfilled w excavated material which was replaced the original order ar then nominally	in -
-3 - - - -		G						•					compacted with the excavator bucket.	10
- -4 - -	END OF TEST PIT at 4.3 m	G		TP-17-3.7-4.3 / BTEX, PHC F1-F4, Lead, 1,2-DBA 1,2-DCA	١,									
5	No Daylighting Performed													- 15
-6 - - - - - - - - - - - - - - - - -														20
- ' 														25
- - - - - - 9														- - - - - - - - - -
STAR 2013/08	T DATE START DEPTH EQUIPMENT 102 0.0 m Hitachi 200LC Track Excavator			CONTRA Main Line Ind			LOG	GEL): AT	ГК	R	EVI	I Eagle IEW: KAF DRAF	TED: MLM

	PIT LOCATION: 287 Main Street, Selkirk, Manitoba IT: Imperial Oil		• '	PII LO		REF.	NO:	10-9	07T	07		_	ST PI			/02
	PLE TYPE: G - Grab OS - Other											COI	MPLI	ETIC	ON DATE: 2013/08	
	DESCRIPTION	\top		CAMDI	INIC							PAG	GE '	1 of	1	\top
Depth (m)	DESCRIPTION STRATIGRAPHY	SAMPLE TYPE		SAMPL LAB SAM LAB A	ING MPLE NAME NALYSES	.	CON	IL VA CENT (ppr 200	ΓRΑΤ	ION					COMMENTS	Denth (#)
-0	GROUND SURFACE GRAVEL (Fill) - light brown, coarse to fine grained, some sand, some silt, damp.			7												-0
-1		G	<u> </u>	TP-18-0.6-1.: PHC F1-F4, 1,2-DCA	?/BTEX, .ead, 1,2-DBA,										Test Dit beställed with	
-2	END OF TEST PIT at 2.4 m	G	<u> </u>	7											Test Pit backfilled with excavated material which was replaced in the original order and then nominally compacted with the excavator bucket.	5
-3	No Daylighting Performed															1 1
-4 - -5																
-6																- 2
-7																
-8																- 2
-5 - -6 - -7 - -8 - -9	F DATE START DEPTH EQUIPMENT				CONTRAC	TOR									(I Eagle	-
2013/08/	02 0.0 m Hitachi 200LC Track Excavator				Main Line Indu	stries Lt	d.					D: AT			/IEW: KAF DRAFTE	

	PIT LOCATION: 287 Main Street, Selkirk, Manitoba			TI LOG	RE	F. NO: 10-907T07		TEST PIT NO		
	IT: Imperial Oil PLE TYPE: G - Grab OS - Other							START DATE		
JANIF	EL TIFE. G-GIAD OS-Otilei							PAGE 1 of		
Depth (m)	DESCRIPTION STRATIGRAPHY	SAMPLE TYPE	_	SAMPLING LAB SAMPLE NAMI LAB ANALYSES	<u> </u>	▲ SOIL VAPOUR CONCENTRATION (ppmv) 100 200 300 400	CONCE	VAPOUR ENTRATION %LEL) 0 60 80	- COMMENTS	Depth (ft)
0 	GROUND SURFACE ASPHALT. GRAVEL (Fill) - light brown, coarse to fine grained, damp. CLAY - gray, some silt, trace sand, damp.	G								- 0
-1 -1 	SILT - brown, trace sand, trace day, moist.	G G	1/							5
	CLAY - brown, trace sand, trace silt, moist, mottled gray from 1.8 m to 4.9 m.	G G	γ,	TP-19-1.8-2.4 / BTEX, PHC F1-F4, Lead, 1,2-DBA 1,2-DCA TP-19-2.4-3.1 / BTEX, PHC F1-F4, Lead, 1,2-DBA 1,2-DCA		•			Test Pit backfilled with excavated material which was replaced in	
-3 - - - - - - - -		G	<u>/</u> /						the original order and then nominally compacted with the excavator bucket.	10
	- trace gravel below 4.3 m. END OF TEST PIT at 4.9 m	G		TP-19-4,3-4,9 / BTEX, PHC F1-F4, Lead, 1,2-DBA 1,2-DCA	,					- - - - - 15
-5	No Daylighting Performed									-
6										20
7										
Practice report to 50 Practice Data v. Color Practice Data v. Color										25
9										-
STAR 2013/08/	F DATE START DEPTH EQUIPMENT 0.0 m Hitachi 200LC Track Excavator			CONTRA(LOGGE		TI Eagle VIEW: KAF DRAFTED:	

LIEN	PIT LOCATION: 287 Main Street, Selkirk, Manitoba				RE	F. N	0: 1	0-90	7T0	7			-		PIT N		2/00
	IT: Imperial Oil LE TYPE: G - Grab OS - Other				+				_			_	_		DA _ETI	: 2013/08 N DATE: 2013/08	
															1 c		
(E)	DESCRIPTION	—	_	SAMPLING													3
Depth (m)	STRATIGRAPHY	SAMPLE TYPE	ZONE TESTED	LAB SAMPLE NAI LAB ANALYSES	ME/	С	SOIL ONC	ENTF	RATI	NC						COMMENTS	4 4 6
)	GROUND SURFACE GRAVEL (Fill) - light brown, coarse grained, silty, some sand, damp. CLAY (Fill) - dark gray, some silt, trace gravel, trace sand, damp.	G															-
	SILT - brown, some sand, some clay, moist. CLAY - dark gray, some silt, trace sand, damp.	G															
	- brown, trace silt, moist, mottled gray below 1.8 m.	G	1														-
3		G	/	TP-20-2.4-3.1 / BTEX, PHC F1-F4, Lead, 1,2-DE 1,2-DCA	8A, 4											 Test Pit backfilled with excavated material which was replaced in the original order and then nominally compacted with the excavator bucket.	
	- some silt, trace gravel below 3.7 m.	G	<u>/</u>														
	END OF TEST PIT at 4.9 m No Daylighting Performed																
																	-
																	-
																	-
ART	DATE START DEPTH EQUIPMENT 26 0.0 m Hitachi 200LC Track Excavator			CONTR Main Line								AS I				Eagle EW: KAF DRAFTE	-D- M
13/08/0											1 1						

		eet, Selkirk, Manitoba	_3	<u> </u>	PH LOG		REF. N	O: 10-	-907T()7		_	ST PIT		TP-21	20
CLIENT: Imperial SAMPLE TYPE:	l Oil G - Grab OS - Othe	r											ART DA	TE: TON DATE:	2013/08/0 2013/08/0	
													GE 1			
Depth (m)		DESCRIPTION TRATIGRAPHY	SAMPLE TYPE	_	LAB SAMPLE LAB ANAL	NAME/	C	SOIL \ ONCEI	NTRAT omv)	ION	CON	OIL VAPO CENTR (%LEL 40 6	ATION	CC	DMMENTS	Denth (#)
ASPHAL GRAVEL CLAY (Fi	(Fill) - light brown,	coarse grained, some sand, some silt, damp. e gravel, some silt, trace sand, damp. ce sand, damp.	G				A									0
CLAY - b 4.9 m.	orown, trace sand, tr	ace silt, moist, mottled gray from 1.5 m to	G G G G		TP-21-1.5-1.8 / BTE PHC F1-F4, Lead, 1,2-DCA TP-21-2.4-3.1 / BTE PHC F1-F4, Lead, 1,2-DCA	1,2-DBA,								excavate which wa the originate then nor compact	backfilled with ed material as replaced in nat order and ninally red with the or bucket.	5
END OF	TEST PIT at 4.9 m ghting Performed		G		TP-21-4.3-4.9 / BTE PHC F1-F4, Lead, 1,2-DCA	ex, 1,2-dba,										
-6 -7																2
-8																
		UIPMENT				NTRACT								RKI Eagle		
2013/08/06	0.0 m Hitz	chi 200LC Track Excavator			Main	n Line Indus	tries Ltd.					SED: AT		EVIEW: KAF	DRAFTED	

	PIT LOCATION: 287 Main Street, Selkirk, Manitoba			PII LO		REF.	NO	: 10	-90	7T0	7		_	TES				TP-22	00/00	_
	T: Imperial Oil LE TYPE: G - Grab OS - Other												- (1PLE	ETIC	N DAT	2013/ TE: 2013/		_
														PAG						_
Depth (m)	DESCRIPTION STRATIGRAPHY	SAMPLE TYPE	_	SAMPL LAB SAN LAB A	1PLE NAME/		CO	NCE	VAP NTR ppmv	ATIO	NC							COMMENTS	i i	Danth (#)
-0 -1 -2 -3 -3 -	GROUND SURFACE GRAVEL (Fill) - light brown, coarse grained, some sand, some silt, damp. CLAY - black, some gravel, some silt, trace sand, moist. CLAY - brown, trace sand, trace silt. END OF TEST PIT at 3.7 m No Daylighting Performed			TP-22-1,2-1,8 PHC F1-F4, IS-6-Metals, 1,1-2-DCA	VALYSES		100	(1200	ppmv 0 30		400						excave which the or then of comp	Pit backfilled wi vated material was replaced riginal order and nominally acted with the vator bucket.	th :	0 1 1
-9 START I 2013/08/06					CONTRAC Main Line Indu		d.					.OGC	GED:	ATK	(RE∖	KI Eagle /IEW: K		TED: ML	_

TEST	PIT LOCATION: 287 Main Street, Selkirk, Manitoba	<u> </u>		PH LO		EF. N	IO: 1	0-90)7T0	7			TES	T PI	TNC	D: TP-23	
CLIEN	T: Imperial Oil												_	RT D		E: 2013/08/0	
SAMF	LE TYPE: G - Grab OS - Other				-									MPLE SE 1		N DATE: 2013/08/0	ö
	DESCRIPTION			SAMPLI	NG								1710	<u>, , , , , , , , , , , , , , , , , , , </u>			
Depth (m)	STRATIGRAPHY	SAMPLE TYPE	_	LAB SAMF	PLE NAME/ ALYSES	(C	SOII CONC	ENTI	RATIO	NC	l co	ONCE	VAPC NTRA 6LEL)	NOIT		COMMENTS	Depth (ft)
- 0	GROUND SURFACE GRAVEL (Fill) - light brown, coarse grained, some sand, some silt, moist.			7													<u> </u>
	CLAY - gray, some silt, trace sand, moist.	G	<u>/</u>	7													
- -1 -		G	<u>/</u>	7	•												
- - - - -2	- brown, trace silt below 1.8 m.	G	<u>/</u>	7													5
		G	<u>/</u>	TP-23-2 4-3 1 /	RTEX											Task Dik bask Clied with	
- - - -3		G	<u>/</u>	TP-23-2.4-3.1 / PHC F1-F4, PA Sel-Metals, 1,2- 1,2-DCA	AH, -DBA,						•					Test Pit backfilled with excavated material which was replaced in the original order and then nominally	10
		G	<u>/</u>	7							•					compacted with the excavator bucket.	
- 4 		G	\not	7													
		G	V	TP-23-4.3-4.9 / PHC F1-F4, PA Sel-Metals, 1,2- 1,2-DCA	BTEX, AH, -DBA,												15
—5 - - - -	END OF TEST PIT at 4.9 m No Daylighting Performed																
5 6 7 7 8 8																	20
																	-
- 7 -																	
																	25
- -8 -																	
- - - - - 9																	
STAR	DATE START DEPTH EQUIPMENT				CONTRACT	OP.						C M	TEP.	TVDF	. DI	(I Eagle	
2013/08/					CONTRACT Main Line Industr						LO	GGEI	D: ATI	(. KK REV	IEW: KAF DRAFTED:	MLM
																50N	5

	PIT LOCATION: 287 Main Street, Selkirk, Manitoba			TI LOG	RE	F. 1	10:	10-	-907	7T0	7						IT N				
	IT: Imperial Oil LE TYPE: G - Grab OS - Other																DA ⁻			/08/06 /08/06	
JANIF	EL TIFE. G-Glab GG-Guiel																1 o			/00/00	
(m)	DESCRIPTION	믮	_	SAMPLING																	(ft)
Depth (m)	STRATIGRAPHY	SAMPLE TYPE	ZONE TESTED	LAB SAMPLE NAMI LAB ANALYSES	E/	(SO SONO	CEI	NTR	ATI	NC								COMMENTS		Depth (ft)
-0	GROUND SURFACE ↑ASPHALT.																	4			0
-	GRAVEL (Fill) - light brown, coarse grained, some sand, some silt, damp. CLAY (Fill) - black, some gravel, some silt, trace sand, damp.	G G	/																		
-1 - - - -	SAND - brown, medium to fine grained, some gravel, some silt, damp.	G	<u>/</u> /																		5
-2	CLAY - brown, some silt, trace sand, moist.	G	<u> </u>	TP-24-1.8-2.4 / BTEX, PHC F1-F4, PAH, Sel-Metals, 1,2-DBA, 1,2-DCA, glycols		<u>.</u>															
-3 -3		G	/ /																Test Pit backfilled vexcavated material which was replaced the original order at then nominally compacted with the	in nd	10
4		G	<u>V</u>	TP-24-3.7-4.3 / BTEX, PHC F1-F4, PAH, Sel-Metals, 1,2-DBA, 1,2-DCA, glycols															excavator bucket.		
2013		G		1,2-DCA, glycols																	15
Practice report to 0.0 of practice pulsayout respect to the preparation of the preparatio	END OF TEST PIT at 4.9 m No Daylighting Performed																				
9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -																					20
7																					
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																					25
8																					
KASONS	PATE ATAPT DEPTH A COUNTY				077								•			· · · · · · · · · · · · · · · · · · ·	 	21.5	-		-
2013/08/	DATE START DEPTH EQUIPMENT 06 0.0 m Hitachi 200LC Track Excavator			CONTRA(LC	GC	GEC): A	TK	RE	VIE	Eagle EW: KAF DRAI	TED:	

TEST	PIT LOCATION: 287 Main Street, Selkirk, Manitoba	<u> </u>		PH LOC		EF. N	O: 10)-907	T07				TES	T PIT	NO	TP-25	
CLIEN	IT: Imperial Oil												STA	RT D	ATE	2013/08/0	
SAMF	PLE TYPE: G - Grab OS - Other				\vdash									IPLE E 1		N DATE: 2013/08/0	б
	DESCRIPTION			SAMPLIN	G								1710				Т
Depth (m)	STRATIGRAPHY	SAMPLE TYPE			E NAME/	С	SOIL ONCE (p	NTR/ opmv)	ATION		◆ § CC	(%	/APO NTRA LEL) 60	TION		COMMENTS	Depth (ft)
	GROUND SURFACE																
-0 - - -	ORGANIC SILT - black, some clay, trace sand, damp.	G	1	7													0
	SILT (Fill) - brown, some sand, trace clay, damp.	G		7		·											
- - - - -	CLAY - brown, trace sand, trace silt, damp, mottled gray from 1.2 m to 4.9 m.	G		TP-25-1.2-1.8 / Gi	ain Size												5
2 2 		G		TP-25-1.8-2.4 / B ⁻ PHC F1-F4, Lead 1,2-DCA	EX, , 1,2-DBA,												
- - - - -3		G		TP-25-2.4-3.1 / B ⁻ PHC F1-F4, Lead 1,2-DCA	EX, , 1,2-DBA,										•	Test Pit backfilled with excavated material which was replaced in the original order and	
-	- some sand, some silt, trace gravel, moist.	G		TP-25-3.1-3.7 / Gi	ain Size										•	then nominally, compacted with the excavator bucket.	10
- - -4 -		G													•	•	
		G		TP-25-4.3-4.9 / B PHC F1-F4, Lead 1,2-DCA	EX, , 1,2-DBA,										•	•	15
—5 - - - -	END OF TEST PIT at 4.9 m No Daylighting Performed																
																	20
-																	
-7 -7																	
-																	25
—8 - - - -																	
9																	-
				Co	ONTRACTO) : : OR	: :	: :	: :	;	GAS	S MET	: ΓER Τ	YPE:	: RK	I Eagle	<u> Ш</u>
2013/08/					in Line Industr						LOC	GGED	: ATK	 F	REVI	EW: KAF DRAFTED:	MLM
												P		\F	7	SON	5

	PIT LOCATION: 287 Main Street, Selkirk, Manitoba			PII LOG	RE	F. NO: 10-907T07		TEST PIT NO		_
	IT: Imperial Oil LE TYPE: G - Grab OS - Other				-			START DAT		
J7 (1VII)								PAGE 1 of		<u> </u>
(DESCRIPTION	_	_	SAMPLING						
Depth (m)	STRATIGRAPHY	SAMPLE TYPE	ZONE TESTED	LAB SAMPLE NAM LAB ANALYSES	1E/	▲ SOIL VAPOUR CONCENTRATION (ppmv) 100 200 300 400	CONC	VAPOUR ENTRATION %LEL)	- COMMENTS) daa(#)
0	GROUND SURFACE ORGANIC SILT - black, some clay, trace sand, damp.	G								111
1	SILT (Fill) - brown, some sand, trace clay, moist.		<u> </u>	7						E
	CLAY - brown, some silt, trace sand, damp.	G	Κ,	7	1					F
	· · · · · · · · · · · · · · · · · · ·	G	/		4					Ę,
2	- trace silt, damp.		1	TP-26-1.8-2.4 / BTEX,						
		G		PHC F1-F4, Lead, 1,2-DB/ 1,2-DCA	Α,					E
		G]/	TP-26-2.4-3.1 / BTEX, PHC F1-F4, Lead, 1,2-DB/	A.				Test Pit backfilled with excavated material	E
			\not	PHC F1-F4, Lead, 1,2-DB/ 1,2-DCA					which was replaced in the original order and	Ē
		G	/						then nominally compacted with the excavator bucket.	Ė
			/ /	1						E
		G					*			F
	- some gravel, some silt, moist,	G	1	TP-26-4.3-4.9 / BTEX, PHC F1-F4. Lead. 1.2-DB/						
	END OF TEXT BIT 1440		\not	1,2-DCA	٦,					-
5	END OF TEST PIT at 4.9 m No Daylighting Performed									E
	Daylighting Colonica									
										-
6										-2
										Ē
										Ė
										-
										£:
										F
										F
										E
)										F
ΓAR	DATE START DEPTH EQUIPMENT		_	CONTRA	L ACTO	::::::::::::::::::::::::::::::::::::::	GAS ME	ETER TYPE: RI	 KI Eagle	上
013/08/				Main Line Ir			LOGGE	D: ATK REV	/IEW: KAF DRAFTED:	
								AR	SON	23.0

PRO	JECT:	Subsurface Investigation St	ummary	CLIENT: Imperial Oil	Ltd.					OLE NO: BH1	
		I: 287 Main St, Selkirk, MB		I						CT NO.: 60549588	
	TRAC PLE TY	TOR: Maple Leaf Drilling /PE GRAB	SHELBY TUBE	METHOD: Hollow Ste	em Auger ⊟B∪	11 1/		□ NC	RECOVE	TION (m): RY TORE	
DEPTH (m)	SOIL SYMBOL		SOIL DESCRIPT			SAMPLE TYPE	SAMPLE#	⊗ Vapour Rea (ppm)	ding⊗	COMMENTS	DEPTH (m)
0 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		GRAVEL Gravel, some sand, some silt, loo SILTY CLAY Silty clay, some gravel, dark brow CLAY Clay, some gravel, dark grey, moi -Clay, moist, brownish grey, firm, -Clay, light grey, moist, firm, mott	rn, moist, firm ist, firm, mottles, coarse frags mottles				&		1000	-sample BH1_3.0_M3 BH1_3.0_DUP02_M3 submitted for PHCs, VOCs, Select Metals, PCBs -sample BH1_4.5_M3 submitted for PHCs, VOCs, Select Metals, PCBs	1- 2- 3- 5- 6-
ENVIRONMENTAL (VAPOUR ONLY) 60549588 SELKRIR.GPJ UMA.GDT 18/1/30 8				l o		A #1-7				ETION DEPTH, 5.05	7 -
NON NON NON NON NON NON NON NON NON NON		A=CO!	M		GGED BY: I /IEWED BY		?			ETION DEPTH: 5.25 m ETION DATE: 18/7/13	
Ž		AECUI	71		DJECT ENG			 BR	JOIVIFL		1 of 1

		Subsurface Investigation Summary	CLIENT: Imper	ial Oil Ltd.					OLE NO: BH2	
		I: 287 Main St, Selkirk, MB	14571100 11 11						CT NO.: 60549588	
SAMF		TOR: Maple Leaf Drilling YPE GRAB	METHOD: Holl SHELBY TUBE		II I/			RECOVER	ΓΙΟΝ (m): RY TCORE	
		TIL SOVE	JOHEED LODE QUELLO	<u> </u>	TYPE	#		RECOVE	TI JOOKE	(m
DEPTH (m)	SOIL SYMBOL		DESCRIPTION		SAMPLE 1	SAMPLE #	⊗ Vapour Reac (ppm)	ling⊗	COMMENTS	DEPTH (m)
_ 0 - - - -	•	GRAVEL Gravel, some sand, some silt, light brown, dr PEA GRAVEL	y, loose, coarse frags @ 2.5cm							- - - - -
- -1 - - - - - -	ななななな	Pea gravel, some sand, light brown, moist, lo	ose, coarse frags @ 2.0cm				⊗			1
	ググググググ									2-
-3 - - - - - - - - - - - - - - - - - -		CLAY Clay, brown, wet, slightly sticky, mottles -HC odor 3.8m t0 4.7m					*			3 4
SEKRIK GPJ UMA GDI 18/1/30		CLAY Clay, light gray, mottles, coarse frags @ 0.2c -Strong HC odor .1m	m					Ø	-sample BH2_5.25_M3 submitted for PHCs, degreasing VOCs, n-hexane, Lead Scavengers, Select Metals, PCBs, Glycols	5
ENVIRONMENTAL (VAPOUR ONLY) 605-9588 SELKRIK.GPJ UMA.GDJ 18/11/30 8		EOH @ 6.75 mbgs				8			-sample BH2_6.75_M3 submitted for PHCs, degreasing VOCs, n-hexane, Lead Scavengers, Select Metals, PCBs, Glycols	7-
JAM J	1	A = COA4		LOGGED BY: 1					ETION DEPTH: 6.75 m	
Ĭ		A=COM		REVIEWED BY			DD	COMPLE	ETION DATE: 18/7/13	1 05 4
الث				PROJECT ENG	ııNEl	EK: E	SK .		Page	1 of 1

PRO	JECT:	Subsurface Investigation Summary	CLIENT: Imperial Oil I	_td.			TESTHO	DLE NO: BH3	
		l: 287 Main St, Selkirk, MB						CT NO.: 60549588	
		TOR: Maple Leaf Drilling	METHOD: Hollow Ste					TION (m):	
SAMF	PLE TY	YPE GRAB SHELBY T	UBE SPLIT SPOON	BUL	.K		RECOVER	RY CORE	
DEPTH (m)	SOIL SYMBOL	SOIL DESCR	RIPTION		SAMPLE IYPE SAMPIF#	⊗ Vapour Reac (ppm)	ling⊗ 1000	COMMENTS	DEPTH (m)
_ 0 - - - - - -		SILTY LOAM Silty loam, black, moist, firm, some organics CLAY							_
- 1 - - - - - -		Clay, some silt, dark brown, moist, firm, coarse frags @ -Clay, dark greyish brown, moist, very firm, gleying	0-2cm, gleying			*			1-
- - -2 - -			@ 0.2 cm						2 -
- - - - -3		-Clay , brown, moist, firm, gleying, mottles, coarse frags -HC odor 2.5m to 3.8m -Clay, light grey, moist, very firm, gleying, mottles	@ U-2cm						3 -
- - - - - - - -		-Clay, dark grey, moist, very firm, mottles, gleying						-sample BH3_3.75_M3 submitted for PHCs, n-hexane, Lead Scavengers, PAHs	4
-		-Clay, dark grey, moist, firm, mottles, soft flecks, coarse	frags @ 0-2cm			*			_
-5 - - - - -		-Clay, light grey, moist, firm, mottles, coarse frags @ 0-2							5
6		-Clay, dark grey, very firm, gleying, coarse frags @ 0-2cr	11			8		-sample BH3_6.0_M3 submitted for PHCs, n- hexane, Lead Scavengers, PAHs	6 -
6 7 7 8		EOH @ 6.75 mbgs				8			7 -
8			1.00	OCED DV A			COMPL	TION DEDTIL: 0.75	
		AECOM		GED BY: M IEWED BY:				ETION DEPTH: 6.75 m ETION DATE: 18/7/12	
				JECT ENGI		BR	CONT. LL	Page	1 of '

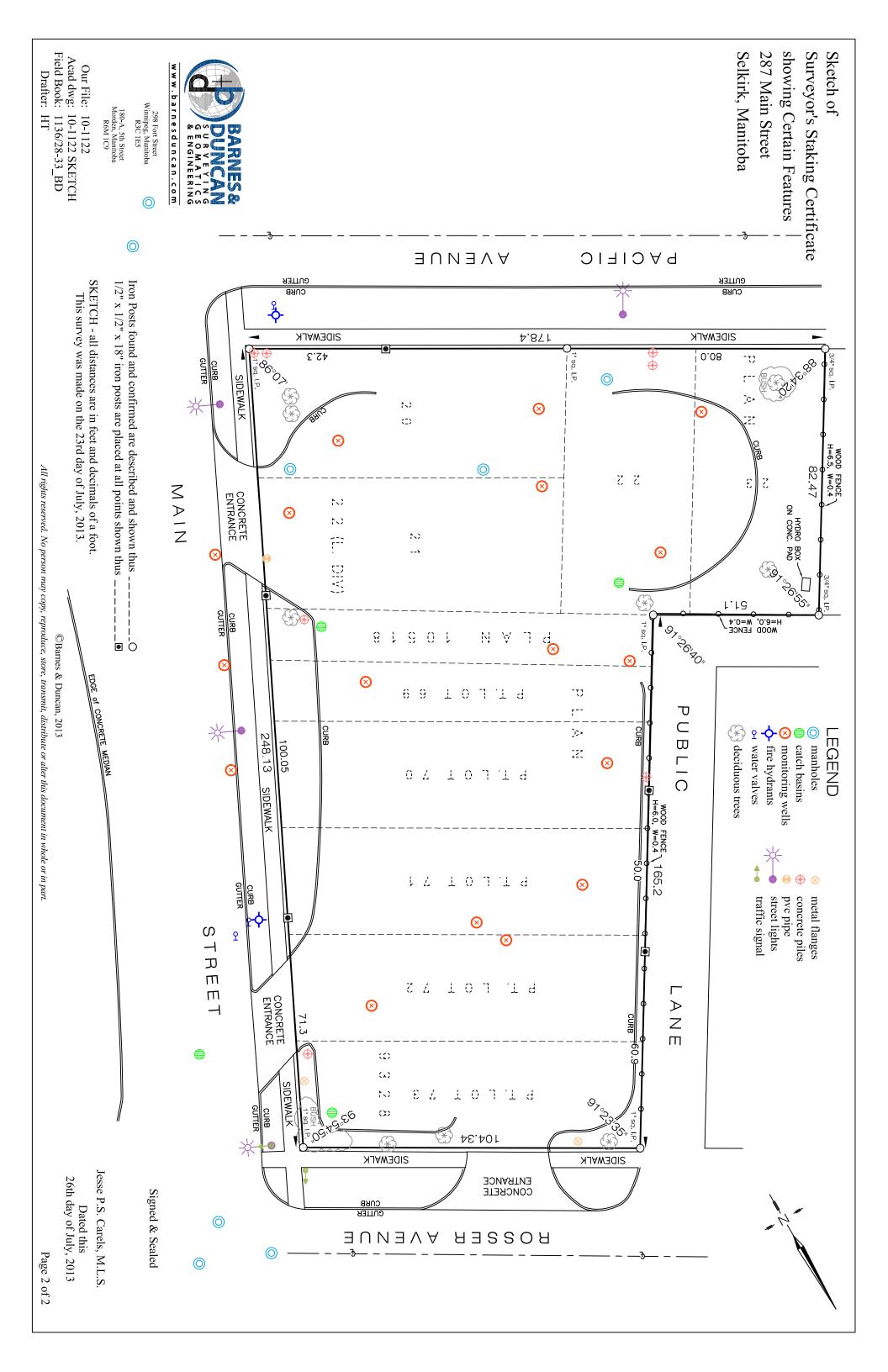
PRO	JECT:	Subsurface Investigation Summary	CLIENT: Imperial O	il Ltd.			TESTHO	DLE NO: BH4	
		I: 287 Main St, Selkirk, MB						CT NO.: 60549588	
		TOR: Maple Leaf Drilling	METHOD: Hollow S					TON (m):	
SAMF	LE T	YPE GRAB SHELBY	TUBE SPLIT SPOON	BUL	_K	<u> </u>	RECOVER	RY CORE	
DEPTH (m)	SOIL SYMBOL	SOIL DESCF	RIPTION		SAMPLE TYPE	♥ Vapour Rear (ppm)	ling⊗ 1000	COMMENTS	DEPTH (m)
_ 0 - - - - - -		SANDY CLAY Sandy clay, loose, moist, firm, light brown, coarse frags	@ 0-2cm			10 100			
- 1 - - -		CLAY Clay, some sand, minor silt, moist, firm, coarse frags @				8			1
- - - - - -2 -		-Clay, dark grey, moist, firm, gleying, coarse frags @ 0-:	2cm						2
-3 3		-Clay, grey, moist, very firm, gleying, coarse frags @ 0-2-HC odor 2.7m to 3.9m	2cm				*		3
- - - - - - - - - -		-Clay, light brown, moist, firm, mottles, coal flecks, mine	eral flecks, coarse frags @ 0-2cm				/	-sample BH4_3.75_M3 submitted for PHCs, n-hexane, Lead Scavengers, PAHs	4
- - - - - 5 - - - -		-Clay, light grey, moist, firm, coarse frags @ 0-2cm, mo	ttles			*			5
- - - 6 - - - - -		-Clay, light grey, wet, slighty sticky, gleying, mottles						-sample BH4_6.0_M3 submitted for PHCs, n-hexane, Lead Scavengers, PAHs	6
		EOH @ 6.75 mbgs				\$			7
- 8			1,,	200ED DV :	ALZ.		OOM (D)	TION DEDTIL 2.75	
		AECOM		DGGED BY: M EVIEWED BY:				ETION DEPTH: 6.75 m ETION DATE: 18/7/12	
		A_COM		ROJECT ENGI		: BR	OOIVII LE	Page	1 of

		Subsurface Investigation Su	ımmary	CLIENT: Imperia	l Oil Ltd.					OLE NO: BH5	
		I: 287 Main St, Selkirk, MB		METHOD	O1 A					CT NO.: 60549588	
SAMF		TOR: Maple Leaf Drilling YPE GRAB	SHELBY TUBE	METHOD: Hollow		II K			RECOVE	TION (m): RY TORE	
DEPTH (m)	SOIL SYMBOL		SOIL DESCRIPT		=	SAMPLE TYPE	SAMPLE#	⊗ Vapour Rea (ppm) 10 100		COMMENTS	DEPTH (m)
_ 0 _ _ _ _ _ _ _ _ _ _	;;;;, ;;;;,	SILTY CLAY Silty clay, some sand, C.S BK, da SANDY CLAY Sandy clay, minor silt, C.S BK, da					8				1-
- - - - - - -2 - -		CLAY Clay, dark grey, moist, firm, gleyin	g, coarse frags @ 0-2cm			_	8				2 -
- - - -3 - -		-clay, dark grey, mosit, firm, gleyir -HC odor 3.5m to 3.8m	g, salt flecks								3-
- -4 - -		-Clay, grey, wet, slightly sticky, mo	ottles, coarse frags @ 0.2-0.\$	5ccm, iron deposits, so	me silt				3	-sample BH5_3.75_M3 submitted for PHCs, n-hexane, Lead Scavengers, PAHs	4 -
M.GDT 18/11/30		-Clay, light grey, moist, firm					8	8			5 -
9588_SELKRIK.GPJ UM							8			-sample BH5_6.0_M3 submitted for PHCs, n-hexane, Lead Scavengers, PAHs	6-
ENVIRONMENTAL (VAPOUR ONLY) 60549588 SELKRIK.GPJ UMA.GDT 18/11/30 8		EOH @ 6.0 mbgs						У : :			7-
MME.		4 = 60	_		LOGGED BY: I					ETION DEPTH: 6.75 m	
MIRC		A=CO/	VI		REVIEWED BY				COMPL	ETION DATE: 18/7/11	4
긺					PROJECT ENG	JINE	ER: E	3R	1	Page	1 of 1

PRO	JECT:	Subsurface Investigation Summary	CLIENT: Imperi	al Oil Ltd.				TESTH	OLE NO: BH6	
		: 287 Main St, Selkirk, MB							CT NO.: 60549588	
		TOR: Maple Leaf Drilling	METHOD: Hollo						ΓΙΟΝ (m):	
SAMF	LE I	/PE GRAB SHELBY TU	JBE SPLIT SP	OON BU	JLK		∠NO	RECOVER	RY CORE	
DEPTH (m)	SOIL SYMBOL	SOIL DESCR	IPTION		SAMPLE TYPE	SAMPLE#	⊗ Vapour Read (ppm) 10 100	ling⊗ 1000	COMMENTS	DEPTH (m)
- 0 -	• •	GRAVEL Gravel, some sand, light brown, dry, coarse frags @ 2-5cr	n							
- - -		SAND Gravel, some sand, brown, firm, dry, coarse frags @ 0-2cd	m			8	₹			-
- - -1 -	. ·	GRAVEL Gravel, some sand, brown, firm, dry, coarse frags @ 2-5cd	m							1-
- - - - - 2	* * *									2 -
3		-Pea gravel					8			3 -
- - - - - -							\			
-4 - - - - - -		CLAY Clay, some gravel, dark grey, moist, mottles, gleying -Strong HC odor 4.0m to 4.5m -Clay, dark grey, wet, slightly sticky, mottles							-sample BH6_4.5_M3 submitted for PHCs, n-hexane, Lead	4 -
2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		-Clay, dark grey, moist, mottles, coarse frags @ 0-2cm, co	pal flecks, salt deposits				8		Scavengers, PAHs	5 -
ENVIRONMINITAL (VAPOUR ONLY) 60549588 SELKRIK GPJ UMA.GDT 18/11/30		EOH @ 6 mbgs			_		8		-sample BH6_6.0_M3 submitted for PHCs, n-hexane, Lead Scavengers, PAHs	6 -
R ONLY) 60549588 SI										7 -
RENTAL (VAPOUR										
		A=CO44		LOGGED BY:					ETION DEPTH: 6.00 m	
N N N N N N N N N N N N N N N N N N N		AECOM		PROJECT ENG			RP	COMPLETION DATE: 18/7/11 Page 1 of		
ــــــــــــــــــــــــــــــــــــــ				T INOUEUT EIN	⊒וווכ	∟ı\. I	١ ١/	1	rage	ı UI I

PRO	JECT:	Subsurface Investigation Sun	nmary	CLIENT: Imperia	l Oil Ltd.					OLE NO: BH7	
		: 287 Main St, Selkirk, MB		_						CT NO.: 60549588	
		TOR: Maple Leaf Drilling		METHOD: Hollov		II IZ				TION (m):	
SAMF	LE I	PE GRAB	SHELBY TUBE	SPLIT SPO	ON BL	JLK 		∠ NO	RECOVE	RY CORE	
DEPTH (m)	SOIL SYMBOL	S	OIL DESCRIPT	ΓΙΟΝ		SAMPLE TYPE	SAMPLE#	⊗ Vapour Reac (ppm) 10 100	ding⊗	COMMENTS	DEPTH (m)
_ 0	4	SAND Gravel, some sand, some silt									-
Ė		CLAY Clay, dark grey, C.SBK, moist, firm,	coarse frags @ 2-5cm, so	me gravel							-
-		SILT Silt, minor gravel, minor clay, black,					8				-
-1		CLAY Clay, some silt, dark grey, moist, ve									1-
F							8				
-		Objected one social see See O	ODK								
- - -		-Clay, dark grey, moist, very firm, C	.SBK, mottles				0	X			-
<u>-2</u>											2-
-										-sample BH7_2.25_M3 BH7_2.25_DUP01_M3	
-								-		submitted for PHCs, n-hexane, Lead	-
-3										Scavengers, PAHs	3-
Ę											-
-		-Clay, dark grey, moist, firm, C.SBK	, gleying, mottles, coal flec	ks							-
F											-
-4											4 -
-											-
-								8			-
F_		-Clay, light grey, moist, very firm, C.	SRK salt flacks mottles o	narea frans @ 0-2cm							
-5 - - -		-olay, light groy, molet, very limi, o.	ODIX, Sait HOOKS, Motucs, C	odisc nags @ 0-26m				8			5 -
18/1										-sample BH7_5.25_M3 submitted for PHCs, n- hexane, Lead	-
MA.GD										Scavengers, PAHs	-
되 교(-6		EOH @ 6.0 mbgs				-					6-
XX XX YX YX		Lon & o.o mago									-
38 SEI											-
ENVIRONMENTAL (VAPOUR ONLY) 60549588 SELKRIK.GPJ UMA.GDT 18/1/30											
9 -7											7 -
OUR O											:
(VAP(
BNTA 8 8											-
SONM		A=COA	A		LOGGED BY: REVIEWED BY		?			ETION DEPTH: 6.00 m ETION DATE: 18/7/12	
EN		AECON	' •		PROJECT ENG			 3R	JOIVIEL		1 of 1

PRO	JECT:	Subsurface Investigation Summary	CLIENT: Imperia	l Oil Ltd.					OLE NO: BH8	
		I: 287 Main St, Selkirk, MB							CT NO.: 60549588	
		TOR: Maple Leaf Drilling	METHOD: Hollow		11.17				TION (m):	
SAMF	LE I	/PE GRAB SHELBY	TUBE SPLIT SPC	ON BU	JLK 		∠NO	RECOVE	RY CORE	
DEPTH (m)	SOIL SYMBOL	SOIL DESCI	RIPTION		SAMPLE TYPE	SAMPLE#	⊗ Vapour Reac (ppm) 10 100		COMMENTS	DEPTH (m)
ENVIRONMENTAL (VAPOUR ONLY) 60549588 SELKRIK, GPJ UMA, GDJ 18/11/30		SANDY CLAY Sandy clay, dark brown, F.SBK, moist, firm, coarse frag -Sandy clay, light brown, F.SBK, moist, very firm, coarse SAND Sand, some clay, wet, slightly sticky, moist, coarse frag CLAY Clay, some sand, light brown, MSBK, moist, firm, coarse -Clay, light grey, wet, slightly sticky, C.SBK, gleying, moist, light grey, moist, firm, C.SBK, gleying, salt flecks -Clay, light grey, moist, very firm, C.SBK, gleying, coarse EOH @ 6.0 mbgs	e frags @ 0-2cm, gleying s @ 0-2cm e frags @ 0-2cm				10 100	1000	-sample BH8_2.4_M3 submitted for PHCs, n-hexane, Lead Scavengers, PAHs -sample BH8_3.75_M3 submitted for PHCs, n-hexane, Lead Scavengers, PAHs	1
1EN IAL (VAPOUR 8 1 1 1 1 1 1 1 1 1										
<u>₹</u>		AECOM		LOGGED BY: I		· · · · ·			ETION DEPTH: 6.00 m ETION DATE: 18/7/12	
N N		A=CO/VI		PROJECT ENG			BR	COIVIPL		1 of 1
- L								1	. ago	


PR	OJECT	: IOL (Cost to Closure Canada	West	CLIENT: Imperia	l Oil Ltd.				TESTH	OLE NO: VW18-01	
LO	CATIO	N: 287	Main St, Selkirk MB							_	CT NO.: 60549588	
			Paddock Drilling Ltd.		METHOD: Solid						TION (m):	
	APLE T		GRAB	SHELBY TUBE	SPLIT SPC	ON ⊟BU ∏GI				O RECOVE		
BAC	KFILL	TYPE	BENTONITE	GRAVEL	SLOUGH	GI	ROUT			UTTINGS	SAND	
DEPTH (m)	WELL	SOIL SYMBOL		SOIL DESCRI	PTION		SAMPLE TYPE	SAMPLE #	⊗ Vapour Re (ppm	1)	COMMENTS	DEPTH (m)
.GPJ UMA.GDT 18/12/3			SILTY CLAY -Silty clay loam, light brown, cm) CLAY LOAM -Clay loam, brown, moist, fin CLAY LOAM -Clay loam, some sand, darl (0-2 cm), coal flecks, strong	m, coarse subangular block k grey, moist, firm, coarse s potential hydrocarbon odor	ky, coarse fragments (C	-2 cm)			10 10() 1000	-Sample collected for particle size analysis. -Sample collected for particle size analysis. -Sample collected for particle size analysis. -Vapour probe installed at 1.6 m to 1.85 m.	1-
ENVIRONMENTAL (VAPOUR ONLY) 60549588_SELKRIK_VP_NOV 22 2018.GPJ UMA.GDT 18/12/3			End of borehole at 2.0 m be Notes: 1. Vapour well installed upor 2. HDPE sample tubing (1/4 3. Vapour probe installed at 4. Borehole backfilled with s 5. Flush mount casing installed	n completion of borehole. ") from surface to 1.6 m bel 1.6 m to 1.85 m. and, bentonite #20 and hyd	ow ground surface.							2 -
NME			4 = 66 *			LOGGED BY:			e 1		ETION DEPTH: 2.00 m	
IVIRC			A=COM	И		REVIEWED BY				COMPL	ETION DATE: 18/11/22	4 - 5 - 2
E E						PROJECT ENG	NE	K: B	<		Page	1 of 1

PR	OJECT:	IOL (Cost to Closure Canada V	Vest	CLIENT: Imperia	l Oil Ltd.				TESTH	OLE NO: VW18-02	
LO	CATION:	287	Main St, Selkirk MB							_	CT NO.: 60549588	
			Paddock Drilling Ltd.		METHOD: Solid						TION (m):	
	MPLE TY CKFILL T		GRAB BENTONITE	SHELBY TUBE GRAVEL	SPLIT SPO	ON ■BL		т		NO RECOVE	RY CORE SAND	
BAU	NFILL I	TPE	BENTONITE	GRAVEL	SLOUGH	. . Gr	100	I.		COTTINGS	SAND	
DEPTH (m)	WELL	SOIL SYMBOL	,	SOIL DESCRI	PTION		SAMPLE TYPE	SAMPLE #	⊗ Vapour F (ppi 10 10	m)	COMMENTS	DEPTH (m)
0			SILTY CLAY -Silty clay loam, brown, moist,	friable fine subangular b	llocky coarse fragment	rs (0-2 cm)				1000	-Sample: VW18-02 BTEX/TPH Fractionation.	
ENVIRONMENTAL (VAPOUR ONLY) 60549588_SELKRIK_VP_NOV 22 2018.GPJ_UMA.GDT 18/12/3			SANDY CLAY -Sandy some clay, light br SANDY CLAY -Sandy clay, some silt, light gr cm), potential hydrocarbon od Notes: 1. Vapour well installed upon of 2. HDPE sample tubing (1/4") 3. Vapour probe installed at 1. 4. Borehole backfilled with sar 5. Flush mount casing installe	rown, moist, friable, medic rey, moist, firm, coarse su or and staining w ground surface in CLAY completion of borehole. from surface to 1.6 m bel 6 m to 1.85 m. nd, bentonite #20 and hyd	um granular, coarse fra bangular blocky, coars	gments (0-2 cm)					-Sample collected for particle size analysis. -Sample collected for particle size analysis. -Sample collected for particle size analysisVapour probe installed at 1.6 m to 1.85 m.	1
3 3			A = CO : 1		LOGGED BY: MK					COMPLETION DEPTH: 2.00 m		
NVIRC			AECON	I		PROJECT ENG			RP.	COMPLETION DATE: 18/11/22 Page 1 of 1		
ш		AECOM						∟I\. [) (rage	ı UI I

Appendix B

2013 Site Survey Plan

Appendix C

Well Record Summary

No. Well_PID		Well Use	Water Use	UTMX	UTMY	Accuracy XY	top of screen (ft)	Top of Screen (m)	bottom of screen (ft)	Bottom of Screen (m)	water level (ft)	Depth to Water	total depth (ft)	Total Depth (m	1)	Owner	Address/NOTES	Approximate Distance fro
					-		1()	1	(-)			(m)			7			Site
1 Well PID: 299	OEE WALL	Jse: PRODUCTION	Water Use: Domestic	UTMX: 649996.552	UTMY: 5556958.08	UNKNOWN	66	20.1	153.9	46.9		_	_	_	Owner:	F HAWTHORNE	CORNER OF SELKIRK AVE AND SELKRIK BYPASS (PTH #9A)	3.1km
2 Well PID: 435		Jse: PRODUCTION	Water Use: Domestic	UTMX: 650064.188	UTMY: 5557012.24	UNKNOWN	80.9	24.7	118.9	36.2					Owner:	SELKIRK G & C CLUB	SUTHERI AND AVE FAST	>162m
Z WCII_I ID. 433	JO7 WEIL	Jac. TRODUCTION	Water Osc. Domestic	01WIX. 030004.100	011011: 3337012:24	GINNIGUTI	00.7	24.7	110.7	30.2				1	OWITCI.	SEEKIIK O & O CEOD	SOTTEREMED AVE EAST	7102111
3 Well_PID: 713	328 Well l	Jse: PRODUCTION	Water Use: Domestic	UTMX: 650064.188	UTMY: 5557012.24	UNKNOWN	89.4	27.2	185.9	56.7	=	=	-	-	Owner:	SELKIRK GOLF COURSE	100 SUTHERLAND AVE, SELKIRK, H=35 GPG, FE=.1 PPM	534 m
4 Well_PID: 496	643 Well t	Jse: PRODUCTION	Water Use: Domestic	UTMX: 650064.188	UTMY: 5557012.24	UNKNOWN	64	19.5	177.9	54.2	=	Ξ	-	-	Owner:	L HEBISCHUK	MAPLETON PLACE ZONES - 39.6M;0.5 L/S- 53.0M;1.4 L/S	2.5 km
5 Well_PID: 203	330 Well t	Jse: TEST WELL		UTMX: 650123.868	UTMY: 5557080.7	UNKNOWN	N/A	N/A	N/A	N/A	34	10.4	205.9	62.8	Owner:	WRB	130 FT HWY #9, .3 MI S CLOVERDALE RD, NEAR GRAVEL PIT	2.5km
6 Well_PID: 630	048 Well l	Jse: PRODUCTION	Water Use: Domestic	UTMX: 650123.868	UTMY: 5557080.7	UNKNOWN	93.4	28.5	202.9	61.8	-	-	-	-	Owner:	H COOK	225 TORONTO AVE., SELKIRK	125 m
7 Well PID: 105	585 Well U	Jse: PRODUCTION	Water Use: Domestic	UTMX: 650172.404	UTMY: 5557127.31	UNKNOWN	56	17.1	79.9	24.4	=	-	-	_	Owner:	J BUNID	50 FT S OF PACIFIC ST, E OF RAILWAY ST, GROUND LEVEL ELEV EST 730 FT	>500m
																	EAST END	
8 Well_PID: 580	043 Well U	Jse: PRODUCTION	Water Use: Municipal	UTMX: 651953	UTMY: 5556168	1 EXACT [<5M] [GPS]	184.9	56.4	259.8	79.2	-	-	-	-	Owner:	CITY OF SELKIRK	OF ROSSER AVE AND EVELINE ST, NEAR RIVER INTAKE	450m
9 Well_PID: 572	211 Well l	Jse: TEST WELL	·	UTMX: 650240.04	UTMY: 5557201.76	UNKNOWN	96.9	29.5	261.8	79.8	-		-	-	Owner:	CITY OF SELKIRK	E. END ROSSER AVE. N. SIDE RIVER INTAKE PUMPHOUSE	450 m
10 Well_PID: 178	864 Well l	Jse: PRODUCTION	Water Use: Domestic	UTMX: 650240.04	UTMY: 5557201.76	UNKNOWN	26	7.9	57	17.4	-	-	-	-	Owner:	C STEPHANSON	N/A	N/A
11 Well PID: 434	455 Well I	Jse: PRODUCTION	Water Use: Domestic	UTMX: 650240.04	UTMY: 5557201.76	UNKNOWN	88.9	27.1	92.9	28.3	=	_	_	_	Owner:	J BOYCE	307 ROSSER AVE (AECOM verified with home owner there no operational well at this property)	70 m
12 Well PID: 324		Jse: PRODUCTION	Water Use: Domestic	UTMX: 650240.04	UTMY: 5557201.76	UNKNOWN	60	18.3	96.9	29.5	-	-	-	-	Owner:	W MARSH	N/A	N/A
13 Well_PID: 182		Jse: PRODUCTION	Water Use: Domestic	UTMX: 650240.04	UTMY: 5557201.76	UNKNOWN	43	13.1	86.9	26.5	-	-	-	-	Owner:	A STEFANSON	CLOVERDALE RD	4 km
4 Well PID: 134	422 Moll I	Jse: PRODUCTION	Water Use: Domestic	UTMX: 650375.311	UTMY: 5557337.14	UNKNOWN	44	13.4	106.9	32.6	_				Owner:	S SCHKAWRITKA	150 FT E OF HWY #9. GROUND LEVEL ELEV EST 750 FT	>5 km
5 Well PID: 509		Jse: PRODUCTION	Water Use: Domestic	UTMX: 650402.365	UTMY: 5557384.53	UNKNOWN	N/A	N/A	N/A	N/A	27	8.2	86.9	26.5	Owner:	H SIEMEN	150 FT W OF SFI KIRK BY PASS	>2.8 km
		Jse: RECHARGE	Water osc. Domestic	UTMX: 650402.365	UTMY: 5557384.53	5 GENERAL [1KM-8KM]	110	33.5	120	36.6	-	-	-	20.3	Owner:	BRAD BELL	226 VAUGHN, SELKIRK, WELL IS IN THE FRONT YARD.	330 m
7 Well PID: 141		Jse: PRODUCTION	Water Use: Air conditioning	UTMX: 650402.365	UTMY: 5557384.53	5 GENERAL [1KM-8KM]	107	32.6	115	35.1	-		-	-	Owner:	BRAD BELL	226 VAUGHN, SELKIRK, SUPPLY WELL BEHIND THE HOUSE.	330 m
18 Well_PID: 520		Jse: PRODUCTION	Water Use: Domestic	UTMX: 650402.365	UTMY: 5557384.53	UNKNOWN	57	17.4	159.9	48.7	-	-	-	-	Owner:	J SEAMENS	N/A	N/A
																•		
19 Well_PID: 647			Water Use: Domestic	UTMX: 650402.365	UTMY: 5557384.53	UNKNOWN	61	18.6	239.8	73.1	-	-	-	-	Owner:	J STEPHANSON	631 VAUGHAN AVE., SELKIRK	850 m
20 Well_PID: 798			Water Use: Domestic	UTMX: 650402.365	UTMY: 5557384.53	UNKNOWN	50	15.2	74	22.6	-	-	-	-	Owner:	S STEFENSON	N/A	3.5 km
	852 Well l		Water Use: Domestic	UTMX: 650444.135	UTMY: 5557431.14	UNKNOWN	88.9	27.1	116.9	35.6	=	=	-	-	Owner:	B SPARKES	705 MCLEAN AVE	1 km
	4580 Well U		Water Use: Municipal	UTMX: 651601	UTMY: 5556777	2 VERY ACCURATE [<50M]		52.4	277	84.4	-	-	-	-	Owner:	CITY OF SELKIRK	SELKIRK - PUBLIC WATER SYSTEM WELL	375 m
- TTOII_TTD: TTO	0013 Well t			UTMX: 650507.981	UTMY: 5557476.59	N/A	85.2	26.0	137.7	42.0	-	-	-	-	Owner:	TOWN OF SELKIRK/UMA	7.3 M E OF SELKIRK WATER TOWER, BETWEEN WATER	480 m
4 Well_PID: 796	681 Well t	Jse: PRODUCTION	Water Use: Domestic	UTMX: 650507.981	UTMY: 5557476.59	UNKNOWN	48	14.6	165.9	50.6	-	-	-	-	Owner:	SELKRK ALLIANCE CHURCH	N SIDE MANITOBA AVE, W SIDE OF CHURCH	2.6 km

Notes:

Records sourced from Manitoba Water Stewardship water well records GWDrill data base

Appendix D

Soil Vapour Assessment

Appendix D: Soil Vapour Assessment

Background

Prior to initiation of the remedial excavation, a soil vapour investigation was completed at the Site. The results of the soil vapour investigation were used to further assess the vapour inhalation exposure pathway at the Site.

Soil Vapour Investigation

Between November 2018 and February 2019 a soil vapour investigation was completed to assess the vapour inhalation exposure pathway at the Site. The soil vapour investigation included:

- Installation of four soil vapour probes;
- Two rounds of soil vapour sampling;
- Model indoor air concentrations using CCME dilution factors based on the Johnson and Ettinger (1991) model to assess potential risks posed by the indoor infiltration of volatile contaminants emanating from soil and/or groundwater; and
- Evaluation of potential modification to the remedial approach based on application of the soil vapour screening criteria.

On November 22, 2018, four soil vapour probes (VW18-1, VW18-2, VW18-3 and VW18-4) were installed for collection of representative soil vapour samples from areas exhibiting soil impacts. The assessment area comprised two locations, as illustrated on Figure 8:

- VW18-1 and VW18-2 were located in the southeast of the former tank farm (between the tank farm and Main Street) where identified soil impacts were driven by the vapour intrusion pathway for benzene (based on soil concentrations in locations BH4, BH5 and TP-17). Benzene in soil exceed the applicable soil criteria in subsoil (below 1.5 metres below ground surface (mbgs)) but not within surface soil (0-1.5 mbgs). No remediation would be necessary for benzene in this area if soil vapour concentrations meet the soil vapour screening criteria.
- VW18-3 and VW18-4 were located within the former tank farm (based on soil concentrations observed in BH6). Soil concentrations in BH6 exceed management limits so excavation is required of these soils regardless of the soil vapour sampling and vapour intrusions modeling results.

The soil vapour monitoring probes were installed at 1.6-1.85 mbgs, above the water table and in the area of worst-case impacts. Two rounds of soil vapour sampling were completed, in November 2018 and February 2019 from VW18-1 and VW18-2, and one round of sampling was completed from VW18-3 and VW18-4 in November 2018. Soil vapour samples were submitted for analysis of benzene, toluene, ethylbenzene, xylenes (BTEX), aliphatic and aromatic petroleum hydrocarbon (F1-F2) fractions. All samples were shipped to Bureau Veritas Laboratory in Calgary, Alberta. Analytical results are summarized in Table D-3 and Table D-4.

Vapour Intrusion Modeling

The measured soil vapour concentrations were used to calculate predicted indoor air concentrations using soil gas to indoor air dilution factors (DF) as a function of depth/distance from building to contamination as presented in Table 3.2 of CCME Canada-Wide Standard for Petroleum Hydrocarbons (PHC) in Soil: Scientific Rationale Supporting Technical Document, January 2008(b), also provided below.

Table 3.2: Soil gas to indoor air dilution factor (DF)* as a function of depth/distance from building to contamination (L_t).

=	Dilution Factors for Indoor Infiltration (DF)											
			Dilution F	actors for Ir	ndoor Infiltr	ation (DF)						
_	L _T	Reside	ential,	Reside	ential,	Commercia	/Industrial,					
	(cm)	with bas	sement	slab-on	-grade	slab-on	-grade					
_		f/g	c/g	f/g	c/g	f/g	c/g					
_	30	35671	1889	30524	1438	62935	4605					
	100	36137	2469	31360	2480	64190	6167					
	200	36802	3297	32556	3968	65983	8399					
	300	37468	4125	33751	5456	67777	10630					
	500	38798	5781	36142	8431	71363	15094					
	1000	42124	9922	42119	15871	80328	26252					
	2000	48778	18202	54073	30749	98259	48570					
	3000	55430	26483	66026	45627	116189 70887						
=						·						

^{* -} adjustment factor (below) not included in DF

Calculations were made according to the following equation to determine the indoor air concentration:

$$C_{air} = C_v / DF$$

 C_{air} = indoor air concentration

 C_v = soil vapour concentration

DF = dilution factor

According to the most recent guidance, (CCME 2014, *A Protocol For The Derivation Of Soil Vapour Quality Guidelines For Protection Of Human Exposures Via Inhalation Of Vapours*) ,a bioattenuation adjustment factor of 10 is applicable to soil vapour inhalation modelling results. The adjustment factor only pertains to petroleum hydrocarbons (BTEX, F1 and F2), assuming there is at least one metre of clean soil between the top of the soil vapour probe screen and building foundation, or ground surface in the case of outdoor air guidelines. Based on the observed site conditions (no soil impacts between ground surface and a depth of 1.5 m), the adjustment factor has been applied to the calculated indoor air concentrations.

The highest measured concentration was used to convert measured soil vapour concentrations to predicted indoor air concentrations (Table 2). These predicted concentrations were then used to determine a Hazard Quotient (HQ) for threshold chemicals, or an Incremental Lifetime Cancer Risk (ILCR) for non-threshold chemicals, for each of the BTEX constituents and PHC fractions F1 and F2.

The HQ or ILCR is an indication of potential risk from contaminants. It is estimated by dividing the expected exposure level by the associated reference dose for that contaminant (Tolerable Concentration (TC) for threshold contaminants and Risk-Specific Concentration (RsC) for non-threshold contaminants) (CCME, 2008b). To be conservative, a soil allocation factor (SAF) of 0.5 was applied to all threshold substances to account for exposure form other media.

Incremental Lifetime Cancer Risk (ILCR) =
$$C_{air}$$
 * ET / RsC Hazard Quotient (HQ) = C_{air} * ET / TC / SAF

To derive soil quality guidelines for a PHC fraction, guidelines must first be estimated for each individual sub-fraction, for the target Hazard Quotient desired. Then, the guidelines for sub-fractions must be combined according to their mass fraction within the fraction, according to the algorithm below (CCME, 2008b).

$$SQG_{Fraction_i} = \frac{1}{\sum \left(\frac{MF_{subfraction j}}{SQG_{subfraction j}}\right)}$$

 $SQG_{fraction_i}$ = soil quality guideline for the fraction i (mg/kg)

 $SQG_{sub-fraction j}$ = soil quality guideline (mg/kg) for each sub-fraction within fraction i for the target Hazard Quotient for fraction i

 $MF_{sub-fraction j}$ = mass fraction of each sub-fraction within the fraction i

Dilution factors and mass fraction are grain size specific, although the site is identified as fine-grained based on boring logs and grain size analysis, the soil vapour intrusion modeling was conducted for both fine-grained and coarse-grained soil conditions to be conservative and evaluate the relative risk. The dilution factor for minimum depth of contamination of 1.0 m was used for this modelling.

Soil vapour intrusion modeling is presented in Tables D-3 and Table D-4.

Soil Vapour Intrusion Modeling Results

The HQ / ILCR for each of the BTEX constituents and PHC fractions F1 and F2 was found to be less than 1 (i.e. the predicted indoor air concentrations were less than the respective indoor air guideline concentrations), therefore, there are no significant risks associated with the occupancy of a building exhibiting such concentrations.

Benzene is the only soil contaminant for which vapour indoor air was the driving pathway. Based on the soil vapour evaluation there is no risk from soil vapour intrusion in areas evaluated, therefore the vapour indoor air pathway can be eliminated for these areas. The revised soil guidelines, based on the exclusion of soil vapour in select areas, is detailed in the tables below.

Table D-1: Modified Tier 2 Guideline Summary - CCME Commercial Fine-Grained (Surface Soil)

		_				,		
Parameter	В	Т	E	X	F1	F2	F3	F4
Tier 1	0.0068	0.08	0.018	2.4	170	230	2,500	6,600
Tier 2 (site specific)	110	330	430	230	320	260	2,500	6,600
Human Health 10 ⁻⁵								
soil ingestion	110	82,000	36,000	560,000				
soil dermal contact	250	790,000	210,000	NA	19,000	10,000	23,000	RES
soil inhalation	NC	NC	NC	NC	-	-	-	-
vapour indoor air (basement)	-	-	-	-				
vapour indoor air (slab on grade)	2.8	13,000	6,500	1,600	4,600	23,000	NA	NA
offsite migration	-	-	-	-	-	-	-	-
GW (potable)	0.0068	0.08	0.018	2.4	170	230	NA	NA
produce, meat and milk	-	-	-	-	-	-	-	-
Environmental Risk								
soil dermal contact	310	330	430	230	320	260	2,500	6,600
soil and food ingestion	-	-	-	-	-	-	-	-
nutrient and energy cycling	NC	NC	NC	NC	NC	NC	NC	NC
offsite migration	-	-	-	-	NA	NA	19,000	RES
GW (livestock)	-	-	-	-	-	-	-	-
GW (aquatic life)	NC	NC	NC	NC	RES	RES	NA	NA
management limit	-	-	-	-	800	1,000	5,000	10,000

Notes:

NA = Not applicable. Calculated value exceeds 1,000,000 mg/kg or pathway excluded.

RES = Residual PHC formation. Calculated value exceeds 30,000 mg/kg and solubility limit.

NC = Not calculated. Insufficient data to allow derivation.

- = no value available

Bold = applicable guideline

Grey = Excluded pathway

Table D-2: Modified Tier 2 Guideline Summary - CCME Commercial Fine-Grained (Subsoil)

Remediation Plan, 287 Main Street Selkirk, Manitoba

Parameter	В	Т	E	Х	F1	F2	F3	F4
Tier 1	0.0068	0.08	0.018	2.4	170	230	5,000	10,000
Tier 2 (site specific)	620	660	860	460	800	1,000	5,000	10,000
Human Health 10 ⁻⁵								
soil ingestion	NC	NC	NC	NC				
soil dermal contact	NC	NC	NC	NC	NA	NA	NA	RES
soil inhalation	NC	NC	NC	NC	-	-	-	-
vapour indoor air (basement)	-	-	-	-				
vapour indoor air (slab on grade)	2.9	13,000	6,700	1,600	4,600	23,000	NA	NA
off-site migration	-	-	-	-	-	-	-	-
GW (potable)	0.0068	0.08	0.018	2.4	170	230	NA	NA
produce, meat and milk	-	-	-	-	-	-	-	-
Environmental Risk								
soil dermal contact	620	660	860	460	NA	NA	NA	NA
soil and food ingestion	-	-	-	-	-	-	-	-
nutrient and energy cycling	NC	NC	NC	NC	NC	NC	NC	NC
offsite migration	ı	-	-	ı	NA	NA	19,000	NA
GW (livestock)	-	-	-	-	-	-	-	-
GW (aquatic life)	NC	NC	NC	NC	RES	RES	NA	NA
management limit	-	-	-	-	800	1,000	5,000	10,000

Notes:

NA = Not applicable. Calculated value exceeds 1,000,000 mg/kg or pathway excluded.

RES = Residual PHC formation. Calculated value exceeds 30,000 mg/kg and solubility limit.

NC = Not calculated. Insufficient data to allow derivation.

- = no value available

Bold = applicable guideline

Grey = Excluded pathway

Based on the soil vapour assessment, the remedial design will be modified as follows: benzene impacted soil (based on indoor air vapour guideline values) that is not co-located with other contaminants requiring remediation driven by a pathway other than indoor air will be left in place. This is a result of the modeling indicating there is negligible exposure risk from soil vapours and benzene concentrations do not exceed remedial criteria for any other applicable exposure pathway.

The proposed extent of excavation is illustrated on **Figure 9**.

Table D-3: VAPOUR INTRUSION MODEL - SOIL VAPOUR (FINE GRAINED SOIL)

Chemical Properties

Name	Units	Benzene	Toluene	Ethylbenzene	Xylenes	Aliphatic C6-C8	Aliphatic C>8-C10	Aromatic C>8-C10	F1	Aliphatic C>10-C12	Aliphatic C>12-C16	Aromatic C>10-C12	Aromatic C>12-C16	F2
Threshold / Non-Threshold	N/A	Non-Threshold	Threshold	Threshold	Threshold	Threshold	Threshold	Threshold	Threshold	Threshold	Threshold	Threshold	Threshold	Threshold
Risk-Specific Concentration (RsC) or Tolerable Concentration (TC)	mg/m ³	0.003	3.8	1	0.18	1.84E+01	1.00E+00	2.00E-01	-	1.00E+00	1.00E+00	2.00E-01	2.00E-01	-
Background Air Concentration	mg/m ³	NA	0.0442	0.0075	0.00182	9.11E-02	3.88E-02	3.75E-02	-	0	0	0	0	-
Background Soil Concentration	(mg/kg)	0	0	0	0	0	0	0	-	0	0	0	0	-
Soil Allocation Factor (SAF)	N/A	NA	0.5	0.5	0.5	0.5	0.5	0.5	-	0.5	0.5	0.5	0.5	-
			-									•		
Exposure Term	N/A	1	0.2747	0.2747	0.2747	0.2747	0.2747	0.2747	0.2747	0.2747	0.2747	0.2747	0.2747	0.2747

Site Specific Soil Vapour Sampling Results

Sample Results	Date	Units	Benzene	Toluene	Ethylbenzene	Total Xylenes	Aliphatic >C6-C8	Aromatic >C8-C10	Aliphatic >C8-C10	F1	Aliphatic >C10-C12	Aliphatic >C12-C16	Aromatic >C10-C12	Aromatic >C12-C16	F2
VW 18-1	2018-11-29	mg/m ³	52	8.15	41.4	281	42,400	462	1,430	47,100	70.1	<15	237	<15	407
VW18-2	2018-11-29	mg/m ³	2.9	<0.8	2.18	202	7,870	239	681	9,070	96.9	<2.5	155	<2.5	359
VW 18-3	2018-11-29	mg/m ³	< 0.0034	< 0.011	0.032	0.337	10.7	1.53	2.52	15.8	0.971	0.099	1.55	0.097	5.02
VW 18-4	2018-11-29	mg/m ³	0.0008	0.0019	0.0031	0.043	1.09	0.241	0.407	1.9	0.306	0.386	0.362	0.0915	2.28
VW18-1	2020-02-21	mg/m ³	39.9	<9.7	<9.7	79.4	37,300	847	94.4	26,900	<30	<30	<30	<30	58.8
VW18-1 (Duplicate)	2020-02-21	mg/m ³	26.4	<8.9	<8.9	76.7	24,100	1400	197	19,300	<28	<28	95.9	<28	147
VW 18-2	2020-02-21	mg/m ³	<0.0038	< 0.012	<0.012	< 0.017	10.7	5.23	<0.038	11.8	8.03	0.188	0.053	<0.038	5.72
Ma	Maximum		52	8.15	41.4	281	42,400	462	1,430	47100	96.9	30	237	30	407

Site Specific Indoor Air Concentration Calculation and Risk Evaluation

Based on CCME Canada-Wide Standard for Petroleum Hydrocarbons (PHC) in Soil: Scientific Rationale Supporting Technical Document, January 2008

Soil gas to indoor air dilution factor (DE) as a function of depth/distance from building to contamination

Depth to Contamination	DF	Units	Benzene	Toluene	Ethylbenzene	Total Xylenes	Aliphatic >C6-C8	Aromatic >C8-C10	Aliphatic >C8-C10	F1	Aliphatic >C10-C12	Aliphatic >C12-C16	Aromatic >C10-C12	Aromatic >C12-C16	F2
30 cm	62,935	mg/m ³	8.26E-04	1.29E-04	6.58E-04	4.46E-03	6.74E-01	7.34E-03	2.27E-02	7.48E-01	1.54E-03	4.77E-04	3.77E-03	4.77E-04	6.47E-03
100 cm	64,190	mg/m ³	8.10E-04	1.27E-04	6.45E-04	4.38E-03	6.61E-01	7.20E-03	2.23E-02	7.34E-01	1.51E-03	4.67E-04	3.69E-03	4.67E-04	6.34E-03
200 cm	65,983	mg/m ³	7.88E-04	1.24E-04	6.27E-04	4.26E-03	6.43E-01	7.00E-03	2.17E-02	7.14E-01	1.47E-03	4.55E-04	3.59E-03	4.55E-04	6.17E-03
300 cm	67,777	mg/m ³	7.67E-04	1.20E-04	6.11E-04	4.15E-03	6.26E-01	6.82E-03	2.11E-02	6.95E-01	1.43E-03	4.43E-04	3.50E-03	4.43E-04	6.00E-03
Adjustment Factor		N/A	10	10	10	10	10	10	10	10	10	10	10	10	10
Adjusted Indoor Air Concentration		mg/m ³	8.26E-05	1.29E-05	6.58E-05	4.46E-04	6.74E-02	7.34E-04	2.27E-03	7.48E-02	1.54E-04	4.77E-05	3.77E-04	4.77E-05	6.47E-04
Soil Allocation Factor		N/A	1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Mass Fraction in Soil Vapour (fine-gra	ained site)	N/A	N/A	N/A	N/A	N/A	8.40E-01	1.55E-01	5.00E-03	N/A	7.66E-01	2.07E-01	2.25E-02	5.30E-03	N/A
Hazard Quotient		N/A	2.75E-02	1.87E-06	3.61E-05	1.36E-03	2.01E-03	4.03E-04	6.24E-03	1.25E-03	8.46E-05	2.62E-05	1.03E-03	1.31E-04	5.88E-05
Indoor Vapour Risk		N/A	No	No	No	No	No	No	No	No	No	No	No	No	No

Notes

- 1. Calculation performed on sample exhibiting the highest concentration. Wijhere a none detect value exceeded detected concentration the unmodified non-detected values was used.
- 2. Indoor air concentration values derived by dividing result concentration by the commercial, slab-on-grade dilution factor, for fine-grained soil, adopted from CCME Canada-Wide Standard for Petroleum Hydrocarbons (PHC) in Soil: Scientific Rationale Supporting Technical Document, January 2008
- 3. Toxicity Reference Values, Tolerable Concentration (TC) for PHC Fractions adopted from values publised in CCME, 2008, Canada-Wide Standard for Petroleum Hydrocarbons (PHC) in Soil: Scientific Rationale Supporting Technical Document, January 2008
- 4. Toxicity Reference Values, Risk-Specific Concentration (RsC) or Tolerable Concentration (TC) for Benzene, Toluene, Xylene, adopted from values publised in Health Canada, 2004, Federal Contaminated Site Risk Assessment in Canada. Part II: Health Canada Toxicological Reference Values (TRVs).
- 5. Toxicity Reference Values, Tolerable Concentration (TC) for Ethylbenzene adopted from values publised in US EPA (United States Environmental Protection Agency), 2006. Integrated Risk Information System (IRIS) On-Line Database available at www.epa.gov/iris
- 6. Hazard Quotient derived by summing the fractions of recommended guidelines for PHC fraction but is considered individually for BTEX parameters. A soil allocation factor of 0.5 has been applied to all threshold substances to account for exposure form other media.
- 7. Hazard Quotient >1 for BTEX, PHC F1-F2 indicates no indoor air risk (CCME, 2008b).
- 8. Exposure Term for non-threshold is defaulted as "one" as the exposure time (e.g., 10hr/day, 5 days/week, 48weeks/year for 30-40 years over a lifetime) exceeds the likely latency period for most carcinogens, as explained in Heath Canada Part I (2004).
- 9. Background Air Concentration and Soil Allocation Factor (SAF) are not applicable to non-threshold contaminants (CCME, 2006).

Table D-4: VAPOUR INTRUSION MODEL - SOIL VAPOUR (COARSE GRAINED SOIL)

Chemical Properties

One micar i reperties														
Name	Units	Benzene	Toluene	Ethylbenzene	Xylenes	Aliphatic C6-C8	Aliphatic C>8-C10	Aromatic C>8-C10	F1	Aliphatic C>10-C12	Aliphatic C>12-C16	Aromatic C>10-C12	Aromatic C>12-C16	F2
Threshold / Non-Threshold	N/A	Non-Threshold	Threshold	Threshold	Threshold	Threshold	Threshold	Threshold	Threshold	Threshold	Threshold	Threshold	Threshold	Threshold
Risk-Specific Concentration (RsC) or Tolerable Concentration (TC)	(mg/m³)	0.003	3.8	1	0.18	18.4	1	0.2	-	1	1	0.2	0.2	-
Background Air Concentration	(mg/m ³)		0.0442	0.0075	0.00182	0.0911	0.0388	0.0375	-	0	0	0	0	-
Background Soil Concentration	(mg/kg)	0	0	0	0	0	0	0	-	0	0	0	0	-
Soil Allocation Factor (SAR)	N/A		0.5	0.5	0.5	0.5	0.5	0.5	-	0.5	0.5	0.5	0.5	-
Exposure Term	N/A	1	0.2747	0.2747	0.2747	0.2747	0.2747	0.2747	0.2747	0.2747	0.2747	0.2747	0.2747	0.2747

Site Specific Soil Vapour Sampling Results

ite Specific Son Vapour Sampiir	ng Results														
Sample	Date	Units	Benzene	Toluene	Ethylbenzene	Total Xylenes	Aliphatic >C6-C8	Aromatic >C8-C10	Aliphatic >C8-C10	F1	Aliphatic >C10-C12	Aliphatic >C12-C16	Aromatic >C10-C12	Aromatic >C12-C16	F2
VW 18-1	2018-11-29	(mg/m ³)	52	8.15	41.4	281	42,400	462	1,430	47100	70.1	<15	237	<15	407
VW 18-2	2018-11-29	(mg/m ³)	2.9	<0.8	2.18	202	7,870	239	681	9070	96.9	<2.5	155	<2.5	359
VW 18-3	2018-11-29	(mg/m ³)	< 0.0034	< 0.011	0.032	0.337	10.7	1.53	2.52	15.8	0.971	0.099	1.55	0.097	5.02
VW 18-4	2018-11-29	(mg/m ³)	0.0008	0.0019	0.0031	0.043	1.09	0.241	0.407	1.9	0.306	0.386	0.362	0.0915	2.28
VW 18-1	2020-02-21	(mg/m ³)	39.9	<9.7	<9.7	79.4	37,300	847	94.4	26900	<30	<30	<30	<30	58.8
VW 18-1 (Duplicate)	2020-02-21	(mg/m³)	26.4	<8.9	<8.9	76.7	24,100	1,400	197	19300	<28	<28	95.9	<28	147
VW 18-2	2020-02-21	(mg/m ³)	<0.0038	<0.012	<0.012	< 0.017	10.7	5.23	<0.038	11.8	8.03	0.188	0.053	<0.038	5.72
Maximum		(mg/m³)	52	8.15	41.4	281	42,400	462	1,430	47100	96.9	30	237	30	407

Site Specific Indoor Air Concentration Calculation and Risk Evaluation

Based on CCME Canada-Wide Standard for Petroleum Hydrocarbons (PHC) in Soil: Scientific Rationale Supporting Technical Document, January 2008

Soil gas to indoor air dilution factor	(DF) as a function of depth/distance	from building to contamination.													
Depth to Contamination	DF	Units	Benzene	Toluene	Ethylbenzene	Total Xylenes	Aliphatic >C6-C8	Aromatic >C8-C10	Aliphatic >C8-C10	F1	Aliphatic >C10-C12	Aliphatic >C12-C16	Aromatic >C10-C12	Aromatic >C12-C16	F2
30 cm	4,605	(mg/m ³)	1.13E-02	1.77E-03	8.99E-03	6.10E-02	9.21E+00	1.00E-01	3.11E-01	1.02E+01	2.10E-02	6.51E-03	5.15E-02	6.51E-03	8.84E-02
100 cm	6,167	(mg/m ³)	8.43E-03	1.32E-03	6.71E-03	4.56E-02	6.88E+00	7.49E-02	2.32E-01	7.64E+00	1.57E-02	4.86E-03	3.84E-02	4.86E-03	6.60E-02
200 cm	8,399	(mg/m ³)	6.19E-03	9.70E-04	4.93E-03	3.35E-02	5.05E+00	5.50E-02	1.70E-01	5.61E+00	1.15E-02	3.57E-03	2.82E-02	3.57E-03	4.85E-02
300 cm	10,630	(mg/m ³)	4.89E-03	7.67E-04	3.89E-03	2.64E-02	3.99E+00	4.35E-02	1.35E-01	4.43E+00	9.12E-03	2.82E-03	2.23E-02	2.82E-03	3.83E-02
Adjustment Factor		N/A	10	10	10	10	10	10	10	10	10	10	10	10	10
Adjusted Indoor Air Concentration		(mg/m ³)	8.43E-04	1.77E-04	8.99E-04	6.10E-03	9.21E-01	1.00E-02	3.11E-02	1.02E+00	2.10E-03	6.51E-04	5.15E-03	6.51E-04	8.84E-03
Soil Allocation Factor		N/A	1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Mass Fraction in Soil Vapour (coar	se-grained site)	N/A	N/A	N/A	N/A	N/A	0.8531	0.1424	0.0045	N/A	0.7666	0.2056	0.0225	0.0052	N/A
Hazard Quotient		N/A	2.81E-01	2.56E-05	4.94E-04	1.86E-02	2.75E-02	5.51E-03	8.53E-02	1.76E-02	1.16E-03	3.58E-04	1.41E-02	1.79E-03	8.05E-04
Indoor Vapour Risk		N/A	No	No	No	No	No	No	No	No	No	No	No	No	No

- 1. Calculation performed on sample exhibiting the highest concentration. Wijhere a none detect value exceeded detected concentration the unmodified non-detected values was used.
- 2. Indoor air concentration values derived by dividing result concentration by the commercial, slab-on-grade dilution factor, for fine-grained soil, adopted from CCME Canada-Wide Standard for Petroleum Hydrocarbons (PHC) in Soil: Scientific Rationale Supporting Technical Document, January 2008
 3. Toxicity Reference Values, Tolerable Concentration (TC) for PHC Fractions adopted from values publised in CCME, 2008, Canada-Wide Standard for Petroleum Hydrocarbons (PHC) in Soil: Scientific Rationale Supporting Technical Document, January 2008
 4. Toxicity Reference Values, Risk-Specific Concentration (RsC) or Tolerable Concentration (TC) for Benzene, Toluene, Xylene, adopted from values publised in Health Canada, 2004, Federal Contaminated Site Risk Assessment in Canada. Part II: Health Canada Toxicological Reference Values (TRVs).
- 5. Toxicity Reference Values, Tolerable Concentration (TC) for Ethylbenzene adopted from values publised in US EPA (United States Environmental Protection Agency), 2006. Integrated Risk Information System (IRIS) On-Line Database available at www.epa.gov/iris
- 6. Hazard Quotient derived by summing the fractions of recommended guidelines for PHC fraction but is considered individually for BTEX parameters. A soil allocation factor of 0.5 has been applied to all threshold substances to account for exposure form other media.
- 7. Hazard Quotient >1 for BTEX, PHC F1-F2 indicates no indoor air risk.
- 8. Exposure Term for non-threshold is defaulted as "one" as the exposure time (e.g., 10hr/day, 5 days/week, 48weeks/year for 30-40 years over a lifetime) exceeds the likely latency period for most carcinogens, as explained in Heath Canada Part I (2004) 9. Background Air Concentration and Soil Allocation Factor (SAF) are not applicable to non-threshold contaminants (CCME, 2006).